JP2012112898A - Method and apparatus for measuring step quantity of plate weld zone - Google Patents

Method and apparatus for measuring step quantity of plate weld zone Download PDF

Info

Publication number
JP2012112898A
JP2012112898A JP2010264149A JP2010264149A JP2012112898A JP 2012112898 A JP2012112898 A JP 2012112898A JP 2010264149 A JP2010264149 A JP 2010264149A JP 2010264149 A JP2010264149 A JP 2010264149A JP 2012112898 A JP2012112898 A JP 2012112898A
Authority
JP
Japan
Prior art keywords
distance
measuring
plate material
welded portion
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010264149A
Other languages
Japanese (ja)
Inventor
Soichiro Uehara
壮一郎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010264149A priority Critical patent/JP2012112898A/en
Publication of JP2012112898A publication Critical patent/JP2012112898A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring step quantities of plate weld zones capable of accurately measuring the step quantities online at the weld zones of the plates during conveying the plates.SOLUTION: This method for measuring the step quantities of plate weld zones includes; while conveying plates S formed by connecting a plurality of plate materials by welding; noncontactly and simultaneously measuring distances to the plates S at multiple points on a line crossing a weld line of weld zones S3 of the plates S; and calculating the step quantities of the steel plates S at the weld zones S3 based on the measured distances. Preferably, the multipoint measurement is performed by a plurality of laser distance meters 41a disposed on the line crossing the weld line.

Description

本発明は、溶接により複数の鋼板などの板材をつなぎ合わせた板材を搬送しながら溶接部における段差量を測定する方法および装置に関するものである。   The present invention relates to a method and an apparatus for measuring a level difference in a welded portion while conveying a plate material obtained by joining a plurality of plate materials such as steel plates by welding.

圧延工程や酸洗工程などの連続処理を行なう際には、ルーパ等を用いてラインを停止させずに、溶接機によって複数の鋼板を溶接してつなぎ合わせ、つなぎ合わせた鋼板を連続処理ラインに搬送し、連続処理を行なうようにしている。この際、つなぎ合わせた鋼板間の段差が許容量よりも大きいと、後続の工程において溶接部の破断などが発生するおそれがある。したがって、安定した操業のためには、鋼板間の溶接部の段差量を正確に測定することが重要である。   When performing continuous processing such as rolling and pickling processes, without using a looper or the like to stop the line, a plurality of steel plates are welded together using a welding machine, and the joined steel plates are made into a continuous processing line. It is transported and continuous processing is performed. At this time, if the step between the joined steel sheets is larger than the allowable amount, the welded part may be broken in the subsequent process. Therefore, for stable operation, it is important to accurately measure the level difference of the weld between steel plates.

従来、鋼板間の溶接部の形状を測定する方法が開示されている(特許文献1〜4参照)。たとえば特許文献1、2に開示されるような光切断法を用いる場合、光源が、鋼板の表面に対して所定の角度αで傾斜した方向から、溶接部に対して溶接線と垂直なスリット状の光を照射する。そして、撮像装置が、光を照射した溶接部を鋼板の表面に対して垂直方向から撮像する。溶接した先行鋼板と後行鋼板との間に段差がある場合、撮像した先行鋼板上の光の像と後行鋼板上の光の像とが一直線上にならず、鋼板の幅方向にずれが生じる。このずれ量は、鋼板間の段差の量と傾斜角度αとで定まる量である。したがって、既知の傾斜角度αと、撮像したデータから求めたずれ量とから、鋼板間の段差の量を算出することができる。また、特許文献3、4に開示される方法は、鋼板を固定した状態で、フラッシュトリマー内にて溶接部を鋼板の幅方向に走査計測して、トリミング後のビード形状を測定している。   Conventionally, the method of measuring the shape of the welding part between steel plates is disclosed (refer patent documents 1-4). For example, when using the light cutting method disclosed in Patent Documents 1 and 2, the light source is slit-shaped perpendicular to the weld line with respect to the weld from the direction inclined at a predetermined angle α with respect to the surface of the steel plate. Irradiate the light. And an imaging device images the welding part which irradiated light from the perpendicular | vertical direction with respect to the surface of a steel plate. When there is a step between the welded preceding steel plate and the succeeding steel plate, the image of the light on the preceding steel plate and the image of the light on the succeeding steel plate are not aligned, and there is a shift in the width direction of the steel plate. Arise. The amount of deviation is an amount determined by the amount of the step between the steel plates and the inclination angle α. Therefore, the step amount between the steel plates can be calculated from the known inclination angle α and the amount of deviation obtained from the captured data. The methods disclosed in Patent Documents 3 and 4 measure the bead shape after trimming by scanning and measuring the welded portion in the width direction of the steel plate in a flash trimmer while the steel plate is fixed.

