JP2012117219A - Construction structure of composite viaduct and construction method of composite viaduct - Google Patents

Construction structure of composite viaduct and construction method of composite viaduct Download PDF

Info

Publication number
JP2012117219A
JP2012117219A JP2010265348A JP2010265348A JP2012117219A JP 2012117219 A JP2012117219 A JP 2012117219A JP 2010265348 A JP2010265348 A JP 2010265348A JP 2010265348 A JP2010265348 A JP 2010265348A JP 2012117219 A JP2012117219 A JP 2012117219A
Authority
JP
Japan
Prior art keywords
box girder
steel box
composite
beam steel
upper beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010265348A
Other languages
Japanese (ja)
Other versions
JP5680385B2 (en
Inventor
Ichiro Sugimoto
一朗 杉本
Manabu Ikeda
学 池田
Nozomi Taniguchi
望 谷口
Junichi Hirao
淳一 平尾
Tadahisa Yamamoto
忠久 山本
Mamoru Yamashita
衛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2010265348A priority Critical patent/JP5680385B2/en
Publication of JP2012117219A publication Critical patent/JP2012117219A/en
Application granted granted Critical
Publication of JP5680385B2 publication Critical patent/JP5680385B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction structure of a composite viaduct and a construction method of the composite viaduct which enables construction even in a narrow space in a short period of time and building at a lowered cost.SOLUTION: A construction structure of a composite viaduct is equipped with: a CFT column 21 that is formed of steel pipes filled with concrete; an upper-layer beam steel box girder that can be constructed by arranging it on the CFT column 21 and moving it in a horizontal direction; an upper-layer beam steel box girder member 23 composed of an insert steel frame 24 that is installed to an anchor frame 22 provided on the CFT column 21 and to the upper-layer beam steel box girder; a CFT column joint part that joins the CFT column 21 and the upper-layer beam steel box girder member 23; and a composite beam floor slab 26 that is arranged on the upper-layer beam steel box girder member 23 and made of concrete.

Description

本発明は、鉄道、道路の複合高架橋の構築構造およびその複合高架橋の施工方法に関するものである。   The present invention relates to a construction structure of a composite viaduct for railways and roads and a construction method for the composite viaduct.

従来、高架橋の建設にあたって、鋼とコンクリートを用いた複合構造物の積極的活用は少なかった。また、都市内では、狭隘な箇所での施工が要求されるケースが増えてきている。
図20は従来の高架橋の側面図、図21はその正面図である。
これらの図において、100は高架橋、101はRC柱、102はRC柱101上に構築されるRC(鉄筋コンクリート)〔又はPC(プレストレストコンクリート)〕梁、103は高架橋100上を走行する車両である。
Conventionally, in the construction of viaducts, there has been little active utilization of composite structures using steel and concrete. In cities, there are increasing cases where construction is required in narrow spaces.
20 is a side view of a conventional viaduct, and FIG. 21 is a front view thereof.
In these drawings, 100 is a viaduct, 101 is an RC column, 102 is an RC (steel reinforced concrete) beam (or PC (prestressed concrete)) built on the RC column 101, and 103 is a vehicle traveling on the viaduct 100.

特許第3837390号公報Japanese Patent No. 3837390

「橋梁と基礎」,株式会社建設図書,2009年11月号,第43巻,第11号(通巻第515号)“Bridge and Foundation”, Construction Books, Inc., November 2009, Volume 43, Volume 11 (Volume 515)

従来の高架橋の施工・構築方法では、時間・費用がかかりすぎるという課題があった。特に、狭隘な箇所での施工には、時間・費用がさらに増大する傾向が強い。
本発明は、上記状況に鑑みて、短い期間で施工でき、かつ費用を低減して構築することができる、複合高架橋の構築構造およびその複合高架橋の施工方法を提供することを目的とする。
The conventional viaduct construction / construction method has a problem that it takes too much time and money. In particular, construction in a narrow area tends to further increase time and cost.
In view of the above circumstances, an object of the present invention is to provide a composite viaduct construction structure and a composite viaduct construction method that can be constructed in a short period of time and can be constructed at a reduced cost.

本発明は、上記目的を達成するために、
〔1〕複合高架橋の構築構造において、コンクリートを充填した鋼管からなるCFT柱と、このCFT柱上に配置され水平方向に移動させて構築可能な上層梁鋼箱桁と、前記CFT柱に設置されるアンカーフレームと前記上層梁鋼箱桁とに装着される差し込み鉄骨とからなる上層梁鋼箱桁部材と、前記CFT柱と前記上層梁鋼箱桁部材とを接合するCFT柱接合部と、前記上層梁鋼箱桁部材上に配置されるコンクリートからなる合成梁床版とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[1] In a composite viaduct construction structure, a CFT column made of a steel pipe filled with concrete, an upper beam steel box girder arranged on the CFT column and movable in the horizontal direction, and an anchor installed on the CFT column An upper beam steel box girder member composed of a steel frame attached to a frame and the upper beam steel box girder, a CFT column joint for joining the CFT column and the upper beam steel box girder member, and the upper beam steel box girder member. And a composite beam slab made of concrete.

