JP2012107378A - Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material - Google Patents

Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material Download PDF

Info

Publication number
JP2012107378A
JP2012107378A JP2010254762A JP2010254762A JP2012107378A JP 2012107378 A JP2012107378 A JP 2012107378A JP 2010254762 A JP2010254762 A JP 2010254762A JP 2010254762 A JP2010254762 A JP 2010254762A JP 2012107378 A JP2012107378 A JP 2012107378A
Authority
JP
Japan
Prior art keywords
layer
floor
compressed
sound insulation
joists
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010254762A
Other languages
Japanese (ja)
Inventor
Noboru Miyaie
登 宮家
Masahiko Takamatsu
正彦 高松
Hidenori Kindei
秀紀 金泥
Satoshi Koizumi
聡 小泉
Sumito Kiyooka
純人 清岡
Atsumi Adachi
篤美 足立
Takeru Koike
長 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010254762A priority Critical patent/JP2012107378A/en
Priority to PCT/JP2011/054962 priority patent/WO2011111608A1/en
Priority to EP18157772.7A priority patent/EP3358103A1/en
Priority to CN201180012962.3A priority patent/CN102869843B/en
Priority to US13/582,348 priority patent/US8631900B2/en
Priority to EP11753267.1A priority patent/EP2546434A4/en
Priority to KR1020127023420A priority patent/KR101829476B1/en
Priority to TW100107518A priority patent/TWI545248B/en
Publication of JP2012107378A publication Critical patent/JP2012107378A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sound insulation floor structure which is capable of suppressing sinking of a floor material due to walking, is capable of providing an excellent walking feeling, prevents vibrations propagated through a joist for a sound insulation performance for floor impact sound, and has the higher sound insulation performance for the floor impact sound.SOLUTION: A sound insulation floor constitution material 10 includes: a hard layer 15; joists 13 which are disposed in parallel at an interval on one surface of the hard layer 15, and are partially nonwoven fiber structures; and layers 14 to be compressed, which are disposed alternately and adjacently with the joists 13, and have a thickness greater than the joists. The sound insulation floor structure may be formed by interposing the sound insulation floor constitution material 10 between a floor base material and a floor finishing layer, and the layers 14 to be compressed are compressed to the thickness of the joists in the sound insulation floor structure. The layers 14 to be compressed may be formed by the nonwoven fiber structure whose thickness is 3 to 60 mm and apparent density is 0.03 to 0.2 g/cm.

Description

本発明は、床衝撃音、例えば、複数階建ての建築物(多層階建築物)における上階からの床衝撃音などを低減するのに有用な根太構造を有する遮音床構成材及びこの構成材を用いた遮音床構造に関する。   The present invention relates to a sound insulation floor component having a joist structure useful for reducing floor impact sound, for example, floor impact sound from an upper floor in a multi-storey building (multi-storey building), and the component. The present invention relates to sound insulation floor structure using

マンション、ビル、一般住宅などの複数階建ての建築物では、上階からの床衝撃音を低減するための遮音床構造が施工されている。床衝撃音には、スプーンや食器を落とした衝撃音やスリッパで歩く音などにより発生する衝撃音などの軽量衝撃音(比較的高周波域の音波)、子供がソファーから飛び降りる衝撃音や激しい歩行による衝撃音(比較的低周波域の音波)などがあり、幅広い衝撃音に対して遮音性能を有する遮音床構造が望まれている。遮音床構造としては、主として、木質基板の裏面に複数の切り溝を設けて緩衝材と貼り合わせる方法(いわゆる直張りタイプの遮音床材を用いた方法)、制振材(遮音材)を床材と床下地材との間に配設する方法などが知られている。   In a multi-storey building such as a condominium, a building, and a general house, a sound insulation floor structure is provided to reduce a floor impact sound from the upper floor. Lightweight impact sounds (relatively high frequency sound waves) such as the impact sound caused by dropping a spoon or tableware, the sound of walking with a slipper, etc., the impact sound of a child jumping off the sofa or intense walking There is an impact sound (sound wave of a relatively low frequency range) and the like, and a sound insulation floor structure having a sound insulation performance against a wide range of impact sounds is desired. The sound insulation floor structure is mainly composed of a method in which a plurality of slits are provided on the back surface of a wooden board and bonded to a cushioning material (method using a so-called straight-up type sound insulation floor material), and a damping material (sound insulation material) is used as a floor. A method of arranging between a material and a floor base material is known.

切り溝と緩衝材とを組み合わせた方法として、例えば、特開2004−44315号公報(特許文献1)には、中密度繊維板の成形原板を厚さ方向に複数に分割して得られ且つ片面に硬質相を有する分割板を硬質層が表面側になるように配置すると共に複数枚の板を積層一体化した合板基材の表面側に上記分割板を積層一体化し、合板基材の最表面側の第1層の厚さを第1層より下の通常の層の半分程度の厚さと薄くし、合板基材の裏面側から第2層まで至るように溝部を穿設して成る防音床材が開示されている。この防音床材では、床に衝撃が加わると、木質基板の裏面に設けた複数の切り溝により木質基板が変形し、変形部分は緩衝材で衝撃を吸収するため、衝撃源の中でも、特に軽量床衝撃源に対して優れた効果を発揮する。さらに、この文献では、表面側に中密度繊維板よりなる硬質部分を合板基材の表面側に設けることにより、床上をキャスターで移動してもキャスターの荷重に耐えられる強度を有することが記載されている。   As a method of combining a kerf and a buffer material, for example, Japanese Patent Application Laid-Open No. 2004-44315 (Patent Document 1) is obtained by dividing a forming original plate of a medium density fiberboard into a plurality of pieces in the thickness direction, and one side The split plate having a hard phase is arranged so that the hard layer is on the surface side, and the split plate is laminated and integrated on the surface side of the plywood substrate obtained by laminating and integrating a plurality of plates, and the outermost surface of the plywood substrate The soundproof floor is formed by reducing the thickness of the first layer on the side to about half the thickness of a normal layer below the first layer, and drilling grooves so as to reach the second layer from the back side of the plywood substrate. A material is disclosed. In this soundproof flooring, when an impact is applied to the floor, the wooden board is deformed by a plurality of grooves provided on the back surface of the wooden board, and the deformed part absorbs the shock with a cushioning material. Excellent effect on floor impact source. Furthermore, this document describes that a hard portion made of medium density fiberboard is provided on the surface side of the plywood substrate so that it has a strength that can withstand the load of the caster even if it is moved on the floor with a caster. ing.

しかし、切り溝と緩衝材とを組み合わせた方法では、特定の中密度繊維板を表面側に形成しても、人の歩行により負荷された部分の木質基板が局所的に変形する(すなわち、床材が沈み込む)ため、歩行中に踏み心地における違和感を感じる。さらに、切り溝の大きさが充分でなく、空間部の体積が小さいためか、重量床衝撃音(例えば、比較的低周波域の衝撃音)に対する遮音効果が小さい。   However, in the method of combining the kerf and the cushioning material, even if a specific medium density fiberboard is formed on the surface side, the portion of the wooden substrate loaded by human walking is locally deformed (that is, the floor) Because the material sinks), I feel a sense of incongruity in stepping comfort while walking. Furthermore, the sound insulation effect against heavy floor impact sound (for example, impact sound in a relatively low frequency range) is small because the size of the kerf is not sufficient and the volume of the space is small.

一方、床材と床下地材の間に制振材を介在させる方法として、例えば、特許第3013023号公報(特許文献2)には、石油系アスファルト100重量部、熱可塑性エラストマー2〜10重量部、鉱物粒100〜400重量部、鉄粉100〜800重量部及び界面活性剤0.1〜1重量部からなる混合物を、フェルト紙又は不織布からなるシートでサンドイッチして板状に成型してなる床衝撃音緩和のための遮音構成材が開示されている。   On the other hand, as a method for interposing a vibration damping material between a floor material and a floor base material, for example, Japanese Patent No. 3013023 (Patent Document 2) includes 100 parts by weight of a petroleum asphalt and 2 to 10 parts by weight of a thermoplastic elastomer. , A mixture of 100 to 400 parts by weight of mineral particles, 100 to 800 parts by weight of iron powder and 0.1 to 1 part by weight of a surfactant is sandwiched between sheets made of felt paper or non-woven fabric and formed into a plate shape A sound insulation component for mitigating floor impact noise is disclosed.

しかし、制振材(遮音構成材)を用いた場合は、人の歩行による変形は少なく歩行感は良好であるが、床衝撃音の遮音性能については、切り溝と緩衝材とを組み合わせた遮音床材に比べて低下する。   However, when using a vibration damping material (sound insulation component), there is little deformation due to human walking and the feeling of walking is good, but for sound insulation performance of floor impact sound, sound insulation that combines a kerf and cushioning material. Reduced compared to flooring.

なお、国際公開WO2007/116676号公報(特許文献3)には、湿熱接着性繊維を含む不織繊維集合体を高温水蒸気で加熱処理することにより、不織繊維構造を有し、かつ厚み方向に均一な接着率で湿熱接着性繊維が融着した硬質の成形体が製造されている。この文献には、前記硬質成形体が建材用ボードとして利用できることが記載されている。しかし、この文献には、床構造や遮音性について記載されていない。   In addition, in international publication WO2007 / 116676 (patent document 3), it has a nonwoven fiber structure by heat-processing the nonwoven fiber assembly containing a wet heat adhesive fiber with high temperature steam, and it is thickness direction. A hard molded body in which wet-heat adhesive fibers are fused with a uniform adhesion rate is manufactured. This document describes that the hard molded body can be used as a building material board. However, this document does not describe the floor structure or sound insulation.

特開2004−44315号公報(請求項1、段落[0010][0012][0014]、図1及び3)JP 2004-44315 A (Claim 1, paragraphs [0010] [0012] [0014], FIGS. 1 and 3) 特許第3013023号公報(請求項1、図2及び3)Japanese Patent No. 3013023 (Claim 1, FIGS. 2 and 3) 国際公開WO2007/116676号公報(請求の範囲、実施例)International Publication No. WO2007 / 116676 (Claims, Examples)

従って、本発明の目的は、歩行による床材の沈み込みを抑制でき、良好な歩行感が得られるとともに、床衝撃音の遮音性能も高い遮音床構成材及びこの構成材を用いた遮音床構造について、根太を伝播する振動を防止し、さらに高い床衝撃音の遮音性能を有する遮音床構成材及びこの構成材を用いた遮音床構造を提供することにある。   Accordingly, an object of the present invention is to suppress the sinking of the flooring material due to walking, obtain a good walking feeling, and have a high sound insulation performance for floor impact sound, and a sound insulating floor structure using this structural material. Therefore, it is intended to provide a sound insulation floor constituent material that prevents vibration propagating through joists and has a higher sound insulation performance of floor impact sound, and a sound insulation floor structure using this constituent material.

本発明の他の目的は、転倒時の安全性に優れた遮音床構成材及びこの構成材を用いた遮音床構造を提供することにある。   Another object of the present invention is to provide a sound insulating floor constituent material excellent in safety at the time of falling and a sound insulating floor structure using this constituent material.

本発明のさらに他の目的は、複数階建ての建築物における上階からの床衝撃音に対して、低周波域を含む幅広い周波域で遮音できる遮音床構成材及びこの構成材を用いた遮音床構造を提供することにある。   Still another object of the present invention is to provide a sound insulation floor component capable of sound insulation in a wide frequency range including a low frequency range against a floor impact sound from the upper floor in a multi-storey building, and a sound insulation using this component material. It is to provide a floor structure.

本発明者らは、前記課題を達成するため鋭意検討した結果、間隔をおいて平行に配設するための複数の根太の一部または全部が不織繊維構造体からなり、この根太と交互に配設され、かつ根太よりも大きい厚みを有する被圧縮層とで構成された遮音床構成材を用いて遮音床構造を形成すると、前記被圧縮層が圧縮されることにより、歩行による床材の沈み込みを抑制でき、良好な歩行感が得られるとともに、床衝撃音の遮音性能も向上できることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that some or all of the plurality of joists for disposing them in parallel with each other are made of a non-woven fibrous structure, and alternately with these joists. When the sound insulating floor structure is formed using the sound insulating floor constituent material that is disposed and configured with the compressible layer having a thickness larger than the joist, the compressed layer is compressed, so that the floor material by walking is compressed. It was found that the sinking can be suppressed, a good walking feeling can be obtained, and the sound insulation performance of the floor impact sound can be improved, and the present invention has been completed.

本発明の遮音床構造は、間隔をおいて平行に配設するための複数の根太の一部または全部が不織繊維構造体であり、この根太と交互に配設され、かつ根太よりも大きい厚みを有する被圧縮層とで構成されている。前記被圧縮層は、根太と交互に隣接して配設されていてもよい。前記被圧縮層は、緩衝層で構成され、かつこの緩衝層の厚みが、根太の厚みに対して1.05〜3倍であってもよい。前記被圧縮層は、緩衝層と、この緩衝層の一方の面に積層された非緩衝層とで構成され、かつ前記緩衝層の厚みは、根太の厚みから非緩衝層の厚みを減じた厚みに対して1.05〜3倍であってもよい。前記非緩衝層は、制振材で構成されていてもよく、また空間部を有していてもよい。床面積を占める前記根太と前記被圧縮層との面積比が、根太/被圧縮層=10/90〜30/70であってもよい。圧縮前の緩衝層は、厚み3〜60mm、見掛け密度0.03〜0.2g/cmの不織繊維構造体で形成されていてもよい。前記緩衝層の不織繊維構造体は、湿熱接着性繊維を含み、かつこの湿熱接着性繊維の融着により繊維が固定されるとともに、繊維接着率が3〜85%であってもよい。 In the sound insulation floor structure of the present invention, some or all of the plurality of joists for arranging them in parallel at intervals are non-woven fiber structures, and are arranged alternately with the joists and larger than the joists. And a compressed layer having a thickness. The compressed layer may be disposed adjacent to the joists alternately. The layer to be compressed may be composed of a buffer layer, and the thickness of the buffer layer may be 1.05 to 3 times the thickness of the joist. The compressed layer includes a buffer layer and a non-buffer layer laminated on one surface of the buffer layer, and the buffer layer has a thickness obtained by subtracting the thickness of the non-buffer layer from the thickness of the joist. 1.05-3 times may be sufficient. The non-buffer layer may be made of a damping material and may have a space. The area ratio between the joist occupying the floor area and the compressed layer may be joist / compressed layer = 10/90 to 30/70. The buffer layer before compression may be formed of a nonwoven fiber structure having a thickness of 3 to 60 mm and an apparent density of 0.03 to 0.2 g / cm 3 . The nonwoven fibrous structure of the buffer layer may include wet heat adhesive fibers, and the fibers may be fixed by fusion of the wet heat adhesive fibers, and the fiber adhesion rate may be 3 to 85%.

本発明の遮音床構成材は、さらに制振層を含んでいてもよい。この制振層は、アスファルトを含有していてもよい。   The sound insulation floor constituting material of the present invention may further include a vibration damping layer. This vibration damping layer may contain asphalt.

本発明の遮音床構成材は、根太が第1の硬質層の一方の面に間隔をおいて平行に配設されていてもよい。この構成材において、根太及び被圧縮層と第1の硬質層とは接着剤又は粘着剤で固着していてもよい。前記根太及び被圧縮層の上に、さらに第2の硬質層が配設され、かつ前記被圧縮層が、前記根太の厚みにまで圧縮されていてもよい。前記根太及び被圧縮層と第2の硬質層とも接着剤又は粘着剤で固着していてもよい。この構成材において、第1の硬質層又は第2の硬質層と、根太及び被圧縮層との間に制振層が介在し、接着剤又は粘着剤で固着していてもよい。   In the sound insulating floor constituting material of the present invention, the joists may be arranged in parallel with one surface of the first hard layer at an interval. In this constituent material, the joist and the layer to be compressed and the first hard layer may be fixed with an adhesive or an adhesive. A second hard layer may be further disposed on the joist and the layer to be compressed, and the layer to be compressed may be compressed to the thickness of the joist. Both the joist and the layer to be compressed and the second hard layer may be fixed with an adhesive or an adhesive. In this constituent material, a vibration damping layer may be interposed between the first hard layer or the second hard layer, the joist and the compressed layer, and may be fixed with an adhesive or a pressure-sensitive adhesive.

本発明には、床下地材と床仕上げ層との間に前記遮音床構成材が介在する遮音床構造であって、前記遮音床構成材の被圧縮層が、根太の厚みにまで圧縮されている遮音床構造も含まれる。前記床下地材と前記床仕上げ層との間に制振層が介在していてもよい。この制振層の少なくとも一方の面に硬質層が積層され、接着剤又は粘着剤で固着されていてもよい。本発明の遮音床構造において、前記遮音床構成材は、壁面に対して隙間を有していてもよい。さらに、梁と根太とは平行に配設され、かつ隣り合う根太間に梁が位置するように根太が配設されていてもよい。   The present invention provides a sound insulating floor structure in which the sound insulating floor constituent material is interposed between a floor base material and a floor finish layer, and the compressed layer of the sound insulating floor constituent material is compressed to the thickness of the joist. Sound insulation floor structures are also included. A vibration damping layer may be interposed between the floor base material and the floor finish layer. A hard layer may be laminated on at least one surface of the damping layer and fixed with an adhesive or a pressure-sensitive adhesive. In the sound insulating floor structure of the present invention, the sound insulating floor constituting material may have a gap with respect to the wall surface. Furthermore, the joists may be arranged such that the beams and joists are arranged in parallel, and the joists are positioned between adjacent joists.

なお、本願明細書では、根太(ねだ)とは、木質系ボードや床仕上げ材などの床板を支持するために床下に配設される棒状、ブロック状または板状の支持材を意味する。本願明細書では、例えば、RC建築物におけるコンクリートスラブ素面や木造建築物における床下地材の上に配設する棒状、ブロック状または板状の支持材及び/又は弾性体などを固着した棒状、ブロック状または板状の支持材も「根太」の意味で用いる。   In the present specification, the joist means a rod-like, block-like or plate-like support material disposed under the floor in order to support a floor board such as a wooden board or a floor finishing material. In the specification of the present application, for example, a rod-like, block-like or plate-like support material and / or an elastic body fixed on a concrete slab surface in an RC building or a floor base material in a wooden building, a block, or the like A plate-like or plate-like support material is also used in the meaning of “jita”.