特開2007−203322号公報JP 2007-203322 A 特開平10−296481号公報Japanese Patent Laid-Open No. 10-296481 特開平5−154510号公報JP-A-5-154510 特開平10−9833号公報Japanese Patent Laid-Open No. 10-9833

しかしながら、上述した光切断法を用いる方法は、段差量の算出に傾斜角度αを用いている。したがって、鋼板を搬送しながらオンラインで段差の測定を行おうとすると、鋼板が振動等によって上下動して鋼板と光源との距離が変動するため、傾斜角度αが変動してしまう。たとえば、振動によって鋼板が光源に近づくと傾斜角度αが大きくなり、光源から遠ざかると傾斜角度αが小さくなる。その結果、段差量を正確に測定することができないという問題がある。また、特許文献3、4に開示される方法は、もともと鋼板を固定した状態で測定を行なう方法である。このように、上述した方法では、鋼板を搬送中に、オンラインで段差量を正確に測定することが困難であるという問題がある。   However, the method using the above-described light cutting method uses the inclination angle α for calculating the step amount. Therefore, if it is attempted to measure the level difference online while conveying the steel plate, the steel plate moves up and down due to vibration or the like, and the distance between the steel plate and the light source varies, so the inclination angle α varies. For example, the inclination angle α increases as the steel plate approaches the light source due to vibration, and the inclination angle α decreases as the distance from the light source increases. As a result, there is a problem that the amount of level difference cannot be measured accurately. In addition, the methods disclosed in Patent Documents 3 and 4 are methods in which measurement is performed in a state where a steel plate is originally fixed. Thus, the above-described method has a problem that it is difficult to accurately measure the step amount online while the steel plate is being conveyed.

本発明は、上記に鑑みてなされたものであって、鋼板などの板材を搬送中に、オンラインで板材の溶接部における段差量を正確に測定することができる板材溶接部の段差量の測定方法および装置を提供することを目的とする。   The present invention has been made in view of the above, and is capable of accurately measuring the amount of level difference in a welded portion of a plate material online while conveying a plate material such as a steel plate. And an object to provide an apparatus.

上述した課題を解決し、目的を達成するために、本発明に係る板材溶接部の段差量の測定方法は、溶接により複数の板材をつなぎ合わせた板材を搬送しながら、前記板材の溶接部の溶接線を横切る線上において前記板材までの距離を非接触でかつ同時に多点計測し、前記計測した距離をもとに前記溶接部における前記鋼板の段差量を算出することを特徴とする。   In order to solve the above-described problems and achieve the object, the method for measuring the level difference of the plate material welded portion according to the present invention is to transfer the plate material obtained by joining a plurality of plate materials by welding, The distance to the plate material is measured in a non-contact and multi-point simultaneously on a line crossing the weld line, and the step amount of the steel plate in the weld is calculated based on the measured distance.

また、本発明に係る板材溶接部の段差量の測定装置は、溶接により複数の板材をつなぎ合わせた板材を搬送しながら、前記板材の溶接部における段差を測定する装置であって、前記溶接部の溶接線を横切る線上において前記板材までの距離を同時に多点計測する多点計測部と、前記多点計測部が計測した距離をもとに前記溶接部における前記鋼板の段差量を算出する段差算出部と、を備えることを特徴とする。   Further, the apparatus for measuring a level difference of a plate material welded portion according to the present invention is a device for measuring a level difference in a welded portion of the plate material while conveying a plate material in which a plurality of plate materials are joined by welding, A multi-point measuring unit that simultaneously measures multiple points to the plate material on a line that crosses the welding line, and a step that calculates a step amount of the steel plate in the welded part based on the distance measured by the multi-point measuring unit And a calculating unit.

本発明によれば、板材の溶接部の溶接線を横切る線上において板材までの距離を非接触でかつ同時に多点計測し、計測した距離をもとに溶接部における段差量を算出するので、板材を搬送中であっても、オンラインで段差量を正確に測定することができるという効果を奏する。   According to the present invention, the distance to the plate material on the line crossing the weld line of the welded portion of the plate material is non-contact and simultaneously measured at multiple points, and the step amount in the welded portion is calculated based on the measured distance. Even if the sheet is being conveyed, there is an effect that the step amount can be accurately measured online.

図1は、実施の形態1に係る段差量の測定方法を適用する圧延処理装置の模式図である。FIG. 1 is a schematic diagram of a rolling processing apparatus to which the step height measuring method according to Embodiment 1 is applied. 図2は、図1に示す段差測定装置の構成を説明する側面図である。FIG. 2 is a side view for explaining the configuration of the level difference measuring apparatus shown in FIG. 図3は、図2に示す距離測定センサの配置を説明する図である。FIG. 3 is a diagram for explaining the arrangement of the distance measuring sensors shown in FIG. 図4は、図2に示す距離測定センサの動作を説明する図である。FIG. 4 is a diagram for explaining the operation of the distance measuring sensor shown in FIG. 図5は、鋼板の平坦部および溶接部近傍の距離計測結果を示す図である。FIG. 5 is a diagram illustrating a distance measurement result in the vicinity of the flat portion and the welded portion of the steel plate. 図6は、距離測定センサと鋼板との距離が変動した場合の計測結果を示す図である。FIG. 6 is a diagram illustrating a measurement result when the distance between the distance measurement sensor and the steel plate varies.

