JP2012114165A - Simulation iron core, and method for checking quality of substitute winding using the same - Google Patents

Simulation iron core, and method for checking quality of substitute winding using the same Download PDF

Info

Publication number
JP2012114165A
JP2012114165A JP2010260506A JP2010260506A JP2012114165A JP 2012114165 A JP2012114165 A JP 2012114165A JP 2010260506 A JP2010260506 A JP 2010260506A JP 2010260506 A JP2010260506 A JP 2010260506A JP 2012114165 A JP2012114165 A JP 2012114165A
Authority
JP
Japan
Prior art keywords
iron core
simulated
winding
simulation
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260506A
Other languages
Japanese (ja)
Other versions
JP5726488B2 (en
Inventor
Kimihiko Sato
公彦 佐藤
Takeshi Chigiri
健史 千切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010260506A priority Critical patent/JP5726488B2/en
Publication of JP2012114165A publication Critical patent/JP2012114165A/en
Application granted granted Critical
Publication of JP5726488B2 publication Critical patent/JP5726488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simulation iron core which can be applied to tests for checking the quality of substitute windings having various diameters and lengths, and a method for checking the quality of a substitute winding using the same.SOLUTION: The simulation iron core used for a substitute winding quality check test includes: simulation iron core legs 2; and upper and lower simulation yokes 3 and 4. In the simulation iron core, bonding planes between the simulation iron core legs 2 and the upper and lower simulation yokes 3 and 4 are all parallel with each other, and the simulation iron core legs 2 can be moved in a longitudinal direction of the upper and lower simulation yokes 3 and 4. The size between the adjacent simulation iron core legs 2 and 2 is adjusted to the size between iron core legs of a transformer with a winding which needs renewing by appropriately moving the simulation iron core legs 2 in the longitudinal direction of the upper and lower simulation yokes 3 and 4, and then a test for checking the quality of a substitute winding is performed.

Description

本発明の実施例は、変圧器やリアクトル等の静止誘導電器の更新巻線の品質確認試験に用いられる模擬鉄心及びそれを用いた更新巻線の品質確認方法に関する。   Embodiments of the present invention relate to a simulated iron core used in a quality confirmation test of an updated winding of a static induction machine such as a transformer or a reactor, and a quality confirmation method of an updated winding using the same.

現在様々な変電所、発電所等に設置されている変圧器等の静止誘導電器は、各々の定格に応じて設計、製造されており、鉄心径、巻線高さや巻線径も多岐に渡っている。これらの変圧器が経年劣化した際には、巻線を更新する必要が生じ、その際、更新巻線の品質確認試験を工場で行う必要がある。   Currently, stationary induction devices such as transformers installed in various substations and power plants are designed and manufactured according to their respective ratings, and the core diameter, winding height, and winding diameter vary widely. ing. When these transformers deteriorate over time, it is necessary to renew the windings, and at that time, it is necessary to conduct a quality confirmation test of the renewed windings at the factory.

しかしながら、巻線単体で十分な試験をすることは困難であるため、巻線を鉄心に挿入し磁路を形成する必要がある。そのため、従来は、現地から変圧器等をタンクごと工場に持ち帰る必要があり、輸送費のコスト高、リードタイムの長期化等の問題が生じていた。   However, since it is difficult to perform a sufficient test with a single winding, it is necessary to insert the winding into an iron core to form a magnetic path. For this reason, conventionally, it is necessary to bring the transformer and the like from the site to the factory, which causes problems such as high transportation costs and prolonged lead time.

すなわち、図6は、劣化した巻線7と鉄心8から構成された変圧器の本体中身構造物が、絶縁油を満たしたタンク9内に収納された変圧器の断面図であるが、このような変圧器において、長期運転による経年劣化が原因となって巻線7の更新が必要となると、更新用の巻線として工場において新規で製作する巻線が品質上問題ないことを確認するための絶縁試験やインピーダンス測定試験を実施する必要がある。   That is, FIG. 6 is a cross-sectional view of a transformer in which a transformer main body structure composed of a deteriorated winding 7 and an iron core 8 is housed in a tank 9 filled with insulating oil. In order to confirm that there is no problem in quality of the newly produced winding as a renewal winding in the factory when it is necessary to renew the winding 7 due to aged deterioration due to long-term operation. It is necessary to conduct an insulation test and an impedance measurement test.

通常、鉄心の大きさは定格電圧、絶縁レベルによって決定されるため、種々の変圧器間で鉄心を流用することができず、巻線の更新を要する変圧器の鉄心を使用する必要があった。そのため、図6に示したタンク9ごと鉄心8と巻線7を工場に搬送し、工場にて新規に製作した更新巻線と劣化した巻線7を交換し、品質確認試験を実施する必要があった。   Normally, the size of the iron core is determined by the rated voltage and the insulation level, so the iron core cannot be diverted between various transformers, and it was necessary to use the iron core of the transformer that required renewal of the windings. . Therefore, it is necessary to transport the iron core 8 and the winding 7 together with the tank 9 shown in FIG. 6 to the factory, replace the newly manufactured updated winding with the deteriorated winding 7 in the factory, and conduct a quality confirmation test. there were.