〔2〕上記〔1〕記載の複合高架橋の構築構造において、前記CFT柱接合部は、前記アンカーフレームおよび前記上層梁鋼箱桁と前記差し込み鉄骨との間の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする。
〔3〕上記〔1〕記載の複合高架橋の構築構造において、前記CFT柱接合部は、前記上層梁鋼箱桁内に配置されるリング状のコンクリートブロックと前記アンカーフレームをアンカーボルトで固定し、さらに、前記上層梁鋼箱桁内の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする。
[2] The composite viaduct construction structure according to the above [1], wherein the CFT column joint is formed by filling the gap between the anchor frame and the upper beam steel box girder and the insertion steel frame with concrete. It is characterized by fixing.
[3] In the construction structure of the composite viaduct according to [1], the CFT column joint portion fixes the ring-shaped concrete block disposed in the upper beam steel box girder and the anchor frame with an anchor bolt, The insert steel frame is fixed by filling the gap in the upper beam steel box girder with concrete.

〔4〕複合高架橋の施工方法において、コンクリートを充填した鋼管からなるCFT柱を建て込み、このCFT柱上に上層梁鋼箱桁を含む上層梁鋼箱桁部材を水平方向に移動させて配置し、前記CFT柱と前記上層梁鋼箱桁部材とを接合し、前記上層梁鋼箱桁部材上にコンクリートからなる合成梁床版を配置し、前記CFT柱に設置されたアンカーフレームと前記上層梁鋼箱桁とを、この上層梁鋼箱桁を水平方向に移動させることにより位置合わせし、前記アンカーフレームと前記上層梁鋼箱桁とに差し込み鉄骨を装着することを特徴とする。   [4] In the construction method of the composite viaduct, a CFT column made of a steel pipe filled with concrete is built, and an upper beam steel box girder member including an upper beam steel box girder is horizontally moved on the CFT column, and the CFT column is arranged. And the upper beam steel box girder member, a synthetic beam floor slab made of concrete is disposed on the upper beam steel box girder member, and the anchor frame installed on the CFT column and the upper beam steel box girder are connected to the upper beam steel box girder. The steel frame is aligned by moving in a horizontal direction, and a steel frame is attached to the anchor frame and the upper beam steel box girder.

〔5〕上記〔4〕記載の複合高架橋の施工方法において、前記アンカーフレームおよび前記上層梁鋼箱桁と前記差し込み鉄骨との間の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする。
〔6〕上記〔4〕記載の複合高架橋の施工方法において、前記上層梁鋼箱桁内にリング状のコンクリートブロックを配置し、このリング状のコンクリートブロックと前記アンカーフレームとをアンカーボルトにより固定し、前記上層梁鋼箱桁内の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする。
[5] The construction method of the composite viaduct according to [4], wherein the insertion steel frame is fixed by filling concrete into a gap between the anchor frame and the upper beam steel box girder and the insertion steel frame. To do.
[6] In the construction method of the composite viaduct according to the above [4], a ring-shaped concrete block is disposed in the upper beam steel box girder, the ring-shaped concrete block and the anchor frame are fixed by an anchor bolt, The insertion steel frame is fixed by filling the gap in the upper beam steel box girder with concrete.

〔7〕上記〔4〕記載の複合高架橋の施工方法において、前記CFT柱の建て込みおよび前記上層梁鋼箱桁の配置は、高架橋施工予定位置近傍に配置された作業機械により行うことを特徴とする。
〔8〕上記〔7〕記載の複合高架橋の施工方法において、前記作業機械を移動させ、前記CFT柱の建て込みと前記上層梁鋼箱桁の配置を順次行うことを特徴とする。
[7] In the construction method of the composite viaduct according to [4] above, the construction of the CFT pillar and the arrangement of the upper-layer beam steel box girder are performed by a work machine arranged in the vicinity of the planned position of the viaduct construction.
[8] The construction method of the composite viaduct according to [7] above, wherein the work machine is moved to sequentially build the CFT pillar and arrange the upper beam beam box girder.

本発明によれば、狭隘な箇所での施工でも、期間を短縮し、かつ費用を低減して構築することができる複合高架橋の構築構造およびその複合高架橋の施工方法を提供することができる。すなわち、剛性の高いCFT柱の活用により、柱・基礎の数を減少させることができるので、コストの低減を図ることができる。また、合成梁とCFT柱との接合構造により、狭隘な箇所での施工も可能であり、施工期間を短縮しコストを縮減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the construction structure of the composite viaduct and the construction method of the composite viaduct which can be constructed by shortening the period and reducing the cost even in construction in a narrow place can be provided. That is, since the number of columns and foundations can be reduced by utilizing a highly rigid CFT column, cost can be reduced. In addition, the joint structure between the composite beam and the CFT column enables construction in a narrow area, shortening the construction period and reducing the cost.

特に、本発明のCFT柱を用いた複合高架橋の施工方法では、コンクリートの固化を待たずにCFT柱に荷重をかけることができるので、柱建て込みからの作業時間を短縮することができ、急速施工が可能になる利点がある。   In particular, in the construction method of the composite viaduct using the CFT pillar of the present invention, it is possible to apply a load to the CFT pillar without waiting for the solidification of the concrete. There is an advantage that construction is possible.