以下に、図面を参照して本発明に係る板材溶接部の段差量の測定方法および装置の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments of a method and apparatus for measuring a level difference of a plate material welded portion according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
はじめに、本発明の実施の形態1に係る板材溶接部の段差量の測定方法を、鋼板の圧延処理装置の連続圧延ラインに適用する場合について説明する。図1は、本実施の形態1に係る段差量の測定方法を適用する圧延処理装置の模式図である。図1に示すように、この圧延処理装置100は、上流側から順次配置された、供給側コイル1、レーザ溶接機2、加工装置3、段差測定装置4、ガイドロール5、6、ルーパ7、圧延機8、および巻取側コイル9を備えている。
(Embodiment 1)
First, the case where the method for measuring the level difference of the welded portion of the plate material according to Embodiment 1 of the present invention is applied to a continuous rolling line of a steel sheet rolling apparatus will be described. FIG. 1 is a schematic diagram of a rolling processing apparatus to which the level difference measuring method according to the first embodiment is applied. As shown in FIG. 1, the rolling processing apparatus 100 includes a supply side coil 1, a laser welding machine 2, a processing apparatus 3, a step measuring apparatus 4, guide rolls 5 and 6, a looper 7, which are sequentially arranged from the upstream side. A rolling mill 8 and a winding side coil 9 are provided.

レーザ溶接機2は、供給側コイル1から供給された鋼板を溶接してつなぎ合わせて鋼板Sとする。加工装置3は、溶接部の位置を検出するための溶接部検出用穴を、鋼板S上において溶接部から所定の距離だけ離間した位置に形成し、かつ溶接部を含む鋼板の幅方向の両端部にノッチを形成する。   The laser welder 2 welds and joins the steel plates supplied from the supply-side coil 1 to form a steel plate S. The processing device 3 forms welded part detection holes for detecting the position of the welded part at positions separated from the welded part by a predetermined distance on the steel sheet S, and both ends in the width direction of the steel sheet including the welded part. A notch is formed in the part.

ルーパ7は、鋼板Sのループを形成し、鋼板Sに一定の張力を与えるとともに、鋼板Sが常に所定の搬送速度で圧延機8に搬送するように構成されている。なお、搬送速度は、たとえば30mpmであるが、特に限定はされない。圧延機8は、5台の圧延スタンドを順次配置したタンデム圧延機であり、ルーパ7より搬送された鋼板Sを圧延する。そして、巻取側コイル9は、圧延後の鋼板Sを巻き取る。   The looper 7 is configured to form a loop of the steel plate S, apply a certain tension to the steel plate S, and always convey the steel plate S to the rolling mill 8 at a predetermined conveyance speed. In addition, although a conveyance speed is 30 mpm, for example, it does not specifically limit. The rolling mill 8 is a tandem rolling mill in which five rolling stands are sequentially arranged, and rolls the steel sheet S conveyed from the looper 7. And the winding side coil 9 winds up the steel plate S after rolling.

つぎに、段差測定装置4について説明する。図2は、図1に示す段差測定装置4の構成を説明する側面図である。図2に示すように、段差測定装置4は、多点計測部である距離測定センサ41と、距離測定センサ41に接続した信号処理・制御装置42と、信号処理・制御装置42に接続したトリガ信号生成器43と、トリガ信号生成器43を介して信号処理・制御装置42に接続した光学式穴検出器44と、信号処理・制御装置42に接続した段差算出装置であるパーソナルコンピュータ(PC)45とを備えている。   Next, the step difference measuring device 4 will be described. FIG. 2 is a side view for explaining the configuration of the level difference measuring device 4 shown in FIG. As shown in FIG. 2, the level difference measuring device 4 includes a distance measuring sensor 41 that is a multipoint measuring unit, a signal processing / control device 42 connected to the distance measuring sensor 41, and a trigger connected to the signal processing / control device 42. A signal generator 43, an optical hole detector 44 connected to the signal processing / control device 42 via the trigger signal generator 43, and a personal computer (PC) which is a step calculation device connected to the signal processing / control device 42 45.