本発明では、間隔をおいて平行に配設するための複数の根太と、この根太と交互に配設され、かつ根太よりも大きい厚みを有する被圧縮層とで構成された遮音床構成材を用いて遮音床構造を形成し、前記被圧縮層を圧縮させるため、歩行による床材の沈み込みを抑制でき、良好な歩行感が得られるとともに、床衝撃音の遮音性能も向上できる。さらに、床の硬さが適度かつ均一であるため、転倒時の安全性にも優れている。   In the present invention, there is provided a sound insulating floor constituting material composed of a plurality of joists arranged in parallel at intervals, and compressed layers that are alternately arranged with the joists and have a thickness larger than the joists. Since the sound-insulating floor structure is formed and the compressed layer is compressed, subsidence of the floor material due to walking can be suppressed, a good walking feeling can be obtained, and the sound insulation performance of floor impact sound can be improved. Furthermore, since the floor has an appropriate and uniform hardness, it has excellent safety when falling.

また、遮音床構造において、さらに制振層を介在させることにより、床衝撃源からの振動を制振効果により低減させて床衝撃音の遮音性能を向上でき、特に、アスファルトを含有した制振層では高い床衝撃音の遮音性能に加えて、歩行感も向上できる。さらに、緩衝層として、湿熱接着性繊維の融着により繊維が固定された特定の不織繊維構造体を用いることにより、高い床衝撃音(特に軽量床衝撃音)の遮音性を示す緩衝性を保持しつつ耐荷重性を確保することができるとともに、さらに根太及び/又は際根太と組み合わせることにより、床材の強度を向上でき、沈み込みなどを高度に抑制できる。   In addition, in the sound insulation floor structure, by further interposing a vibration suppression layer, the vibration from the floor impact source can be reduced by the vibration suppression effect to improve the sound insulation performance of the floor impact sound. Especially, the vibration suppression layer containing asphalt Then, in addition to the sound insulation performance of high floor impact sound, the feeling of walking can be improved. Furthermore, as a buffer layer, by using a specific nonwoven fiber structure in which fibers are fixed by fusion of wet heat-adhesive fibers, it has a buffer property showing sound insulation of high floor impact sound (especially lightweight floor impact sound). The load resistance can be secured while being held, and the strength of the flooring can be improved and subsidence can be highly suppressed by further combining with joists and / or kimono.

図1は、本発明の遮音床構造の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a sound insulating floor structure of the present invention. 図2は、本発明の遮音床構造の他の一例を示す概略断面図である。FIG. 2 is a schematic sectional view showing another example of the sound insulating floor structure of the present invention. 図3は、本発明の遮音床構造のさらに他の一例を示す概略断面図である。FIG. 3 is a schematic sectional view showing still another example of the sound insulating floor structure of the present invention. 図4は、本発明の遮音床構成材の一例を示す概略斜視図である。FIG. 4 is a schematic perspective view showing an example of the sound insulating floor constituting material of the present invention. 図5は、図4の遮音床構造のA−A線概略断面図である。FIG. 5 is a schematic sectional view taken along line AA of the sound insulating floor structure of FIG. 図6は、本発明の遮音床構成材の他の例を示す概略斜視図である。FIG. 6 is a schematic perspective view showing another example of the sound insulating floor constituting material of the present invention. 図7は、図6の遮音床構造のA−A線概略断面図である。FIG. 7 is a schematic cross-sectional view taken along line AA of the sound insulating floor structure of FIG.

[遮音床構造]
以下、本発明の遮音床構造について、必要に応じて、図面を参照して説明する。図1は、本発明の遮音床構造の一例を示す概略断面図である。本発明の遮音床構造は、図1に示すように、床下地材1の上に、第1の硬質層2、横断面形状が長方形状であり、一部が不織繊維構造体であり、かつ間隔をおいて平行に配設されている根太3、第2の硬質層5、床仕上げ層6が順次重ね合わされており、隣り合う根太3の間には、この根太3と交互に隣接して緩衝層4が配設又は挿入されている。なお、図1は、根太3の長手方向に対して垂直な方向の断面図である。
[Sound insulation floor structure]
Hereinafter, the sound insulation floor structure of the present invention will be described with reference to the drawings as necessary. FIG. 1 is a schematic sectional view showing an example of a sound insulating floor structure of the present invention. As shown in FIG. 1, the sound insulating floor structure of the present invention has a first hard layer 2 having a rectangular cross-sectional shape on a floor base material 1, and a part thereof is a non-woven fiber structure. The joists 3, the second hard layer 5, and the floor finish layer 6 arranged in parallel at intervals are sequentially stacked, and the joists 3 are adjacent to each other between the adjacent joists 3. Thus, the buffer layer 4 is disposed or inserted. FIG. 1 is a cross-sectional view in a direction perpendicular to the longitudinal direction of the joists 3.

(床下地材)
本発明の遮音床構造は、建築物の種類に応じて、各種の床下地材に利用できる。床下地材としては、例えば、鉄筋コンクリートの建築物におけるコンクリートスラブや軽量発泡コンクリートなどであってもよく、一般的な木造住宅で使用される木造床などであってもよい。さらに、床下地材は、コンクリートスラブや木造床の上に、さらに畳床、プラスチック板、合板、木質系ボード、紙、織布又は不織布シート、無機質ボード(石膏ボード、珪酸カルシウム板など)、金属板などが積層されていてもよい。
(Floor base material)
The sound insulating floor structure of the present invention can be used for various floor base materials depending on the type of building. The floor base material may be, for example, a concrete slab or lightweight foamed concrete in a reinforced concrete building, or a wooden floor used in a general wooden house. In addition, floor base materials are concrete slabs, wooden floors, tatami floors, plastic boards, plywood, wooden boards, paper, woven or non-woven sheets, inorganic boards (gypsum boards, calcium silicate boards, etc.), metals A board etc. may be laminated.

(第1の硬質層)
第1の硬質層は、遮音床構造において、機械的強度を付与するために配設され、硬質のボード材、例えば、木質系ボード材、無機質ボード(石膏ボード、珪酸カルシウム板など)、プラスチックボード(アクリル板などのプラスチック板、硬質プラスチック発泡体など)、硬質繊維シート(熱セットされたニードルフェルトなど)などが使用され、軽量性や施工性に優れる点から、通常、木質系ボード材が使用される。木質系ボード材としては、板状又はシート状の木質材であれば特に限定されず、例えば、無垢材、合板(積層木質ボード)、木質繊維ボード(MDF、パーティクルボード、配向性ストランドボード、インシュレーションボードなど)などが挙げられる。これらのうち、床仕上げ材からの釘を保持する力が高い点から、構造用合板、パーティクルボード、配向性ストランドボードなどが好ましい。なお、後述するように、木質系ボードは制振層と一体化した制振木質系ボード材も利用できる。なお、木質系ボード材は、通常、複数のボード材を組み合わせて使用する。隣接するボード材の面方向における突き合わせ部(すなわち、継ぎ目部分)は強度的に弱いため、突き合わせ部が後述する根太の上に位置するように配設するのが好ましい。
(First hard layer)
The first hard layer is disposed to provide mechanical strength in the sound insulation floor structure, and is made of hard board material such as wood board material, inorganic board (gypsum board, calcium silicate board, etc.), plastic board. (Plastic plates such as acrylic plates, hard plastic foams, etc.), hard fiber sheets (heat-set needle felt, etc.), etc. are used, and wood-based board materials are usually used because of their excellent lightness and workability. Is done. The wood-based board material is not particularly limited as long as it is a plate-like or sheet-like wood material. For example, solid wood, plywood (laminated wood board), wood fiber board (MDF, particle board, oriented strand board, insulation) For example. Of these, structural plywood, particle board, oriented strand board, and the like are preferable because they have a high force to hold the nail from the floor finish. As will be described later, the wooden board can be a damping wooden board material integrated with the damping layer. The wood board material is usually used in combination with a plurality of board materials. Since the abutting portion (that is, the joint portion) in the surface direction of the adjacent board material is weak in strength, it is preferable to arrange the abutting portion so as to be positioned on the joist described later.

第1の硬質層は、壁面に対して密接させずに隙間をあけて配設するのが好ましい。すなわち、硬質層の端面と壁面との間に隙間を形成することにより、床から壁に伝わる振動を絶縁できるため、遮音効果を向上できる。壁面との間の隙間は、必ずしも必要ではないが、遮音性の点から形成するのが好ましく、例えば、2〜10mm、好ましくは3〜9mm、さらに好ましくは4〜8mm程度である。   The first hard layer is preferably disposed with a gap without being in close contact with the wall surface. That is, by forming a gap between the end face of the hard layer and the wall surface, vibration transmitted from the floor to the wall can be insulated, so that the sound insulation effect can be improved. The gap between the wall surfaces is not necessarily required, but is preferably formed from the point of sound insulation, and is, for example, about 2 to 10 mm, preferably about 3 to 9 mm, and more preferably about 4 to 8 mm.

第1の硬質層の厚みは、例えば、5〜20mm、好ましくは8〜18mm、さらに好ましくは9〜15mm程度である。   The thickness of the first hard layer is, for example, about 5 to 20 mm, preferably about 8 to 18 mm, and more preferably about 9 to 15 mm.

(根太)
根太は、遮音性を向上させるための緩衝層を形成するために配設され、横断面形状が長方形状である棒状、ブロック状または板状の支持材を第1の硬質層の上に間隔をおいて平行に配設している。さらに根太を伝播する振動を防止するため、根太の一部または全部が不織繊維構造体で構成されていることが重要である。不織繊維構造体の見掛け密度は、好ましくは0.07〜0.35g/cm、さらに好ましくは0.1〜0.3g/cmである。見かけ密度がこれよりも小さいと、床構造とした場合に家具などの荷重や人が歩いたりしたときに沈み込みが大きく、良好な歩行感を得ることが難しくなってしまう。さらに、局所的なへたりが発生すると、いわゆる床鳴りを引き起こしやすくなってしまう。また、見かけ密度がこれよりも大きいと、不織繊維構造体が硬すぎて振動を伝播しやすくなり、高い床衝撃音の遮音性を得ることが難しくなってしまう。
(Jota)
The joist is arranged to form a buffer layer for improving sound insulation, and a bar-like, block-like or plate-like support material having a rectangular cross-sectional shape is spaced on the first hard layer. Are arranged in parallel. Further, in order to prevent vibration propagating through the joists, it is important that a part or the whole of the joists are composed of a non-woven fiber structure. The apparent density of the nonwoven fiber structure is preferably 0.07 to 0.35 g / cm 3 , more preferably 0.1 to 0.3 g / cm 3 . If the apparent density is smaller than this, when the floor structure is adopted, the load of furniture or the like or the sinking is large when a person walks, and it becomes difficult to obtain a good walking feeling. Furthermore, when local sag occurs, so-called flooring is likely to occur. On the other hand, if the apparent density is higher than this, the non-woven fiber structure is too hard to easily propagate the vibration, and it becomes difficult to obtain a high floor impact sound insulation.

根太は、緩衝層による遮音性を向上させるために、床面積において所定の面積を占めるのが好ましく、緩衝層(被圧縮層)との面積比が、例えば、根太/緩衝層(被圧縮層)=3/97〜50/50、好ましくは5/95〜40/60、さらに好ましくは10/90〜30/70(特に15/85〜20/80)程度である。   In order to improve sound insulation by the buffer layer, the joist preferably occupies a predetermined area in the floor area, and the area ratio with the buffer layer (compressed layer) is, for example, joist / buffer layer (compressed layer). = 3/97 to 50/50, preferably 5/95 to 40/60, more preferably about 10/90 to 30/70 (especially 15/85 to 20/80).

根太の形状は、前記面積を占める形状であれば特に限定されないが、作業性などの点から、施工する部屋の一辺の長さに対応する棒状(長尺状)が好ましい。棒状の根太を、間隔をおいて(特に、等間隔で)平行に複数本配設することにより、作業性が優れるとともに、床構造の安定性を向上できる。例えば、部屋の大きさによるが、根太と木質ボードなどとの接合の観点から、幅10〜100mm(特に30〜75mm)程度の棒状根太を、前記面積となるように等間隔で配設してもよい。根太の配設位置は特に限定されないが、等間隔で均一になるように配設することにより、均一な床衝撃音の遮音性能が得られる。   The shape of the joist is not particularly limited as long as it occupies the above-mentioned area, but from the viewpoint of workability, a rod shape (long shape) corresponding to the length of one side of the room to be constructed is preferable. By arranging a plurality of rod-shaped joists in parallel at intervals (especially at equal intervals), the workability is excellent and the stability of the floor structure can be improved. For example, depending on the size of the room, from the viewpoint of joining the joists and wooden boards, rod joists having a width of about 10 to 100 mm (especially 30 to 75 mm) are arranged at equal intervals so as to have the above-mentioned area. Also good. The arrangement position of the joists is not particularly limited, but the sound insulation performance of the uniform floor impact sound can be obtained by arranging the joists so as to be uniform at equal intervals.

棒状根太の長手方向に垂直な断面形状(横断面形状)は、作業性や設置後の安定性の点から、対向する平行な辺を有する形状が好ましく、例えば、四角形状(正方形状、長方形状、台形状など)など挙げられる。正方形状や長方形状などの断面四角形状の棒状根太を用いることにより、施工時のずれを防止し、かつ木質系ボード材や床仕上げ材で被覆した後に固定する際に位置の推測がし易く、施工が容易となる。   The cross-sectional shape (cross-sectional shape) perpendicular to the longitudinal direction of the rod joists is preferably a shape having parallel sides facing each other from the viewpoint of workability and stability after installation, for example, a quadrangular shape (square shape, rectangular shape) , Trapezoidal shape, etc.). By using a rod joist with a square cross section such as a square shape or a rectangular shape, it is easy to estimate the position when fixing after covering with a wooden board material or floor finish material, preventing displacement during construction, Construction becomes easy.

根太の不織繊維構造体で構成されている部分以外の材質は、有機材料(木質材、プラスチック材など)、無機材料(石膏、珪酸カルシウム、ガラス、アルミニウム、ステンレススチール、鋼など)のいずれでもよいが、床仕上げ材などを固定する固定具(釘など)の保持強度の点から、木質材が好ましい。木質材としては、無垢材、積層木質材、木質繊維材などが挙げられるが、保持力の点から、積層木質材、木質繊維材が好ましい。根太としては、例えば、後述する木質系ボード材と同様のボード材、例えば、合板、パーティクルボード、配向性ストランドボードを切削加工して利用してもよい。   The material other than the part composed of the non-woven fiber structure of the joist is any of organic materials (wood materials, plastic materials, etc.) and inorganic materials (gypsum, calcium silicate, glass, aluminum, stainless steel, steel, etc.) Although it is good, a wood material is preferable from the viewpoint of holding strength of a fixture (such as a nail) for fixing a floor finishing material or the like. Examples of the wood material include solid wood, laminated wood material, wood fiber material, etc., but laminated wood material and wood fiber material are preferable from the viewpoint of holding power. As the joist, for example, a board material similar to a wood-based board material to be described later, for example, a plywood, a particle board, or an oriented strand board may be cut and used.

根太の厚みは、例えば、5〜20mm、好ましくは6〜18mm、さらに好ましくは7〜15mm(特に8〜12mm)程度である。本発明では、根太の厚みをこの範囲にして緩衝層を形成することにより、床衝撃音を効果的に遮音できる。   The thickness of the joist is, for example, about 5 to 20 mm, preferably about 6 to 18 mm, and more preferably about 7 to 15 mm (particularly 8 to 12 mm). In the present invention, the floor impact sound can be effectively insulated by forming the buffer layer with the thickness of the joists within this range.

(緩衝層)
緩衝層は、床構造において、床衝撃音の防振性を向上させるために配設され、弾力性と衝撃吸収性とを有する板状又はシート状材で構成されていれば、特に限定されないが、上下の層(例えば、第1の硬質層と第2の硬質層と)で挟むことにより根太の厚みにまで圧縮可能な層(被圧縮層)が利用される。本発明では、被圧縮層が圧縮された状態で緩衝層として遮音床構造を構成することにより、床衝撃の吸収性に優れるため、衝撃の発生を効果的に抑制でき、階下への伝搬を減少でき、下階の居住快適性を向上できる。さらに、床構造の強度及び安定性も高めることができる。
(Buffer layer)
The buffer layer is not particularly limited as long as it is made of a plate-like or sheet-like material that is disposed in the floor structure in order to improve the vibration-proof property of the floor impact sound and has elasticity and shock absorption. A layer (compressed layer) that can be compressed to the thickness of joists by sandwiching the upper and lower layers (for example, the first hard layer and the second hard layer) is used. In the present invention, by constructing the sound insulation floor structure as a buffer layer in a state where the layer to be compressed is compressed, the floor shock absorption is excellent, so the occurrence of the shock can be effectively suppressed and the propagation to the downstairs is reduced. It can improve the comfort of living on the lower floor. Furthermore, the strength and stability of the floor structure can be increased.

緩衝層は、例えば、圧縮前の厚み(被圧縮層の厚み)に対して0.95倍以下、好ましくは0.5〜0.95倍、さらに好ましくは0.6〜0.9倍(特に0.7〜0.8倍)程度の厚みに圧縮されていてもよい。   The buffer layer is, for example, 0.95 times or less, preferably 0.5 to 0.95 times, more preferably 0.6 to 0.9 times (particularly, the thickness before compression (thickness of the layer to be compressed). It may be compressed to a thickness of about 0.7 to 0.8 times.

圧縮前の緩衝層(被圧縮層)の厚みは、床衝撃音の遮音性能を発現するために3mm以上であるのが好ましく、床の強度も確保でき、歩行時の沈み込みなども抑制できるとともに、緩衝性、施工性、経済性にも優れる点から、例えば、3〜60mm、好ましくは5〜50mm、さらに好ましくは6〜30mm(特に8〜20mm)程度であってもよい。   The thickness of the buffer layer (compressed layer) before compression is preferably 3 mm or more in order to express the sound insulation performance of the floor impact sound, the floor strength can be secured, and sinking during walking can be suppressed. From the point which is excellent also in buffer property, workability, and economical efficiency, it may be about 3-60 mm, preferably 5-50 mm, more preferably 6-30 mm (especially 8-20 mm), for example.

圧縮可能な材質としては、例えば、プラスチック発泡体(例えば、発泡スチレン、発泡ウレタン、発泡ポリオレフィンなど)、ゴム又はエラストマー、繊維構造体(織編物、不織布などで構成された構造体)などが利用できる。本発明では、これらの中でも、適度な空隙性を有し、かつ防振性にも優れるため、不織繊維構造体が好ましい。本発明では、不織繊維構造体を圧縮して緩衝層として配設することにより、衝撃の発生を効果的に抑制でき、かつ高周波域の音波の吸音も向上できる。   As the compressible material, for example, plastic foam (for example, foamed styrene, foamed urethane, foamed polyolefin, etc.), rubber or elastomer, fiber structure (structure composed of woven or knitted fabric, nonwoven fabric, etc.) can be used. . In the present invention, among these, a non-woven fiber structure is preferable because it has appropriate voids and is excellent in vibration-proofing properties. In the present invention, by compressing the non-woven fiber structure and disposing it as a buffer layer, it is possible to effectively suppress the occurrence of impact and to improve the sound absorption of sound waves in a high frequency range.