本発明の複合高架橋の施工の第1工程を示す模式図である。It is a schematic diagram which shows the 1st process of construction of the composite viaduct of this invention. 本発明の複合高架橋の施工の第2工程を示す模式図である。It is a schematic diagram which shows the 2nd process of construction of the composite viaduct of this invention. 本発明の複合高架橋の施工の第3工程を示す模式図である。It is a schematic diagram which shows the 3rd process of construction of the composite viaduct of this invention. 本発明の複合高架橋の施工の第4工程を示す模式図である。It is a schematic diagram which shows the 4th process of construction of the composite viaduct of this invention. 本発明の複合高架橋の施工の第5工程を示す模式図である。It is a schematic diagram which shows the 5th process of construction of the composite viaduct of this invention. 本発明の複合高架橋の施工の第6工程を示す模式図である。It is a schematic diagram which shows the 6th process of construction of the composite viaduct of this invention. 本発明の実施例を示す複合高架橋の側面図である。It is a side view of the composite viaduct which shows the Example of this invention. 本発明の実施例を示す複合高架橋の正面図である。It is a front view of the composite viaduct which shows the Example of this invention. 本発明の実施例を示す複合高架橋のCFT柱の先端部の斜視図である。It is a perspective view of the front-end | tip part of the composite high bridge | crosslinking CFT pillar which shows the Example of this invention. 本発明の第1実施例を示す複合高架橋のCFT柱接合部の施工の第1工程を示す図である。It is a figure which shows the 1st process of construction of the composite high bridge | crosslinking CFT column junction part which shows 1st Example of this invention. 本発明の第1実施例を示す複合高架橋のCFT柱接合部の施工の第2工程を示す図である。It is a figure which shows the 2nd process of construction of the composite high bridge | crosslinking CFT column junction part which shows 1st Example of this invention. 本発明の第1実施例を示す複合高架橋のCFT柱接合部の施工の第3工程を示す図である。It is a figure which shows the 3rd process of construction of the composite high bridge | crosslinking CFT column junction part which shows 1st Example of this invention. 本発明の第1実施例を示す複合高架橋のCFT柱接合部の施工の第4工程を示す図である。It is a figure which shows the 4th process of construction of the composite high bridge | crosslinking CFT column junction part which shows 1st Example of this invention. 本発明の第1実施例を示す複合高架橋のCFT柱接合部の施工の第5工程を示す図である。It is a figure which shows the 5th process of construction of the composite high bridge | crosslinking CFT column junction part which shows 1st Example of this invention. 本発明の第2実施例を示す複合高架橋のCFT柱接合部の施工第4工程を示す図である。It is a figure which shows the construction 4th process of the composite high bridge | crosslinking CFT column junction part which shows 2nd Example of this invention. 本発明の第2実施例を示す複合高架橋のCFT柱接合部の施工の第5工程を示す図である。It is a figure which shows the 5th process of construction of the composite high bridge | crosslinking CFT column junction part which shows 2nd Example of this invention. 本発明の第2実施例を示す複合高架橋のCFT柱接合部の施工の第6工程を示す図である。It is a figure which shows the 6th process of construction of the composite high bridge | crosslinking CFT column junction part which shows 2nd Example of this invention. 本発明の第2実施例を示す複合高架橋のCFT柱接合部の施工の第7工程を示す図である。It is a figure which shows the 7th process of construction of the composite high bridge | crosslinking CFT column junction part which shows 2nd Example of this invention. 本発明の実施例を示す複合高架橋の施工時の模式図である。It is a schematic diagram at the time of construction of the composite viaduct which shows the Example of this invention. 従来の高架橋を示す側面図である。It is a side view which shows the conventional viaduct. 従来の高架橋を示す正面図である。It is a front view which shows the conventional viaduct.

本発明の複合高架橋の構築構造は、コンクリートを充填した鋼管からなるCFT柱と、このCFT柱上に配置され水平方向に移動させて構築可能な上層梁鋼箱桁と、前記CFT柱に設置されるアンカーフレームと前記上層梁鋼箱桁とに装着される差し込み鉄骨とからなる上層梁鋼箱桁部材と、前記CFT柱と前記上層梁鋼箱桁部材とを接合するCFT柱接合部と、前記上層梁鋼箱桁部材上に配置されるコンクリートからなる合成梁床版とを具備する。   The construction structure of the composite viaduct of the present invention includes a CFT column made of a steel tube filled with concrete, an upper beam steel box girder arranged on the CFT column and movable in the horizontal direction, and an anchor installed on the CFT column. An upper beam steel box girder member comprising a frame and an insertion steel frame attached to the upper beam steel box girder, a CFT column joint for joining the CFT column and the upper beam steel box girder member, and the upper beam steel box girder member Composite beam floor slab made of concrete.