また、図3は、図2に示す距離測定センサ41の配置を説明する図である。なお、図3は図2の紙面下方側から見た図である。図2、3に示すように、鋼板Sは、レーザ溶接機2により先行鋼板S1と後行鋼板S2とが溶接部S3において溶接されたものであり、加工装置3によって、溶接部S3から所定の距離L2だけ離間した位置に溶接部検出用穴S1aが形成されるとともに、溶接部S3を含む鋼板Sの幅方向の両端部にノッチNが形成されて、通板方向に搬送される。なお、距離L2は、たとえば150mmであるが、特に限定はされない。また、溶接部S3は線状に形成されている。以下では溶接部S3が形成する線を溶接線と呼ぶ。   FIG. 3 is a view for explaining the arrangement of the distance measuring sensor 41 shown in FIG. FIG. 3 is a view as seen from the lower side of FIG. As shown in FIGS. 2 and 3, the steel plate S is obtained by welding the preceding steel plate S1 and the succeeding steel plate S2 at the welded portion S3 by the laser welding machine 2, and the processing device 3 applies a predetermined amount from the welded portion S3. A welded portion detection hole S1a is formed at a position separated by a distance L2, and notches N are formed at both ends in the width direction of the steel sheet S including the welded portion S3, and conveyed in the plate passing direction. The distance L2 is, for example, 150 mm, but is not particularly limited. Further, the welded portion S3 is formed in a linear shape. Below, the line which welding part S3 forms is called a welding line.

図2、3を参照して、段差測定装置4の各構成要素について説明する。距離測定センサ41は、鋼板Sの下方であって、板厚方向において鋼板Sから所定の距離L1だけ離間した位置であり、かつ鋼板Sの幅方向の略中央の位置に、鋼板Sと対向するように配置されている。また、距離測定センサ41は、複数のレーザ距離計41aが配列長L3でアレイ状に配列して構成されている。また、レーザ距離計41aは、溶接部S3の溶接線と略直交するように配列している。レーザ距離計41aの配列数については、図2では8個を図示しているが、たとえば10〜20個とできる。距離L1は、たとえば200mmであるが、特に限定はされない。配列長L3は、通板方向における溶接部S3の長さよりも長く設定するが、たとえば60mmである。   Each component of the level difference measuring device 4 will be described with reference to FIGS. The distance measuring sensor 41 is located below the steel sheet S, at a position separated from the steel sheet S by a predetermined distance L1 in the thickness direction, and opposed to the steel sheet S at a substantially central position in the width direction of the steel sheet S. Are arranged as follows. The distance measuring sensor 41 is configured by arranging a plurality of laser distance meters 41a in an array with an array length L3. The laser distance meter 41a is arranged so as to be substantially orthogonal to the weld line of the welded portion S3. The number of the laser distance meters 41a arranged is 8 in FIG. 2, but may be 10 to 20, for example. The distance L1 is, for example, 200 mm, but is not particularly limited. The arrangement length L3 is set longer than the length of the welded portion S3 in the plate passing direction, and is, for example, 60 mm.

なお、レーザ距離計41aは、測定対象物にレーザ光を照射するとともに、測定対象物で反射して戻ってきたレーザ光を受光するように構成されている。そして、照射したレーザ光と戻ってきたレーザ光との位相差から、測定対象物までの距離を計測できるものである。   The laser distance meter 41a is configured to irradiate the measurement target with laser light and to receive the laser light reflected and returned from the measurement target. The distance to the measurement object can be measured from the phase difference between the irradiated laser beam and the returned laser beam.

光学式穴検出器44は、溶接部検出用穴S1aが通過する位置の下方に、鋼板Sと対向するように配置されている。光学式穴検出器44は、例えばフォトダイオード等を備え、溶接部検出用穴S1aが光学式穴検出器44の上方を通過した際に溶接部検出用穴S1aから漏れる室内灯や検出用の光源等からの光を検出すると検出電流を出力するように構成されている。トリガ信号生成器43は、光学式穴検出器44から検出電流が入力されると、トリガ信号St1を出力するように構成されている。   The optical hole detector 44 is disposed so as to face the steel plate S below the position through which the weld detection hole S1a passes. The optical hole detector 44 includes, for example, a photodiode or the like, and an indoor lamp or a detection light source that leaks from the weld detection hole S1a when the weld detection hole S1a passes above the optical hole detector 44. When detecting light from, etc., a detection current is output. The trigger signal generator 43 is configured to output a trigger signal St1 when a detection current is input from the optical hole detector 44.

信号処理・制御装置42は、トリガ信号生成器43からトリガ信号St1が入力されると、距離測定センサ41にトリガ信号St2を出力するとともに、距離測定センサ41からの計測データ信号Smを受信してPC45に出力するように構成されている。   When the trigger signal St1 is input from the trigger signal generator 43, the signal processing / control device 42 outputs the trigger signal St2 to the distance measurement sensor 41 and receives the measurement data signal Sm from the distance measurement sensor 41. It is configured to output to the PC 45.