また、定格電圧を印加した際に流れる磁束が鉄心を磁気飽和させないように鉄心径が設計されるため、一般に、巻線を更新する変圧器の鉄心径より小さい鉄心を使用して交流試験電圧を印加することはできない。一方、巻線を更新する変圧器の鉄心径より大きい鉄心では更新巻線を挿入することができなかったり、対鉄心静電容量が巻線の更新を要する変圧器と異なったりすることで、品質確認試験を正確に実施することができない。そのため、個々の静止誘導電器に応じて模擬鉄心を製造する必要が出てくるが、コストや作業時間がかかり得策ではない。   Also, since the core diameter is designed so that the magnetic flux that flows when the rated voltage is applied does not magnetically saturate the core, the AC test voltage is generally set using an iron core that is smaller than the core diameter of the transformer that updates the winding. It cannot be applied. On the other hand, it is not possible to insert the renewal winding with an iron core larger than the core diameter of the transformer that renews the winding, or the capacitance against the iron core is different from the transformer that requires renewal of the winding. The confirmation test cannot be performed accurately. For this reason, it is necessary to manufacture a simulated iron core according to each static induction electric appliance, but this is not a good solution because it requires cost and work time.

このような問題の解決策として、更新巻線を製造する工場において模擬鉄心を用意し、この品質確認用の模擬鉄心と更新巻線とを組み合わせ、商用周波電圧や雷衝撃電圧を印加し、巻線絶縁性能に関する品質を確認するという提案が特許文献1に示されている。一方、十分な鉄心断面積を確保できない場合は、商用周波電圧を印加する変わりに開閉衝撃電圧を印加することで巻線内絶縁の品質確認を行うことも提案されている。   As a solution to this problem, prepare a simulated iron core at the factory that manufactures the updated winding, combine the simulated core for quality confirmation and the updated winding, apply commercial frequency voltage or lightning shock voltage, A proposal to confirm the quality related to the wire insulation performance is disclosed in Patent Document 1. On the other hand, when a sufficient iron core cross-sectional area cannot be secured, it has also been proposed to check the insulation quality in the winding by applying a switching impact voltage instead of applying a commercial frequency voltage.

特開2003−224016号公報JP 2003-224016 A

しかしながら、従来、模擬鉄心の構造についての詳細な提案はなく、各相の更新巻線を単相で個々に試験し、巻線内の品質確認を行うことで、低コスト、小スペース化が実現できるという技術が提案されているにすぎない。   However, there has been no detailed proposal for the structure of the simulated iron core, and low-cost and space-saving has been realized by testing the renewed winding of each phase individually with a single phase and checking the quality in the winding. Only the technology that can be done is proposed.

本発明は、上述したような従来技術の課題を解決するためになされたものであり、その目的は、種々の径又は長さの更新巻線の品質確認試験に適用することができる模擬鉄心及びそれを用いた更新巻線の品質確認方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art, and the object thereof is a simulated iron core that can be applied to a quality confirmation test of renewed windings having various diameters or lengths. An object of the present invention is to provide a quality confirmation method for an updated winding using the same.

上記の課題を解決するため、実施例1の模擬鉄心は、模擬鉄心脚と模擬上下部ヨークからなる模擬鉄心において、前記模擬鉄心脚と前記模擬上下部ヨーク間の接合面が互いに全て平行となるように構成され、前記模擬鉄心脚が前記模擬上下部ヨークの長手方向へ移動可能に設置されていることを特徴とする。   In order to solve the above-described problem, the simulated iron core of Example 1 is a simulated iron core composed of a simulated iron core leg and a simulated upper and lower yoke, and the joint surfaces between the simulated iron core leg and the simulated upper and lower yoke are all parallel to each other. The simulated core leg is configured to be movable in the longitudinal direction of the simulated upper and lower yokes.

上記のような構成を有する実施例1の模擬鉄心によれば、模擬鉄心脚を模擬上下部ヨークの長手方向に適宜移動させることができるので、隣接する模擬鉄心脚間の寸法を、巻線の更新を要する変圧器の鉄心脚間の寸法に容易に調整することができる。このようにして寸法調整を行った模擬鉄心脚に更新巻線を挿入することにより、三相変圧器の場合でも、各相の巻線を巻線の更新を要する変圧器と同等の位置関係に設置することができる。   According to the simulated iron core of Example 1 having the above-described configuration, the simulated iron core leg can be appropriately moved in the longitudinal direction of the simulated upper and lower yokes. It can be easily adjusted to the dimension between the core legs of the transformer that requires renewal. By inserting the renewal windings into the mock iron core legs that have been adjusted in this way, even in the case of a three-phase transformer, the windings of each phase have the same positional relationship as the transformer that requires renewal of the windings. Can be installed.

