JP2012117929A - Voltage detection device - Google Patents

Voltage detection device Download PDF

Info

Publication number
JP2012117929A
JP2012117929A JP2010268393A JP2010268393A JP2012117929A JP 2012117929 A JP2012117929 A JP 2012117929A JP 2010268393 A JP2010268393 A JP 2010268393A JP 2010268393 A JP2010268393 A JP 2010268393A JP 2012117929 A JP2012117929 A JP 2012117929A
Authority
JP
Japan
Prior art keywords
voltage
detection device
resistor
resistance
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010268393A
Other languages
Japanese (ja)
Inventor
Hiroshi Igarashi
弘 五十嵐
Takashi Kumagai
隆 熊谷
Masanori Kageyama
正則 景山
Yoshinobu Kouji
芳信 糀
Nobutaka Suzuki
宣孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010268393A priority Critical patent/JP2012117929A/en
Publication of JP2012117929A publication Critical patent/JP2012117929A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a voltage detection device that accurately detects a voltage by surely suppressing a common mode noise even when commonly grounded with a post stage control circuit.SOLUTION: Grounding (GND) of a voltage detection device 29 and grounding (GND) of a post stage control circuit 26 are shared. A voltage obtained by dividing a voltage by resistor voltage dividing means 100 is fed to the control circuit 26 via an insulating amplifier 12. Capacitors 27 and 28 are connected between both input terminals and the grounding (GND) of the insulating amplifier 12.

Description

この発明は、被検出電圧を分圧抵抗手段により分圧して検出する電圧検出装置に関するものである。   The present invention relates to a voltage detection device for detecting a voltage to be detected by dividing it with a voltage dividing resistor means.

直流の被検出電圧を分圧抵抗を介して分圧して検出する電圧検出装置として、例えば、特許文献1や特許文献2に紹介された電圧検出装置が挙げられる。
前者は、直列接続された電池ユニット2の電圧を検出する装置、後者は、正常時は0、異常時は電圧が現れる、2個のスター結線CRフィルタの中性点間の電圧を検出することで、CRフィルタの異常検出を行うもので、いずれも、被検出電圧を、3個の互いに直列に接続した抵抗器で分圧し、その中央の抵抗器の電圧を差動アンプを介して出力する構成のものである。
Examples of a voltage detection device that detects a DC detected voltage by dividing it through a voltage dividing resistor include the voltage detection devices introduced in Patent Document 1 and Patent Document 2.
The former is a device for detecting the voltage of the battery units 2 connected in series, and the latter is for detecting the voltage between the neutral points of two star-connected CR filters in which the voltage appears 0 when normal and when abnormal. In any case, the abnormality detection of the CR filter is performed. In either case, the detected voltage is divided by three resistors connected in series with each other, and the voltage of the central resistor is output via the differential amplifier. It is a thing of composition.

抵抗値が等しい3個の抵抗器を接続することで、被検出電圧が印加される両端子からの抵抗値が互いに等しくなる一対の分圧端子の出力を差動アンプを介して取り出すことで、いわゆるコモンモードノイズの影響を抑制して精度の高い電圧検出を可能としたものと考えられる。   By connecting three resistors having the same resistance value, the output of a pair of voltage dividing terminals having the same resistance value from both terminals to which the voltage to be detected is applied is taken out via a differential amplifier. It is considered that accurate voltage detection is possible by suppressing the influence of so-called common mode noise.

特開2010−11631号公報(図2)JP 2010-11631 A (FIG. 2) 特開2003−111267号公報(図1)Japanese Patent Laying-Open No. 2003-111267 (FIG. 1)

ところで、鉄道車両に搭載される電気機器にあっては、パンタグラフを介して入力される高圧の直流架線電圧を検出する電圧検出装置が必要となる。そして、この電圧検出装置の検出出力は、後段の、車両電動機を駆動するインバータ等の駆動装置の制御回路に送出される。
この種の電圧検出装置に、上述した従来の電圧検出装置の方式を採用すると以下のような課題が生じることになる。
By the way, in an electric device mounted on a railway vehicle, a voltage detection device that detects a high-voltage DC overhead line voltage input via a pantograph is required. And the detection output of this voltage detection apparatus is sent to the control circuit of drive apparatuses, such as an inverter which drives a vehicle motor of a back | latter stage.
When the above-described conventional voltage detection device method is employed in this type of voltage detection device, the following problems occur.

即ち、共に鉄道車両に搭載される装置であることから、電圧検出装置とその後段の制御回路とは、構成上、両者の接地を共通とする必要がある。更に、鉄道車両に搭載する装置は、線路に接地されることになり、この線路には、インバータは勿論、回生ブレーキによって発生する電流などが流れ、その電流値は数百Aもの大電流にも達する。
そのため、差動アンプを介して接続される電圧検出装置と後段の制御回路との接地が共通であると、線路の抵抗と線路に流れる大電流とによって、数百Vの大きなコモンモードノイズが発生し得ることになる。一方、一般的に差動アンプの許容入力電圧は10V程度であるので、記述した従来のような、差動アンプを採用した方式は採用することができない。
In other words, since both are devices mounted on a railway vehicle, the voltage detection device and the control circuit at the subsequent stage need to have a common ground for both. Furthermore, a device mounted on a railway vehicle is grounded to a track, and an electric current generated by a regenerative brake flows in this track as well as an inverter. Reach.
For this reason, if the voltage detector connected via the differential amplifier and the control circuit at the subsequent stage are common to each other, a large common mode noise of several hundred volts is generated by the resistance of the line and the large current flowing through the line. Will be able to. On the other hand, since the allowable input voltage of the differential amplifier is generally about 10V, the conventional method using the differential amplifier cannot be employed.