以下、本発明の実施の形態について詳細に説明する。
図1〜図6は本発明の複合高架橋の施工の各工程を示す模式図であり、図1(a)〜図6(a)は正面図、図1(b)〜図6(b)は側面図である。
図1〜図6において、1は作業規制区域、2は車両、3は高架橋施工予定位置に設置されるCFT(Concrete Filled Tubular)柱、4はCFT柱3上に構築される合成梁である。
Hereinafter, embodiments of the present invention will be described in detail.
1-6 is a schematic diagram which shows each process of the construction of the composite viaduct of this invention, FIG.1 (a)-FIG.6 (a) are front views, FIG.1 (b)-FIG.6 (b) are FIG. It is a side view.
In FIG. 1 to FIG. 6, 1 is a work regulation area, 2 is a vehicle, 3 is a CFT (Concrete Filled Tubular) column installed at a viaduct construction planned position, and 4 is a composite beam constructed on the CFT column 3.

そこで、高架橋の施工は以下のような手順により行われる。
(1)まず、図1に示すように、車両2の走行領域等を含む作業規制区域1を避けるようにして作業領域を設定する。
(2)図2に示すように、作業機械(図示なし)により高架橋施工予定位置にCFT柱3の建て込みを一部行う。
Therefore, the construction of the viaduct is performed according to the following procedure.
(1) First, as shown in FIG. 1, the work area is set so as to avoid the work regulation area 1 including the travel area of the vehicle 2 and the like.
(2) As shown in FIG. 2, the CFT pillar 3 is partially built at the viaduct construction planned position by a work machine (not shown).

(3)図3に示すように、CFT柱3上に合成梁4を作業機械(図示なし)により構築する。
(4)次いで、図4に示すように、上記(2)でCFT柱3の建て込みを行っていない位置まで作業機械(図示なし)を移動させ、CFT柱3の建て込みを行う。
(5)図5に示すように、上記(4)で建て込んだCFT柱3上に作業機械(図示なし)により合成梁4を構築する。
(3) As shown in FIG. 3, the composite beam 4 is constructed on the CFT column 3 by a work machine (not shown).
(4) Next, as shown in FIG. 4, the work machine (not shown) is moved to a position where the CFT pillar 3 is not built in (2), and the CFT pillar 3 is built.
(5) As shown in FIG. 5, the composite beam 4 is constructed by a work machine (not shown) on the CFT pillar 3 built in (4) above.

(6)図6に示すように、車両2の線路を構築した高架橋上に切り替える。
図7は本発明の実施例を示す複合高架橋の側面図、図8はその複合高架橋の正面図、図9は本発明の実施例を示す複合高架橋のCFT柱の先端部の斜視図である。
これらの図において、11は高架橋、12はCFT柱であり、このCFT柱12は、図9に示すように、コンクリート12Aを充填した鋼管12Bからなり、高い剛性を持ち、急速施工が可能である。13はCFT柱12上に構築される上層梁鋼箱桁部材、14は合成梁床版(RC)であり、この上層梁鋼箱桁部材13と合成梁床版14によって図6に示す合成梁4を形成している。15は高架橋11上を走行する車両、16はCFT柱接合部である。
(6) As shown in FIG. 6, the vehicle 2 is switched over to the viaduct constructed.
FIG. 7 is a side view of a composite viaduct showing an embodiment of the present invention, FIG. 8 is a front view of the composite viaduct, and FIG. 9 is a perspective view of a tip portion of a CFT column of the composite viaduct showing an embodiment of the present invention.
In these drawings, 11 is a viaduct and 12 is a CFT column. As shown in FIG. 9, this CFT column 12 is made of a steel pipe 12B filled with concrete 12A, has high rigidity, and can be rapidly constructed. . 13 is an upper beam steel box girder member constructed on the CFT column 12, and 14 is a composite beam floor slab (RC). The upper beam steel box girder member 13 and the composite beam floor slab 14 form the composite beam 4 shown in FIG. ing. Reference numeral 15 denotes a vehicle traveling on the viaduct 11, and 16 denotes a CFT column joint.

本発明に用いるCFT柱12は、上記したように、コンクリート12Aを充填した鋼管12Bからなり、高い剛性を有しており、かつ従来のRC柱に比べて強度が高く、したがって、設置する本数を減少させることができる。例えば、従来のRC柱を6本で構成していたところを、CFT柱4本に代えることができる。
このように、CFT柱を活用することにより、柱・基礎の数を減少させることができ、コストの低減を図ることができる。
As described above, the CFT column 12 used in the present invention is made of the steel pipe 12B filled with the concrete 12A, has high rigidity, and has a higher strength than the conventional RC column. Can be reduced. For example, the place where the conventional RC pillar is composed of six can be replaced with four CFT pillars.
Thus, by utilizing the CFT pillars, the number of pillars / foundations can be reduced, and the cost can be reduced.

また、本発明のCFT柱を用いた複合高架橋の施工方法では、急速施工が可能である。すなわち、従来のRC柱を用いた高架橋の施工方法では、RC柱を打設後コンクリートが固化するまでに1週間程度を要し、その間はRC柱に荷重をかけることができないため、コンクリートが固化するまで作業を中断せざるを得なかった。一方、本発明のCFT柱を用いた複合高架橋の施工方法では、鋼管を使用し、その鋼管は溶接やボルトを使用して接合することができるため、コンクリートの固化を待たずにCFT柱に荷重をかけることができ、作業を中断する必要がない。そのため、柱建て込みからの大幅な作業時間の短縮が可能になる。   Moreover, in the construction method of the composite viaduct using the CFT pillar of the present invention, rapid construction is possible. That is, in the conventional viaduct construction method using RC columns, it takes about one week for the concrete to solidify after placing the RC columns, and during that time it is impossible to apply a load to the RC columns, so the concrete is solidified. I had to suspend my work until. On the other hand, in the construction method of the composite viaduct using the CFT column of the present invention, a steel pipe is used, and the steel pipe can be joined using welding or a bolt, so that the load is applied to the CFT column without waiting for solidification of the concrete. Without having to interrupt the work. For this reason, it is possible to greatly shorten the work time from the pillar construction.