実施例1の模擬鉄心の構成を示す斜視図。FIG. 3 is a perspective view illustrating a configuration of a simulated iron core according to the first embodiment. 実施例1の模擬鉄心の他の構成を示す図であって、(A)は正面図、(B)は側面図。It is a figure which shows the other structure of the simulation iron core of Example 1, Comprising: (A) is a front view, (B) is a side view. 実施例2の模擬鉄心の構成を示す図であって、(A)は斜視図、(B)は模擬鉄心脚のB−B´断面図、(C)は上下部ヨークのA−A´断面図。It is a figure which shows the structure of the simulation iron core of Example 2, Comprising: (A) is a perspective view, (B) is BB 'sectional drawing of a simulation iron core leg, (C) is AA' cross section of an upper-and-lower part yoke. Figure. 模擬鉄心脚又は模擬上下部ヨークの断面図であって、(A)はスペーサを広げた状態を示す図、(B)はスペーサを縮めた状態を示す図。It is sectional drawing of a simulation iron core leg or a simulation upper-lower yoke, Comprising: (A) is a figure which shows the state which extended the spacer, (B) is a figure which shows the state which shrunk the spacer. 実施例4の模擬鉄心の構成を示す斜視図。The perspective view which shows the structure of the simulation iron core of Example 4. FIG. 各実施例に示した模擬鉄心の適用が必要となる経年劣化した巻線を有する変圧器の構成を示す断面図。Sectional drawing which shows the structure of the transformer which has the coil | winding which deteriorated with time in which the application of the simulation iron core shown in each Example is required.

以下、本発明に係る模擬鉄心及びそれを用いた更新巻線の品質確認方法の実施例について、図面を参照して説明する。   Embodiments of a simulated iron core according to the present invention and a method for confirming the quality of an updated winding using the same will be described below with reference to the drawings.

(1−1)実施例1の構成
図1に示すように、本実施例の模擬鉄心は、それぞれ適当な径及び適当な長さを有する模擬鉄心脚2、模擬上部ヨーク3及び模擬下部ヨーク4から構成されている。また、前記模擬鉄心脚2と模擬上下部ヨーク3、4は、それぞれの接合面が互いに平行となるように、言い換えれば、前記模擬鉄心脚2が模擬上下部ヨーク3、4の長手方向に移動可能に構成されている。
(1-1) Configuration of Example 1 As shown in FIG. 1, the simulated iron core of this example includes a simulated core leg 2, a simulated upper yoke 3, and a simulated lower yoke 4 each having an appropriate diameter and an appropriate length. It is composed of Further, the simulated iron core leg 2 and the simulated upper and lower yokes 3 and 4 are moved in the longitudinal direction of the simulated upper and lower yokes 3 and 4 so that their joint surfaces are parallel to each other. It is configured to be possible.

なお、模擬鉄心の形状は、図1に示したような矩形の模擬鉄心脚2と矩形の模擬上部ヨーク3、模擬下部ヨーク4を突き合わせた構成にすることで、組立て作業時間の削減や、1種類の幅の珪素鋼板を用いるだけで製作することができるため、コストの削減を図ることができる。   The shape of the simulated iron core is such that the rectangular simulated iron core leg 2, the rectangular simulated upper yoke 3 and the simulated lower yoke 4 as shown in FIG. Since it can be produced simply by using silicon steel plates of various widths, cost can be reduced.

(1−2)実施例1の作用・効果
上記のような構成を有する本実施例の模擬鉄心は以下のように作用する。
すなわち、前記模擬鉄心脚2を模擬上下部ヨーク3、4の長手方向に適宜移動させることができるので、隣接する模擬鉄心脚2、2間の寸法を、巻線の更新を要する変圧器の鉄心脚間の寸法に容易に調整することができる。そして、寸法調整を行った模擬鉄心脚2に更新巻線1を挿入することにより、三相変圧器の場合でも、各相の巻線を巻線の更新を要する変圧器と同等の位置関係に設置することができる。また本構造を単相鉄心に適用することにより、鉄心側脚と巻線間の絶縁寸法を容易に模擬することも可能である。
(1-2) Operation and effect of the first embodiment The simulated iron core of the present embodiment having the above-described configuration operates as follows.
That is, since the simulated core leg 2 can be appropriately moved in the longitudinal direction of the simulated upper and lower yokes 3 and 4, the dimension between the adjacent simulated core legs 2 and 2 is set to the core of the transformer that requires renewal of the winding. It can be easily adjusted to the dimension between the legs. Then, by inserting the renewal winding 1 into the mock iron core leg 2 whose dimensions have been adjusted, even in the case of a three-phase transformer, the windings of each phase have the same positional relationship as the transformer that requires renewal of the winding. Can be installed. In addition, by applying this structure to a single-phase iron core, it is possible to easily simulate the insulation dimension between the iron core side leg and the winding.

このように本実施例の模擬鉄心を適用することにより、従来のように現地から工場へ鉄心と巻線をタンクごと搬送する必要がなくなり、且つ、上記の模擬鉄心を異なる定格の変圧器に適用することができるため、輸送コストの削減や材料費の削減、作業効率の向上が可能となる。   Thus, by applying the simulated iron core of the present embodiment, it is not necessary to transport the core and windings from the field to the factory as in the conventional case, and the above simulated core is applied to a transformer with a different rating. Therefore, it is possible to reduce transportation costs, material costs, and work efficiency.