この発明は、以上のような従来の課題を解決するためになされたもので、後段の制御回路と接地を共通とする場合にも、コモンモードノイズを確実に抑制して精度の高い電圧検出を可能とすることができる電圧検出装置を得ることを目的とする。   The present invention has been made to solve the conventional problems as described above. Even when the control circuit and the ground in the subsequent stage are shared, the common mode noise is surely suppressed and high-accuracy voltage detection is performed. It is an object to obtain a voltage detection device that can be made possible.

この発明に係る電圧検出装置は、電圧端と接地端との間に印加される被検出電圧を抵抗分圧手段により分圧し、当該分圧した電圧を後段の制御回路に送出する電圧検出装置において、
電圧検出装置の接地と制御回路の接地とを共通とするものであって、抵抗分圧手段で分圧した電圧を絶縁アンプを介して制御回路に送出するようにしたものである。
The voltage detection device according to the present invention is a voltage detection device that divides a voltage to be detected applied between a voltage terminal and a ground terminal by a resistance voltage dividing means and sends the divided voltage to a control circuit at a subsequent stage. ,
The ground of the voltage detection device and the ground of the control circuit are shared, and the voltage divided by the resistance voltage dividing means is sent to the control circuit via the insulation amplifier.

この発明に係る電圧検出装置は、以上のように、抵抗分圧手段で分圧した電圧を絶縁アンプを介して制御回路に送出するようにしたので、電圧検出装置の接地と後段の制御回路の接地とを共通とするものであっても、コモンモードノイズが有効に抑制され精度の高い電圧検出が可能となる。   Since the voltage detection device according to the present invention sends the voltage divided by the resistance voltage dividing means to the control circuit through the insulation amplifier as described above, the grounding of the voltage detection device and the control circuit of the latter stage Even in common grounding, common mode noise is effectively suppressed, and highly accurate voltage detection is possible.

本発明の実施の形態1による電圧検出装置の基本的な構成を、その後段の制御回路を含めて示す回路図である。It is a circuit diagram which shows the basic composition of the voltage detection apparatus by Embodiment 1 of this invention including the control circuit of the latter stage. 図1の絶縁アンプ12の内部構成を示すブロック図である。FIG. 2 is a block diagram showing an internal configuration of an insulation amplifier 12 in FIG. 1. 本発明の実施の形態1による電圧検出装置の外観を示す図である。It is a figure which shows the external appearance of the voltage detection apparatus by Embodiment 1 of this invention.

実施の形態1.
本発明の実施の形態1として、鉄道車両の直流高圧架線電圧を分圧抵抗で分圧、低電圧として更に絶縁して検出する電圧検出装置を例として取り上げる。そして、その検出出力は、該検出信号の変動をもとに鉄道車両の電源・駆動装置として用いられるSIV(静止形インバータ)やVVVFインバータをフィードバック制御する制御回路に送出される。
Embodiment 1 FIG.
As a first embodiment of the present invention, a voltage detection device that detects a DC high-voltage overhead line voltage of a railway vehicle by dividing it with a voltage dividing resistor and further insulating it as a low voltage will be taken as an example. The detection output is sent to a control circuit that feedback-controls a SIV (stationary inverter) or a VVVF inverter used as a power supply / drive device for a railway vehicle based on the fluctuation of the detection signal.

図1は、本発明の基本的な構成を示し、図1において、直流架線電圧は、パンタグラフである電圧端1と接地端GNDとの間に印加され、抵抗分圧手段100により分圧される。分圧抵抗手段100は、互いに直列に接続された、分圧抵抗器2〜8からなる高圧側分圧抵抗器と、分圧抵抗器10、11からなる低圧側分圧抵抗器と検出抵抗器とから構成される。そして、検出抵抗器9の両端が、絶縁アンプ12の一対の入力端に接続されている。また、検出抵抗器9の両端は、それぞれコンデンサ27および28を介してGNDに接続されている。   FIG. 1 shows a basic configuration of the present invention. In FIG. 1, a DC overhead line voltage is applied between a voltage terminal 1 that is a pantograph and a ground terminal GND, and is divided by a resistance voltage dividing means 100. . The voltage dividing resistor means 100 includes a high voltage side voltage dividing resistor composed of voltage dividing resistors 2 to 8, a low voltage side voltage dividing resistor composed of voltage dividing resistors 10 and 11, and a detection resistor connected in series with each other. It consists of. Both ends of the detection resistor 9 are connected to a pair of input ends of the insulation amplifier 12. Further, both ends of the detection resistor 9 are connected to GND through capacitors 27 and 28, respectively.