緩衝層および根太の不織繊維構造体としては、例えば、不織布を機械的圧縮処理(ニードルパンチなど)、部分的な熱圧融着処理(熱エンボス加工など)、バインダー成分による接着又は融着処理などにより固定した成形体が挙げられる。不織布を構成する繊維としては、例えば、ポリオレフィン系繊維、(メタ)アクリル系繊維、ポリビニルアルコール系繊維、塩化ビニル系繊維、スチレン系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリカーボネート系繊維、ポリウレタン系繊維などが挙げられる。これらの繊維のうち、ポリエステル系繊維、ポリアミド系繊維、又はこれらの繊維を含む複合繊維などが汎用される。   Examples of the non-woven fibrous structure of the buffer layer and joist include, for example, mechanical compression treatment (needle punch, etc.) of a nonwoven fabric, partial hot pressure fusion treatment (heat embossing, etc.), adhesion or fusion treatment with a binder component. For example, a molded body fixed by, for example. Examples of the fibers constituting the nonwoven fabric include polyolefin fibers, (meth) acrylic fibers, polyvinyl alcohol fibers, vinyl chloride fibers, styrene fibers, polyester fibers, polyamide fibers, polycarbonate fibers, and polyurethane fibers. Etc. Of these fibers, polyester fibers, polyamide fibers, or composite fibers containing these fibers are widely used.

ポリエステル系繊維を構成するポリエステル系樹脂としては、ポリC2−4アルキレンアリレート系樹脂などの芳香族ポリエステル系樹脂(ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなど)、特に、PETなどのポリエチレンテレフタレート系樹脂が好ましい。ポリエチレンテレフタレート系樹脂は、エチレンテレフタレート単位の他に、他のジカルボン酸(例えば、イソフタル酸、ナフタレン−2,6−ジカルボン酸、フタル酸、4,4′−ジフェニルジカルボン酸、ビス(カルボキシフェニル)エタン、5−ナトリウムスルホイソフタル酸など)やジオール(例えば、ジエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、シクロヘキサン−1,4−ジメタノール、ポリエチレングリコール、ポリテトラメチレングリコールなど)で構成された単位を20モル%以下程度の割合で含んでいてもよい。 Examples of the polyester resin constituting the polyester fiber include aromatic polyester resins such as poly C 2-4 alkylene arylate resins (polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), In particular, a polyethylene terephthalate resin such as PET is preferable. In addition to ethylene terephthalate units, the polyethylene terephthalate-based resin is composed of other dicarboxylic acids (for example, isophthalic acid, naphthalene-2,6-dicarboxylic acid, phthalic acid, 4,4'-diphenyldicarboxylic acid, bis (carboxyphenyl) ethane. , 5-sodium sulfoisophthalic acid, etc.) and diols (for example, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, cyclohexane-1,4-dimethanol, Units composed of polyethylene glycol, polytetramethylene glycol, etc.) may be included at a ratio of about 20 mol% or less.

ポリアミド系繊維を構成するポリアミド系樹脂としては、ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6−12などの脂肪族ポリアミドおよびその共重合体、芳香族ジカルボン酸と脂肪族ジアミンとから合成された半芳香族ポリアミドなどが好ましい。これらのポリアミド系樹脂にも、共重合可能な他の単位が含まれていてもよい。   Polyamide resins constituting the polyamide fibers include aliphatic polyamides such as polyamide 6, polyamide 66, polyamide 610, polyamide 10, polyamide 12, and polyamide 6-12, and copolymers thereof, aromatic dicarboxylic acids and aliphatic diamines. A semi-aromatic polyamide synthesized from these is preferred. These polyamide-based resins may also contain other copolymerizable units.

緩衝層および根太の不織繊維構造体を構成する繊維の平均繊度は、用途に応じて、例えば、0.01〜100dtex程度の範囲から選択でき、好ましくは0.1〜50dtex、さらに好ましくは0.5〜30dtex(特に1〜10dtex)程度である。平均繊度がこの範囲にあると、遮音及び吸音性に優れる。   The average fineness of the fibers constituting the buffer layer and the joist nonwoven fiber structure can be selected, for example, from the range of about 0.01 to 100 dtex, preferably 0.1 to 50 dtex, more preferably 0, depending on the application. About 5 to 30 dtex (particularly 1 to 10 dtex). When the average fineness is within this range, sound insulation and sound absorption are excellent.

緩衝層の不織繊維構造体の見掛け密度は、例えば、0.03〜0.2g/cm(例えば、0.03〜0.15g/cm)、好ましくは0.04〜0.18g/cm、さらに好ましくは0.05〜0.15g/cm程度である。見かけ密度が低すぎると、遮音性は向上するものの、硬さの低下により歩行感が低下し、逆に高すぎると、遮音性が低下する。 The apparent density of the nonwoven fibrous structure of the buffer layer is, for example, 0.03 to 0.2 g / cm 3 (for example, 0.03 to 0.15 g / cm 3 ), preferably 0.04 to 0.18 g / cm 3 , more preferably about 0.05 to 0.15 g / cm 3 . If the apparent density is too low, the sound insulation is improved, but the feeling of walking is lowered due to the decrease in hardness, and conversely if it is too high, the sound insulation is lowered.

緩衝層の不織繊維構造体の目付は、例えば、50〜10000g/m程度の範囲から選択でき、好ましくは100〜5000g/m、さらに好ましくは200〜3000g/m(特に300〜2000g/m)程度である。目付が小さすぎると、硬さを確保することが難しく、また、目付が大きすぎると、ウェブが厚すぎて湿熱加工において、高温水蒸気が充分にウェブ内部に入り込めず、厚み方向に均一な構造体とするのが困難になる。 The basis weight of the nonwoven fibrous structure of the buffer layer can be selected from the range of, for example, about 50 to 10000 g / m 2 , preferably 100 to 5000 g / m 2 , more preferably 200 to 3000 g / m 2 (particularly 300 to 2000 g). / M 2 ). If the basis weight is too small, it is difficult to ensure the hardness. If the basis weight is too large, the web is too thick and high-temperature steam cannot sufficiently enter the inside of the web in wet heat processing, and the structure is uniform in the thickness direction. It becomes difficult to make a body.

緩衝層および根太の不織繊維構造体(又は繊維)は、さらに、慣用の添加剤、例えば、安定剤(銅化合物などの熱安定剤、紫外線吸収剤、光安定剤、酸化防止剤など)、分散剤、増粘剤、微粒子、着色剤、帯電防止剤、難燃剤、可塑剤、潤滑剤、結晶化速度遅延剤、滑剤、抗菌剤、防虫・防ダニ剤、防カビ剤、つや消し剤、蓄熱剤、香料、蛍光増白剤、湿潤剤などを含有していてもよい。これらの添加剤は、単独で又は二種以上組み合わせて使用できる。これらの添加剤は、構造体表面に担持されていてもよく、繊維中に含まれていてもよい。   The non-woven fibrous structure (or fiber) of the buffer layer and the joist is further added with conventional additives such as stabilizers (heat stabilizers such as copper compounds, ultraviolet absorbers, light stabilizers, antioxidants, etc.), Dispersants, thickeners, fine particles, colorants, antistatic agents, flame retardants, plasticizers, lubricants, crystallization rate retarders, lubricants, antibacterial agents, insect and acaricides, fungicides, matting agents, heat storage Agents, fragrances, fluorescent brighteners, wetting agents and the like may be included. These additives can be used alone or in combination of two or more. These additives may be carried on the structure surface or may be contained in the fiber.

特に、本発明では、前記不織繊維構造体の中でも、バインダー成分(特に、ポリエステル系、ポリアミド系、ポリオレフィン系、ポリビニルアルコール系などの熱接着性樹脂で構成された熱接着性繊維で構成されたバインダー繊維)の融着により固定された繊維構造体が好ましく、遮音性(特に軽量床衝撃音に対する遮音性)と強度とを両立できる点から、湿熱接着性繊維を含み、かつこの湿熱接着性繊維の融着により繊維が固定された構造体(以下、「湿熱接着性繊維を含む不織繊維構造体」と称することがある)が特に好ましい。本発明では、湿熱接着性繊維の融着により繊維が固定された構造体は、高温(過熱又は加熱)水蒸気を利用して接着するために、厚み方向で均一に接着されており、繊維構造を保持しながら、高い強度を確保できる。   In particular, in the present invention, among the non-woven fiber structures, the binder component (particularly, composed of heat-adhesive fibers composed of a heat-adhesive resin such as polyester, polyamide, polyolefin, and polyvinyl alcohol). The fiber structure fixed by the fusion of the binder fiber) is preferable, and includes the wet heat adhesive fiber, and the wet heat adhesive fiber, since it can achieve both sound insulation (especially sound insulation against light floor impact sound) and strength. A structure in which fibers are fixed by fusing (hereinafter, sometimes referred to as “nonwoven fiber structure including wet heat adhesive fibers”) is particularly preferable. In the present invention, a structure in which fibers are fixed by fusion of wet heat adhesive fibers is bonded uniformly in the thickness direction in order to bond using high-temperature (superheated or heated) water vapor, and the fiber structure is High strength can be secured while holding.

この不織繊維構造体において、湿熱接着性繊維は、少なくとも湿熱接着性樹脂で構成されている。湿熱接着性樹脂は、高温水蒸気によって容易に実現可能な温度において、流動又は容易に変形して接着機能を発現可能であればよい。具体的には、熱水(例えば、80〜120℃、特に95〜100℃程度)で軟化して自己接着又は他の繊維に接着可能な熱可塑性樹脂、例えば、エチレン−ビニルアルコール共重合体などのビニルアルコール系重合体、ポリ乳酸などのポリ乳酸系樹脂、(メタ)アクリルアミド単位を含む(メタ)アクリル系共重合体などが挙げられる。さらに、高温水蒸気により容易に流動又は変形して接着可能なエラストマー(例えば、ポリオレフィン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、スチレン系エラストマーなど)などであってもよい。これらの湿熱接着性樹脂は、単独で又は二種以上組み合わせて使用できる。これらのうち、特に、エチレンやプロピレンなどのα−C2−10オレフィン単位を含むビニルアルコール系重合体、特に、エチレン−ビニルアルコール系共重合体が好ましい。 In this nonwoven fiber structure, the wet heat adhesive fiber is composed of at least a wet heat adhesive resin. The wet heat adhesive resin only needs to be able to flow or easily deform at a temperature that can be easily realized by high-temperature steam and to exhibit an adhesive function. Specifically, a thermoplastic resin that is softened with hot water (for example, about 80 to 120 ° C., particularly about 95 to 100 ° C.) and can be self-adhered or bonded to other fibers, such as an ethylene-vinyl alcohol copolymer. And vinyl alcohol polymers, polylactic acid resins such as polylactic acid, and (meth) acrylic copolymers containing (meth) acrylamide units. Further, it may be an elastomer (for example, polyolefin elastomer, polyester elastomer, polyamide elastomer, polyurethane elastomer, styrene elastomer, etc.) that can be easily fluidized or deformed by high-temperature steam. These wet heat adhesive resins can be used alone or in combination of two or more. Of these, vinyl alcohol polymers containing α-C 2-10 olefin units such as ethylene and propylene, particularly ethylene-vinyl alcohol copolymers are preferred.

エチレン−ビニルアルコール系共重合体において、エチレン単位の含有量(共重合割合)は、例えば、5〜65モル%(例えば、10〜65モル%)、好ましくは20〜55モル%、さらに好ましくは30〜50モル%程度である。エチレン単位がこの範囲にあることにより、湿熱接着性を有するが、熱水溶解性はないという特異な性質が得られる。エチレン単位の割合が少なすぎると、エチレン−ビニルアルコール系共重合体が、低温の蒸気(水)で容易に膨潤又はゲル化し、水に一度濡れただけで形態が変化し易い。一方、エチレン単位の割合が多すぎると、吸湿性が低下し、湿熱による繊維融着が発現し難くなるため、実用性のある強度の確保が困難となる。エチレン単位の割合が、特に30〜50モル%の範囲にあると、シート又は板状への加工性が特に優れる。   In the ethylene-vinyl alcohol copolymer, the ethylene unit content (copolymerization ratio) is, for example, 5 to 65 mol% (for example, 10 to 65 mol%), preferably 20 to 55 mol%, and more preferably. It is about 30-50 mol%. When the ethylene unit is in this range, a unique property of having wet heat adhesiveness but not hot water solubility is obtained. If the proportion of the ethylene units is too small, the ethylene-vinyl alcohol copolymer easily swells or gels with low-temperature steam (water), and its form is likely to change only once wetted with water. On the other hand, when the ratio of the ethylene unit is too large, the hygroscopicity is lowered, and fiber fusion due to wet heat is difficult to be exhibited, so that it is difficult to ensure practical strength. When the ratio of the ethylene unit is particularly in the range of 30 to 50 mol%, the processability into a sheet or plate is particularly excellent.

エチレン−ビニルアルコール系共重合体におけるビニルアルコール単位のケン化度は、例えば、90〜99.99モル%程度であり、好ましくは95〜99.98モル%、さらに好ましくは96〜99.97モル%程度である。ケン化度が小さすぎると、熱安定性が低下し、熱分解やゲル化によって安定性が低下する。一方、ケン化度が大きすぎると、繊維自体の製造が困難となる。   The saponification degree of the vinyl alcohol unit in the ethylene-vinyl alcohol copolymer is, for example, about 90 to 99.99 mol%, preferably 95 to 99.98 mol%, more preferably 96 to 99.97 mol. %. When the saponification degree is too small, the thermal stability is lowered, and the stability is lowered by thermal decomposition or gelation. On the other hand, if the degree of saponification is too large, it is difficult to produce the fiber itself.

エチレン−ビニルアルコール系共重合体の粘度平均重合度は、必要に応じて選択できるが、例えば、200〜2500、好ましくは300〜2000、さらに好ましくは400〜1500程度である。重合度がこの範囲にあると、紡糸性と湿熱接着性とのバランスに優れる。   Although the viscosity average degree of polymerization of an ethylene-vinyl alcohol-type copolymer can be selected as needed, it is 200-2500, for example, Preferably it is 300-2000, More preferably, it is about 400-1500. When the degree of polymerization is within this range, the balance between spinnability and wet heat adhesion is excellent.

湿熱接着性繊維の横断面形状(繊維の長さ方向に垂直な断面形状)は、一般的な中実断面形状である丸型断面や異型断面[偏平状、楕円状、多角形状など]に限定されず、中空断面状などであってもよい。湿熱接着性繊維は、少なくとも湿熱接着性樹脂を含む複数の樹脂で構成された複合繊維であってもよい。複合繊維は、湿熱接着性樹脂を少なくとも繊維表面の一部に有していればよいが、接着性の点から、繊維表面において長さ方向に連続する湿熱接着性樹脂を有するのが好ましい。湿熱接着性樹脂の被覆率は、例えば、50%以上、好ましくは80%以上、さらに好ましくは90%以上である。   The cross-sectional shape (cross-sectional shape perpendicular to the longitudinal direction of the fiber) of wet heat adhesive fibers is limited to general solid cross-sectional shapes such as round cross-sections and irregular cross-sections (flat, elliptical, polygonal, etc.) It may not be a hollow cross section. The wet heat adhesive fiber may be a composite fiber composed of a plurality of resins including at least a wet heat adhesive resin. The composite fiber only needs to have a wet heat adhesive resin on at least a part of the fiber surface, but it is preferable to have a wet heat adhesive resin continuous in the length direction on the fiber surface from the viewpoint of adhesiveness. The coverage of the wet heat adhesive resin is, for example, 50% or more, preferably 80% or more, and more preferably 90% or more.

湿熱接着性樹脂が表面を占める複合繊維の横断面構造としては、例えば、芯鞘型、海島型、サイドバイサイド型又は多層貼合型、放射状貼合型、ランダム複合型などが挙げられる。これらの横断面構造のうち、接着性が高い構造である点から、湿熱接着性樹脂が繊維の全表面を被覆する構造である芯鞘型構造(すなわち、鞘部が湿熱接着性樹脂で構成された芯鞘型構造)が好ましい。芯鞘型構造は、他の繊維形成性重合体で構成された繊維の表面に湿熱接着性樹脂をコーティングした繊維であってもよい。   Examples of the cross-sectional structure of the composite fiber in which the wet heat adhesive resin occupies the surface include a core-sheath type, a sea-island type, a side-by-side type, a multi-layer bonding type, a radial bonding type, and a random composite type. Among these cross-sectional structures, a core-sheath structure in which the wet heat adhesive resin covers the entire surface of the fiber (that is, the sheath portion is made of the wet heat adhesive resin because it is a structure with high adhesiveness. A core-sheath structure) is preferred. The core-sheath structure may be a fiber in which a wet heat adhesive resin is coated on the surface of a fiber composed of another fiber-forming polymer.

複合繊維の場合、湿熱接着性樹脂同士を組み合わせてもよいが、非湿熱接着性樹脂と組み合わせてもよい。非湿熱接着性樹脂としては、非水溶性又は疎水性樹脂、例えば、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、塩化ビニル系樹脂、スチレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、熱可塑性エラストマーなどが挙げられる。これらの非湿熱接着性樹脂は、単独で又は二種以上組み合わせて使用できる。   In the case of a composite fiber, wet heat adhesive resins may be combined with each other, but may be combined with non-wet heat adhesive resins. Non-wet heat adhesive resins include water-insoluble or hydrophobic resins such as polyolefin resins, (meth) acrylic resins, vinyl chloride resins, styrene resins, polyester resins, polyamide resins, polycarbonate resins, Examples include polyurethane resins and thermoplastic elastomers. These non-wet heat adhesive resins can be used alone or in combination of two or more.

これらの非湿熱接着性樹脂のうち、耐熱性及び寸法安定性の点から、融点が湿熱接着性樹脂(特にエチレン−ビニルアルコール系共重合体)よりも高い樹脂、例えば、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、特に、耐熱性や繊維形成性などのバランスに優れる点から、ポリエステル系樹脂、ポリアミド系樹脂が好ましい。   Among these non-wet heat adhesive resins, from the viewpoint of heat resistance and dimensional stability, resins having a melting point higher than that of wet heat adhesive resins (particularly ethylene-vinyl alcohol copolymers), such as polypropylene resins and polyester resins. Resins and polyamide resins, particularly polyester resins and polyamide resins are preferred from the standpoint of excellent balance between heat resistance and fiber-forming properties.