次に、上記図1〜6で説明した複合高架橋の施工方法における、CFT柱とその上に構築される合成梁との接続について説明する。
図10〜図14は本発明の第1実施例を示す複合高架橋のCFT柱接合部の施工方法(鉄骨差し込み方式)の説明図である。
(1)まず、図10に示すように、CFT柱21の建て込みを行う。つまり、工場において上端にアンカーフレーム22を設けた鋼管を、現場に搬入し、コンクリートを打設する。
Next, the connection between the CFT column and the composite beam constructed thereon in the composite viaduct construction method described with reference to FIGS.
FIGS. 10-14 is explanatory drawing of the construction method (steel-frame insertion system) of the composite high bridge | crosslinking CFT column junction part which shows 1st Example of this invention.
(1) First, as shown in FIG. 10, the CFT pillar 21 is built. That is, a steel pipe provided with an anchor frame 22 at the upper end in a factory is carried to the site and concrete is laid.

(2)図11に示すように、CFT柱21のアンカーフレーム22上に上層梁鋼箱桁23Aを載せる。この上層梁鋼箱桁23Aは、図11(a)に示すような長尺状の鋼箱桁として形成されており、その断面は、図11(b)に示すような四角形状に形成されている。この上層梁鋼箱桁23AをCFT柱21のアンカーフレーム22上で水平移動させ、アンカーフレーム22と位置合わせする。   (2) As shown in FIG. 11, the upper beam steel box girder 23 </ b> A is placed on the anchor frame 22 of the CFT column 21. This upper beam steel box girder 23A is formed as a long steel box girder as shown in FIG. 11 (a), and its cross section is formed in a quadrangular shape as shown in FIG. 11 (b). The upper beam steel box girder 23 </ b> A is moved horizontally on the anchor frame 22 of the CFT pillar 21 and aligned with the anchor frame 22.

(3)図12に示すように、差し込み鉄骨24を、アンカーフレーム22と上層梁鋼箱桁23Aとに装着することにより、上層梁鋼箱桁部材23の設置を完了する。この差し込み鉄骨24は、図12(b)(側面図)と図12(c)(平面図)に示すように、断面十字形状の縦長の板24Aの各先端部に直交する縦長の板24Bが組み合わされた形状をしている。なお、上層梁鋼箱桁23Aの上面には開口部が設けられ、その開口部から差し込み鉄骨24を挿入するようにしている。   (3) As shown in FIG. 12, the installation of the upper-layer beam steel box girder member 23 is completed by attaching the insertion steel frame 24 to the anchor frame 22 and the upper-layer beam steel box girder 23A. As shown in FIG. 12B (side view) and FIG. 12C (plan view), the insertion steel frame 24 includes a vertically long plate 24B that is orthogonal to each tip portion of a vertically long plate 24A having a cross-shaped cross section. It has a combined shape. Note that an opening is provided on the upper surface of the upper beam beam box girder 23A, and the insertion steel frame 24 is inserted through the opening.

(4)図13に示すように、アンカーフレーム22および上層梁鋼箱桁23Aと差し込み鉄骨24のとの空隙にコンクリート25を充填して差し込み鉄骨24を固定する。
(5)そして、図14に示すように、上層梁鋼箱桁部材23に合成梁床版26を施工して、合成梁を完成させる。
図15〜図18は本発明の第2実施例を示す複合高架橋のCFT柱接合部の要部の施工方法(鉄骨差し込み方式)の説明図である。
(4) As shown in FIG. 13, concrete 25 is filled in the gap between the anchor frame 22 and the upper beam steel box girder 23 </ b> A and the insertion steel 24 to fix the insertion steel 24.
(5) Then, as shown in FIG. 14, the composite beam floor slab 26 is applied to the upper beam steel box girder member 23 to complete the composite beam.
15-18 is explanatory drawing of the construction method (steel insertion method) of the principal part of the composite high bridge | crosslinking CFT column junction part which shows 2nd Example of this invention.

(1)まず、上記した図10から図12に示す第1工程から第3工程を施工する。
(2)次いで、図15に示すように、上層梁鋼箱桁部材23A内にリング状のコンクリートブロック31を配置する。
(3)次に、図16に示すように、リング状のコンクリートブロック31とアンカーフレーム22とをアンカーボルト32によって固定する。
(1) First, the first to third steps shown in FIGS. 10 to 12 are applied.
(2) Next, as shown in FIG. 15, a ring-shaped concrete block 31 is arranged in the upper beam steel box girder member 23A.
(3) Next, as shown in FIG. 16, the ring-shaped concrete block 31 and the anchor frame 22 are fixed by anchor bolts 32.