絶縁アンプ12によって絶縁された電圧検出信号は、SIVまたはVVVFインバータ等の駆動装置30のマイコン等で構成された制御回路26に入力され、電圧検出信号の変動をもとにSIVやVVVFインバータがフィードバック制御される。
一般的には、コモンモードノイズが電圧検出装置29と駆動装置30の制御回路26との間を流れるのを防ぐため、電圧検出装置29のGNDと制御回路26側のGNDとは分離される。しかし、鉄道車両用装置においては、システム構成上、両者のGNDが共通になっている。このため、記述したように、また、図1の下段に略図で図示したように、線路の抵抗Rlと線路に流れる大電流(矢印)とによって、数百Vの大きなコモンモードノイズが発生し得ることになり、この発明では、このノイズを遮断するため、従来の差動アンプに替わって絶縁アンプ12を採用する。
The voltage detection signal insulated by the insulation amplifier 12 is input to a control circuit 26 configured by a microcomputer or the like of the driving device 30 such as a SIV or VVVF inverter, and the SIV or VVVF inverter feeds back based on the fluctuation of the voltage detection signal. Be controlled.
Generally, in order to prevent common mode noise from flowing between the voltage detection device 29 and the control circuit 26 of the drive device 30, the GND of the voltage detection device 29 and the GND on the control circuit 26 side are separated. However, in the railway vehicle apparatus, both GNDs are common due to the system configuration. Therefore, as described, and as schematically illustrated in the lower part of FIG. 1, a large common mode noise of several hundred volts can be generated by the resistance R1 of the line and a large current (arrow) flowing through the line. Therefore, in the present invention, in order to block this noise, the insulation amplifier 12 is adopted instead of the conventional differential amplifier.

図2は、この絶縁アンプ12の内部構成である基本的な回路構成例を示すブロック図である。絶縁アンプ12は、2つの絶縁トランス(伝送トランス16、電源トランス17)を使って1次―2次間を絶縁しており、検出信号(直流電圧)をアナログスイッチ14、18の動作により振幅変調する。
Vcc−GND間に制御用の直流電源Vccを供給すると、定電圧回路REG22で安定化された直流電源が発振回路OSC20に供給される。電源トランス17の1次巻線P1に接続された発振回路OSC20は、周波数fosc[Hz]で発振しており、電源トランス17の全巻線は巻線方向が同一のため、巻線P2,Sには1次巻線P1と同じ極性の電圧Vsが発生する。
この電圧Vsは、入/出力段アナログスイッチ14、18のスイッチング信号の役割を持つ。更に、電圧Vsは、平滑回路15,19で直流電圧に平滑され、入/出力段の反転増幅回路13,21およびアナログスイッチ14,18の電源電圧として供給される。
FIG. 2 is a block diagram showing a basic circuit configuration example that is an internal configuration of the insulation amplifier 12. The insulation amplifier 12 uses two insulation transformers (transmission transformer 16 and power supply transformer 17) to insulate the primary and the secondary, and the amplitude of the detection signal (DC voltage) is modulated by the operation of the analog switches 14 and 18. To do.
When the control DC power source Vcc is supplied between Vcc and GND, the DC power source stabilized by the constant voltage circuit REG22 is supplied to the oscillation circuit OSC20. The oscillation circuit OSC20 connected to the primary winding P1 of the power transformer 17 oscillates at a frequency fosc [Hz], and all the windings of the power transformer 17 have the same winding direction. Generates a voltage Vs having the same polarity as the primary winding P1.
This voltage Vs serves as a switching signal for the input / output stage analog switches 14 and 18. Further, the voltage Vs is smoothed to a DC voltage by the smoothing circuits 15 and 19 and supplied as a power supply voltage for the inverting amplifier circuits 13 and 21 and the analog switches 14 and 18 in the input / output stage.

入力端子P、Nに入力された検出信号(直流電圧)Vinは、入力段の反転増幅回路13で信号(−Vin)に反転された後、入力段アナログスイッチ14に入力される。入力段アナログスイッチ14は、周波数fosc[Hz]でスイッチングしており、直流電圧(−Vin)を周波数fosc[Hz]の交流電圧に変調している。
伝送トランス16の1次巻線には直流から交流に変調された前記信号が印加される。伝送トランス16の巻数比を1:1とすると、伝送トランス16の2次巻線には、1次巻線に印加された変調信号と同じ信号が発生する。
The detection signal (DC voltage) Vin input to the input terminals P and N is inverted to a signal (−Vin) by the inverting amplifier circuit 13 of the input stage and then input to the input stage analog switch 14. The input stage analog switch 14 switches at a frequency fosc [Hz], and modulates a DC voltage (−Vin) into an AC voltage having a frequency fosc [Hz].
The signal modulated from direct current to alternating current is applied to the primary winding of the transmission transformer 16. When the turns ratio of the transmission transformer 16 is 1: 1, the same signal as the modulation signal applied to the primary winding is generated in the secondary winding of the transmission transformer 16.

出力段アナログスイッチ18は、入力段アナログスイッチ14と同様に、周波数fosc[Hz]でスイッチングしており、交流に変調された信号(−Vin)を直流に復調する。復調された信号(−Vin)は、出力段の反転増幅回路21で反転増幅され、もとの検出信号Vinに戻りVoutとして出力される。   Similarly to the input stage analog switch 14, the output stage analog switch 18 is switched at a frequency fosc [Hz], and demodulates a signal (-Vin) modulated into alternating current into direct current. The demodulated signal (-Vin) is inverted and amplified by the inverting amplifier circuit 21 in the output stage, and is returned to the original detection signal Vin and output as Vout.