湿熱接着性樹脂と非湿熱接着性樹脂(繊維形成性重合体)とで構成された複合繊維の場合、両者の割合(質量比)は、構造(例えば、芯鞘型構造)に応じて選択でき、湿熱接着性樹脂が表面に存在すれば特に限定されないが、例えば、湿熱接着性樹脂/非湿熱接着性樹脂=90/10〜10/90、好ましくは80/20〜15/85、さらに好ましくは60/40〜20/80程度である。湿熱接着性樹脂の割合が多すぎると、繊維の強度を確保し難く、湿熱接着性樹脂の割合が少なすぎると、繊維表面の長さ方向に連続して湿熱接着性樹脂を存在させるのが困難となり、湿熱接着性が低下する。この傾向は、湿熱接着性樹脂を非湿熱接着性繊維の表面にコートする場合においても同様である。   In the case of a composite fiber composed of a wet heat adhesive resin and a non-wet heat adhesive resin (fiber-forming polymer), the ratio (mass ratio) of both can be selected according to the structure (for example, core-sheath structure). The wet heat adhesive resin is not particularly limited as long as it exists on the surface. For example, wet heat adhesive resin / non-wet heat adhesive resin = 90/10 to 10/90, preferably 80/20 to 15/85, more preferably It is about 60/40 to 20/80. If the proportion of wet heat adhesive resin is too large, it will be difficult to ensure the strength of the fiber, and if the proportion of wet heat adhesive resin is too small, it will be difficult to have the wet heat adhesive resin continuously in the length direction of the fiber surface. Thus, the wet heat adhesiveness is lowered. This tendency is the same when the wet heat adhesive resin is coated on the surface of the non-wet heat adhesive fiber.

湿熱接着性繊維の平均繊維長は、例えば、10〜100mm程度の範囲から選択でき、好ましくは20〜80mm、さらに好ましくは25〜75mm程度である。平均繊維長がこの範囲にあると、繊維が充分に絡み合うため、繊維構造体の機械的強度が向上する。   The average fiber length of the wet heat adhesive fibers can be selected from a range of, for example, about 10 to 100 mm, preferably 20 to 80 mm, and more preferably about 25 to 75 mm. When the average fiber length is within this range, the fibers are sufficiently entangled, so that the mechanical strength of the fiber structure is improved.

湿熱接着性繊維の捲縮率は、例えば、1〜50%、好ましくは3〜40%、さらに好ましくは5〜30%程度である。また、捲縮数は、例えば、1〜100個/25mm、好ましくは5〜50個/25mm、さらに好ましくは10〜30個/25mm程度である。   The crimp rate of the wet heat adhesive fiber is, for example, 1 to 50%, preferably 3 to 40%, and more preferably about 5 to 30%. The number of crimps is, for example, about 1 to 100 pieces / 25 mm, preferably about 5 to 50 pieces / 25 mm, and more preferably about 10 to 30 pieces / 25 mm.

不織繊維構造体は、前記湿熱接着性繊維に加えて、さらに非湿熱接着性繊維を含んでいてもよい。非湿熱接着性繊維としては、前記複合繊維を構成する非湿熱接着性樹脂で構成された繊維の他、セルロース系繊維(例えば、レーヨン繊維、アセテート繊維など)などが挙げられる。これらの非湿熱接着性繊維は、単独で又は二種以上組み合わせて使用できる。これらの非湿熱接着性繊維は、目的の特性に応じて選択でき、レーヨンなどの半合成繊維と組み合わせると、相対的に高密度で機械的特性の高い繊維構造体が得られる。   The nonwoven fiber structure may further contain non-wet heat adhesive fibers in addition to the wet heat adhesive fibers. Examples of non-wet heat adhesive fibers include cellulosic fibers (for example, rayon fiber, acetate fiber, etc.) in addition to fibers made of the non-wet heat adhesive resin constituting the composite fiber. These non-wet heat adhesive fibers can be used alone or in combination of two or more. These non-wet heat adhesive fibers can be selected according to the target properties, and when combined with semi-synthetic fibers such as rayon, a fiber structure having relatively high density and high mechanical properties can be obtained.

湿熱接着性繊維と非湿熱接着性繊維との割合(質量比)は、パネルの種類や用途に応じて、湿熱接着性繊維/非湿熱接着性繊維=100/0〜20/80(例えば、99/1〜20/80)、好ましくは100/0〜50/50(例えば、95/5〜50/50)、さらに好ましくは100/0〜70/30程度である。湿熱接着性繊維の割合が少なすぎると、硬度が低下し、繊維構造体としての取り扱い性の保持が困難となる。   The ratio (mass ratio) of the wet heat adhesive fiber and the non-wet heat adhesive fiber is determined according to the type and application of the panel, wet heat adhesive fiber / non-wet heat adhesive fiber = 100/0 to 20/80 (for example, 99 / 1 to 20/80), preferably 100/0 to 50/50 (for example, 95/5 to 50/50), more preferably about 100/0 to 70/30. When the ratio of wet heat adhesive fibers is too small, the hardness decreases and it becomes difficult to maintain the handleability as a fiber structure.

湿熱接着性繊維を含む不織繊維構造体は、不織繊維構造を構成する繊維が前記湿熱接着性繊維の融着による繊維接着率は3〜85%(例えば、5〜60%)、好ましくは5〜50%(例えば、6〜40%)、さらに好ましくは6〜35%(特に8〜30%)程度である。本発明では、このような範囲で繊維が接着されているため、各繊維の自由度が高く、高い遮音性を発現できる。さらに、強度を向上させるために、繊維接着率は、例えば、10〜85%、好ましくは20〜80%、さらに好ましくは30〜75%程度であってもよい。   The non-woven fiber structure containing wet heat adhesive fibers has a fiber adhesion rate of 3 to 85% (for example, 5 to 60%) of the fibers constituting the non-woven fiber structure by fusion of the wet heat adhesive fibers, preferably It is about 5 to 50% (for example, 6 to 40%), more preferably about 6 to 35% (particularly 8 to 30%). In this invention, since the fiber is adhere | attached in such a range, the freedom degree of each fiber is high and can express high sound insulation. Furthermore, in order to improve strength, the fiber adhesion rate may be, for example, about 10 to 85%, preferably 20 to 80%, and more preferably about 30 to 75%.

本発明における繊維接着率は、後述する実施例に記載の方法で測定できるが、不織繊維断面における全繊維の断面数に対して、2本以上接着した繊維の断面数の割合を示す。従って、繊維接着率が低いことは、複数の繊維同士が融着する割合(集束して融着した繊維の割合)が少ないことを意味する。   Although the fiber adhesion rate in this invention can be measured by the method as described in the Example mentioned later, the ratio of the cross section number of the fiber which adhered 2 or more with respect to the cross section number of all the fibers in a non-woven fiber cross section is shown. Therefore, a low fiber adhesion rate means that a ratio of a plurality of fibers fused to each other (a ratio of fibers fused by fusing) is small.

本発明では、さらに、不織繊維構造を構成する繊維は、各々の繊維の接点で接着しているが、できるだけ少ない接点数で大きな曲げ応力を発現するためには、この接着点が、厚み方向に沿って、繊維構造体表面から内部(中央)、そして裏面に至るまで、均一に分布しているのが好ましい。接着点が表面又は内部などに集中すると、優れた機械的特性及び成形性を確保するのが困難となるだけでなく、接着点の少ない部分における形態安定性が低下する。   In the present invention, the fibers constituting the non-woven fiber structure are bonded at the contact points of the respective fibers. In order to express a large bending stress with as few contacts as possible, this bonding point is the thickness direction. It is preferable that the fiber structure is uniformly distributed from the surface of the fiber structure to the inside (center) and back. When the adhesion points are concentrated on the surface or inside, not only is it difficult to ensure excellent mechanical properties and moldability, but also the shape stability in the portion where the adhesion points are small is lowered.

従って、繊維構造体の厚み方向の断面において、厚み方向に三等分した各々の領域における繊維接着率がいずれも前記範囲にあるのが好ましい。さらに、各領域における繊維接着率の最大値に対する最小値の割合(最小値/最大値)(繊維接着率が最大の領域に対する最小の領域の比率)が、例えば、50%以上(例えば、50〜100%)、好ましくは55〜99%、さらに好ましくは60〜98%(特に70〜97%)程度である。本発明では、繊維接着率が、厚み方向において、このような均一性を有しているため、繊維の接着面積が低いにも拘わらず、硬さや曲げ強度、耐折性や靱性も優れている。さらに、繊維の接着面積が低いため、自由に振動可能な繊維が多く、優れた振動吸収性を有している。そのため、床材を通過してきた音波は、不織繊維構造体により吸音され、固体伝播音を軽減することができる。すなわち、本発明における不織繊維構造体は、ボードとしての機械的特性と、繊維構造体としての吸音性とを両立している。   Therefore, in the cross section in the thickness direction of the fiber structure, it is preferable that the fiber adhesion rate in each of the regions divided in three in the thickness direction is in the above range. Furthermore, the ratio of the minimum value to the maximum value of the fiber adhesion rate in each region (minimum value / maximum value) (the ratio of the minimum region to the region with the maximum fiber adhesion rate) is, for example, 50% or more (for example, 50 to 100%), preferably 55 to 99%, more preferably 60 to 98% (especially 70 to 97%). In the present invention, since the fiber adhesion rate has such uniformity in the thickness direction, the hardness, bending strength, bending resistance and toughness are excellent even though the fiber adhesion area is low. . Furthermore, since the bonding area of the fibers is low, there are many fibers that can vibrate freely and have excellent vibration absorption. Therefore, the sound wave that has passed through the flooring material is absorbed by the non-woven fiber structure, and solid propagation sound can be reduced. That is, the nonwoven fiber structure in the present invention has both mechanical properties as a board and sound absorption as a fiber structure.

湿熱接着性繊維を含む不織繊維構造体は、ステープル繊維を用いて得られたウェブ(例えば、セミランダムウェブ、パラレルウェブなど)に対して、温度70〜150℃(特に80〜120℃)程度の高温水蒸気を、圧力0.1〜2MPa(特に好ましくは0.2〜1.5MPa)程度で噴射する方法により得られるが、詳細な製造方法については、国際公開WO2007/116676号公報(特許文献3)に記載の製造方法を利用できる。   The non-woven fiber structure containing wet heat adhesive fibers is about 70 to 150 ° C. (especially 80 to 120 ° C.) with respect to a web (for example, semi-random web, parallel web, etc.) obtained using staple fibers. Is obtained by a method of injecting high-temperature water vapor at a pressure of about 0.1 to 2 MPa (particularly preferably 0.2 to 1.5 MPa). For a detailed production method, see International Publication No. WO2007 / 116676 (Patent Document). The production method described in 3) can be used.

なお、不織繊維構造体で構成された緩衝層を接着剤や粘着剤を用いて床下地材又は硬質層と固定する場合、接着剤又は粘着剤が不織繊維構造体に浸透し、緩衝効果を軽減する虞があるため、不織繊維構造体の表面及び/又は裏面に、フィルムや不織布などのシート材を積層することにより、接着剤又は粘着剤の浸透を防止してもよい。   In addition, when a buffer layer composed of a non-woven fiber structure is fixed to a floor base material or a hard layer using an adhesive or a pressure-sensitive adhesive, the adhesive or pressure-sensitive adhesive penetrates the non-woven fiber structure and provides a buffering effect. Therefore, the penetration of the adhesive or the pressure-sensitive adhesive may be prevented by laminating a sheet material such as a film or a non-woven fabric on the surface and / or the back surface of the nonwoven fiber structure.

(第2の硬質層)
第2の硬質層も、第1の硬質層と同様に、機械的強度を付与するために配設され、第1の硬質層と同様に、硬質のボード材が使用され、通常、木質系ボード材が使用される。木質系ボード材は、通常、第1の硬質層と同じボード材が使用されるが、用途に応じて異なるボード材を使用してもよい。第1の硬質層と同様に、突き合わせ部が根太の上に位置するように配設するのが好ましく、壁面に対して隙間をあけて配設するのが好ましい。第2の硬質層の厚みも、第1の硬質層と同様の範囲から選択でき、通常、第1の硬質層と同じの厚みであるが、用途に応じて第1の硬質層と異なる厚みであってもよい。
(Second hard layer)
Similarly to the first hard layer, the second hard layer is also provided to give mechanical strength, and like the first hard layer, a hard board material is used. Material is used. As the wood board material, the same board material as that of the first hard layer is usually used, but different board materials may be used depending on the application. Similar to the first hard layer, it is preferable to arrange the butted portion so as to be located on the joist, and it is preferable to arrange it with a gap with respect to the wall surface. The thickness of the second hard layer can also be selected from the same range as the first hard layer and is usually the same thickness as the first hard layer, but with a different thickness from the first hard layer depending on the application. There may be.

(床仕上げ層)
床仕上げ層には、部屋の種類に応じて、慣用の床仕上げ材、例えば、敷き仕上げ、フローリング、軟質仕上げなどに用いられる慣用の床仕上げ材が利用できる。
(Floor finish layer)
As the floor finishing layer, a conventional floor finishing material, for example, a conventional floor finishing material used for floor finishing, flooring, soft finishing and the like can be used depending on the type of room.

敷き仕上げの床仕上げ材としては、例えば、畳表、カーペット、ラグ、ラグマット、じゅうたんなどが挙げられる。フローリングの床仕上げ材には、ムク材系床仕上げ材、合板系床仕上げ材などのフローリング材が含まれる。軟質仕上げの床仕上げ材には、コルク板、軟質プラスチック板などが含まれる。軟質プラスチック板としては、発泡層を有するプラスチックシート(クッションフロア)であってもよい。   Examples of the floor finish material for flooring include tatami mats, carpets, rugs, rug mats, and carpets. Flooring materials for flooring include flooring materials such as muk-wood floor finishing materials and plywood floor finishing materials. Soft finish flooring materials include cork boards, soft plastic boards and the like. The soft plastic plate may be a plastic sheet (cushion floor) having a foam layer.

これらの床仕上げ材のうち、コルク板、カーペット、畳表を用いると、表面の緩衝効果により軽量衝撃音の遮音性能がさらに向上する。   Among these floor finishing materials, when a cork board, a carpet, and a tatami mat are used, the sound insulation performance of lightweight impact sound is further improved by the buffering effect of the surface.

床仕上げ層も、遮音性を向上させるために、壁面に対して密接させずに隙間をあけて配設するのが好ましい。壁面との間の隙間は、必ずしも必要ではないが、遮音性の点から形成するのが好ましく、例えば、1〜10mm、好ましくは2〜8mm、さらに好ましくは3〜6mm程度である。なお、壁面との隙間を形成した場合、隙間に幅木を施工することにより、床仕上げ材と壁との隙間は露出しない状態とすることができる。幅木についても、床仕上げ層の端面から1〜2mm程度離した状態で施工するのが好ましく、又は幅木下部に合成樹脂などで構成されたシート材が付いた幅木(いわゆる「ヒレ付幅木」)を使用することにより、床仕上げ材から幅木、壁に伝わる振動を絶縁してもよい。   In order to improve the sound insulation, the floor finishing layer is also preferably disposed with a gap without being in close contact with the wall surface. The gap between the wall surfaces is not necessarily required, but is preferably formed from the point of sound insulation, and is, for example, about 1 to 10 mm, preferably 2 to 8 mm, and more preferably about 3 to 6 mm. In addition, when the clearance gap between a wall surface is formed, it can be set as the state which does not expose the clearance gap between a floor finishing material and a wall by constructing a baseboard in a clearance gap. It is preferable to construct the skirting board in a state of being about 1 to 2 mm away from the end face of the floor finishing layer, or a skirting board with a sheet material made of synthetic resin or the like at the lower part of the skirting board (so-called “fined width”). By using “wood”), vibration transmitted from the floor finish to the baseboard and the wall may be insulated.

床仕上げ層の厚みは、種類に応じて選択でき、例えば、フローリング材の厚みは、例えば、2〜20mm、好ましくは3〜15mm、さらに好ましくは5〜15mm程度であってもよく、軟質床仕上げ材の厚みは、例えば、1〜20mm、好ましくは1.5〜10mm、さらに好ましくは2〜8mm程度であってもよい。   The thickness of the floor finish layer can be selected according to the type. For example, the thickness of the flooring material may be, for example, 2 to 20 mm, preferably 3 to 15 mm, more preferably about 5 to 15 mm. The thickness of the material may be, for example, about 1 to 20 mm, preferably 1.5 to 10 mm, and more preferably about 2 to 8 mm.

なお、本発明の遮音床構造では、床下地材と床仕上げ層との間に、根太と交互かつ平行に配設され、かつ圧縮された緩衝層が介在していればよく、第1及び第2の硬質層は、必須の構成要素ではない。そのため、本発明の遮音床構造は、例えば、床下地材の上に根太及び緩衝層を配設し、この根太及び緩衝層の上に硬質層を配設する態様、第1の硬質層の上に根太及び緩衝層を配設し、この根太及び緩衝層の上に床仕上げ層を配設する態様、床下地材の上に根太及び緩衝層を配設して、この根太及び緩衝層の上に床仕上げ層を配設する態様、これらの態様において、後述するように、制振層を介在させる態様であってもよい。これらの態様のうち、第1及び第2の硬質層のうち、少なくとも一方の硬質層を配設する態様が汎用される。   In the sound insulating floor structure of the present invention, it is only necessary that a compressed buffer layer is interposed between the floor base material and the floor finish layer alternately and in parallel with the joists. The second hard layer is not an essential component. Therefore, in the sound insulating floor structure of the present invention, for example, a joist and a buffer layer are provided on the floor base material, and a hard layer is provided on the joist and the buffer layer, and the first hard layer is provided. A mode in which a joist and a buffer layer are disposed on the floor, and a floor finish layer is disposed on the joist and the buffer layer, and a joist and a buffer layer are disposed on the floor base material, Embodiments in which the floor finish layer is disposed in the above-described embodiments, and in these embodiments, as described later, may be an embodiment in which a damping layer is interposed. Of these modes, a mode in which at least one of the first and second hard layers is disposed is widely used.