(1−3)実施例1の変形例
模擬鉄心の形状は、図1に示したように、模擬鉄心脚2及び模擬上下部ヨーク3、4の両方を矩形とするだけでなく、いずれか一方のみを矩形としても良く、また、模擬上下部ヨーク3、4の形状を半円筒とし、模擬鉄心脚2を円筒としても良い。また、模擬鉄心脚2と模擬上下部ヨーク3、4間の接合部は、必ずしも大きな平面の突き合せ構造である必要はなく、各接合面が互いに平行であれば、図2に示すように、模擬鉄心脚2と模擬上下部ヨーク3、4の珪素鋼板を交互にラップさせた構造とすることも可能である。
(1-3) Modification of Example 1 As shown in FIG. 1, the shape of the simulated iron core is not limited to making both the simulated core leg 2 and the simulated upper and lower yokes 3 and 4 rectangular, but either Only the shape of the simulated upper and lower yokes 3 and 4 may be a semi-cylindrical shape, and the simulated core leg 2 may be a cylindrical shape. In addition, the joint between the simulated iron core leg 2 and the simulated upper and lower yokes 3 and 4 does not necessarily have a large plane butt structure. If the joint surfaces are parallel to each other, as shown in FIG. A structure in which the simulated iron core legs 2 and the silicon steel plates of the simulated upper and lower yokes 3 and 4 are alternately wrapped is also possible.

本実施例の模擬鉄心は、図3(A)〜(C)に示すように、模擬鉄心脚12及び模擬上下部ヨーク13、14を、所定の厚さ及び所定の長さを有するブロック鉄心12a、13a、14aと、スペーサ12b、13b、14bから構成したものである。すなわち、模擬鉄心脚12は、図3(B)に示すように、その長手方向に配置した複数個のブロック鉄心12aの間に所定のスペーサ12bを設置することにより所定の間隔を設けて組み立てた鉄心脚ユニット20を複数個積層して構成されている。   As shown in FIGS. 3 (A) to 3 (C), the simulated iron core of the present embodiment includes a simulated iron core leg 12 and simulated upper and lower yokes 13 and 14 having a block core 12a having a predetermined thickness and a predetermined length. , 13a, 14a and spacers 12b, 13b, 14b. That is, as shown in FIG. 3B, the simulated iron core leg 12 is assembled with a predetermined interval by installing a predetermined spacer 12b between a plurality of block cores 12a arranged in the longitudinal direction. A plurality of core leg units 20 are stacked.

また、模擬上下部ヨーク13、14は、図3(C)に示すように、その長手方向に配置した複数個のブロック鉄心13a、14aの間に所定のスペーサ13b、14bを設置することにより所定の間隔を設けて組み立てたヨークユニット21を複数個積層して構成されている。   Further, as shown in FIG. 3C, the simulated upper and lower yokes 13 and 14 are predetermined by installing predetermined spacers 13b and 14b between a plurality of block iron cores 13a and 14a arranged in the longitudinal direction. A plurality of yoke units 21 assembled with a certain interval are stacked.

なお、この場合、互いに積層された鉄心脚ユニット20及びヨークユニット21のスペーサ位置がその積層方向に隣接して配置されると、磁気回路上の空隙となったり、ブロック鉄心内に流れる磁束量に偏りが生じ、部分的に磁気飽和を生じたりすること等で励磁電流が大幅に増加してしまう可能性がある。そこで、図4(A)(B)に示すように、積層方向に隣接するスペーサを長手方向へずらして配置することで、模擬鉄心脚12及び模擬上下部ヨーク13、14を長手方向へ圧縮して長さを調整した場合でも、磁束が均等に流れるようにして、磁気飽和の抑制を図ることができるように構成されている。   In this case, if the positions of the spacers of the core leg unit 20 and the yoke unit 21 that are stacked on each other are arranged adjacent to each other in the stacking direction, a gap on the magnetic circuit is formed or the amount of magnetic flux that flows in the block core is reduced. There is a possibility that the exciting current may be greatly increased due to the occurrence of bias and partial magnetic saturation. Therefore, as shown in FIGS. 4A and 4B, the spacers adjacent to each other in the stacking direction are shifted in the longitudinal direction to compress the simulated core leg 12 and the simulated upper and lower yokes 13 and 14 in the longitudinal direction. Even when the length is adjusted, the magnetic saturation can be suppressed by allowing the magnetic flux to flow evenly.