図3は、本実施の形態1における電圧検出装置29の外観図を示す。
図3に示すように、分圧抵抗器2〜8,10、11と検出抵抗器9および絶縁アンプ12は、プリント基板23に実装される。プリント基板23の、絶縁トランス16、17の取り付け箇所には、その1次−2次間の部分に沿面距離を確保するためスリット24が設けてある。また、プリント基板23の端部には端子台25を備え、図3に示すように、被検出電圧である直流架線電圧および絶縁アンプ12の制御用の直流電源Vccの入力、絶縁アンプ12の出力信号Voutの出力、また、GNDとの接続を行う。
FIG. 3 is an external view of the voltage detection device 29 according to the first embodiment.
As shown in FIG. 3, the voltage dividing resistors 2 to 8, 10, 11, the detection resistor 9, and the insulation amplifier 12 are mounted on a printed circuit board 23. A slit 24 is provided in the portion of the printed circuit board 23 where the insulation transformers 16 and 17 are attached in order to ensure a creepage distance between the primary and secondary portions. Further, a terminal block 25 is provided at the end of the printed circuit board 23, and as shown in FIG. 3, the DC overhead line voltage as the detected voltage and the input of the DC power source Vcc for controlling the insulation amplifier 12 and the output of the insulation amplifier 12 are provided. Output of the signal Vout and connection with GND are performed.

ところで、国内在来線の直流架線電圧は、一部地下鉄などを除いて1500Vで、欧州(イタリア等)においては3000Vである。そこで、被検出電圧である直流架線電圧を3000Vとし、検出抵抗器9の両端電圧を10Vとすると、その他9個の分圧抵抗器2〜8、10、11には2990Vが印加される。
従って、分圧抵抗器2〜8、10、11の抵抗値を互いに同一とすると、分圧抵抗器2〜8、10,11の各分圧値は、約332V(≒2990V/9直列)になる。
By the way, the DC overhead voltage of domestic domestic lines is 1500 V except for some subways and the like, and 3000 V in Europe (Italy etc.). Therefore, if the DC overhead wire voltage, which is the detected voltage, is 3000 V, and the voltage across the detection resistor 9 is 10 V, 2990 V is applied to the other nine voltage dividing resistors 2-8, 10, and 11.
Accordingly, if the resistance values of the voltage dividing resistors 2-8, 10, 11 are the same, the voltage dividing values of the voltage dividing resistors 2-8, 10, 11 are about 332V (≈2990V / 9 series). Become.

本実施の形態1では、検出抵抗器9とGNDとの間に分圧抵抗器10、11が直列に接続されており、絶縁アンプ12の入力電圧は、GNDに対して674V(=10V+332V×2)になり、絶縁アンプ12の1次−2次間には、674Vの直流電圧が印加される。
従来のような差動アンプを使用した電圧検出装置の抵抗分圧手段における分圧仕様にあっては、差動アンプの入力端への対称性を確保するため、その中心電位が被検出電圧の1/2になるよう設定された検出抵抗器の両端の電圧が検出電圧として取り出されるため、この取り出し電位は、被検出電圧の1/2を越え、ここで例示した直流架線電圧3000Vの場合に従来の分圧仕様をそのまま採用すると、絶縁アンプの1次−2次間には、1500Vを越える直流電圧が印加されることになる。
In the first embodiment, the voltage dividing resistors 10 and 11 are connected in series between the detection resistor 9 and GND, and the input voltage of the insulation amplifier 12 is 674V (= 10V + 332V × 2) with respect to GND. And a DC voltage of 674 V is applied between the primary and secondary sides of the insulation amplifier 12.
In the voltage dividing specification in the resistance voltage dividing means of the voltage detecting device using the conventional differential amplifier, the central potential of the voltage to be detected is the center potential in order to ensure the symmetry to the input terminal of the differential amplifier. Since the voltage at both ends of the detection resistor set to be 1/2 is extracted as the detection voltage, this extraction potential exceeds 1/2 of the detected voltage, and in the case of the DC overhead line voltage 3000 V exemplified here, If the conventional voltage dividing specification is adopted as it is, a DC voltage exceeding 1500 V is applied between the primary and secondary sides of the insulation amplifier.