つぎに、段差測定装置4を用いた本実施の形態1に係る段差の測定方法について説明する。まず、供給側コイル1から供給された先行鋼板S1と後行鋼板S2とがレーザ溶接機2によって溶接されてつなぎ合わされた鋼板Sが、加工装置3によって溶接部検出用穴S1aとノッチNとが形成され、段差測定装置4の上方を通過するようにルーパ7へと搬送される。   Next, a step measuring method according to the first embodiment using the step measuring device 4 will be described. First, the steel plate S in which the preceding steel plate S1 and the succeeding steel plate S2 supplied from the supply side coil 1 are welded and joined together by the laser welding machine 2 is connected to the welded part detection hole S1a and the notch N by the processing device 3. It is formed and conveyed to the looper 7 so as to pass above the level difference measuring device 4.

すると、光学式穴検出器44が、鋼板Sの溶接部検出用穴S1aがその上方を通過したことを検出し、検出電流を出力する。トリガ信号生成器43は、検出電流が入力されて、信号処理・制御装置42にトリガ信号St1を出力する。信号処理・制御装置42は、トリガ信号St1が入力されて、距離測定センサ41にトリガ信号St2を出力する。   Then, the optical hole detector 44 detects that the welded portion detection hole S1a of the steel plate S has passed thereabove, and outputs a detection current. The trigger signal generator 43 receives the detected current and outputs a trigger signal St1 to the signal processing / control device 42. The signal processing / control device 42 receives the trigger signal St1 and outputs the trigger signal St2 to the distance measuring sensor 41.

つぎに、図4に示すように、距離測定センサ41の各レーザ距離計41aが、トリガ信号St2の入力をトリガとして、同期して距離計測用のレーザ光LLを出射することによって、鋼板Sまでの距離を非接触でかつ同時に多点計測する。このように距離測定センサ41が多点計測した距離によって、鋼板Sの溶接部S3の近傍の表面形状を測定することができる。   Next, as shown in FIG. 4, each laser distance meter 41 a of the distance measuring sensor 41 uses the input of the trigger signal St <b> 2 as a trigger to emit laser light LL for distance measurement synchronously, thereby reaching the steel plate S. Measure the distance of multiple points at the same time without contact. Thus, the surface shape of the vicinity of the welded portion S3 of the steel sheet S can be measured by the distance measured by the distance measuring sensor 41 at multiple points.

つぎに、距離測定センサ41は、計測データ信号Smを信号処理・制御装置42に送信し、信号処理・制御装置42は、受信した計測データ信号SmをPC45に出力する。PC45は、計測データ信号Smをもとに溶接部S3における先行鋼板S1と後行鋼板S2との段差量を算出する。   Next, the distance measurement sensor 41 transmits the measurement data signal Sm to the signal processing / control device 42, and the signal processing / control device 42 outputs the received measurement data signal Sm to the PC 45. The PC 45 calculates the step amount between the preceding steel plate S1 and the succeeding steel plate S2 in the welded part S3 based on the measurement data signal Sm.

以下、段差量の算出方法について説明する。図5は、距離測定センサ41によって鋼板Sの溶接部S3以外の平坦部を計測した場合と、溶接部S3近傍を計測した場合とでの測定結果を示す図である。なお、図5(a)は平坦部の測定結果を示し、図5(b)は溶接部S3近傍の測定結果を示しており、黒丸が測定したデータ点であり、実線はデータ点をつないだものである。また、横軸は溶接部S3の溶接線と垂直な方向(すなわち本実施の形態1ではレーザ距離計41aの配列方向)を示し、縦軸は距離測定センサ41と鋼板Sとの距離の計測結果を示している。   Hereinafter, a method for calculating the step amount will be described. FIG. 5 is a diagram showing measurement results when the flat part other than the welded part S3 of the steel sheet S is measured by the distance measuring sensor 41 and when the vicinity of the welded part S3 is measured. 5A shows the measurement result of the flat portion, and FIG. 5B shows the measurement result in the vicinity of the weld S3. The black circle is the measured data point, and the solid line connects the data points. Is. Further, the horizontal axis indicates the direction perpendicular to the weld line of the welded portion S3 (that is, the arrangement direction of the laser distance meter 41a in the first embodiment), and the vertical axis indicates the measurement result of the distance between the distance measuring sensor 41 and the steel sheet S. Is shown.

図5(a)に示すように、鋼板Sの平坦部を計測した場合は、溶接線と垂直な方向において計測した距離は一定であり、鋼板Sの表面が平坦であることが測定される。一方、図5(b)に示すように、溶接部S3近傍を計測した場合は、計測した距離は溶接部S3近傍の表面形状を反映して一定ではなくなる。ここで、データ点群D1、D2、D3は、それぞれ先行鋼板S1、後行鋼板S2、溶接部S3の表面形状に対応している。この場合、データ点群D1とデータ点群D2との計測距離の差から、溶接部S3における先行鋼板S1と後行鋼板S2との段差量Bを算出することができる。   As shown in FIG. 5A, when the flat portion of the steel sheet S is measured, the distance measured in the direction perpendicular to the weld line is constant, and it is measured that the surface of the steel sheet S is flat. On the other hand, as shown in FIG. 5B, when the vicinity of the weld S3 is measured, the measured distance is not constant reflecting the surface shape near the weld S3. Here, the data point groups D1, D2, and D3 correspond to the surface shapes of the preceding steel plate S1, the subsequent steel plate S2, and the welded portion S3, respectively. In this case, the step amount B between the preceding steel plate S1 and the succeeding steel plate S2 in the welded portion S3 can be calculated from the difference in measurement distance between the data point group D1 and the data point group D2.