このように、模擬鉄心脚12及び模擬上下部ヨーク13、14を、その長手方向に配置した複数個のブロック鉄心12a、13a、14aの間に所定のスペーサ12b、13b、14bを設置することにより所定の間隔をあけて組み立てることで、それぞれ長手方向への伸縮が可能となる。これにより、模擬鉄心脚12の高さや模擬上下部ヨーク13、14の長さを、巻線の更新を要する変圧器と容易に同等にすることができる。なお、上記スペーサは、プレスボードや木材等の絶縁物、もしくは、非磁性金属材料から構成されている。   Thus, by installing the predetermined spacers 12b, 13b, 14b between the plurality of block cores 12a, 13a, 14a in which the simulated core leg 12 and the simulated upper and lower yokes 13, 14 are arranged in the longitudinal direction thereof. By assembling at a predetermined interval, each can be expanded and contracted in the longitudinal direction. As a result, the height of the simulated iron core leg 12 and the length of the simulated upper and lower yokes 13 and 14 can be easily made equal to those of a transformer that requires renewal of the windings. The spacer is made of an insulator such as a press board or wood, or a nonmagnetic metal material.

上記のような構成を有する本実施例によれば、上記実施例1の作用・効果に加えて、巻線相間や巻線−鉄心側脚間構造に加え、巻線−ヨーク間の構造も模擬鉄心により正確に模擬することが可能となる。また、磁束の偏りをなくす構造にすることで、特に他試験と比較して流れる磁束量が多い交流周波電圧印加試験において、鉄損の増加や磁気飽和による励磁電流の増加を防ぎ、品質確認試験をより正確に行うことができる。   According to the present embodiment having the above-described configuration, in addition to the operation and effect of the first embodiment, in addition to the structure between the winding phases and the structure between the winding and iron core side legs, the structure between the winding and the yoke is also simulated. It becomes possible to simulate accurately by the iron core. In addition, the structure that eliminates the magnetic flux bias prevents the increase of iron loss and excitation current due to magnetic saturation, especially in the AC frequency voltage application test where the amount of magnetic flux that flows is large compared to other tests, and the quality confirmation test Can be performed more accurately.

本実施例は、更新巻線1の工場での品質確認試験に関するものである。変圧器の更新巻線の品質確認試験は、単相又は三相にて実施することができるが、更新巻線1の相間絶縁や更新巻線1とブッシングを繋ぐリード線の相間絶縁等については三相状態を模擬しないと品質確認が困難となる。この場合、上記実施例1及び実施例2を適用することにより、模擬鉄心脚2を巻線の更新を要する三相変圧器の巻線相間距離が確保できる位置に配置し、更新巻線1を三相分挿入することで相間絶縁の品質確認試験を実施することが可能となる。   The present embodiment relates to a quality confirmation test of the renewed winding 1 in a factory. The quality check test of the renewal winding of the transformer can be carried out in single phase or three phases. About the interphase insulation of the renewal winding 1, the interphase insulation of the lead wire connecting the renewal winding 1 and the bushing, etc. If the three-phase state is not simulated, quality confirmation becomes difficult. In this case, by applying the first embodiment and the second embodiment, the simulated core leg 2 is disposed at a position where the distance between the winding phases of the three-phase transformer that requires the renewal of the winding can be secured, and the renewal winding 1 is arranged. By inserting three phases, it becomes possible to carry out a quality confirmation test of interphase insulation.

三相変圧器において、相間絶縁の検証は更新巻線1の品質を保証するのに必要な試験項目である。設計仕様によっては相間絶縁が厳しくなるケースもあり、三相状態にて品質確認試験を実施することで懸念される箇所の相間絶縁評価も可能となる。そのため、三相鉄心を構成可能な模擬鉄心を適用することは、品質保証の信頼性を高めることになる。   In the three-phase transformer, the verification of the interphase insulation is a test item necessary for assuring the quality of the renewal winding 1. Depending on the design specifications, there are cases where the interphase insulation becomes strict, and it is possible to evaluate the interphase insulation in places of concern by conducting a quality confirmation test in a three-phase state. Therefore, applying a mock iron core that can form a three-phase iron core increases the reliability of quality assurance.

更新巻線の品質確認試験において雷衝撃電圧試験を実施する際、模擬鉄心と更新巻線1間の静電容量による影響を考慮する必要がある。なぜなら、鉄心径が異なると巻線の更新を要する変圧器と異なる静電容量条件で品質確認試験をすることになるためである。   When performing the lightning shock voltage test in the quality check test of the updated winding, it is necessary to consider the influence of the capacitance between the simulated iron core and the updated winding 1. This is because, if the iron core diameter is different, the quality confirmation test is performed under a different capacitance condition from that of the transformer requiring renewal of the winding.

そこで、本実施例においては、図5に示すように、模擬鉄心脚2や模擬上部ヨーク3、模擬下部ヨーク4に、巻線の更新を要する変圧器の鉄心脚8a、上部ヨーク8b、下部ヨーク8c(図6参照)とそれぞれ同じ径の円筒シールド電極30が挿入されている。このように所定の位置に円筒シールド電極30を挿入することにより、該変圧器の鉄心径を模擬することができ、これにより巻線−鉄心間の静電容量を正確に模擬し、より正確な条件で品質確認試験をすることができる。   Therefore, in this embodiment, as shown in FIG. 5, the simulated iron core leg 2, the simulated upper yoke 3, and the simulated lower yoke 4 are provided with an iron core leg 8a, an upper yoke 8b, and a lower yoke of a transformer that require renewal of windings. Cylindrical shield electrodes 30 having the same diameter as 8c (see FIG. 6) are inserted. Thus, by inserting the cylindrical shield electrode 30 at a predetermined position, the iron core diameter of the transformer can be simulated, thereby accurately simulating the capacitance between the winding and the iron core, and more accurately. A quality confirmation test can be performed under certain conditions.