そのため、本実施の形態1と比べ、従来の電圧検出装置の分圧仕様では、絶縁アンプの1次−2次間の沿面距離を2倍以上確保しなければならず、電圧検出装置の小型化が困難となる。鉄道車両用推進制御装置に関する代表的な絶縁規格であるIEC60077−1によれば、絶縁アンプの1次−2次間に必要な沿面距離は電圧検出装置の周囲環境によるが、汚損度をPD3、マテリアルグループをIと仮定すると、電圧674Vでは10mm以上必要なのに対し、1500Vでは18.75mm以上必要となる。また、絶縁トランス内部の1次−2次巻線間にも別途規定の沿面距離を確保する必要があり、従来の電圧検出装置では絶縁トランスのサイズを大きくするか、絶縁トランス内部を樹脂モールドする必要があり、電圧検出装置の小型・低コスト化が困難となる。   Therefore, compared with the first embodiment, in the voltage dividing specification of the conventional voltage detection device, the creepage distance between the primary and secondary of the insulation amplifier must be ensured twice or more, and the voltage detection device is downsized. It becomes difficult. According to IEC 60077-1, which is a typical insulation standard for railway vehicle propulsion control devices, the creepage distance required between the primary and secondary of the insulation amplifier depends on the surrounding environment of the voltage detection device, but the degree of contamination is PD3, Assuming that the material group is I, 10 mm or more is required at a voltage of 674V, whereas 18.75 mm or more is required at 1500V. In addition, it is necessary to secure a separate creepage distance between the primary and secondary windings inside the insulation transformer. In the conventional voltage detection device, the size of the insulation transformer is increased or the inside of the insulation transformer is molded with resin. Therefore, it is difficult to reduce the size and cost of the voltage detection device.

これに対し、本実施の形態1によれば、絶縁アンプ12を採用し電圧検出装置29と後段の制御回路26とをこの絶縁アンプ12で絶縁的に遮断することによりコモンモードノイズを抑制する構成としたので、分圧仕様として上述した対称性が要求されることが無い。   On the other hand, according to the first embodiment, the insulation amplifier 12 is employed, and the voltage detection device 29 and the control circuit 26 at the subsequent stage are insulated from each other by the insulation amplifier 12 to suppress common mode noise. Therefore, the above-described symmetry is not required as the partial pressure specification.

即ち、この発明における抵抗分圧手段100の分圧仕様としては、
(検出抵抗器9の抵抗値+低圧側分圧抵抗器(10、11)の抵抗値)<(高圧側分圧抵抗器(2〜8)の抵抗値+検出抵抗器9の抵抗値+低圧側分圧抵抗器(10、11)の抵抗値)×(1/2)の関係を満たす設定が可能となる訳である。
本実施の形態1では、上述した具体例に示すように、絶縁アンプ12の1次−2次間に印加される直流電圧を、674(<(3000×(1/2))Vという低電圧に抑えることができ、電圧検出装置の小型・低コスト化が可能となる。
That is, as the voltage dividing specification of the resistance voltage dividing means 100 in the present invention,
(Resistance value of the detection resistor 9 + resistance value of the low voltage side voltage dividing resistor (10, 11)) <(resistance value of the high voltage side voltage dividing resistor (2 to 8) + resistance value of the detection resistor 9 + low voltage The setting satisfying the relationship of the resistance value of the side voltage dividing resistors (10, 11)) × (1/2) becomes possible.
In the first embodiment, as shown in the specific example described above, the DC voltage applied between the primary and secondary sides of the insulation amplifier 12 is a low voltage of 674 (<(3000 × (1/2)) V. Therefore, the voltage detection device can be reduced in size and cost.

また、絶縁トランスが大きく、その1次巻線と2次巻線との間の距離が大きく離れている場合、絶縁トランスの1次−2次間の磁気結合が粗になる。磁気結合が粗になると絶縁トランスの出力波形には歪みが発生しやすく、1次側から2次側へ正確な信号伝達ができないため、出力電圧に誤差が生じる。
本実施の形態1における電圧検出装置によれば、絶縁トランスの小型化により、1次巻線と2次巻線との間の距離が短くなり、1次−2次間の磁気結合が密になるため出力電圧の精度向上が期待できる。
Further, when the insulation transformer is large and the distance between the primary winding and the secondary winding is greatly separated, the magnetic coupling between the primary and secondary of the insulation transformer becomes rough. When the magnetic coupling becomes rough, the output waveform of the isolation transformer is likely to be distorted, and an accurate signal cannot be transmitted from the primary side to the secondary side, resulting in an error in the output voltage.
According to the voltage detection apparatus in the first embodiment, the distance between the primary winding and the secondary winding is shortened due to the miniaturization of the insulating transformer, and the magnetic coupling between the primary and secondary is dense. Therefore, the improvement of the output voltage accuracy can be expected.

また、一般的に電圧検出装置の小型化と分圧抵抗器との電力損失を抑えるため、分圧抵抗器の抵抗値は高く設定される。本実施の形態1によれば、各分圧抵抗器の分圧値は332Vである。電圧検出装置の小型化のため分圧抵抗器に1/4W品を選定した場合、電力損失のディレーティングを30%(75mW=250mW×0.3)とすると、各分圧抵抗器の抵抗値は1.47MegΩ(≒332V^2/75mW)と求められ、抵抗値を1.47MegΩ以上に設定する必要がある。   In general, the resistance value of the voltage dividing resistor is set high in order to reduce the size of the voltage detection device and suppress power loss with the voltage dividing resistor. According to the first embodiment, the voltage dividing value of each voltage dividing resistor is 332V. When a 1 / 4W product is selected as a voltage divider resistor to reduce the size of the voltage detector, assuming that the power loss derating is 30% (75mW = 250mW × 0.3), the resistance value of each voltage divider resistor Is 1.47 MegΩ (≈332 V ^ 2/75 mW), and it is necessary to set the resistance value to 1.47 MegΩ or more.