ここで、本実施の形態1に係る測定方法では、距離測定センサ41の各レーザ距離計41aが、鋼板Sまでの距離を非接触でかつ同時に多点計測し、計測した距離をもとに溶接部S3における段差を算出するので、鋼板Sを搬送中であっても、オンラインで段差量Bを正確に測定することができる。   Here, in the measuring method according to the first embodiment, each laser distance meter 41a of the distance measuring sensor 41 measures the distance to the steel sheet S in a non-contact and multi-point simultaneously, and welds based on the measured distance. Since the level difference in the part S3 is calculated, the level difference B can be accurately measured online even when the steel sheet S is being conveyed.

以下、具体的に説明する。上述したように、鋼板Sを搬送しながらオンラインで段差量の測定を行おうとすると、鋼板Sが搬送時の振動等によって上下動するため、鋼板Sと距離測定センサ41との距離が変動する。   This will be specifically described below. As described above, if the step amount is measured online while conveying the steel sheet S, the distance between the steel sheet S and the distance measuring sensor 41 varies because the steel sheet S moves up and down due to vibration during conveyance.

図6は、距離測定センサと鋼板との距離が変動した場合の計測結果を示す図である。図6に示すように、距離測定センサ41と鋼板Sとの距離が近い場合と遠い場合とでは、計測される距離が異なる。しかしながら、本実施の形態1に係る測定方法では、距離を同時に多点計測しているため、計測データ点群は鋼板Sの上下動に応じて上下に平行移動するだけであり、このデータ群から算出される段差量B自体は変化しない。したがって、本実施の形態1によれば、鋼板Sが振動しても、その影響を受けずに、オンラインで段差量Bを正確に測定することができる。   FIG. 6 is a diagram illustrating a measurement result when the distance between the distance measurement sensor and the steel plate varies. As shown in FIG. 6, the measured distance differs depending on whether the distance measurement sensor 41 and the steel sheet S are short or far. However, in the measurement method according to the first embodiment, since the distance is measured at multiple points at the same time, the measurement data point group only translates up and down according to the vertical movement of the steel sheet S. From this data group The calculated step amount B itself does not change. Therefore, according to the first embodiment, even if the steel sheet S vibrates, the step amount B can be accurately measured online without being affected by the vibration.

なお、上記実施の形態では、距離測定センサはレーザ距離計を用いたものであるが、距離測定センサは非接触にて距離を計測できるものであれば特に限定されず、たとえば超音波距離計を用いたものでもよい。   In the above embodiment, the distance measuring sensor uses a laser distance meter, but the distance measuring sensor is not particularly limited as long as it can measure the distance in a non-contact manner. For example, an ultrasonic distance meter is used. The one used may be used.

また、上記実施の形態では、溶接部検出用穴が所定の位置を通過したことを検出し、これをトリガとして距離測定センサが同時多点計測を行なうようにしているが、計測開始のトリガは特に限定されない。たとえば、供給側コイルに回転数を検出するセンサを設け、検出した回転数から供給した鋼板の長さを算出し、この長さが所定長に達したときに計測開始のトリガを掛けるようにしてもよい。また、鋼板の表面を撮像する撮像装置を所定の位置に設け、撮像データにより溶接部の通過を検出し、これをもとに計測開始のトリガを掛けるようにしてもよい。   In the above embodiment, it is detected that the weld detection hole has passed a predetermined position, and the distance measurement sensor performs simultaneous multipoint measurement using this as a trigger. There is no particular limitation. For example, a sensor for detecting the number of rotations is provided in the supply side coil, the length of the supplied steel sheet is calculated from the detected number of rotations, and a trigger for starting measurement is applied when this length reaches a predetermined length. Also good. Further, an imaging device for imaging the surface of the steel plate may be provided at a predetermined position, and the passage of the welded portion may be detected from the imaging data, and a measurement start trigger may be applied based on this.

また、上記実施の形態では、距離測定センサのレーザ距離計を、溶接線と略直交するように配列しているが、溶接線を横切る線上において多点計測をすればよいので、たとえばレーザ距離計を溶接線に対して傾斜するように配列してもよい。   In the above embodiment, the laser distance meters of the distance measuring sensor are arranged so as to be substantially orthogonal to the weld line. However, since multipoint measurement may be performed on a line crossing the weld line, for example, a laser distance meter May be arranged so as to be inclined with respect to the weld line.