(制振層)
本発明の遮音床構造は、床衝撃源からの振動を制振効果により低減させて床衝撃音の遮音性能をさらに向上させるため、さらに制振層と組み合わせてもよい。制振層は、床下地材と床仕上げ層との間に介在していればよく、例えば、第1の硬質層と根太及び被圧縮層との間、第1の硬質層と床下地材との間、第2の硬質層と根太及び被圧縮層との間、第2の硬質層と床仕上げ層との間に配設してもよい。さらに、第1の硬質層と床下地材との間に制振層を配設した場合、この制振層と床下地材との間にさらに硬質層を配設してもよく、第2の硬質層と床仕上げ層との間に制振層を配設した場合、この制振層と床仕上げ層との間にさらに硬質層を配設してもよい。なお、後述するように、緩衝層と組み合わせて、隣り合う根太間に非緩衝層としての制振層を配設してもよい。
(Vibration control layer)
The sound insulation floor structure of the present invention may be further combined with a vibration damping layer in order to further improve the sound insulation performance of the floor impact sound by reducing the vibration from the floor impact source by the damping effect. The vibration damping layer only needs to be interposed between the floor base material and the floor finish layer, for example, between the first hard layer and the joist and the compressed layer, the first hard layer and the floor base material, Between the second hard layer and the joist and the layer to be compressed, or between the second hard layer and the floor finish layer. Further, when a vibration damping layer is disposed between the first hard layer and the floor base material, a hard layer may be further disposed between the vibration damping layer and the floor base material. When a vibration damping layer is disposed between the hard layer and the floor finishing layer, a hard layer may be further disposed between the vibration damping layer and the floor finishing layer. As will be described later, a damping layer as a non-buffering layer may be disposed between adjacent joists in combination with the buffering layer.

なお、制振層は、前記硬質層と一体化された制振木質系ボード材に含まれる制振層であってもよい。制振木質系ボード材では、硬質層と制振層とは、接着剤又は粘着剤で固着又は貼り合わされて一体化している。接着剤又は粘着剤としては、根太や制振材の材質に応じて、慣用の接着剤又は粘着剤の中から選択でき、例えば、エチレン−酢酸ビニル共重合体などの水系ビニル系接着剤などが汎用される。制振木質系ボード材としては、木質系ボード材の片面に制振材を貼り合わせた非拘束型制振木質系ボード材、制振材の両面に木質系ボード材を貼り合わせた拘束型制振木質系ボード材などを使用できる。制振木質系ボード材を使用することにより、木質系ボード材と制振材とを別個に施工した場合(両者を積層した場合でも、固定具を用いて固着した場合)に比べて、同じ厚みでも遮音性能が向上する。   The damping layer may be a damping layer included in a damping wood board integrated with the hard layer. In the damping wood-based board material, the hard layer and the damping layer are integrated by being fixed or bonded together with an adhesive or an adhesive. The adhesive or pressure-sensitive adhesive can be selected from conventional adhesives or pressure-sensitive adhesives depending on the joist or the material of the damping material. For example, an aqueous vinyl adhesive such as an ethylene-vinyl acetate copolymer can be used. General purpose. As the damping wood board material, there is a non-restrained damping wood board material with a damping material bonded to one side of the wooden board material, and a restrained type board material with a wood board material bonded to both sides of the damping material. You can use wood-based board materials. By using the damping wood board material, the same thickness compared to the case where the wood board material and the damping material are constructed separately (even when both are laminated, they are fixed using a fixture). But the sound insulation performance is improved.

制振層は、幅広い周波域の床衝撃音を遮音可能であれば、特に限定されないが、高密度かつ高比重の制振材が利用される。制振材としては、通常、バインダー成分とフィラーとの混合物が使用される。バインダー成分としては、例えば、アスファルトなどの瀝青質物質、合成樹脂、ゴムやエラストマーなどが挙げられる。バインダー成分が制振効果を発現するためには、通常、単位面積当たりの質量が4kg/m以上であるのが好ましく、このような高比重を有する点から、バインダー成分は、アスファルトを含有するのが好ましい。アスファルトとしては、特に限定されず、一般的なアスファルト、例えば、天然アスファルト、ストレートアスファルト、ブローンアスファルトなどの石油アスファルトなどが使用できる。これらのアスファルトは、単独で又は二種以上組み合わせて使用できる。 The damping layer is not particularly limited as long as it can insulate floor impact sound in a wide frequency range, but a damping material having high density and high specific gravity is used. As the damping material, a mixture of a binder component and a filler is usually used. Examples of the binder component include bituminous substances such as asphalt, synthetic resins, rubbers, and elastomers. In order for the binder component to exhibit a damping effect, it is usually preferable that the mass per unit area is 4 kg / m 2 or more. From the viewpoint of having such a high specific gravity, the binder component contains asphalt. Is preferred. The asphalt is not particularly limited, and general asphalt, for example, petroleum asphalt such as natural asphalt, straight asphalt, blown asphalt, and the like can be used. These asphalts can be used alone or in combination of two or more.

さらに、バインダー成分は、制振材に可撓性を付与するために、アスファルトに加えて、軟質樹脂又はエラストマー成分を含んでいてもよい。軟質樹脂又はエラストマー成分としては、例えば、ポリオレフィン、ビニル系重合体(ポリ塩化ビニル、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体など)、ポリアミド、ポリエステル、合成ゴム(ポリブタジエン、ポリイソプレン、スチレン−ブタジエン共重合体など)、天然ゴム、ロジン系樹脂(天然ロジン、変性ロジンなど)などが挙げられる。これらの軟質樹脂又はエラストマー成分は、単独で又は二種以上組み合わせて使用できる。これらの軟質樹脂又はエラストマー成分のうち、スチレン−ブタジエンブロック共重合体などのスチレン−ジエン系共重合体が好ましい。   Further, the binder component may contain a soft resin or an elastomer component in addition to asphalt in order to impart flexibility to the vibration damping material. Examples of the soft resin or elastomer component include polyolefin, vinyl polymer (polyvinyl chloride, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer, ethylene-methyl acrylate). Copolymer, ethylene-ethyl acrylate copolymer, etc.), polyamide, polyester, synthetic rubber (polybutadiene, polyisoprene, styrene-butadiene copolymer, etc.), natural rubber, rosin resin (natural rosin, modified rosin, etc.) Etc. These soft resins or elastomer components can be used alone or in combination of two or more. Of these soft resins or elastomer components, styrene-diene copolymers such as styrene-butadiene block copolymers are preferred.

アスファルトを含む制振材において、軟質樹脂又はエラストマー成分の割合は、アスファルト100重量部に対して、例えば、0〜100重量部、好ましくは1〜80重量部、さらに好ましくは3〜50重量部程度である。   In the damping material containing asphalt, the ratio of the soft resin or elastomer component is, for example, 0 to 100 parts by weight, preferably 1 to 80 parts by weight, and more preferably about 3 to 50 parts by weight with respect to 100 parts by weight of asphalt. It is.

フィラーとしては、有機フィラーであってもよいが、高比重である点から、無機フィラーが好ましい。無機フィラーとしては、例えば、鉄、銅、錫、亜鉛、ニッケル、ステンレス鋼などの金属粒子(粉末)、酸化鉄、三二酸化鉄、四三酸化鉄、フェライト、酸化錫、酸化亜鉛、亜鉛華、酸化銅、酸化アルミニウムなどの金属酸化物粒子、硫酸バリウム、硫酸カルシウム、硫酸アルミニウム、亜硫酸カルシウム、炭酸カルシウム、重炭酸カルシウム、炭酸バリウム、水酸化マグネシウムなどの金属塩粒子、製鋼スラグ、マイカ、クレー、タルク、ウォラストナイト、けい藻土、けい砂、軽石粉などの鉱物粒子などが挙げられる。   The filler may be an organic filler, but is preferably an inorganic filler from the viewpoint of high specific gravity. Examples of the inorganic filler include metal particles (powder) such as iron, copper, tin, zinc, nickel, and stainless steel, iron oxide, iron sesquioxide, iron tetroxide, ferrite, tin oxide, zinc oxide, zinc white, Metal oxide particles such as copper oxide, aluminum oxide, metal salt particles such as barium sulfate, calcium sulfate, aluminum sulfate, calcium sulfite, calcium carbonate, calcium bicarbonate, barium carbonate, magnesium hydroxide, steelmaking slag, mica, clay, Examples include mineral particles such as talc, wollastonite, diatomaceous earth, silica sand, and pumice powder.

これらの無機フィラーは、単独で又は二種以上組み合わせて使用できる。これらの無機フィラーのうち、鉄粒子、各種酸化鉄粒子、製鋼スラグ粒子、(重)炭酸カルシウム粒子などが好ましい。   These inorganic fillers can be used alone or in combination of two or more. Among these inorganic fillers, iron particles, various iron oxide particles, steelmaking slag particles, (heavy) calcium carbonate particles and the like are preferable.

無機フィラーの形状は、粒子状又は粉末状、不定形状、繊維状などが挙げられるが、粒子状又は粉末状が好ましい。無機フィラーの平均粒径は、例えば、0.5mm以下(例えば、0.01〜0.5mm)、好ましくは0.2mm以下(例えば、0.05〜0.2mm)程度である。このように微粉末化された無機フィラーを使用すると、制振材を製造する際の成形加工性を改善し、アスファルト基材中に多量の無機フィラーを均一に分散配合することができるため、制振材の面密度及び感熱安定性を向上できる。   Examples of the shape of the inorganic filler include a particle shape or a powder shape, an indefinite shape, and a fiber shape, but a particle shape or a powder shape is preferable. The average particle size of the inorganic filler is, for example, about 0.5 mm or less (for example, 0.01 to 0.5 mm), preferably about 0.2 mm or less (for example, 0.05 to 0.2 mm). Use of such a finely divided inorganic filler improves molding processability when producing a vibration damping material and allows a large amount of inorganic filler to be uniformly dispersed and blended in the asphalt base material. The surface density and thermal stability of the vibration material can be improved.

無機フィラーの割合は、アスファルト100重量部に対して、例えば、100〜2000重量部、好ましくは200〜1800重量部、さらに好ましくは300〜1500重量部程度である。無機充填剤の量が少なすぎると制振遮音効果が低下し、逆に多すぎると全体が脆くなり成形が困難となり、作業性が低下する。制振材の面密度は4.0kg/m以上(特に8.0kg/m以上)となるように調整するのが好ましい。 The proportion of the inorganic filler is, for example, about 100 to 2000 parts by weight, preferably 200 to 1800 parts by weight, and more preferably about 300 to 1500 parts by weight with respect to 100 parts by weight of asphalt. If the amount of the inorganic filler is too small, the vibration-damping and sound-insulating effect is reduced. Conversely, if the amount is too large, the whole becomes brittle and molding becomes difficult and workability is lowered. The areal density of the damping material is preferably adjusted to be 4.0 kg / m 2 or more (in particular 8.0 kg / m 2 or higher).

制振材は、特に限定されず、バインダー成分と無機フィラーとを加熱混合し、板状に成形する方法などにより得ることができる。軟質樹脂又はエラストマー成分を配合する場合は、アスファルトと軟質樹脂又はエラストマー成分を予め混合した混合物に無機フィラーを添加してもよい。   The damping material is not particularly limited, and can be obtained by a method in which a binder component and an inorganic filler are mixed by heating and formed into a plate shape. When blending a soft resin or an elastomer component, an inorganic filler may be added to a mixture in which asphalt and a soft resin or an elastomer component are mixed in advance.

なお、制振材の形状は、作業性などの点から、板状又はシート状材が好ましいが、例えば、半固体状などの不定形状の制振材であってもよい。   The shape of the vibration damping material is preferably a plate-like or sheet-like material from the viewpoint of workability or the like, but may be, for example, an irregular shaped damping material such as a semi-solid material.

制振層の厚みは、例えば、1〜20mm、好ましくは3〜15mm、さらに好ましくは
4〜12mm(特に5〜10mm)程度である。制振層の比重は、例えば、2.2〜3.
6、好ましくは2.3〜3.5、さらに好ましくは2.5〜3.4程度である。
The thickness of the damping layer is, for example, about 1 to 20 mm, preferably 3 to 15 mm, more preferably about 4 to 12 mm (particularly 5 to 10 mm). The specific gravity of the damping layer is, for example, 2.2-3.
6, Preferably it is 2.3-3.5, More preferably, it is about 2.5-3.4.

(非緩衝層)
本発明の遮音床構造は、遮音性を向上させるために、隣り合う根太間において緩衝層と非緩衝層とを組み合わせてもよい。図2は、本発明の遮音床構造の他の例を示す概略断面図である。すなわち、本発明の遮音床構造は、図2に示されるように、図1に示される遮音床構造において、隣り合う一部が不織繊維構造体である根太3の間に、非緩衝層7及び緩衝層4を順次積層して配設してもよい。非緩衝層を緩衝層と組み合わせることにより、緩衝層とは異なる遮音特性を付与できる。
(Non-buffer layer)
The sound insulation floor structure of the present invention may combine a buffer layer and a non-buffer layer between adjacent joists in order to improve sound insulation. FIG. 2 is a schematic sectional view showing another example of the sound insulating floor structure of the present invention. That is, as shown in FIG. 2, the sound insulating floor structure of the present invention has a non-buffering layer 7 between the joists 3 whose adjacent portions are non-woven fiber structures in the sound insulating floor structure shown in FIG. In addition, the buffer layer 4 may be sequentially stacked. By combining the non-buffering layer with the buffering layer, a sound insulation characteristic different from that of the buffering layer can be imparted.

非緩衝層には、高周波域の音波の吸音性を向上させるために、空間部が形成されていてもよい。図3は、本発明の遮音床構造のさらに他の例を示す概略断面図である。すなわち、本発明の遮音床構造は、図3に示されるように、図1に示される遮音床構造において、隣り合う一部が不織繊維構造体である根太3の間に、緩衝層4及び空間部8を有する非緩衝層7を順次積層して配設してもよい。緩衝層の上に根太と平行に非緩衝層及び空間部を形成することにより、非緩衝層の遮音効果に加えて、高周波域の音波も吸音できる。   In the non-buffering layer, a space portion may be formed in order to improve the sound absorption of sound waves in a high frequency range. FIG. 3 is a schematic sectional view showing still another example of the sound insulating floor structure of the present invention. That is, as shown in FIG. 3, the sound insulating floor structure of the present invention has a buffer layer 4 and a cushion layer 4 between the joists 3, in which the adjacent part is a non-woven fiber structure in the sound insulating floor structure shown in FIG. 1. The non-buffer layer 7 having the space 8 may be sequentially stacked. By forming the non-buffer layer and the space portion in parallel with the joists on the buffer layer, in addition to the sound insulation effect of the non-buffer layer, it is also possible to absorb high-frequency sound waves.

なお、図2及び図3ともに、図1と同様に根太3の長手方向に対して垂直方向の断面図である。   2 and 3 are cross-sectional views in the direction perpendicular to the longitudinal direction of the joists 3 as in FIG.

図3において、前記空間部8は、根太3の長手方向と平行に延びる長尺の非緩衝層7を、緩衝層4の上に間隔をおいて配設することにより形成されているが、所定の面積で空間部が形成される限り、特に限定されず、例えば、長尺の非緩衝層を根太の長手方向と垂直な方向で間隔をおいて配設してもよい。空間部が占める面積は、緩衝層の全面積に対して、例えば、1〜90%、好ましくは5〜80%、さらに好ましくは10〜70%程度である。   In FIG. 3, the space portion 8 is formed by disposing a long non-buffering layer 7 extending in parallel with the longitudinal direction of the joist 3 on the buffering layer 4 at an interval. There is no particular limitation as long as the space portion is formed with an area of, for example, a long non-buffer layer may be disposed at intervals in a direction perpendicular to the longitudinal direction of the joist. The area occupied by the space is, for example, 1 to 90%, preferably 5 to 80%, and more preferably about 10 to 70% with respect to the total area of the buffer layer.

本発明の遮音床構造では、前記態様に限定されず、図2の態様において、非緩衝層に空間部が形成されていてもよく、図3の態様において、非緩衝層が空間部を有さない非緩衝層であってもよい。さらに、床下地材が木造床や軽量発泡コンクリートなどの遮音性が低い下地材である場合、緩衝層を複数の層で構成し、緩衝層の間に非緩衝層を介在させて、床衝撃音の遮音性能を向上させてもよい。   In the sound insulating floor structure of the present invention, the space is not limited to the above-described embodiment, and a space portion may be formed in the non-buffer layer in the embodiment of FIG. 2, and in the embodiment of FIG. 3, the non-buffer layer has a space portion. There may be no unbuffered layer. Furthermore, when the floor base material is a base material with low sound insulation such as a wooden floor or lightweight foamed concrete, the buffer layer is composed of a plurality of layers, and a non-buffer layer is interposed between the buffer layers so that the floor impact sound is reduced. Sound insulation performance may be improved.

非緩衝層の材質としては、有機材料(木質材、プラスチック材など)、無機材料(石膏、珪酸カルシウム、ガラス、アルミニウム、ステンレススチール、鋼など)のいずれであってもよく、例えば、前記第1の硬質層で例示された硬質のボード材などであってもよいが、断熱性などの機能性を付与できる点から、インシュレーションボードなどの木質系ボード材、硬質繊維シートなどが好ましく、制振材が特に好ましい。本発明では、これらの材料を単独で又は二種以上組み合わせて使用できる。これらの材料のうち、制振材が特に好ましい。非緩衝層を制振材で構成し、制振層として機能させると、床衝撃源からの振動を制振効果により低減させて床衝撃音の遮音性を向上できる。   The material of the non-buffer layer may be any of organic materials (wood materials, plastic materials, etc.) and inorganic materials (gypsum, calcium silicate, glass, aluminum, stainless steel, steel, etc.). Hard board materials exemplified in the hard layer may be used, but from the viewpoint that functionality such as heat insulation can be imparted, wood board materials such as insulation boards, hard fiber sheets, etc. are preferable, and vibration damping A material is particularly preferred. In the present invention, these materials can be used alone or in combination of two or more. Of these materials, damping materials are particularly preferred. If the non-buffer layer is made of a damping material and functions as a damping layer, the vibration from the floor impact source can be reduced by the damping effect, and the sound insulation of the floor impact sound can be improved.

非緩衝層の厚みは、例えば、1〜20mm、好ましくは1.5〜15mm、さらに好ましくは2〜10mm(特に3〜8mm)程度である。   The thickness of the non-buffer layer is, for example, about 1 to 20 mm, preferably about 1.5 to 15 mm, and more preferably about 2 to 10 mm (particularly 3 to 8 mm).