波尾長の短い雷衝撃電圧試験に関する更新巻線品質試験において、巻線内電位分布は、巻線内直列静電容量、巻線間静電容量、対地静電容量によって決定されるため、対地静電容量に当たる巻線−鉄心間静電容量を正確に模擬しなければ巻線の更新を要する変圧器とは異なる電位振動で品質評価をすることになる。そこで、本実施例を適用することで、巻線−鉄心間の対地静電容量を巻線−シールド電極間で模擬し、巻線の更新を要する変圧器に近い静電容量を設けることができる。その結果、信頼性の高い品質評価を実現することが可能となる。   In the updated winding quality test for the lightning shock voltage test with a short wave tail length, the potential distribution in the winding is determined by the series capacitance in the winding, the capacitance between the windings, and the capacitance to ground. If the capacitance between the winding and the iron core corresponding to the capacitance is not accurately simulated, the quality evaluation will be performed with a potential vibration different from that of the transformer that requires renewal of the winding. Therefore, by applying this embodiment, it is possible to simulate the ground capacitance between the winding and the iron core between the winding and the shield electrode, and to provide a capacitance close to that of a transformer that requires renewal of the winding. . As a result, it is possible to realize a highly reliable quality evaluation.

本実施例は、上記実施例1〜実施例4に示した模擬鉄心を適用した工場において実施する更新巻線の品質確認方法に関するものである。すなわち、品質確認試験として、上記模擬鉄心を用いてインピーダンス測定、雷衝撃電圧試験、開閉衝撃電圧試験、交流周波電圧試験等を実施する。インピーダンス測定、雷衝撃電圧試験、開閉衝撃電圧試験等では鉄心に流れる磁束が小さいため、一般に小さな鉄心径でも磁路を形成すれば試験を実施することができる。   The present embodiment relates to a method for confirming the quality of an updated winding performed in a factory to which the simulated iron core shown in the first to fourth embodiments is applied. That is, as a quality confirmation test, an impedance measurement, a lightning shock voltage test, a switching shock voltage test, an AC frequency voltage test, and the like are performed using the simulated iron core. In the impedance measurement, the lightning shock voltage test, the switching shock voltage test, and the like, the magnetic flux flowing through the iron core is small. Therefore, the test can be performed generally by forming a magnetic path even with a small iron core diameter.

しかし、交流周波電圧試験は、変圧器の定格電圧より高い交流電圧を印加し、電磁誘導により他巻線に電圧を誘起させるため、鉄心断面積の小さい模擬鉄心では磁気飽和が生じてしまう。そこで、模擬鉄心を適用した更新巻線に可変周波数電源から高い周波数の電圧を印加することで、鉄心内磁束量を減らすことができ、巻線の更新を要する変圧器の鉄心断面積より小さい模擬鉄心でも試験の実施が可能となる。   However, in the AC frequency voltage test, an AC voltage higher than the rated voltage of the transformer is applied and a voltage is induced in the other windings by electromagnetic induction. Therefore, magnetic saturation occurs in a simulated iron core having a small core cross-sectional area. Therefore, by applying a high-frequency voltage from the variable frequency power supply to the renewed winding using a simulated iron core, the amount of magnetic flux in the iron core can be reduced, and the simulation is smaller than the core cross-sectional area of the transformer that requires renewal of the winding. The test can be performed even with an iron core.

本実施例は、定格の異なる変圧器に対して模擬鉄心を共有して品質検証試験ができることを特徴とする。その結果、複数の鉄心径の模擬鉄心を用意する必要がなく、1種類の模擬鉄心を用いるだけで模擬鉄心脚2、12に挿入した多様な定格の更新巻線1の雷衝撃電圧や商用周波電圧に対する絶縁品質検証が可能となる。さらに模擬鉄心の共有化によりコストの削減や作業工数の削減が可能となる。   This embodiment is characterized in that a quality verification test can be performed by sharing a simulated iron core for transformers with different ratings. As a result, it is not necessary to prepare simulated cores having a plurality of core diameters, and lightning shock voltages and commercial frequencies of the renewed windings 1 having various ratings inserted into the simulated core legs 2 and 12 can be obtained by using only one type of simulated core. Insulation quality against voltage can be verified. Furthermore, by sharing the simulated iron core, it is possible to reduce costs and man-hours.