また、上記実施の形態では、距離測定センサは、鋼材の幅方向の略中央において多点計測を行なっているので、たとえば連続処理する鋼材の幅を変更する場合でも、そのまま段差量の測定を行なうことができる。ただし、本発明はこれに限らず、多点計測を行う位置は鋼材の幅方向の中央から端部までの間であればよい。なお、段差測定装置全体または距離測定センサが鋼材の幅方向に移動できるような移動機構を設け、鋼材の幅や溶接条件等に応じて多点計測を行なう位置を移動させてもよい。さらには、鋼材の幅方向に複数の距離測定センサを並列配置させて、幅方向の複数個所または幅方向全体にわたって多点計測を行なうようにしてもよい。   Moreover, in the said embodiment, since the distance measurement sensor is performing multipoint measurement in the approximate center of the width direction of steel materials, even when changing the width of the steel materials to process continuously, for example, it measures a step amount as it is. be able to. However, this invention is not restricted to this, The position which performs multipoint measurement should just be between the center of the width direction of steel materials to an edge part. Note that a moving mechanism that allows the entire step measuring device or the distance measuring sensor to move in the width direction of the steel material may be provided, and the position where multipoint measurement is performed may be moved according to the width of the steel material, welding conditions, or the like. Furthermore, a plurality of distance measuring sensors may be arranged in parallel in the width direction of the steel material, and multipoint measurement may be performed over a plurality of positions in the width direction or over the entire width direction.

また、上記実施の形態では、本発明を圧延処理装置の連続圧延ラインに適用しているが、本発明は酸洗工程、焼鈍工程などの他の連続処理ラインにも適用することができる。また、段差量の測定を行なう位置についても、溶接を行なった後であれば特に限定はされない。   Moreover, in the said embodiment, although this invention is applied to the continuous rolling line of a rolling processing apparatus, this invention is applicable also to other continuous processing lines, such as a pickling process and an annealing process. Further, the position where the step amount is measured is not particularly limited as long as it is after welding.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施の形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。本実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. Other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1 供給側コイル
2 レーザ溶接機
3 加工装置
4 段差測定装置
5、6 ガイドロール
7 ルーパ
8 圧延機
9 巻取側コイル
41 距離測定センサ
41a レーザ距離計
42 信号処理・制御装置
43 トリガ信号生成器
44 光学式穴検出器
100 圧延処理装置
B 段差量
D1〜D3 データ点群
L1、L2 距離
L3 配列長
LL レーザ光
N ノッチ
S 鋼板
S1 先行鋼板
S1a 溶接部検出用穴
S2 後行鋼板
S3 溶接部
Sm 計測データ信号
St1、St2 トリガ信号
DESCRIPTION OF SYMBOLS 1 Supply side coil 2 Laser welding machine 3 Processing apparatus 4 Level | step difference measuring apparatus 5, 6 Guide roll 7 Looper 8 Rolling machine 9 Winding side coil 41 Distance measurement sensor 41a Laser distance meter 42 Signal processing and control apparatus 43 Trigger signal generator 44 Optical hole detector 100 Roll processing apparatus B Step amount D1 to D3 Data point group L1, L2 Distance L3 Arrangement length LL Laser light N Notch S Steel plate S1 Leading steel plate S1a Weld detection hole S2 Subsequent steel plate S3 Welding portion Sm Measurement Data signal St1, St2 Trigger signal

Claims (5)

溶接により複数の板材をつなぎ合わせた板材を搬送しながら、前記板材の溶接部の溶接線を横切る線上において前記板材までの距離を非接触でかつ同時に多点計測し、前記計測した距離をもとに前記溶接部における前記鋼板の段差量を算出することを特徴とする板材溶接部の段差量の測定方法。   While transporting a plate material in which a plurality of plate materials are joined together by welding, the distance to the plate material is measured in a non-contact and multi-point simultaneously on a line crossing the weld line of the welded portion of the plate material, and the measured distance A method for measuring the level difference of the welded portion of the plate material, comprising calculating a level difference of the steel plate at the welded portion. 前記溶接線を横切る線上に配列した複数のレーザ距離計により前記多点計測を行なうことを特徴とする請求項1に記載の板材溶接部の段差量の測定方法。   The method for measuring a step amount of a plate material welded portion according to claim 1, wherein the multipoint measurement is performed by a plurality of laser distance meters arranged on a line crossing the weld line. 前記板材の溶接部から所定の距離だけ離間して形成された溶接部検出用穴が所定の位置を通過したことをトリガとして前記同時多点計測を行なうことを特徴とする請求項1または2に記載の板材溶接部の段差量の測定方法。   3. The simultaneous multi-point measurement is performed by using, as a trigger, a welded part detection hole formed at a predetermined distance from the welded part of the plate material as a trigger. The measuring method of the level | step difference amount of the plate-material welding part of description. 前記板材の幅方向の略中央において前記多点計測を行なうことを特徴とする請求項1〜3のいずれか一つに記載の板材溶接部の段差量の測定方法。   The method for measuring a step amount of a plate material welded portion according to any one of claims 1 to 3, wherein the multipoint measurement is performed at substantially the center in the width direction of the plate material. 溶接により複数の板材をつなぎ合わせた板材を搬送しながら、前記板材の溶接部における段差を測定する装置であって、
前記溶接部の溶接線を横切る線上において前記板材までの距離を同時に多点計測する多点計測部と、
前記多点計測部が計測した距離をもとに前記溶接部における前記鋼板の段差量を算出する段差算出部と、
を備えることを特徴とする板材溶接部の段差量の測定装置。
An apparatus for measuring a step in a welded portion of the plate material while conveying a plate material obtained by joining a plurality of plate materials by welding,
A multipoint measuring unit that simultaneously measures the distance to the plate material on a line crossing the weld line of the welded portion, and
A level difference calculating unit that calculates the level difference of the steel plate in the welded part based on the distance measured by the multipoint measuring unit;
An apparatus for measuring a level difference in a welded portion of a plate material, comprising:
JP2010264149A 2010-11-26 2010-11-26 Method and apparatus for measuring step quantity of plate weld zone Pending JP2012112898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010264149A JP2012112898A (en) 2010-11-26 2010-11-26 Method and apparatus for measuring step quantity of plate weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010264149A JP2012112898A (en) 2010-11-26 2010-11-26 Method and apparatus for measuring step quantity of plate weld zone