本発明の遮音床構造は、良好な歩行感が得られるとともに、床衝撃音の遮音性能も高いだけでなく、床の硬さが適度かつ均一であるため、転倒時の安全性にも優れている。すなわち、本発明の遮音床構造は、JIS A6519に準拠した硬さ(衝撃時加速度G値)が100G以下であり、例えば、10〜100G、好ましくは20〜90G、さらに好ましくは30〜85G(特に40〜80G)程度である。さらに、床構造は、通常、梁間、根太間の上方に位置する部分では柔らかく、梁や根太の上方に位置する部分では硬く、特に、梁と根太とが重複する部分では最も硬くなる傾向を有している。これに対して、本発明の遮音床構造では、最も柔らかい箇所に対する最も硬い箇所の加速度G値の比は、例えば、1.3倍以下であり、好ましくは1.2倍以下、さらに好ましくは1.1倍以下(特に1.05倍以下)であり、床の位置に拘わらず、加速度G値は略均一(1〜1.01倍程度)である。そのため、床構造が均一に踏み心地が良く、安定した歩行感を実現できる。さらに、局所的に硬い部分が存在しないため、転倒した時にも怪我をしにくく、安全性が高い。   The sound insulation floor structure of the present invention not only provides a good feeling of walking, but also has a high sound insulation performance of floor impact sound, and the floor hardness is moderate and uniform, so it has excellent safety during a fall. Yes. That is, the sound insulation floor structure of the present invention has a hardness (acceleration acceleration G value) according to JIS A6519 of 100 G or less, for example, 10 to 100 G, preferably 20 to 90 G, more preferably 30 to 85 G (particularly 40 to 80G). Furthermore, the floor structure usually has a tendency to be soft at the part located between the beams and between the joists, to be hard at the parts located above the joists and joists, especially at the part where the beams and joists overlap. is doing. On the other hand, in the sound insulation floor structure of the present invention, the ratio of the acceleration G value of the hardest part to the softest part is, for example, 1.3 times or less, preferably 1.2 times or less, more preferably 1 The acceleration G value is substantially uniform (about 1 to 1.01 times) regardless of the floor position. For this reason, the floor structure is uniform and comfortable to walk, and a stable walking feeling can be realized. Furthermore, since there is no locally hard part, it is difficult to get injured even when it falls, and safety is high.

[遮音床構造の施工又は製造方法]
本発明の遮音床構造は、層構造に応じて、床下地材の上に、第1の硬質層、一部または全部が不織繊維構造体である根太を順次積層し、根太間に被圧縮層(緩衝層)を配設又は挿入した後、根太及び被圧縮層の上に、さらに第2の硬質層、床仕上げ層などを順次積層することにより施工できる。
[Construction or manufacturing method of sound insulation floor structure]
According to the sound insulation floor structure of the present invention, according to the layer structure, the first hard layer and the joist which is partly or entirely the non-woven fiber structure are sequentially laminated on the floor base material, and the compressed material is provided between the joists. After arranging or inserting the layer (buffer layer), the second hard layer, the floor finish layer, and the like can be further laminated on the joists and the layer to be compressed.

詳しくは、まず、床下地材の上に第1の硬質層を置き敷きし、根太を施工する。   Specifically, first, the first hard layer is laid on the floor base material, and the joists are constructed.

根太は、前述のように、梁と重複する部分が存在しないように配設するのが望ましい。例えば、梁と根太とを垂直に配設する場合には、両者の交差部で必ず梁と根太との重複部分が存在するため、梁と根太とを平行に配設し、かつ梁の上方に根太が位置しないように根太を配設する(すなわち、隣り合う根太間の上方に梁が位置するように根太を配設する)のが好ましい。   As described above, it is desirable that the joists be arranged so that there are no overlapping portions with the beams. For example, when the beam and joist are arranged vertically, there is always an overlap between the beam and joist at the intersection of the two, so the beam and joist are arranged in parallel and above the beam. The joists are preferably arranged so that the joists are not located (that is, the joists are arranged so that the beam is located above the adjacent joists).

第1の硬質層は、通常、複数の木質系ボード材を使用するが、木質系ボード材の突き合わせ部(隣り合う木質系ボード材の継ぎ目部)に根太を配設するのが好ましい。木質系ボード材の突き合わせ部に、根太を配設すると、硬質層の安定性が向上し、木質系ボード材の突き合わせ部での荷重による沈み込みを抑制できる。また、木質系ボード材の突き合わせ部は、密接させてもよく、木質系ボードの温湿度による伸縮を考慮し1〜20mm(特に5〜15mm)程度の隙間を開けてもよい。   The first hard layer usually uses a plurality of wood board materials, but it is preferable to arrange joists at the butted portions of the wood board materials (joint portions of adjacent wood board materials). When joists are arranged at the butt portion of the wooden board material, the stability of the hard layer is improved, and sinking due to the load at the butt portion of the wooden board material can be suppressed. Further, the butt portion of the wooden board material may be in close contact, and a gap of about 1 to 20 mm (particularly 5 to 15 mm) may be opened in consideration of expansion and contraction due to temperature and humidity of the wooden board.

根太の固定方法としては、接着剤又は粘着剤を用いる方法、固定具を用いる方法などが挙げられる。接着剤又は粘着剤としては、根太や硬質層などの材質に応じて、慣用の接着剤又は粘着剤の中から選択できる。接着剤としては、デンプンやカゼインなどの天然高分子系接着剤、ポリ酢酸ビニルやエチレン−酢酸ビニル共重合体などのビニル系接着剤、アクリル系接着剤、ポリエステル系接着剤、ポリアミド系接着剤などの熱可塑性樹脂系接着剤、エポキシ樹脂などの熱硬化性樹脂系接着剤などが挙げられる。粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤などの熱可塑性樹脂系粘着剤などが挙げられる。固定具としては、ネイル、ネジ、釘、ステープル、針などの係合手段、粘着テープ、面ファスナーなどが挙げられる。   Examples of the fixing method of the joist include a method using an adhesive or a pressure-sensitive adhesive, a method using a fixing tool, and the like. The adhesive or pressure-sensitive adhesive can be selected from conventional adhesives or pressure-sensitive adhesives depending on the material such as joists and hard layers. Adhesives include natural polymer adhesives such as starch and casein, vinyl adhesives such as polyvinyl acetate and ethylene-vinyl acetate copolymer, acrylic adhesives, polyester adhesives, polyamide adhesives, etc. And other thermoplastic resin adhesives, and thermosetting resin adhesives such as epoxy resins. Examples of the adhesive include thermoplastic resin adhesives such as rubber adhesives and acrylic adhesives. Examples of the fixture include engaging means such as a nail, a screw, a nail, a staple, and a needle, an adhesive tape, and a hook-and-loop fastener.

これらの方法のうち、通常、釘などの固定具を用いる方法が汎用される。なお、第1の硬質層を積層せずに、床下地材上に根太を積層する場合も同様の方法で施工できる。   Of these methods, a method using a fixing tool such as a nail is generally used. In addition, it can construct by the same method also when laminating | stacking a joist on a floor base material, without laminating | stacking a 1st hard layer.

被圧縮層(緩衝層)は、根太間に敷き詰める。その際に、第1の硬質層上に予め前記接着剤又は粘着剤を塗布後、被圧縮層を敷き詰めてもよく、被圧縮層を敷き詰めた後に、前記固定具などで固定してもよい。さらに、被圧縮層として、緩衝層とともに、非緩衝層を緩衝層の上面側又は下面側に挿入してもよい。なお、被圧縮層は、隣り合う根太間に配設されていればよく、適度な空隙を形成して敷き詰めてもよいが、防振効果などを向上できる点から、根太と交互に隣接して配設するのが好ましい。   The layer to be compressed (buffer layer) is spread between joists. In that case, after apply | coating the said adhesive agent or an adhesive previously on a 1st hard layer, you may spread | lay a to-be-compressed layer, and you may fix with the said fixing tool etc. after spreading to-be-compressed layer. Further, as the layer to be compressed, a non-buffer layer may be inserted on the upper surface side or the lower surface side of the buffer layer together with the buffer layer. Note that the layer to be compressed may be disposed between adjacent joists, and may be spread by forming an appropriate gap. It is preferable to arrange.

さらに、根太及び被圧縮層の上に第2の硬質層を形成する。第2の硬質層も、第1の硬質層と同様に、木質系ボード材の突き合わせ部に根太を配設するのが好ましい。第2の硬質層を根太と接触するように積層することにより、被圧縮層が第1の硬質層と第2の硬質層に挟まれて圧縮され、根太の厚みにまで圧縮された緩衝層が形成される。   Further, a second hard layer is formed on the joist and the layer to be compressed. Similarly to the first hard layer, the second hard layer is also preferably provided with a joist at the butt portion of the wooden board material. By laminating the second hard layer so as to come into contact with the joists, the compressed layer is sandwiched and compressed between the first hard layer and the second hard layer, and the buffer layer compressed to the thickness of the joists is provided. It is formed.

最後に、床仕上げ材を第2の硬質層の上に配設して床仕上げ層を形成する。第2の硬質層及び床仕上げ層の固定方法としても、前述の接着剤(もしくは粘着剤)又は固定具を用いる方法が利用できるが、床仕上げ層及び硬質層がいずれも硬質であるため、通常、ネイル、ステープル、釘などの係合手段が利用される。これらの係合手段は、遮音性を向上させる点から、緩衝層まで到達しない長さの係合手段を利用するのが好ましい。例えば、床仕上げ材がフローリングの場合、通常、係合手段としてフロアネイルと称される釘を使用するが、フロアネイルが緩衝層や床下地材に到達すると、サウンドブリッジにより床衝撃音の遮音性能が低下する虞がある。従って、根太が釘保持力を有する材質(木質材など)である場合、床仕上げ層から根太までフロアネイルなどの係合手段で一体化するのが好ましい。床仕上げ層から根太まで一体化されると、床自体の剛性が向上し、床衝撃音の遮音性能が向上するだけでなく、歩行感も良好になる。   Finally, a floor finish is disposed on the second hard layer to form a floor finish layer. As a method for fixing the second hard layer and the floor finish layer, the above-described method using the adhesive (or pressure-sensitive adhesive) or the fixture can be used, but since both the floor finish layer and the hard layer are hard, usually Engaging means such as nails, staples and nails are used. These engaging means preferably use engaging means having a length that does not reach the buffer layer from the viewpoint of improving sound insulation. For example, when the floor finish is flooring, nails called floor nails are usually used as engaging means, but when the floor nails reach the buffer layer or floor base material, sound insulation performance of the floor impact sound by the sound bridge May decrease. Therefore, when the joist is a material having a nail holding force (woody material or the like), it is preferable to integrate from the floor finish layer to the joist with an engaging means such as a floor nail. When integrated from the floor finishing layer to the joist, the rigidity of the floor itself is improved, and not only the sound insulation performance of the floor impact sound is improved, but also the walking feeling is improved.

制振層を床仕上げ層と床下地材との間に介在させる場合、制振材と床下地材、制振材と床仕上げ材、制振材と硬質層、制振材と根太及び被圧縮層は、接着剤又は粘着剤で固定するのが好ましい。接着剤又は粘着剤で固定することにより、床自体の剛性を向上でき、床衝撃音の遮音性能を向上できる。さらに、被圧縮層として、緩衝層とともに非緩衝層として制振層を用いる場合も、同様に接着剤又は粘着剤で固定するのが好ましい。   When the damping layer is interposed between the floor finishing layer and the floor base material, the damping material and the floor base material, the damping material and the floor finishing material, the damping material and the hard layer, the damping material and the joist and the compressed material The layer is preferably fixed with an adhesive or an adhesive. By fixing with an adhesive or a pressure-sensitive adhesive, the rigidity of the floor itself can be improved, and the sound insulation performance of the floor impact sound can be improved. Furthermore, when using a damping layer as a non-buffering layer as well as a buffering layer as the layer to be compressed, it is preferably fixed with an adhesive or an adhesive.

床暖房を施工する場合は、床仕上げ材の直下に床暖房パネルなどを設置してもよい。なお、制振材を使用している場合は、制振材上に更に木質系パネルや断熱性を有するパネルを設置するのが好ましい。   When constructing floor heating, a floor heating panel or the like may be installed directly under the floor finishing material. In addition, when the damping material is used, it is preferable to install a wooden panel or a panel having heat insulation on the damping material.

なお、本発明の遮音床構造は、部屋の全面に施工される態様だけに限定されず、部屋の一部に施工してもよい。例えば、ピアノなどの重量物を載置する部屋に対して、重量物が載置される部分について、根太を略全面に敷き詰める態様、前記緩衝層を耐荷重性の高い木質系ボードなどに置き換える態様などにより、部分的に強度を担保してもよい。   In addition, the sound insulation floor structure of this invention is not limited only to the aspect constructed | assembled in the whole surface of a room, You may construct in a part of room. For example, with respect to a room on which a heavy object such as a piano is placed, an aspect in which the joist is spread over substantially the entire surface of the part on which the heavy object is placed, and an aspect in which the buffer layer is replaced with a wooden board with high load resistance For example, the strength may be partially secured.

[遮音床構成材]
本発明の遮音床構成材は、前記遮音床構造を形成するために用いられ、間隔をおいて平行に配設するための複数の根太と、この根太の一部または全部が不織繊維構造体であり、この根太と交互に配設され、かつ根太よりも大きい厚を有する被圧縮層とで構成されていればよい。このような遮音床構成材のうち、予め硬質層の一方の面に根太及び被圧縮層を固着した構成材は、建築現場で根太を組む必要がないため、施工が簡便になり、施工のバラツキによる性能の低下も抑制できる。
[Sound insulation floor components]
The sound insulation floor constituting material of the present invention is used to form the sound insulation floor structure, and a plurality of joists for arranging them in parallel at intervals, and a part or all of the joists are non-woven fiber structures. It is only necessary to be composed of the joists and the compressed layers that are alternately disposed and have a thickness larger than the joists. Among such sound insulation floor components, a component having a joist and a layer to be compressed fixed to one side of the hard layer in advance does not require the joist to be assembled at the construction site, so the construction is simplified and the variation in construction. It is also possible to suppress a decrease in performance due to

図4は、本発明の遮音床構成材の一例を示す概略斜視図であり、図5は、図4の遮音床構成材のA−A線概略断面図である。本発明の遮音床構成材10は、施工性を向上させるために、図4及び5に示すように、硬質層15の上に、間隔をおいて一部が不織繊維構造体である根太13を平行に配設して固着し、さらに隣り合う根太間に被圧縮層14を配設して固着している。根太13及び被圧縮層14は、各々接着剤(又は粘着剤)で硬質層15に固着されている。この構成材では、被圧縮層は、建築現場において、床下地材や床仕上げ層などで圧縮して緩衝層を形成する。   FIG. 4 is a schematic perspective view showing an example of the sound insulation floor constituting material of the present invention, and FIG. 5 is a schematic cross-sectional view taken along line AA of the sound insulation floor constituting material of FIG. In order to improve the workability, the sound insulating floor constituting material 10 of the present invention has a joist 13 whose part is a non-woven fiber structure on the hard layer 15 at intervals as shown in FIGS. Are arranged and fixed in parallel, and the compressed layer 14 is arranged and fixed between adjacent joists. The joist 13 and the layer 14 to be compressed are each fixed to the hard layer 15 with an adhesive (or adhesive). In this component material, the layer to be compressed is compressed with a floor base material or a floor finish layer at a building site to form a buffer layer.

被圧縮層(圧縮前の緩衝層)の厚みは、根太の厚みに対して1.05倍以上であり、例えば、1.05〜3倍、好ましくは1.1〜2倍、さらに好ましくは1.2〜1.5倍(特に1.3〜1.4倍)程度である。被圧縮層が緩衝層と非緩衝層とで構成されている場合、被圧縮層(圧縮前の緩衝層)の厚みは、根太の厚みから非緩衝層の厚みを減じた厚みに対して1.05倍以上であり、例えば、1.05〜5倍、好ましくは1.1〜4倍、さらに好ましくは1.3〜3倍(特に1.5〜2倍)程度である。   The thickness of the layer to be compressed (buffer layer before compression) is 1.05 times or more with respect to the thickness of the joist, for example, 1.05 to 3 times, preferably 1.1 to 2 times, more preferably 1 About 2 to 1.5 times (particularly 1.3 to 1.4 times). When the layer to be compressed is composed of a buffer layer and a non-buffer layer, the thickness of the layer to be compressed (the buffer layer before compression) is 1 with respect to the thickness obtained by subtracting the thickness of the non-buffer layer from the thickness of the joist. For example, it is 1.05 to 5 times, preferably 1.1 to 4 times, and more preferably 1.3 to 3 times (particularly 1.5 to 2 times).

本発明の遮音床構成材は、硬質層の一方の面に根太及び被圧縮層を固着した構成材に対して、根太及び被圧縮層の上に、さらに硬質層を固着してもよい。図6は、本発明の遮音床構成材の一例を示す概略斜視図であり、図7は、図6の遮音床構成材のA−A線概略断面図である。この遮音床構成材20は、さらに施工性を向上させるために、図6及び7に示すように、図4の遮音床構成材の被圧縮層14及び根太13の上に、さらに硬質層12が配設され、被圧縮層14を根太13の厚みにまで圧縮して固着されている。この構成材では、被圧縮層を圧縮して緩衝層が形成されているため、建築現場では、遮音床構成材を必要に応じて切断して配設するだけの方法で施工できる。   In the sound insulating floor constituting material of the present invention, the hard layer may be further fixed on the joist and the layer to be compressed with respect to the component having the joist and the layer to be compressed fixed to one surface of the hard layer. FIG. 6 is a schematic perspective view showing an example of the sound insulation floor constituting material of the present invention, and FIG. 7 is a schematic cross-sectional view taken along line AA of the sound insulation floor constituting material of FIG. In order to further improve the workability, the sound insulating floor constituting material 20 is further provided with a hard layer 12 on the compressed layer 14 and the joists 13 of the sound insulating floor constituting material of FIG. 4 as shown in FIGS. The compressed layer 14 is compressed to the thickness of the joist 13 and fixed. In this component, since the buffer layer is formed by compressing the layer to be compressed, it can be constructed at the construction site by simply cutting and arranging the sound insulation floor component as necessary.

本発明の遮音床構成材において、硬質層と根太との間、又は硬質層の表面に、さらに制振材を固着してもよい。   In the sound insulating floor constituting material of the present invention, a vibration damping material may be further fixed between the hard layer and the joist or on the surface of the hard layer.