1…更新巻線
2…模擬鉄心脚
3…模擬上部ヨーク
4…模擬下部ヨーク
7…劣化した巻線
8…鉄心
9…タンク
12…模擬鉄心脚
12a、13a、14a…ブロック鉄心脚
12b、13b、14b…スペーサ
13…模擬上部ヨーク
14…模擬下部ヨーク
20…鉄心脚ユニット
21…ヨークユニット
30…シールド電極
DESCRIPTION OF SYMBOLS 1 ... Update winding 2 ... Simulated iron core leg 3 ... Simulated upper yoke 4 ... Simulated lower yoke 7 ... Deteriorated winding 8 ... Iron core 9 ... Tank 12 ... Simulated iron core leg 12a, 13a, 14a ... Block iron core leg 12b, 13b, 14b ... Spacer 13 ... Simulated upper yoke 14 ... Simulated lower yoke 20 ... Iron core leg unit 21 ... Yoke unit 30 ... Shield electrode

Claims (6)

模擬鉄心脚と模擬上下部ヨークからなる模擬鉄心において、
前記模擬鉄心脚と前記模擬上下部ヨーク間の接合面が互いに全て平行となるように構成され、
前記模擬鉄心脚が前記模擬上下部ヨークの長手方向へ移動可能に設置されていることを特徴とする模擬鉄心。
In a mock iron core consisting of mock iron core legs and mock upper and lower yokes,
The joint surface between the simulated iron core leg and the simulated upper and lower yokes is configured to be all parallel to each other,
The simulated iron core is installed such that the simulated core leg is movable in the longitudinal direction of the simulated upper and lower yokes.
前記模擬鉄心脚及び前記模擬上下部ヨークの少なくともいずれか一方の断面形状が矩形であることを特徴とする請求項1に記載の模擬鉄心。   The simulated iron core according to claim 1, wherein a cross-sectional shape of at least one of the simulated iron core leg and the simulated upper and lower yokes is rectangular. 前記模擬鉄心脚及び前記模擬上下部ヨークの少なくともいずれか一方が、該鉄心の積層方向と長手方向にそれぞれ2分割以上されたブロック鉄心から構成され、各鉄心の長手方向に互いに隣接して配置される前記ブロック鉄心間にスペーサが設置されていることを特徴とする請求項1又は請求項2に記載の模擬鉄心。   At least one of the simulated iron core legs and the simulated upper and lower yokes is composed of block cores that are divided into two or more in the stacking direction and the longitudinal direction of the cores, and arranged adjacent to each other in the longitudinal direction of the cores. The simulated iron core according to claim 1, wherein a spacer is installed between the block iron cores. 各鉄心の積層方向に互いに隣接して配置される前記ブロック鉄心間に設置されるスペーサが、各鉄心の長手方向へずらして配置されていることを特徴とする請求項3に記載の模擬鉄心。   The simulated iron core according to claim 3, wherein spacers installed between the block iron cores arranged adjacent to each other in the stacking direction of the iron cores are arranged shifted in the longitudinal direction of the iron cores. 巻線の更新を要する静止誘導電器の鉄心径に合わせて製作されたシールド電極が、前記模擬鉄心脚又は前記模擬上下部ヨークの少なくともいずれか一方に取り付けられていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の模擬鉄心。   The shield electrode manufactured according to the iron core diameter of the static induction electric machine which requires renewal of the winding is attached to at least one of the simulated iron core leg or the simulated upper and lower yokes. The simulated iron core according to any one of claims 4 to 4. 請求項1乃至請求項5のいずれか1項に記載の模擬鉄心と可変周波数電源とを組み合わせ、商用周波数より高い周波数で交流試験電圧を印加することにより、様々な仕様の静止誘導電器の更新巻線に対して同一の模擬鉄心で品質確認試験を実施することを特徴とする更新巻線の品質確認方法。   A combination of the simulated iron core according to any one of claims 1 to 5 and a variable frequency power source, and applying an AC test voltage at a frequency higher than a commercial frequency, thereby updating regenerative windings of static induction electric appliances having various specifications. A method for confirming the quality of an updated winding, wherein a quality confirmation test is performed on the wire with the same simulated iron core.
JP2010260506A 2010-11-22 2010-11-22 Simulated iron core and quality confirmation method for renewed windings using the same Expired - Fee Related JP5726488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260506A JP5726488B2 (en) 2010-11-22 2010-11-22 Simulated iron core and quality confirmation method for renewed windings using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260506A JP5726488B2 (en) 2010-11-22 2010-11-22 Simulated iron core and quality confirmation method for renewed windings using the same

Publications (2)

Publication Number Publication Date
JP2012114165A true JP2012114165A (en) 2012-06-14
JP5726488B2 JP5726488B2 (en) 2015-06-03

Family

ID=46498072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260506A Expired - Fee Related JP5726488B2 (en) 2010-11-22 2010-11-22 Simulated iron core and quality confirmation method for renewed windings using the same

Country Status (1)