この点に関し、従来の電圧検出装置によれば、直流高電圧の中間電位に位置する検出抵抗器両端の電圧を検出するため、検出抵抗器とGNDとの間のインピーダンスは7.5MegΩ(=1.5MegΩ×5個)と高インピーダンスになり、ノイズが重畳しやすいといった問題があった。
これに対し、本実施の形態1によれば、直流高電圧の中間電位よりも、低い電位に位置する検出抵抗器9の両端の電圧を検出電圧として絶縁アンプ12に入力するため、検出抵抗器9とGNDとの間のインピーダンスは、3.0MegΩ(=1.5MegΩ×2個)に低減する。検出抵抗器9とGNDとの間のインピーダンスの低下により、検出信号へのノイズ重畳が抑えられるので電圧検出装置の出力精度向上が期待できる。
In this regard, according to the conventional voltage detection device, since the voltage across the detection resistor located at the intermediate potential of the DC high voltage is detected, the impedance between the detection resistor and GND is 7.5 MegΩ (= 1) .5 MegΩ × 5) and high impedance, and noise is likely to be superimposed.
On the other hand, according to the first embodiment, since the voltage across the detection resistor 9 located at a lower potential than the intermediate potential of the DC high voltage is input to the insulation amplifier 12 as the detection voltage, the detection resistor The impedance between 9 and GND is reduced to 3.0 MegΩ (= 1.5 MegΩ × 2). Due to the decrease in impedance between the detection resistor 9 and GND, noise superimposition on the detection signal can be suppressed, so that the output accuracy of the voltage detection device can be improved.

更に、本実施の形態1によれば、検出抵抗器9の両端、従って、絶縁アンプ12の両入力端とGNDとの間にコンデンサ27、28を接続したことにより、分圧抵抗器2〜8、10、11と検出抵抗器9、及びコンデンサ27、28で形成されるローパスフィルタによってコモンモードノイズが除去される。検出信号へのノイズ重畳がより確実に抑えられ電圧検出装置の出力精度が更に向上する。   Further, according to the first embodiment, the capacitors 27 and 28 are connected between both ends of the detection resistor 9, and thus both input ends of the insulation amplifier 12, and GND, so that the voltage dividing resistors 2 to 8 are connected. Common mode noise is removed by a low-pass filter formed by the resistors 10 and 11, the detection resistor 9, and the capacitors 27 and 28. Noise superimposition on the detection signal is more reliably suppressed, and the output accuracy of the voltage detection device is further improved.

コンデンサ27、28が無い場合、コモンモードノイズは、分圧抵抗器10、11に流れ、分圧抵抗器10、11における電圧降下がノイズとして検出信号へ重畳することになる。分圧抵抗器10、11のインピーダンスは、前述のように数MegΩと高いため、仮に数μAのコモンモードノイズが分圧抵抗器10、11に流れたとすると数Vものノイズが検出信号に重畳し、装置によっては、十分な電圧検出精度が得られない場合もあり得る。   Without the capacitors 27 and 28, common mode noise flows to the voltage dividing resistors 10 and 11, and a voltage drop in the voltage dividing resistors 10 and 11 is superimposed on the detection signal as noise. Since the impedance of the voltage dividing resistors 10 and 11 is as high as several MegΩ as described above, if a common mode noise of several μA flows to the voltage dividing resistors 10 and 11, noise of several V is superimposed on the detection signal. Depending on the device, sufficient voltage detection accuracy may not be obtained.

以上のように、本実施の形態1による電圧検出装置は、その抵抗分圧手段100で分圧した電圧を絶縁アンプ12を介して後段の制御回路26に送出することで電圧検出装置29と制御回路26との間を絶縁的に遮断し、更に、絶縁アンプ12の両入力端と接地GNDとの間にコンデンサ27、28を接続することで僅かなノイズもコンデンサ27、28からGNDに流すようにしたので、電圧検出装置29のGNDと制御回路26のGNDとを共通とするものであっても、コモンモードノイズを有効確実に抑制することができ、高精度の電圧検出が可能となる。   As described above, the voltage detection device according to the first embodiment controls the voltage detection device 29 and the voltage detection device 29 by sending the voltage divided by the resistance voltage dividing means 100 to the control circuit 26 in the subsequent stage via the insulation amplifier 12. The circuit 26 is insulated from the circuit 26, and the capacitors 27 and 28 are connected between the input terminals of the insulation amplifier 12 and the ground GND, so that a slight noise can flow from the capacitors 27 and 28 to the GND. Therefore, even if the GND of the voltage detection device 29 and the GND of the control circuit 26 are common, the common mode noise can be effectively and reliably suppressed, and high-accuracy voltage detection is possible.

更に、抵抗分圧手段100の分圧仕様として、絶縁アンプ12の1次−2次間の電圧が被検出電圧である直流架線電圧の1/2未満の低電圧となるようにしたので、電圧検出装置の小型・低コストが実現し、絶縁の信頼性も向上する。   Further, as the voltage dividing specification of the resistance voltage dividing means 100, the voltage between the primary and secondary of the insulation amplifier 12 is set to a low voltage that is less than 1/2 of the DC overhead line voltage that is the detected voltage. The detector is small and low-cost, and the insulation reliability is improved.