(4)次に、図17に示すように、上層梁鋼箱桁23A内の空隙にコンクリート33を充填することによって差し込み鉄骨24を固定する。
(5)そして、図18に示すように、上層梁鋼箱桁部材23に合成梁床版34を施工して、合成梁を完成させる。
このように構成することにより、CFT柱に対して上層梁鋼箱桁部材と合成梁床版とからなる合成梁を強固に固定することができる。
(4) Next, as shown in FIG. 17, the insertion steel frame 24 is fixed by filling the gap in the upper beam steel box girder 23A with concrete 33.
(5) Then, as shown in FIG. 18, the composite beam floor slab 34 is applied to the upper beam steel box girder member 23 to complete the composite beam.
By comprising in this way, the composite beam which consists of an upper-layer beam steel box girder member and a composite beam floor slab can be firmly fixed with respect to a CFT pillar.

図19は本発明の実施例を示す複合高架橋の施工時の模式図であり、図19(a)はその平面図、図19(b)はその上層梁鋼箱桁の右方の断面図、図19(c)は上層梁鋼箱桁の分岐部の断面の一例を示す図である。
CFT柱21へ差し込み鉄骨24を用いて接合された上層梁鋼箱桁23Aは、添接継手41で互いに接続される。この添接継手41は、添接板42,43およびボルト44,45からなる。また、上層梁鋼箱桁23Aの分岐部と、上層梁横桁23Bとが添接板46とボルト47からなる添接継手によって接続される。
FIG. 19 is a schematic view at the time of construction of the composite viaduct showing an embodiment of the present invention, FIG. 19 (a) is a plan view thereof, FIG. 19 (b) is a cross-sectional view on the right side of the upper beam steel box girder, FIG. (C) is a figure which shows an example of the cross section of the branch part of an upper beam steel box girder.
The upper beam steel box girder 23 </ b> A joined to the CFT column 21 using the steel frame 24 is connected to each other by a joint joint 41. The contact joint 41 includes contact plates 42 and 43 and bolts 44 and 45. Further, the branch portion of the upper beam beam box girder 23 </ b> A and the upper beam beam girder 23 </ b> B are connected to each other by an attachment joint including an attachment plate 46 and a bolt 47.

このように、本発明ではCFT柱と合成梁を強固に固定し、堅牢な複合高架橋を構築することができる。また、本発明は狭隘な箇所での施工が可能であり、施工期間の短縮とコストの縮減を図ることができる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
Thus, in the present invention, the CFT pillar and the composite beam can be firmly fixed, and a robust composite viaduct can be constructed. In addition, the present invention can be applied in a narrow area, and can shorten the construction period and reduce the cost.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の複合高架橋の構築構造およびその複合高架橋の施工方法は、狭隘な箇所でも短い期間で施工することができ、かつ費用を低減することができる複合高架橋の施工方法として利用可能である。   The construction structure of the composite viaduct and the construction method of the composite viaduct of the present invention can be used as a construction method of the composite viaduct which can be constructed in a short period even in a narrow place and can reduce the cost.

1 作業規制区域
2,15 車両
3,12,21 CFT柱
4 合成梁
11 高架橋
12A,25,33 コンクリート
12B 鋼管
13,23 上層梁鋼箱桁部材
14,26,34 合成梁床版
16 CFT柱接合部
22 CFT柱のアンカーフレーム
23A 上層梁鋼箱桁
23B 上層梁横桁
24 差し込み鉄骨
24A 断面十字形状の縦長の板
24B 縦長の板
31 リング状のコンクリートブロック
32 アンカーボルト
41 添接継手
42,43,46 添接板
44,45,47 ボルト
1 Work Restriction Area 2,15 Vehicle 3,12,21 CFT Column 4 Composite Beam 11 Viaduct 12A, 25, 33 Concrete 12B Steel Pipe 13, 23 Upper Beam Steel Box Girder Member 14, 26, 34 Composite Beam Floor Slab 16 CFT Column Joint 22 CFT pillar anchor frame 23A Upper beam steel box girder 23B Upper beam horizontal girder 24 Inserted steel frame 24A Cross-shaped vertical plate 24B Vertical plate 31 Ring-shaped concrete block 32 Anchor bolt 41 Joint joint 42, 43, 46 Joint plate 44, 45, 47 bolts

Claims (8)