Publications (1)

Publication Number Publication Date
JP2012112898A true JP2012112898A (en) 2012-06-14

Family

ID=46497255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010264149A Pending JP2012112898A (en) 2010-11-26 2010-11-26 Method and apparatus for measuring step quantity of plate weld zone

Country Status (1)

Country Link
JP (1) JP2012112898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073874A (en) * 2017-12-19 2019-06-27 주식회사 포스코 Welding material thickness measuring device and welding method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415512A (en) * 1990-05-10 1992-01-20 Kobe Steel Ltd Measuring method for flatness of strip
JPH0650751A (en) * 1992-07-31 1994-02-25 Fuji Photo Film Co Ltd Method for measuring degree-of-flatness of web
JPH109833A (en) * 1996-06-27 1998-01-16 Kawasaki Steel Corp Detecting method of shape of butt welding part
JPH10206127A (en) * 1997-01-22 1998-08-07 Nkk Corp Shape measuring apparatus for weld of steel strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415512A (en) * 1990-05-10 1992-01-20 Kobe Steel Ltd Measuring method for flatness of strip
JPH0650751A (en) * 1992-07-31 1994-02-25 Fuji Photo Film Co Ltd Method for measuring degree-of-flatness of web
JPH109833A (en) * 1996-06-27 1998-01-16 Kawasaki Steel Corp Detecting method of shape of butt welding part
JPH10206127A (en) * 1997-01-22 1998-08-07 Nkk Corp Shape measuring apparatus for weld of steel strip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190073874A (en) * 2017-12-19 2019-06-27 주식회사 포스코 Welding material thickness measuring device and welding method using the same
KR102008704B1 (en) 2017-12-19 2019-08-08 주식회사 포스코 Welding material thickness measuring device and welding method using the same

Similar Documents

Publication Publication Date Title
JP6148353B2 (en) Cutting method of metal plate material
US8476611B2 (en) Systems and methods for the detection of orientation features on a material web
JP5983311B2 (en) Steel plate shape correction method
JP2011173162A (en) Method and device for measuring length of hot long-size material
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
JP2010185763A (en) Planarity inspection apparatus and planarity inspection method of film
JPH0238958A (en) Stop controller for web conveyance line
JP2012112898A (en) Method and apparatus for measuring step quantity of plate weld zone
JP2017150973A (en) Apparatus and method for measuring length of steel material, and apparatus and method for manufacturing steel material
JP2009047665A (en) Film thickness distribution measurement apparatus and film-forming apparatus
KR101476710B1 (en) Cutting device and cutting method thereof
JP2020076715A (en) Method for measuring coating weight
JP5311184B2 (en) Method and apparatus for determining length of material to be judged having substantially circular cross section
KR20140003797A (en) Laser welding apparatus
KR101291053B1 (en) Carrage measurement system and method for the same
JP2013003117A (en) Thickness measuring method of sheet-like material, and conveyance device of sheet-like material
KR20160067535A (en) Apparatus and Method for preventing erroneous detection of welding part
JP2000131048A (en) Coil winding form measurement method and device therefor
JP2663834B2 (en) Seam scanning control method in composite heat source welding
JP2014168935A (en) Saddle-stitching inspection device
KR101129880B1 (en) Optical apparatus for measuring flatness
KR101446199B1 (en) Welding point detector
JP6245144B2 (en) Shape detection device
JP6557293B2 (en) ERW steel pipe length measuring device in ERW steel pipe production line
JP2005241361A (en) Profile measuring method and profile measuring system for slab shape object to be measured

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603