Country Link
JP (1) JP5726488B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165406A (en) * 2013-02-27 2014-09-08 Aichi Electric Co Ltd Quality check test method of transformer winding
KR102160142B1 (en) * 2019-03-26 2020-09-25 엘에스일렉트릭(주) test device for insulation characteristic for transformer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879212U (en) * 1971-12-29 1973-09-28
JPS54145917A (en) * 1978-05-02 1979-11-14 Asea Ab Transformer
JPS6025207A (en) * 1983-07-20 1985-02-08 Mitsubishi Electric Corp Testing of oil-immersed transformer
JPH0338610U (en) * 1989-08-24 1991-04-15
JPH0536545A (en) * 1991-05-18 1993-02-12 Fuji Electric Co Ltd Reactor iron core
JPH07142262A (en) * 1993-11-22 1995-06-02 Fuji Electric Co Ltd Joint structure of iron core
JPH11238626A (en) * 1998-02-19 1999-08-31 Iq Four:Kk Variable inductance equipment
JP2001093749A (en) * 1999-09-20 2001-04-06 Toshiba Corp Electric apparatus
JP2003224016A (en) * 2002-01-31 2003-08-08 Toshiba Corp Stationary inductive electric apparatus and method of updating the same
JP2005241297A (en) * 2004-02-24 2005-09-08 J-Power Systems Corp Withstand voltage test method of power equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879212U (en) * 1971-12-29 1973-09-28
JPS54145917A (en) * 1978-05-02 1979-11-14 Asea Ab Transformer
US4259654A (en) * 1978-05-02 1981-03-31 Asea Aktiebolag Flux control in tape windings
JPS6025207A (en) * 1983-07-20 1985-02-08 Mitsubishi Electric Corp Testing of oil-immersed transformer
JPH0338610U (en) * 1989-08-24 1991-04-15
JPH0536545A (en) * 1991-05-18 1993-02-12 Fuji Electric Co Ltd Reactor iron core
JPH07142262A (en) * 1993-11-22 1995-06-02 Fuji Electric Co Ltd Joint structure of iron core
JPH11238626A (en) * 1998-02-19 1999-08-31 Iq Four:Kk Variable inductance equipment
JP2001093749A (en) * 1999-09-20 2001-04-06 Toshiba Corp Electric apparatus
JP2003224016A (en) * 2002-01-31 2003-08-08 Toshiba Corp Stationary inductive electric apparatus and method of updating the same
JP2005241297A (en) * 2004-02-24 2005-09-08 J-Power Systems Corp Withstand voltage test method of power equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165406A (en) * 2013-02-27 2014-09-08 Aichi Electric Co Ltd Quality check test method of transformer winding
KR102160142B1 (en) * 2019-03-26 2020-09-25 엘에스일렉트릭(주) test device for insulation characteristic for transformer
WO2020196994A1 (en) * 2019-03-26 2020-10-01 엘에스일렉트릭 주식회사 Device for testing insulation properties of transformer
CN113574399A (en) * 2019-03-26 2021-10-29 Ls电气株式会社 Transformer insulation characteristic testing device
JP2022522188A (en) * 2019-03-26 2022-04-14 エルエス、エレクトリック、カンパニー、リミテッド Transformer insulation characteristic test equipment
JP7222111B2 (en) 2019-03-26 2023-02-14 エルエス、エレクトリック、カンパニー、リミテッド Transformer insulation characteristic test equipment
US11913984B2 (en) 2019-03-26 2024-02-27 Ls Electric Co., Ltd. Device for testing insulation properties of transformer

Also Published As

Publication number Publication date
JP5726488B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
Minh et al. Finite element modeling of shunt reactors used in high voltage power systems
JP5726488B2 (en) Simulated iron core and quality confirmation method for renewed windings using the same
US9583252B2 (en) Transformer
US10504645B2 (en) Gapless core reactor
Di Noia et al. Design optimization of distribution transformers by minimizing the total owning cost
Guimarães et al. Electromechanical forces in transformers caused by inrush currents: an analytical, numerical and experimental approach
Werle et al. Transformers
Najafi et al. A new approach to reduce the leakage flux and electromagnetic force on distribution transformer under unbalanced faults based on finite element method
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
Dopplmair et al. Evaluation and implementation of HV dry-type shunt reactors into a 420 kV transmission grid
Kobayashi et al. Demonstration of loss reduction effect of 66 kV‐classed 30 MVA three phase hybrid‐core transformer by trial manufacture
Alyozbaky et al. A new approach of core structure model for 3‐phase distribution transformer
JP6325194B2 (en) Transformer winding quality confirmation test method
US2095294A (en) Transformer and the like
Aguilar et al. Size reduction of a DC link choke using saturation-gap and biasing with permanent magnets
US3287682A (en) Core insulation for protection against impulse voltage
Azizian et al. Calculating leakage inductances of split-windings in dry-type traction transformers
Paluev Power transformers with concentric windings
Enright et al. Short time rated and protected high voltage ac testing of generator stators using parallel resonant circuits
Zhalefar et al. Transformer core modeling as applied to slow transients and protective studies
JP4867053B2 (en) Reactor
Lundmark et al. Comparison between hexa-and conventional E-type core three-phase transformers
Moradnouri et al. Introduction of dimensional approach to evaluation of distribution transformer short circuit forces
Sundberg Resonant overvoltages caused by transformer energization and saturation: Two EMT case studies conducted using models of the grid in Stockholm and an off-shore wind farm
Chaw et al. Design comparison for rectangular and round winding distribution transformer (1000 kVA)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

LAPS Cancellation because of no payment of annual fees