(a)コンクリートを充填した鋼管からなるCFT柱と、
(b)該CFT柱上に配置され水平方向に移動させて構築可能な上層梁鋼箱桁と、前記CFT柱に設置されるアンカーフレームと前記上層梁鋼箱桁とに装着される差し込み鉄骨とからなる上層梁鋼箱桁部材と、
(c)前記CFT柱と前記上層梁鋼箱桁部材とを接合するCFT柱接合部と、
(d)前記上層梁鋼箱桁部材上に配置されるコンクリートからなる合成梁床版とを具備することを特徴とする複合高架橋の構築構造。
(A) a CFT column made of a steel pipe filled with concrete;
(B) An upper beam steel box composed of an upper beam steel box girder arranged on the CFT column and movable in the horizontal direction; an anchor frame installed on the CFT column; and an insert steel frame attached to the upper beam steel box girder. A girder member;
(C) a CFT column joint for joining the CFT column and the upper beam steel box girder member;
(D) A composite viaduct construction structure comprising a composite beam deck made of concrete disposed on the upper beam steel box girder member.
請求項1記載の複合高架橋の構築構造において、前記CFT柱接合部は、前記アンカーフレームおよび前記上層梁鋼箱桁と前記差し込み鉄骨との間の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする複合高架橋の構築構造。   2. The composite viaduct construction structure according to claim 1, wherein the CFT column joint portion fixes the insertion steel frame by filling concrete into a space between the anchor frame and the upper beam steel box girder and the insertion steel frame. A structure of a composite viaduct characterized by 請求項1記載の複合高架橋の構築構造において、前記CFT柱接合部は、前記上層梁鋼箱桁内に配置されるリング状のコンクリートブロックと前記アンカーフレームをアンカーボルトで固定し、さらに、前記上層梁鋼箱桁内の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする複合高架橋の構築構造。   2. The composite viaduct construction structure according to claim 1, wherein the CFT column joint portion fixes a ring-shaped concrete block disposed in the upper beam steel box girder and the anchor frame with an anchor bolt, and further includes the upper beam steel box girder. A construction structure of a composite viaduct characterized in that the inserted steel frame is fixed by filling concrete in the voids inside. (a)コンクリートを充填した鋼管からなるCFT柱を建て込み、
(b)該CFT柱上に上層梁鋼箱桁を含む上層梁鋼箱桁部材を水平方向に移動させて配置し、
(c)前記CFT柱と前記上層梁鋼箱桁部材とを接合し、
(d)前記上層梁鋼箱桁部材上にコンクリートからなる合成梁床版を配置し、
(e)前記CFT柱に設置されたアンカーフレームと前記上層梁鋼箱桁とを、この上層梁鋼箱桁を水平方向に移動させることにより位置合わせし、前記アンカーフレームと前記上層梁鋼箱桁とに差し込み鉄骨を装着することを特徴とする複合高架橋の施工方法。
(A) A CFT pillar made of a steel pipe filled with concrete is built,
(B) An upper beam steel box girder member including an upper beam steel box girder is moved and arranged on the CFT column in a horizontal direction.
(C) joining the CFT pillar and the upper beam steel box girder member;
(D) placing a composite beam deck made of concrete on the upper beam steel box girder member;
(E) The anchor frame installed on the CFT column and the upper-layer beam steel box girder are aligned by moving the upper-layer beam steel box girder in the horizontal direction, and the steel frame is attached to the anchor frame and the upper-layer beam steel box girder. The construction method of the composite viaduct characterized by doing.
請求項4記載の複合高架橋の施工方法において、前記アンカーフレームおよび前記上層梁鋼箱桁と前記差し込み鉄骨との間の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする複合高架橋の施工方法。   5. The composite viaduct construction method according to claim 4, wherein the insertion steel frame is fixed by filling the gap between the anchor frame and the upper beam steel box girder and the insertion steel frame with concrete. Construction method. 請求項4記載の複合高架橋の施工方法において、前記上層梁鋼箱桁内にリング状のコンクリートブロックを配置し、該リング状のコンクリートブロックと前記アンカーフレームとをアンカーボルトにより固定し、前記上層梁鋼箱桁内の空隙にコンクリートを充填することによって前記差し込み鉄骨を固定することを特徴とする複合高架橋の施工方法。   The construction method of the composite viaduct according to claim 4, wherein a ring-shaped concrete block is disposed in the upper beam steel box girder, the ring-shaped concrete block and the anchor frame are fixed by an anchor bolt, and the inner beam steel box girder is fixed. A method for constructing a composite viaduct characterized in that the inserted steel frame is fixed by filling concrete in the voids of the bridge. 請求項4記載の複合高架橋の施工方法において、前記CFT柱の建て込みおよび前記上層梁鋼箱桁の配置は、高架橋施工予定位置近傍に配置された作業機械により行うことを特徴とする複合高架橋の施工方法。   5. The construction method of a composite viaduct according to claim 4, wherein the construction of the CFT pillar and the arrangement of the upper beam steel box girder are performed by a work machine arranged in the vicinity of the planned location of the viaduct construction. . 請求項7記載の複合高架橋の施工方法において、前記作業機械を移動させ、前記CFT柱の建て込みと前記上層梁鋼箱桁の配置を順次行うことを特徴とする複合高架橋の施工方法。   The construction method of a composite viaduct according to claim 7, wherein the work machine is moved, and the construction of the CFT pillar and the arrangement of the upper beam steel box girder are sequentially performed.
JP2010265348A 2010-11-29 2010-11-29 Construction structure of composite viaduct and construction method of the composite viaduct Expired - Fee Related JP5680385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010265348A JP5680385B2 (en) 2010-11-29 2010-11-29 Construction structure of composite viaduct and construction method of the composite viaduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010265348A JP5680385B2 (en) 2010-11-29 2010-11-29 Construction structure of composite viaduct and construction method of the composite viaduct

Publications (2)

Publication Number Publication Date
JP2012117219A true JP2012117219A (en) 2012-06-21
JP5680385B2 JP5680385B2 (en) 2015-03-04