なお、本発明の実施の形態1では、コモンモードノイズ抑制の効果をより確実にするため、絶縁アンプ12の両入力端とGNDとの間にコンデンサ27、28を接続するようにしたが、装置の種別や要求される検出精度によっては、この発明の適用上、コンデンサの接続を省略することもできる。   In the first embodiment of the present invention, the capacitors 27 and 28 are connected between the both input terminals of the insulation amplifier 12 and GND in order to ensure the effect of suppressing the common mode noise. Depending on the type and the required detection accuracy, the connection of the capacitor can be omitted for the purpose of applying the present invention.

また、本発明の実施の形態1では、鉄道車両の直流架線電圧を絶縁して電圧検出する場合を例にあげたが、高周波高電圧を絶縁して検出する電圧検出装置として本発明を用いることもでき、その場合、絶縁アンプ12の1次−2次間の印加電圧を低電圧に抑えることができるため、絶縁トランス部において、コロナ放電が発生し難く電圧検出装置の長寿命化と長期信頼性の向上が期待できる。   Further, in the first embodiment of the present invention, the case where the voltage is detected by insulating the DC overhead voltage of the railway vehicle is taken as an example. However, the present invention is used as a voltage detection device that detects and detects a high frequency high voltage. In this case, since the voltage applied between the primary and secondary sides of the insulation amplifier 12 can be suppressed to a low voltage, corona discharge is unlikely to occur in the insulation transformer, and the life of the voltage detection device and long-term reliability are improved. The improvement of sex can be expected.

更に、本実施の形態1では、分圧抵抗器の直列数を10直列、検出抵抗器9とGNDとの間の分圧抵抗器の数を2直列としたが、分圧抵抗器の直列数を増やし、検出抵抗器とGNDとの間の分圧抵抗器の数を減らし、絶縁アンプの1次−2次間の電圧を更に低減することで、本実施の形態1と同等以上の効果が得られることは言うまでもない。   Furthermore, in the first embodiment, the number of voltage dividing resistors is 10 in series, and the number of voltage dividing resistors between the detection resistor 9 and GND is 2 in series, but the number of voltage dividing resistors is in series. The number of voltage dividing resistors between the detection resistor and GND is reduced, and the voltage between the primary and secondary of the insulation amplifier is further reduced, so that an effect equal to or greater than that of the first embodiment can be obtained. It goes without saying that it is obtained.

1 電圧端、2〜8,11,12 分圧抵抗器、9 検出抵抗器、12 絶縁アンプ、16,17 絶縁トランス、23 プリント基板、26 制御回路、
27,28 コンデンサ、29 電圧検出装置、30 駆動装置、
100 抵抗分圧手段、GND 接地。
1 voltage terminal, 2 to 8, 11, 12 voltage dividing resistor, 9 detection resistor, 12 insulation amplifier, 16, 17 insulation transformer, 23 printed circuit board, 26 control circuit,
27, 28 capacitor, 29 voltage detection device, 30 drive device,
100 Resistance voltage dividing means, GND grounding.

Claims (4)

電圧端と接地端との間に印加される被検出電圧を抵抗分圧手段により分圧し、当該分圧した電圧を後段の制御回路に送出する電圧検出装置において、
前記電圧検出装置の接地と前記制御回路の接地とを共通とするものであって、前記抵抗分圧手段で分圧した電圧を絶縁アンプを介して前記制御回路に送出するようにしたことを特徴とする電圧検出装置。
In a voltage detection device that divides a voltage to be detected applied between a voltage terminal and a ground terminal by a resistance voltage dividing means, and sends the divided voltage to a control circuit at a subsequent stage,
The ground of the voltage detection device and the ground of the control circuit are common, and the voltage divided by the resistance voltage dividing means is sent to the control circuit via an insulation amplifier. A voltage detection device.
前記抵抗分圧手段は、前記電圧端と前記絶縁アンプの入力端子の一方との間に接続された高圧側分圧抵抗器、前記接地端と前記絶縁アンプの入力端子の他方との間に接続された低圧側分圧抵抗器および前記絶縁アンプの入力端子の前記一方と前記他方との間に接続された検出抵抗器を備え、前記絶縁アンプの入力端子の前記一方および前記他方と前記接地端との間にそれぞれ接続されたコンデンサを備えたことを特徴とする請求項1記載の電圧検出装置。 The resistance voltage dividing means is connected between the voltage terminal and one of the input terminals of the insulation amplifier, and connected between the ground terminal and the other input terminal of the insulation amplifier. A low-voltage side voltage dividing resistor and a detection resistor connected between the one and the other of the input terminals of the insulation amplifier, the one and the other of the input terminals of the insulation amplifier and the ground terminal The voltage detection device according to claim 1, further comprising a capacitor connected between the first and second capacitors. 前記抵抗分圧手段は、前記各抵抗器の抵抗値を下式の関係となるよう設定したことを特徴とする請求項2記載の電圧検出装置。
(前記検出抵抗器の抵抗値+前記低圧側分圧抵抗器の抵抗値)<(前記高圧側分圧抵抗器の抵抗値+前記検出抵抗器の抵抗値+前記低圧側分圧抵抗器の抵抗値)×(1/2)
3. The voltage detection apparatus according to claim 2, wherein the resistance voltage dividing means sets the resistance values of the resistors to satisfy the following relationship.
(Resistance value of the detection resistor + resistance value of the low voltage side voltage dividing resistor) <(resistance value of the high voltage side voltage dividing resistor + resistance value of the detection resistor + resistance of the low voltage side voltage dividing resistor) Value) x (1/2)
前記抵抗分圧手段は、前記電圧端に鉄道車両の直流架線電圧が印加され、前記制御回路とともに前記鉄道車両に搭載されるものであることを特徴とする請求項1ないし3のいずれか1項に記載の電圧検出装置。 4. The resistance voltage dividing means, wherein a DC overhead voltage of a railway vehicle is applied to the voltage terminal, and is mounted on the railway vehicle together with the control circuit. The voltage detection apparatus described in 1.
JP2010268393A 2010-12-01 2010-12-01 Voltage detection device Pending JP2012117929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010268393A JP2012117929A (en) 2010-12-01 2010-12-01 Voltage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010268393A JP2012117929A (en) 2010-12-01 2010-12-01 Voltage detection device

Publications (1)

Publication Number Publication Date
JP2012117929A true JP2012117929A (en) 2012-06-21

Family

ID=46500928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010268393A Pending JP2012117929A (en) 2010-12-01 2010-12-01 Voltage detection device

Country Status (1)

Country Link
JP (1) JP2012117929A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944717A (en) * 2012-11-14 2013-02-27 江苏惠通集团有限责任公司 Voltage detection device and method
WO2014190666A1 (en) * 2013-05-31 2014-12-04 国家电网公司 Detection circuit and detection method for power glitch signal
CN112816760A (en) * 2020-12-30 2021-05-18 西安西驰电气股份有限公司 Alternating-current high-voltage detection device and method for medium-high voltage soft starter
JPWO2021240192A1 (en) * 2020-05-28 2021-12-02
WO2023017737A1 (en) * 2021-08-10 2023-02-16 日置電機株式会社 Probe device
JP7456953B2 (en) 2021-01-15 2024-03-27 株式会社鷺宮製作所 Track circuit monitoring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629175A (en) * 1979-08-17 1981-03-23 Japanese National Railways<Jnr> Measuring device of trolley line abnormal voltage
JPH03147384A (en) * 1989-11-02 1991-06-24 Amada Co Ltd Voltage detector for laser power source
JP2004179900A (en) * 2002-11-26 2004-06-24 Tm T & D Kk Common mode noise elimination circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629175A (en) * 1979-08-17 1981-03-23 Japanese National Railways<Jnr> Measuring device of trolley line abnormal voltage
JPH03147384A (en) * 1989-11-02 1991-06-24 Amada Co Ltd Voltage detector for laser power source
JP2004179900A (en) * 2002-11-26 2004-06-24 Tm T & D Kk Common mode noise elimination circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944717A (en) * 2012-11-14 2013-02-27 江苏惠通集团有限责任公司 Voltage detection device and method
WO2014190666A1 (en) * 2013-05-31 2014-12-04 国家电网公司 Detection circuit and detection method for power glitch signal
JPWO2021240192A1 (en) * 2020-05-28 2021-12-02
WO2021240192A1 (en) * 2020-05-28 2021-12-02 日産自動車株式会社 Electric current detection device and electric current detection method
JP7388552B2 (en) 2020-05-28 2023-11-29 日産自動車株式会社 Current detection device and current detection method
US11835552B2 (en) 2020-05-28 2023-12-05 Nissan Motor Co., Ltd. Electric current detection device and electric current detection method
CN112816760A (en) * 2020-12-30 2021-05-18 西安西驰电气股份有限公司 Alternating-current high-voltage detection device and method for medium-high voltage soft starter
JP7456953B2 (en) 2021-01-15 2024-03-27 株式会社鷺宮製作所 Track circuit monitoring device
WO2023017737A1 (en) * 2021-08-10 2023-02-16 日置電機株式会社 Probe device

Similar Documents

Publication Publication Date Title
JP2012117929A (en) Voltage detection device
CN112513651A (en) Method for detecting insulation faults
JP2015534050A (en) Equipment for detecting and measuring insulation faults
JP2005315853A (en) Power supply
TWI453432B (en) Insulating detection circuit and method thereof
JP6471656B2 (en) Inverter control board
JP6539441B2 (en) Detector for output current and ground fault resistance
JPWO2008001427A1 (en) Power converter
WO2020170556A1 (en) Electrical fault detection device and vehicle power supply system
CN110023771A (en) DC leakage detection device and earth detector
JP2014187730A (en) Power supply system
JP2010175276A (en) Magnetic proportion system current sensor
JP2011166968A (en) Measure against inductive interference in vehicular power converter
US20180022218A1 (en) Vehicle ground fault detection apparatus
JP6668938B2 (en) Inverter control board
US9701327B2 (en) Current sensor for monitoring a wayside signal lamp for a positive train system
JP7055777B2 (en) Detection device
JP4455145B2 (en) Railway vehicle drive control device
JP6306294B2 (en) Regenerative brake device
JP6808989B2 (en) Inverter module
JP4391339B2 (en) Auxiliary power supply for vehicle
JP2005124365A (en) Vehicular power supply device
JP2008064522A (en) Leak detection device
JPH10313501A (en) Grounding circuit for electric car
JP4251272B2 (en) Feed voltage detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105