さらに、本発明の遮音床構成材では、硬質層、根太及び被圧縮層、制振材の各部材間における固着方法としては、接着剤(又は粘着剤)で固定する方法に限定されず、固定具を用いる方法、これらの方法を組み合わせる方法などであってもよいが、建築現場での切断の容易性など、施工性に優れる点から、接着剤(又は粘着剤)で固定する方法が好ましい。   Furthermore, in the sound insulation floor constituting material of the present invention, the fixing method between each member of the hard layer, the joist and the layer to be compressed, and the vibration damping material is not limited to the method of fixing with an adhesive (or adhesive), but fixed. Although a method using a tool or a method combining these methods may be used, a method of fixing with an adhesive (or pressure-sensitive adhesive) is preferable from the viewpoint of excellent workability such as ease of cutting at a construction site.

以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。実施例における各物性値は、以下に示す方法により測定した。なお、実施例中の「部」及び「%」はことわりのない限り、質量基準である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. Each physical property value in the examples was measured by the following method. In the examples, “parts” and “%” are based on mass unless otherwise specified.

(1)目付(g/m2
JIS L1913「一般短繊維不織布試験方法」に準じて測定した。
(1) Weight per unit (g / m 2 )
Measured according to JIS L1913 “Testing method for general short fiber nonwoven fabric”.

(2)厚み(mm)、見掛け密度(g/cm3
JISL 1913「一般短繊維不織布試験方法」に準じて厚さを測定し、この値と目付けの値とから見かけ密度を算出した。
(2) Thickness (mm), apparent density (g / cm 3 )
The thickness was measured according to JISL 1913 “Test method for general short fiber nonwoven fabric”, and the apparent density was calculated from this value and the basis weight value.

(3)繊維接着率
走査型電子顕微鏡(SEM)を用いて、構造体断面を100倍に拡大した写真を撮影した。撮影した構造体の厚み方向における断面写真を厚み方向に三等分し、三等分した各領域(表面、内部(中央)、裏面)において、そこに見出せる繊維切断面(繊維端面)の数に対して繊維同士が接着している切断面の数の割合を求めた。各領域に見出せる全繊維断面数のうち、2本以上の繊維が接着した状態の断面の数の占める割合を以下の式に基づいて百分率で表わした。なお、繊維同士が接触する部分には、融着することなく単に接触している部分と、融着により接着している部分とがある。但し、顕微鏡撮影のために構造体を切断することにより、構造体の切断面においては、各繊維が有する応力によって、単に接触している繊維同士は分離する。従って、断面写真において、接触している繊維同士は、接着していると判断できる。
(3) Fiber Adhesion Rate Using a scanning electron microscope (SEM), a photograph in which the cross section of the structure was magnified 100 times was taken. The photograph of the cross section in the thickness direction of the photographed structure is divided into three equal parts in the thickness direction, and the number of fiber cut surfaces (fiber end faces) that can be found in each of the three divided areas (front surface, inside (center), back surface) On the other hand, the ratio of the number of cut surfaces where the fibers are bonded to each other was determined. Of the total number of fiber cross sections that can be found in each region, the ratio of the number of cross sections in a state where two or more fibers are bonded is expressed as a percentage based on the following formula. In addition, in the part which fibers contact, there exists a part which is simply contacting, without melt | fusion, and a part which has adhere | attached by melt | fusion. However, by cutting the structure for microscopic photography, the fibers in contact with each other are separated from each other by the stress of each fiber on the cut surface of the structure. Therefore, in the cross-sectional photograph, it can be determined that the contacting fibers are bonded to each other.

繊維接着率(%)=(2本以上接着した繊維の断面数)/(全繊維断面数)×100 但し、各写真について、断面の見える繊維は全て計数し、繊維断面数100以下の場合は、観察する写真を追加して全繊維断面数が100を超えるようにした。なお、三等分した各領域についてそれぞれ繊維接着率を求め、その最大値に対する最小値の割合(最小値/最大値)も併せて求めた。     Fiber adhesion rate (%) = (Number of cross sections of fibers bonded two or more) / (Total number of cross sections of fibers) × 100 However, for each photograph, all the visible fibers are counted. The photograph to be observed was added so that the total fiber cross-section number exceeded 100. In addition, the fiber adhesion rate was calculated | required about each area | region divided into three equally, and the ratio (minimum value / maximum value) of the minimum value with respect to the maximum value was also calculated | required together.

(4)床衝撃音の遮音特性
JIS A 1418−1「建築物の床衝撃音遮断性能の測定方法 −第1部:標準軽量衝撃源による方法」に準拠して行った。測定結果は、JIS A 1419−2「建築物および建築部材の遮音性能の評価方法−第2部:床衝撃音遮断性能」に準拠して床衝撃音レベル等級で示した。
(4) Sound insulation characteristics of floor impact sound It was performed in accordance with JIS A 1418-1 “Method for measuring floor impact sound insulation performance of a building—Part 1: Method using standard lightweight impact source”. The measurement results are shown in the floor impact sound level according to JIS A 1419-2 “Evaluation method of sound insulation performance of buildings and building members—Part 2: Floor impact sound insulation performance”.

(5)最大加速度
JIS A 6519「体育館用鋼製床下地構成材 9.6 床の硬さ試験」に準拠して測定し、測定点としては、硬さの異なる点(梁上や梁間、根太上や根太間の組み合わせ)について加速度Gの最大値を各5回計測して平均値を取り、最も硬い(数字の大きい)箇所(a)と最も柔らかい(数字の小さい)箇所(b)との差(a−b)を比較した。なお、最も硬い箇所は、いずれの実施例及び比較例でも梁上の箇所であり、最も柔らかい箇所(柔軟箇所)は、実施例1〜5及び比較例2では梁間であり、かつ根太間である箇所、比較例1及び3では、梁間の箇所であった。
(5) Maximum acceleration Measured according to JIS A6519 “Steel floor foundation material for gymnasium 9.6 Floor hardness test”, the measurement points are different in hardness (on beams, between beams, joists) The maximum value of acceleration G is measured five times for each of the upper and joist combinations, and the average value is obtained. The hardest (larger number) part (a) and the softest (smaller number) part (b) The difference (ab) was compared. In addition, the hardest part is a part on a beam in any of Examples and Comparative Examples, and the softest part (flexible part) is between the beams in Examples 1 to 5 and Comparative Example 2, and is between joists. In the comparative example 1 and 3, it was a location between beams.

[実施例1]
容積が30mのコンクリート製建物の上部開口部(寸法1820×1820mm)の四周に横断面が120×200mmの木材を置き桁とし、中央部から455mmの箇所に横断面が120×200mmの木材を2本取り付け梁とした。その上に、厚み24mmの構造用合板を、梁と平行となるように150mm間隔で平行に並べて配設し、長さ65mmのビスで取り付けて床下地材を作製した。さらに、床下地材の上に、厚み9mmの構造用合板及び厚み4mmの制振材(アスファルトと鉄系無機粉体とを加熱混合して板状に成形した比重2.8のシート)をこの順序で敷設した。次に、幅寸法50mmに切断した厚み5.5mmの構造用合板に、幅寸法50mmに切断した厚み3mmで見掛け密度が0.2g/cmの不織繊維構造体を接着剤で固定し根太とした。前記制振材の上に、前記根太を、梁と垂直となるように303mm間隔で平行に並べて、不織繊維構造体が下面となるように配設した後、長さ32mmのビスで固定した。次に、根太間に、緩衝層として、厚み12mmで単位面積質量(目付)1000g/mのニードルパンチ方式によるポリエステル不織布(平均繊維径25μm)を挿入し、この不織布の上から、厚み12mmの構造用合板を配設し、長さ32mmのビスで固定した。さらに、前記構造用合板の上に厚み12mmの合板からなるフローリングを施工した。なお、フローリングの固定は、38mmのフロアネイルを使用し、根太上にフロアネイルが位置するように固定した。上記構成において、遮音床構造の全ての端面を壁面から6mm離した状態で施工した。
[Example 1]
Volume cross-section to the four sides of the upper opening of the concrete building 30 m 3 (dimensions 1820 × 1820mm) is a digit place the timber 120 × 200 mm, cross-section from the center to the position of 455mm is a timber 120 × 200 mm Two mounting beams were used. On top of that, structural plywood having a thickness of 24 mm was arranged in parallel at intervals of 150 mm so as to be parallel to the beam, and attached with screws having a length of 65 mm to produce a floor base material. Furthermore, a structural plywood with a thickness of 9 mm and a vibration damping material with a thickness of 4 mm (a sheet having a specific gravity of 2.8 formed by heating and mixing asphalt and iron-based inorganic powder) on the floor base material. Laid in order. Next, a non-woven fibrous structure having a thickness of 3 mm and an apparent density of 0.2 g / cm 3 cut to a width of 50 mm is fixed to a structural plywood having a thickness of 5.5 mm by cutting to a width of 50 mm with an adhesive. It was. On the damping material, the joists were arranged in parallel at intervals of 303 mm so as to be perpendicular to the beam, and the non-woven fiber structure was disposed on the lower surface, and then fixed with screws having a length of 32 mm. . Next, a polyester nonwoven fabric (average fiber diameter of 25 μm) by a needle punch method having a thickness of 12 mm and a unit area mass (weight per unit area) of 1000 g / m 2 is inserted between the joists as a buffer layer. A structural plywood was placed and fixed with a 32 mm long screw. Furthermore, the flooring which consists of a 12-mm-thick plywood was constructed on the said structural plywood. The flooring was fixed using a 38 mm floor nail so that the floor nail was positioned on the joist. In the said structure, it constructed in the state which separated all the end surfaces of the sound-insulating floor structure 6 mm from the wall surface.

[実施例2]
緩衝層として、ポリエステル不織布の代わりに以下の方法で得られた不織繊維構造体を使用する以外は、実施例1と同様にして遮音床構造を施工した。
[Example 2]
A sound insulation floor structure was constructed in the same manner as in Example 1 except that a nonwoven fiber structure obtained by the following method was used in place of the polyester nonwoven fabric as the buffer layer.

(不織繊維構造体の製造方法)
湿熱接着性繊維として、芯成分がポリエチレンテレフタレート、鞘成分がエチレン−ビニルアルコール共重合体(エチレン含有量44モル%、ケン化度98.4モル%)である芯鞘型複合ステープル繊維((株)クラレ製、「ソフィスタ」、繊度3dtex、繊維長51mm、芯鞘質量比=50/50、捲縮数21個/25mm、捲縮率13.5%)を準備した。
(Method for producing non-woven fiber structure)
As a wet heat adhesive fiber, a core-sheath type composite staple fiber having a core component of polyethylene terephthalate and a sheath component of ethylene-vinyl alcohol copolymer (ethylene content 44 mol%, saponification degree 98.4 mol%) ) "Sophista", fineness 3dtex, fiber length 51mm, core-sheath mass ratio = 50/50, number of crimps 21 / 25mm, crimp rate 13.5%) was prepared.

この芯鞘型複合ステープル繊維を用いて、カード法により目付約50g/mのカードウェブを作製し、このウェブを17枚重ねて合計目付約850g/mのカードウェブとした。 Using this core-sheath type composite staple fiber, a card web having a basis weight of about 50 g / m 2 was prepared by a card method, and 17 sheets of this web were stacked to form a card web having a total basis weight of about 850 g / m 2 .

このカードウェブを、50メッシュ、幅500mmのステンレス製エンドレスネットを装備したベルトコンベアに移送した。尚、このベルトコンベアの金網の上部には同じ金網を有するベルトコンベアが装備されており、それぞれが同じ速度で同方向に回転し、これら両金網の間隔を任意に調整可能なベルトコンベアを使用した。   The card web was transferred to a belt conveyor equipped with a 50 mesh, 500 mm wide stainless steel endless net. In addition, the belt conveyor which has the same metal mesh is equipped in the upper part of the metal mesh of this belt conveyor, and it rotated in the same direction at the same speed, respectively, and used the belt conveyor which can adjust the space | interval of these metal meshes arbitrarily. .

次いで、下側コンベアに備えられた水蒸気噴射装置ヘカードウェブを導入し、この装置から0.2MPaの高温水蒸気をカードウェブの厚み方向に向けて通過するように(垂直に)噴出して水蒸気処理を施し、不織繊維構造を有する成形体を得た。この水蒸気噴射装置は、下側のコンベア内に、コンベアネットを介して高温水蒸気をウェブに向かって吹き付けるようにノズルが設置され、上側のコンベアにサクション装置が設置されていた。また、この噴射装置のウェブ進行方向における下流側には、ノズルとサクション装置との配置が逆転した組合せである噴射装置がもう一台設置されており、ウェブの表裏両面に対して蒸気処理を施した。   Next, the steam web is introduced into the steam spraying device provided in the lower conveyor, and steam treatment is performed by ejecting high-temperature steam of 0.2 MPa from the device so as to pass in the thickness direction of the card web (perpendicularly). As a result, a molded body having a non-woven fiber structure was obtained. In this steam spraying device, a nozzle is installed in the lower conveyor so as to spray high-temperature steam toward the web via a conveyor net, and a suction device is installed in the upper conveyor. Further, another jetting device, which is a combination of the arrangement of the nozzle and the suction device reversed, is installed on the downstream side in the web traveling direction of the jetting device, and steam treatment is performed on both the front and back sides of the web. did.

なお、水蒸気噴射ノズルの孔径は0.3mmであり、ノズルがコンベアの幅方向に沿って1mmピッチで1列に並べられた蒸気噴射装置を使用した。加工速度は3m/分であり、ノズル側とサクション側の上下コンベアベルト間の間隔(距離)を、厚み12mmの構造体が得られるように調整した。ノズルはコンベアベルトの裏側にベルトとほぼ接するように配置した。   In addition, the hole diameter of the water vapor | steam injection nozzle was 0.3 mm, and the vapor | steam injection apparatus with which the nozzle was arranged in 1 row at 1 mm pitch along the width direction of the conveyor was used. The processing speed was 3 m / min, and the interval (distance) between the upper and lower conveyor belts on the nozzle side and the suction side was adjusted so that a structure with a thickness of 12 mm was obtained. The nozzles were arranged on the back side of the conveyor belt so as to be almost in contact with the belt.

得られた不織繊維構造体(成形体)は、ボード状の形態を有し、一般的な不織布に比べて非常に硬質であった。見掛け密度は、0.07g/cmであった。さらに、繊維接着率は、表面側で11%、中央部で10%、裏面側で10%であった。この不織繊維構造体を、切断加工して、緩衝層として利用した。 The obtained non-woven fiber structure (molded body) had a board-like form and was very hard as compared with a general nonwoven fabric. The apparent density was 0.07 g / cm 3 . Furthermore, the fiber adhesion rate was 11% on the front surface side, 10% on the center portion, and 10% on the back surface side. This nonwoven fiber structure was cut and used as a buffer layer.

[実施例3]
床下地材上に、厚み9mmの構造用合板を敷設し、この合板の上から、幅寸法50mmに切断した厚み5.5mmの構造用合板に、幅寸法50mmに切断した厚み3mmで見掛け密度が0.2g/cmの不織繊維構造体を接着剤で固定した根太を、梁と平行となるように303mm間隔で平行に並べて不織繊維構造体が下面となるように配設した後、長さ32mmのビスで固定して、根太とした。次に、根太間に、緩衝層として、厚み12mmで単位面積質量(目付)1000g/mのニードルパンチ方式によるポリエステル不織布(平均繊維径25μm)、及び非緩衝層として、厚み4mmの制振材(アスファルトと鉄系無機粉体とを加熱混合して板状に成形した比重2.8のシート)をこの順序で挿入した以外は実施例1と同様にして遮音床構造を施工した。
[Example 3]
A structural plywood having a thickness of 9 mm is laid on the floor base material. From this plywood, a structural plywood having a thickness of 5.5 mm cut to a width dimension of 50 mm has an apparent density of 3 mm cut to a width dimension of 50 mm. After the joists fixed with 0.2 g / cm 3 of the non-woven fiber structure with an adhesive are arranged in parallel at intervals of 303 mm so as to be parallel to the beam, the non-woven fiber structure is disposed on the bottom surface, A joist was fixed with a screw having a length of 32 mm. Next, a polyester nonwoven fabric (average fiber diameter of 25 μm) by a needle punch method having a thickness of 12 mm and a unit area mass (weight per unit area) of 1000 g / m 2 as a buffer layer between the joists, and a damping material having a thickness of 4 mm as a non-buffer layer A sound insulation floor structure was constructed in the same manner as in Example 1 except that a sheet having a specific gravity of 2.8 formed by heating and mixing asphalt and iron-based inorganic powder into a plate shape was inserted in this order.

[実施例4]
予め、厚み9mmの構造用合板、厚み4mmの制振材(アスファルトと鉄系無機粉体とを加熱混合して板状に成形した比重2.8のシート)、厚み9mmの構造用合板をこの順序で順次積層するとともに、エチレン−酢酸ビニル共重合体からなる水系接着剤を用いて接着して拘束型制振木質系ボード材を作製した。
[Example 4]
A structural plywood with a thickness of 9 mm, a damping material with a thickness of 4 mm (a sheet having a specific gravity of 2.8 formed by heating and mixing asphalt and iron-based inorganic powder), and a structural plywood with a thickness of 9 mm are prepared. The layers were laminated in order, and bonded using a water-based adhesive composed of an ethylene-vinyl acetate copolymer to produce a constrained vibration-damping wood board.

床下地材上に、幅寸法50mmに切断した厚み5.5mmの構造用合板に、幅寸法50mmに切断した厚み3mmで見掛け密度が0.2g/cmの不織繊維構造体を接着剤で固定した根太を、梁と平行となるように303mm間隔で平行に並べて不織繊維構造体が下面となるように配設した後、長さ32mmのビスで固定して、根太とした。次に、根太間に、緩衝層として、厚み12mmで単位面積質量(目付)1000g/mのニードルパンチ方式によるポリエステル不織布(平均繊維径25μm)を挿入し、この不織布の上から、前記拘束型制振木質系ボード材を配設し、長さ32mmのビスで固定した以外は実施例1と同様にして遮音床構造を施工した。 On the floor base material, a non-woven fiber structure having a thickness of 3 mm and an apparent density of 0.2 g / cm 3 cut to a width of 50 mm is applied to a structural plywood having a thickness of 5.5 mm cut to a width of 50 mm with an adhesive. The fixed joists were arranged in parallel at intervals of 303 mm so as to be parallel to the beams, and the non-woven fiber structure was disposed on the lower surface, and then fixed with screws of 32 mm in length to form joists. Next, a polyester nonwoven fabric (average fiber diameter of 25 μm) by a needle punch method having a thickness of 12 mm and a unit area mass (weight per unit area) of 1000 g / m 2 is inserted as a buffer layer between the joists. A sound-insulating floor structure was constructed in the same manner as in Example 1 except that a damping wood-based board material was disposed and fixed with screws having a length of 32 mm.

[実施例5]
予め、厚み9mmで寸法が910mm×910mmの構造用合板上に、厚み4mmで寸法が910mm×910mmの制振材(アスファルトと鉄系無機粉体とを加熱混合して板状に成形した比重2.8のシート)をエチレン−酢酸ビニル共重合体からなる水系接着剤を用いて固定した。前記制振材の上に、前記水系接着剤を塗布し、幅寸法50mmに切断した厚み5.5mmの構造用合板に、幅寸法50mmに切断した厚み3mmで見掛け密度が0.2g/cmの不織繊維構造体を接着剤で固定した根太を、前記制振材の端部及び端部から303mmの箇所に位置するように、303mm間隔で平行に並べて不織繊維構造体が下面となるように配設して根太とした後、これらの根太の間に、実施例2と同様の厚み12mmの不織繊維構造体を配設した。さらに、前記水系接着剤を塗布した厚み9mmで寸法が910mm×910mmの構造用合板を、根太及び不織繊維構造体側にその接着面が位置するように配設し、接着剤が乾燥するまで荷重をかけて静置し、遮音床構成材を作製した。
[Example 5]
On a structural plywood having a thickness of 9 mm and dimensions of 910 mm × 910 mm, a damping material having a thickness of 4 mm and dimensions of 910 mm × 910 mm (specific gravity 2 formed by heating and mixing asphalt and iron-based inorganic powder into a plate shape) .8 sheet) was fixed using an aqueous adhesive composed of an ethylene-vinyl acetate copolymer. The water-based adhesive is applied on the vibration damping material, and the apparent density is 0.2 g / cm 3 with a thickness of 3 mm cut to a width of 50 mm on a structural plywood having a thickness of 5.5 mm cut to a width of 50 mm. The non-woven fiber structure is the bottom surface by arranging the joists fixed with the non-woven fiber structure with an adhesive in parallel at 303 mm intervals so as to be located at a position of 303 mm from the end of the vibration damping material. Then, the non-woven fiber structure having a thickness of 12 mm as in Example 2 was placed between the joists. Furthermore, a structural plywood having a thickness of 9 mm and a dimension of 910 mm × 910 mm coated with the water-based adhesive is disposed so that the adhesive surface is located on the joist and nonwoven fiber structure side, and the load is applied until the adhesive is dried. And left to stand to produce a sound insulation floor component.

この遮音床構成材を床下地材上に4個配設し、長さ45mmのビスを用いて150mm間隔で固定した以外は実施例1と同様にして遮音床構造を施工した。   A sound insulation floor structure was constructed in the same manner as in Example 1 except that four of the sound insulation floor constituting materials were arranged on the floor base material and fixed at intervals of 150 mm using 45 mm long screws.

[比較例1]
床下地材の上に、厚み12mmの合板からなるフローリングを施工した。
[Comparative Example 1]
A flooring made of plywood having a thickness of 12 mm was applied on the floor base material.

[比較例2]
根太間の緩衝層を使用しないことを除いて実施例1と同様にして遮音床構造を施工した。
[Comparative Example 2]
A sound insulation floor structure was constructed in the same manner as in Example 1 except that the buffer layer between the joists was not used.

[比較例3]
床下地材の上に、厚み8mmの制振材(アスファルトと鉄系無機粉体とを加熱混合して板状に成形した比重2.8のシート)を敷き設し、この制振材の上に、厚み12mmの合板からなるフローリングを施工した。
[Comparative Example 3]
On the floor base material, a damping material having a thickness of 8 mm (a sheet having a specific gravity of 2.8, which is formed by heating and mixing asphalt and iron-based inorganic powder) is laid. The flooring which consists of a 12-mm-thick plywood was constructed.

[比較例4]
根太として幅寸法50mmに切断した厚み9mmの構造用合板を梁と垂直となるように303mm間隔で平行に並べて配設した以外は実施例1と同様にして遮音床構造を施工した。
[Comparative Example 4]
A sound insulating floor structure was constructed in the same manner as in Example 1 except that structural plywood having a thickness of 9 mm cut as a joist was arranged in parallel at intervals of 303 mm so as to be perpendicular to the beam.

実施例及び比較例で得られた床構造について、床衝撃音の遮音特性を測定した結果を表1に示す。   Table 1 shows the results of measuring the sound insulation characteristics of the floor impact sound for the floor structures obtained in the examples and comparative examples.

Figure 2012107378
Figure 2012107378

表1の結果から明らかなように、実施例の遮音床構造が優れた遮音性を示すのに対して、比較例1、2および3の遮音床構造は遮音性が低く、最大加速度Gの差も大きい。また、比較例4の遮音床構造よりも、実施例1の遮音床構造はさらに高い遮音性を有する。   As is clear from the results in Table 1, the sound insulation floor structures of the examples show excellent sound insulation properties, whereas the sound insulation floor structures of Comparative Examples 1, 2, and 3 have low sound insulation properties and the difference in maximum acceleration G Is also big. Moreover, the sound insulation floor structure of Example 1 has higher sound insulation than the sound insulation floor structure of Comparative Example 4.

本発明の遮音床構造は、マンション、ビル、一般住宅などの建築物の床構造に利用でき、特に、マンション、ビル、一般住宅などの複数階建ての建築物(多層階建築物)における2階以上のフロアにおける床構造として有用である。   The sound insulation floor structure of the present invention can be used for a floor structure of a building such as a condominium, a building, or a general house. It is useful as a floor structure in the above floors.

1…床下地材
2…第1の硬質層
3,13…根太
4…緩衝層
5…第2の硬質層
6…床仕上げ層
7…制振層
8…空間部
10,20…遮音床構成材
14…被圧縮層(緩衝層)
12,15…硬質層
DESCRIPTION OF SYMBOLS 1 ... Floor base material 2 ... 1st hard layer 3, 13 ... joist 4 ... Buffer layer 5 ... 2nd hard layer 6 ... Floor finishing layer 7 ... Damping layer 8 ... Space part 10,20 ... Sound insulation floor component 14 ... Layer to be compressed (buffer layer)
12, 15 ... Hard layer

Claims (22)

間隔をおいて平行に配設するための複数の根太の一部または全部が不織繊維構造体である遮音床構成材。   A sound insulation floor constituting material in which a part or all of a plurality of joists for disposing in parallel at intervals is a non-woven fiber structure. 間隔をおいて平行に配設するための複数の根太の一部または全部が不織繊維構造体であって、この根太と交互に配設され、かつ根太よりも大きい厚みを有する被圧縮層とで構成された請求項1記載の遮音床構成材。   A part or all of the plurality of joists for disposing them in parallel at intervals is a non-woven fiber structure, and the compressed layer is disposed alternately with the joists and has a thickness greater than the joists. The sound insulation floor constituent material according to claim 1 constituted by. 被圧縮層が、根太と交互に隣接して配設されている請求項2記載の遮音床構成材。   The sound insulating floor constituting material according to claim 2, wherein the layer to be compressed is disposed adjacent to the joists alternately. 被圧縮層が、緩衝層で構成され、かつこの緩衝層の厚みが、根太の厚みに対して1.05〜3倍である請求項2又は3記載の遮音床構成材。   The sound insulating floor constituting material according to claim 2 or 3, wherein the compressed layer is composed of a buffer layer, and the thickness of the buffer layer is 1.05 to 3 times the thickness of the joist. 被圧縮層が、緩衝層と、この緩衝層の一方の面に積層された非緩衝層とで構成され、かつ前記緩衝層の厚みが、根太の厚みから非緩衝層の厚みを減じた厚みに対して1.05〜3倍である請求項2〜4のいずれかに記載の遮音床構成材。   The layer to be compressed is composed of a buffer layer and a non-buffer layer laminated on one surface of the buffer layer, and the thickness of the buffer layer is a thickness obtained by subtracting the thickness of the non-buffer layer from the thickness of the joist. The sound insulating floor constituting material according to any one of claims 2 to 4, which is 1.05 to 3 times as much. 非緩衝層が制振材で構成されている請求項5記載の遮音床構成材。   The sound insulating floor constituting material according to claim 5, wherein the non-buffering layer is made of a vibration damping material. 非緩衝層が空間部を有する請求項5又は6記載の遮音床構成材。   The sound insulating floor constituting material according to claim 5 or 6, wherein the non-buffering layer has a space. 床面積を占める根太と被圧縮層との面積比が、根太/被圧縮層=10/90〜30/70である請求項2〜7のいずれかに記載の遮音床構成材。   The sound insulating floor constituting material according to any one of claims 2 to 7, wherein an area ratio between the joist occupying the floor area and the layer to be compressed is joist / compressed layer = 10/90 to 30/70. 圧縮前の緩衝層が、厚み3〜60mm、見掛け密度0.03〜0.2g/cmの不織繊維構造体で形成されている請求項2〜8のいずれかに記載の遮音床構成材。 The sound insulation floor component according to any one of claims 2 to 8, wherein the buffer layer before compression is formed of a nonwoven fiber structure having a thickness of 3 to 60 mm and an apparent density of 0.03 to 0.2 g / cm 3. . 不織繊維構造体が、湿熱接着性繊維を含み、かつこの湿熱接着性繊維の融着により繊維が固定されるとともに、繊維接着率が3〜85%である請求項9記載の遮音床構成材。   The sound insulating floor constituting material according to claim 9, wherein the non-woven fiber structure includes wet heat adhesive fibers, the fibers are fixed by fusion of the wet heat adhesive fibers, and the fiber adhesion rate is 3 to 85%. . さらに制振層を含む請求項2〜10のいずれかに記載の遮音床構成材。   Furthermore, the sound-insulating floor constituent material in any one of Claims 2-10 containing a damping layer. 制振層がアスファルトを含有する請求項11記載の遮音床構成材。   The sound insulating floor constituting material according to claim 11, wherein the vibration damping layer contains asphalt. 根太が、第1の硬質層の一方の面に間隔をおいて平行に配設されている請求項2〜12のいずれかに記載の遮音床構成材。   The sound insulating floor constituting material according to any one of claims 2 to 12, wherein the joists are arranged in parallel to each other on one surface of the first hard layer. 根太及び被圧縮層と第1の硬質層とが接着剤又は粘着剤で固着している請求項13記載の遮音床構成材。   The sound insulating floor constituting material according to claim 13, wherein the joist and the layer to be compressed and the first hard layer are fixed with an adhesive or an adhesive. 根太及び被圧縮層の上に、さらに第2の硬質層が配設され、かつ前記被圧縮層が、前記根太の厚みにまで圧縮されている請求項13又は14記載の遮音床構成材。   The sound insulating floor constituting material according to claim 13 or 14, wherein a second hard layer is further disposed on the joist and the layer to be compressed, and the layer to be compressed is compressed to the thickness of the joist. 根太及び被圧縮層と第2の硬質層とが接着剤又は粘着剤で固着している請求項15記載の遮音床構成材。   The sound insulating floor constituting material according to claim 15, wherein the joist and the layer to be compressed and the second hard layer are fixed with an adhesive or an adhesive. 第1の硬質層又は第2の硬質層と、根太及び被圧縮層との間に制振層が介在し、接着剤又は粘着剤で固着している請求項13〜16のいずれかに記載の遮音床構成材。   The damping layer is interposed between the first hard layer or the second hard layer, the joist and the layer to be compressed, and is fixed with an adhesive or a pressure-sensitive adhesive. Sound insulation floor component. 床下地材と床仕上げ層との間に請求項2〜17のいずれかに記載の遮音床構成材が介在する遮音床構造であって、前記遮音床構成材の被圧縮層が、根太の厚みにまで圧縮されている遮音床構造。   A sound insulation floor structure in which the sound insulation floor constituting material according to any one of claims 2 to 17 is interposed between a floor base material and a floor finish layer, and the compressed layer of the sound insulation floor constituting material has a thickness of joists. Sound insulation floor structure that is compressed to 床下地材と床仕上げ層との間に制振層が介在している請求項18記載の遮音床構造。   The sound-insulating floor structure according to claim 18, wherein a damping layer is interposed between the floor base material and the floor finish layer. 制振層の少なくとも一方の面に硬質層が積層され、接着剤又は粘着剤で固着されている請求項19記載の遮音床構造。   The sound-insulating floor structure according to claim 19, wherein a hard layer is laminated on at least one surface of the vibration damping layer and fixed with an adhesive or a pressure-sensitive adhesive. 遮音床構成材が、壁面に対して隙間を有する請求項18〜20のいずれかに記載の遮音床構造。   The sound insulating floor structure according to any one of claims 18 to 20, wherein the sound insulating floor constituting material has a gap with respect to the wall surface. 梁と根太とが平行に配設され、かつ隣り合う根太間に梁が位置するように根太が配設されている請求項18〜21のいずれかに記載の遮音床構造。   The sound insulating floor structure according to any one of claims 18 to 21, wherein the joists are arranged such that the beams and joists are arranged in parallel, and the joists are positioned between the adjacent joists.
JP2010254762A 2010-03-08 2010-11-15 Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material Pending JP2012107378A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010254762A JP2012107378A (en) 2010-11-15 2010-11-15 Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material
PCT/JP2011/054962 WO2011111608A1 (en) 2010-03-08 2011-03-03 Sound insulation floor structure and sound insulation floor components as well as method for reducing floor impact sounds
EP18157772.7A EP3358103A1 (en) 2010-03-08 2011-03-03 Sound insulation floor structure and sound insulation floor component as well as method for reducing floor impact sound
CN201180012962.3A CN102869843B (en) 2010-03-08 2011-03-03 Sound insulation floor structure and sound insulation floor components as well as method for reducing floor impact sounds
US13/582,348 US8631900B2 (en) 2010-03-08 2011-03-03 Sound insulation floor structure and sound insulation floor component as well as method for reducing floor impact sound
EP11753267.1A EP2546434A4 (en) 2010-03-08 2011-03-03 Sound insulation floor structure and sound insulation floor components as well as method for reducing floor impact sounds
KR1020127023420A KR101829476B1 (en) 2010-03-08 2011-03-03 Sound insulation floor structure and sound insulation floor components as well as method for reducing floor impact sounds
TW100107518A TWI545248B (en) 2010-03-08 2011-03-07 Sound insulating floor structure and sound insulating floor composing material as well as method for reducing floor impacting sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254762A JP2012107378A (en) 2010-11-15 2010-11-15 Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material

Publications (1)

Publication Number Publication Date
JP2012107378A true JP2012107378A (en) 2012-06-07

Family

ID=46493263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254762A Pending JP2012107378A (en) 2010-03-08 2010-11-15 Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material

Country Status (1)

Country Link
JP (1) JP2012107378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047609A (en) * 2012-09-04 2014-03-17 Nanao Kogyo Kk Sound insulation floor structure, and method for reducing floor impact sound
JP2017002635A (en) * 2015-06-12 2017-01-05 静岡瀝青工業株式会社 Floor joist and floor structure
JP2020016014A (en) * 2018-07-23 2020-01-30 積水化学工業株式会社 Floor sound insulation structure
JP2020114303A (en) * 2019-01-18 2020-07-30 株式会社produce・D Washing machine stand and installation method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163842U (en) * 1985-03-29 1986-10-11
JPH04194150A (en) * 1990-11-26 1992-07-14 Iida Kenchiku Sekkei Jimusho:Kk Floor structure of building
JPH08105192A (en) * 1994-10-03 1996-04-23 Corona Giken Kk Vibration insulation and sound insulation device for floor part
JP2003056171A (en) * 2001-08-17 2003-02-26 Tokushima Ken Soundproof structure for solid wood, and its construction method
JP2009084715A (en) * 2007-09-27 2009-04-23 Kuraray Kuraflex Co Ltd Cushioning material and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61163842U (en) * 1985-03-29 1986-10-11
JPH04194150A (en) * 1990-11-26 1992-07-14 Iida Kenchiku Sekkei Jimusho:Kk Floor structure of building
JPH08105192A (en) * 1994-10-03 1996-04-23 Corona Giken Kk Vibration insulation and sound insulation device for floor part
JP2003056171A (en) * 2001-08-17 2003-02-26 Tokushima Ken Soundproof structure for solid wood, and its construction method
JP2009084715A (en) * 2007-09-27 2009-04-23 Kuraray Kuraflex Co Ltd Cushioning material and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047609A (en) * 2012-09-04 2014-03-17 Nanao Kogyo Kk Sound insulation floor structure, and method for reducing floor impact sound
JP2017002635A (en) * 2015-06-12 2017-01-05 静岡瀝青工業株式会社 Floor joist and floor structure
JP2020016014A (en) * 2018-07-23 2020-01-30 積水化学工業株式会社 Floor sound insulation structure
JP7144226B2 (en) 2018-07-23 2022-09-29 積水化学工業株式会社 Floor sound insulation method
JP2020114303A (en) * 2019-01-18 2020-07-30 株式会社produce・D Washing machine stand and installation method of the same

Similar Documents

Publication Publication Date Title
JP5965458B2 (en) Sound insulation floor components and sound insulation floor structure
WO2011111608A1 (en) Sound insulation floor structure and sound insulation floor components as well as method for reducing floor impact sounds
JP6275982B2 (en) Soundproof material, soundproof structure and construction method thereof
JP2012107378A (en) Sound insulation floor structure material having joist structure and sound insulation floor structure using the structure material
JP6018846B2 (en) Sound insulation floor structure and floor impact noise reduction method
JP5607390B2 (en) Sound insulation floor structure
JP5956785B2 (en) Crosspiece, sound insulation panel and sound insulation method
JP5898934B2 (en) Soundproof flooring
WO2010128680A1 (en) Plastic body for a floor material, as well as a floor material
JP6362205B2 (en) Damping floor structure and construction method
JP5409255B2 (en) Damping / soundproof flooring and floor structure using the flooring
JP2015135017A (en) Sound insulation flooring and soundproof material for use in the same
JP2544007Y2 (en) Anti-vibration joist structure for floating floor
JP2565449Y2 (en) Floor panel
JP7144665B2 (en) Soundproof floor structure and floor soundproofing method
JP7076054B1 (en) Floor base material and its manufacturing method
JP7423413B2 (en) floor standing panel
JPS6363856A (en) Soundproof floor material
JP2517299Y2 (en) Laminated soundproof flooring
JPH0633584A (en) Soundproof block shaped supporting body and double flooring structure
JPH02136466A (en) Composite, soundproofing flooring material
JPH10102752A (en) Floor material for sound insulation
JP2000303669A (en) Floor substrate fiber board and floor material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203