Family

ID=46500377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010265348A Expired - Fee Related JP5680385B2 (en) 2010-11-29 2010-11-29 Construction structure of composite viaduct and construction method of the composite viaduct

Country Status (1)

Country Link
JP (1) JP5680385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102561187A (en) * 2010-12-10 2012-07-11 上海市基础工程有限公司 Superlarge special-shaped steel tower binding joint angle sample board positioning method
CN103343511A (en) * 2013-07-22 2013-10-09 中铁十六局集团第二工程有限公司 Method for overhead construction of bridge transverse overhead span line
CN113957795A (en) * 2021-09-18 2022-01-21 中铁大桥局集团有限公司 Method and system for manufacturing beam by using large-span beam type support

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258311A (en) * 1984-06-01 1985-12-20 株式会社 間組 Construction of high structure
JPH11264190A (en) * 1998-03-17 1999-09-28 Shimizu Corp Joint construction for concrete-filled steel pipe column
JP2000265416A (en) * 1999-03-17 2000-09-26 Railway Technical Res Inst Three-dimensional rigid frame type elevated bridge structure
JP2001164517A (en) * 1999-09-29 2001-06-19 Sumitomo Metal Ind Ltd Joining-section structure of post and girder in railway viaduct and railway viaduct using joining-section structure
JP2003313815A (en) * 2002-04-19 2003-11-06 Nippon Steel Corp Rigid connecting structure between steel girder and steel pipe pier
JP2010138643A (en) * 2008-12-12 2010-06-24 Ohbayashi Corp Construction method for column-beam joint part of viaduct, and viaduct

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60258311A (en) * 1984-06-01 1985-12-20 株式会社 間組 Construction of high structure
JPH11264190A (en) * 1998-03-17 1999-09-28 Shimizu Corp Joint construction for concrete-filled steel pipe column
JP2000265416A (en) * 1999-03-17 2000-09-26 Railway Technical Res Inst Three-dimensional rigid frame type elevated bridge structure
JP2001164517A (en) * 1999-09-29 2001-06-19 Sumitomo Metal Ind Ltd Joining-section structure of post and girder in railway viaduct and railway viaduct using joining-section structure
JP2003313815A (en) * 2002-04-19 2003-11-06 Nippon Steel Corp Rigid connecting structure between steel girder and steel pipe pier
JP2010138643A (en) * 2008-12-12 2010-06-24 Ohbayashi Corp Construction method for column-beam joint part of viaduct, and viaduct

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102561187A (en) * 2010-12-10 2012-07-11 上海市基础工程有限公司 Superlarge special-shaped steel tower binding joint angle sample board positioning method
CN102561187B (en) * 2010-12-10 2015-09-02 上海市基础工程集团有限公司 Super large special-shaped head tower bracing node angle model localization method
CN103343511A (en) * 2013-07-22 2013-10-09 中铁十六局集团第二工程有限公司 Method for overhead construction of bridge transverse overhead span line
CN113957795A (en) * 2021-09-18 2022-01-21 中铁大桥局集团有限公司 Method and system for manufacturing beam by using large-span beam type support

Also Published As

Publication number Publication date
JP5680385B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
CN106988423B (en) Rail transit elevated station
KR101136926B1 (en) Composite beam by prestressed concrete filled tube
CN103850363B (en) Prefabricated through hole assembly type reinforced concrete shear wall and construction method of prefabricated through hole assembly type reinforced concrete shear wall
JP2008019687A (en) Construction method of continuous girder bridge, composite floor slab, and continuous girder bridge
CN102102443B (en) Construction method of steel reinforced concrete column of large metallurgical industry factory building
CN113638304B (en) Concrete beam type bridge hidden cover beam structure system and construction method thereof
JP3844743B2 (en) Box girder bridge structure and its construction method
CN204112525U (en) Band perps precast shear wall structure in strong concrete precast frame
KR101673287B1 (en) Methods of increasing the sectional resisting force for negative moment acting at the end part of beam in case of repair or remodeling
JP5680385B2 (en) Construction structure of composite viaduct and construction method of the composite viaduct
JP5217428B2 (en) Composite hollow structure of bridge column head or girder end
CN203640061U (en) Node connecting structure of reinforced concrete column of basement
JP2010261270A (en) Composite structure and method for constructing composite structure building
JP2006265976A (en) Corrugated steel-plate web u component bridge and its construction method
CN102155095B (en) Arrangement method of steel rib concrete steel bars of large metallurgical industry factory building
JP5575619B2 (en) Construction structure of composite viaduct and construction method of the composite viaduct
JP4363542B2 (en) Bridge construction method
JP4307109B2 (en) Beam-column joint structure
CN104453013A (en) Prefabricated wall component and fabricated reinforced concrete shear wall
JP2009013592A (en) Frame assembling method and frame of building
JP5587149B2 (en) Construction structure of composite viaduct and construction method of the composite viaduct
JP5634839B2 (en) Construction structure of composite viaduct and construction method of the composite viaduct
CN113417459A (en) Cantilever structure formwork support system and construction method
JP2018035643A (en) Column-beam joining method, and connection member
JP5259638B2 (en) Construction method of viaduct portal ramen structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees