JP2012104230A - Metal oxide semiconductor electrode and dye-sensitized solar cell - Google Patents

Metal oxide semiconductor electrode and dye-sensitized solar cell Download PDF

Info

Publication number
JP2012104230A
JP2012104230A JP2010248953A JP2010248953A JP2012104230A JP 2012104230 A JP2012104230 A JP 2012104230A JP 2010248953 A JP2010248953 A JP 2010248953A JP 2010248953 A JP2010248953 A JP 2010248953A JP 2012104230 A JP2012104230 A JP 2012104230A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide
dye
semiconductor electrode
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010248953A
Other languages
Japanese (ja)
Inventor
Takahiro Omura
貴宏 大村
Miki Inaoka
美希 稲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010248953A priority Critical patent/JP2012104230A/en
Publication of JP2012104230A publication Critical patent/JP2012104230A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal oxide semiconductor electrode capable of making moderate light diffusion and transmission, and capable of significantly improving electrolyte permeability and coloring matter bearing amount, for example, when used in a dye-sensitized solar cell, and to provide the dye-sensitized solar cell using the same.SOLUTION: A metal oxide semiconductor electrode includes a conductive substrate and a porous metal oxide layer formed on both faces or one face of the conductive substrate. The porous metal oxide layer contains metal oxide hollow particles with an average particle size of 1-95nm.

Description

本発明は、金属酸化物中空粒子を有する金属酸化物半導体電極、及び、該金属酸化物半導体電極を用いた色素増感太陽電池に関する。 The present invention relates to a metal oxide semiconductor electrode having metal oxide hollow particles and a dye-sensitized solar cell using the metal oxide semiconductor electrode.

近年、化石燃料の燃焼や二酸化炭素発生量の増大により、地球温暖化をはじめとする環境、エネルギーの問題がますます深刻化している。これに対して、エネルギー源がクリーンであり、発電時の大気汚染物質や騒音を発生せず、かつ、環境負荷の少ない発電システムとして、太陽エネルギーを効率よくエネルギー源として取り出す各種太陽電池の技術開発が盛んに行われている。なかでも、色素増感太陽電池は、一般的な印刷プロセスを用い、大気圧下で簡易な製造プロセスで製造できる構成であることから、素材、プロセス両面で大幅なコスト低減が期待され、単結晶シリコン系、多結晶シリコン系、アモルファスシリコン系、CIGS系等に続く次世代の太陽電池として注目を集めている。 In recent years, environmental and energy problems such as global warming have become more serious due to the combustion of fossil fuels and the increase in carbon dioxide generation. On the other hand, the technology development of various solar cells that efficiently extract solar energy as an energy source as a power generation system with clean energy sources, no air pollutants and noise during power generation, and low environmental impact Has been actively conducted. In particular, since dye-sensitized solar cells can be manufactured using a general printing process and a simple manufacturing process under atmospheric pressure, significant cost reductions are expected in both materials and processes. It is attracting attention as a next-generation solar cell following silicon, polycrystalline silicon, amorphous silicon, CIGS, and the like.

色素増感太陽電池に用いられる半導体電極は、金属酸化物を主成分とする多孔質膜が一般的である。金属酸化物は、電子の失活過程である電子とホールの再結合が極めて生じにくい特性を持っており、多孔質構造に電荷分離機能を持たせる上で都合がよいとされている。 A semiconductor electrode used in a dye-sensitized solar cell is generally a porous film containing a metal oxide as a main component. A metal oxide has a characteristic that recombination of electrons and holes, which is an electron deactivation process, is extremely difficult to occur, and is considered convenient for providing a charge separation function in a porous structure.

通常、金属酸化物の多孔質構造体を形成する方法としては、多孔質構造体を形成するための粒子と、高分子有機物などの増粘剤と、溶媒とを混合して、ペースト状、インク状又は粘土状の混合物を調製し、この混合物を基体上に塗布又は成型した後、焼成等の処理によって増粘剤を除去することにより、多孔質構造体を得るという方法が広く用いられている。例えば、特許文献1には、消滅性の造孔粒子を含有する混合物を調製した後、基体に付着させ、該造孔粒子を消滅させる方法が開示されている。
しかしながら、この方法で得られる多孔質構造体は、空孔の大きさ(空孔径)が大きく、例えば、色素増感電池の半導体電極に使用した場合、光が拡散して光の利用率が低下するという問題があった。
また、多孔質構造体における空孔のサイズを制御するのは困難であった。更に、空孔度を高くするためには造孔粒子を増量する必要があり、空孔度の制御範囲が、塗布又は成型時の作業を困難にしない程度に限られるという問題もあった。
Normally, a metal oxide porous structure is formed by mixing particles for forming a porous structure, a thickening agent such as a polymer organic substance, and a solvent into a paste or ink. A method of obtaining a porous structure by preparing a mixture in the form of a clay or clay, applying or molding the mixture on a substrate, and then removing the thickener by a treatment such as baking is widely used. . For example, Patent Document 1 discloses a method in which a mixture containing extinguishing pore-forming particles is prepared and then adhered to a substrate to extinguish the pore-forming particles.
However, the porous structure obtained by this method has a large pore size (pore diameter). For example, when used in a semiconductor electrode of a dye-sensitized battery, light diffuses and the light utilization rate decreases. There was a problem to do.
Moreover, it is difficult to control the size of the pores in the porous structure. Further, in order to increase the porosity, it is necessary to increase the amount of pore-forming particles, and there is a problem that the control range of the porosity is limited to such an extent that the operation during coating or molding is not difficult.

上述した課題に対する技術として、特許文献2及び特許文献3には、金属酸化物ナノ粒子の凝集によって形成されたシェルを有する中空状粒子を含む多孔質半導体層が開示されている。 As technologies for the problems described above, Patent Document 2 and Patent Document 3 disclose a porous semiconductor layer including hollow particles having a shell formed by aggregation of metal oxide nanoparticles.

特開2006−324011号公報JP 2006-324011 A 特開2001−76772号公報JP 2001-76772 A 特開2009−32663号公報JP 2009-32663 A

本発明は、平均粒子径が小さいため、例えば、色素増感太陽電池に用いた場合、光の拡散と透過を適度なものとすることができるとともに、電解液の浸透性や色素の担持量も大幅に改善することが可能な金属酸化物半導体電極、及び、該金属酸化物半導体電極を用いた色素増感太陽電池を提供することを目的とする。 Since the average particle diameter of the present invention is small, for example, when used in a dye-sensitized solar cell, the diffusion and transmission of light can be made moderate, and the permeability of the electrolytic solution and the amount of the dye supported are also increased. It is an object of the present invention to provide a metal oxide semiconductor electrode that can be significantly improved, and a dye-sensitized solar cell using the metal oxide semiconductor electrode.

特許文献2及び特許文献3に記載の多孔質半導体層に使用される中空状粒子は、粒子径が大きいため、特許文献1に記載の多孔質構造体の場合と同様に、色素増感電池の半導体電極に使用した場合、光が拡散して光の利用率が低下するという問題があった。
また、金属酸化物ナノ粒子の凝集によってシェルが構成されていることで、光が過度に拡散されるという問題もあった。
Since the hollow particles used in the porous semiconductor layer described in Patent Document 2 and Patent Document 3 have a large particle diameter, the same as in the case of the porous structure described in Patent Document 1, When used for a semiconductor electrode, there is a problem that light is diffused and the utilization factor of light is lowered.
Moreover, there also existed a problem that light was spread | diffused excessively because the shell was comprised by aggregation of the metal oxide nanoparticle.

本発明は、導電性基板と、前記導電性基板の両面又は片面に形成された多孔質金属酸化物層とを有する金属酸化物半導体電極であって、前記多孔質金属酸化物層は、平均粒子径が1〜95nmの金属酸化物中空粒子を含有する金属酸化物半導体電極である。
以下に本発明を詳述する。
The present invention is a metal oxide semiconductor electrode having a conductive substrate and a porous metal oxide layer formed on both sides or one side of the conductive substrate, wherein the porous metal oxide layer has an average particle size It is a metal oxide semiconductor electrode containing metal oxide hollow particles having a diameter of 1 to 95 nm.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、多孔質金属酸化物層に、平均粒子径が所定の範囲内である金属酸化物中空粒子を用いることで、色素増感太陽電池に用いた場合、光の拡散と透過を適度なものとすることができることに加えて、電解液の浸透性や、色素の担持量についても大幅に改善できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have used metal oxide hollow particles having an average particle diameter within a predetermined range for the porous metal oxide layer, so that when used in a dye-sensitized solar cell, In addition to being able to make the diffusion and permeation of water moderate, it has been found that the permeability of the electrolytic solution and the amount of dye supported can be greatly improved, and the present invention has been completed.

特許文献2及び特許文献3に記載の半導体電極の模式断面図を図2に示す。
半導体電極11は、中空状粒子14からなる半導体層15と、透明基板12に透明導電膜13が積層された導電性基板16とからなり、中空状粒子14のシェルは、金属酸化物ナノ粒子14’が凝集した構造となっている。また、中空状粒子14は平均粒子径が500nm程度である。
図2に示す半導体電極11では、入射した光が半導体層15の表面近くで拡散され、光が半導体層15の内部まで導入されない。従って、色素増感太陽電池に用いた場合は、内部に担持された増感色素の位置まで光が入射せず光電効率の低下を招く。
A schematic cross-sectional view of the semiconductor electrode described in Patent Document 2 and Patent Document 3 is shown in FIG.
The semiconductor electrode 11 includes a semiconductor layer 15 composed of hollow particles 14 and a conductive substrate 16 in which a transparent conductive film 13 is laminated on a transparent substrate 12. The shell of the hollow particles 14 is formed of metal oxide nanoparticles 14. 'Has an aggregated structure. The hollow particles 14 have an average particle diameter of about 500 nm.
In the semiconductor electrode 11 shown in FIG. 2, incident light is diffused near the surface of the semiconductor layer 15, and light is not introduced into the semiconductor layer 15. Therefore, when used in a dye-sensitized solar cell, light does not enter the position of the sensitizing dye carried inside, resulting in a decrease in photoelectric efficiency.

これに対して、本発明の金属酸化物半導体電極の模式断面図を図1に示す。
半導体電極1は、中空状粒子4からなる半導体層5と、透明基板2に透明導電膜3が積層された導電性基板6とからなり、中空状粒子4のシェルは、金属酸化物ナノ粒子が凝集した構造ではなく、シェルが連続的に形成された構造となっている。また、中空状粒子4は平均粒子径が1〜95nmである。また、中空状粒子4間に形成される空隙7も小さいものとなる。
図1に示す半導体電極1では、入射した光が半導体層5の表面付近で適度に拡散されるとともに、光が半導体層5の内部まで透過する。これにより、色素増感太陽電池に用いた場合は、表面に担持された増感色素に加えて、半導体層5の内部に担持された増感色素の位置まで光が入射することから、光電効率が大幅に上昇する。
On the other hand, a schematic cross-sectional view of the metal oxide semiconductor electrode of the present invention is shown in FIG.
The semiconductor electrode 1 is composed of a semiconductor layer 5 composed of hollow particles 4 and a conductive substrate 6 in which a transparent conductive film 3 is laminated on a transparent substrate 2. The shell of the hollow particles 4 is made of metal oxide nanoparticles. It is not an aggregated structure but a structure in which shells are formed continuously. The hollow particles 4 have an average particle diameter of 1 to 95 nm. Further, the gaps 7 formed between the hollow particles 4 are also small.
In the semiconductor electrode 1 shown in FIG. 1, the incident light is appropriately diffused near the surface of the semiconductor layer 5, and the light is transmitted to the inside of the semiconductor layer 5. As a result, when used in a dye-sensitized solar cell, light is incident on the position of the sensitizing dye carried inside the semiconductor layer 5 in addition to the sensitizing dye carried on the surface, so that the photoelectric efficiency Will rise significantly.

本発明の金属酸化物半導体電極は、多孔質金属酸化物層を有する。
上記多孔質金属酸化物層の膜厚は、0.1〜100μmであることが好ましい。
上記多孔質金属酸化物層の膜厚が0.1μm未満であると、充分な色素吸着ができないことから、光吸収が効率よく行なえず光電変換効率の低下を招いてしまう。
また、上記多孔質金属酸化物層の膜厚が100μm以上であると、金属酸化物中で電子とホールの再結合がおこり光電変換効率の低下を招いてしまう上、多孔質金属酸化物層を形成する際にクラックが生じやすくなる。
The metal oxide semiconductor electrode of the present invention has a porous metal oxide layer.
The film thickness of the porous metal oxide layer is preferably 0.1 to 100 μm.
If the thickness of the porous metal oxide layer is less than 0.1 μm, sufficient dye adsorption cannot be performed, so that light absorption cannot be performed efficiently, leading to a decrease in photoelectric conversion efficiency.
Moreover, when the film thickness of the porous metal oxide layer is 100 μm or more, electrons and holes are recombined in the metal oxide, leading to a decrease in photoelectric conversion efficiency, and the porous metal oxide layer is Cracks are likely to occur during formation.

上記多孔質金属酸化物層は、上記金属酸化物中空粒子を有する。
上記金属酸化物中空粒子は、平均粒子径の下限が1nm、上限が95nmである。
上記金属酸化物中空粒子の平均粒子径が1nm未満であると、増感色素が浸透・吸着できる大きさを持った空孔を内部に形成することが難しくなり、95nmを超えると、色素増感電池の半導体電極に使用した場合、光が拡散して光電変換効率が低下する。また、電解液の浸透性や、色素の担持量も低下する。上記金属酸化物中空粒子の平均粒子径の好ましい下限は5nm、好ましい上限は75nmである。
なお、上記平均粒子径は、体積平均粒子径であり、例えば、動的光散乱式粒度分布計(Particle Sizing Systems社製、「NICOMP model 380 ZLS−S」)を用いることにより測定することができる。
The porous metal oxide layer has the metal oxide hollow particles.
The metal oxide hollow particles have an average particle diameter with a lower limit of 1 nm and an upper limit of 95 nm.
When the average particle diameter of the metal oxide hollow particles is less than 1 nm, it becomes difficult to form pores having a size capable of penetrating and adsorbing the sensitizing dye. When the average particle diameter exceeds 95 nm, the dye sensitization is performed. When used for a semiconductor electrode of a battery, light diffuses and the photoelectric conversion efficiency decreases. In addition, the permeability of the electrolytic solution and the amount of dye supported are also reduced. The minimum with a preferable average particle diameter of the said metal oxide hollow particle is 5 nm, and a preferable upper limit is 75 nm.
The average particle diameter is a volume average particle diameter, and can be measured by using, for example, a dynamic light scattering particle size distribution analyzer (manufactured by Particle Sizing Systems, “NICOMP model 380 ZLS-S”). .

上記金属酸化物中空粒子は、CV値の好ましい上限が50%である。CV値が50%を超えると、金属酸化物中空粒子が粒子径分布の広いものとなり、光の透過率が低下する場合がある。CV値のより好ましい上限は30%である。なお、CV値は、標準偏差を平均粒子径で割った値の百分率(%)で示される数値である。 In the metal oxide hollow particles, the preferable upper limit of the CV value is 50%. When the CV value exceeds 50%, the metal oxide hollow particles have a wide particle size distribution, and the light transmittance may decrease. A more preferable upper limit of the CV value is 30%. The CV value is a numerical value indicated by a percentage (%) of a value obtained by dividing the standard deviation by the average particle diameter.

上記金属酸化物中空粒子は、単孔構造であってもよく、多孔構造であってもよい。なお、本明細書において、「単孔構造」とは、ただ1つの閉じた空隙を有する構造のことをいい、「多孔構造」とは、複数の空隙を有する構造をいう。 The metal oxide hollow particles may have a single pore structure or a porous structure. In the present specification, the “single pore structure” means a structure having only one closed void, and the “porous structure” means a structure having a plurality of voids.

上記金属酸化物中空粒子の中空率の好ましい下限は5体積%、好ましい上限は90体積%である。5体積%未満であると、空孔内部に吸着できる増感色素量が減少して変換効率の低下を招く。90体積%超えると、金属酸化物中空粒子の粒子強度が低下して、粒子形状を保持しにくくなることがある。
なお、本明細書において、中空率とは、金属酸化物中空粒子全体の体積に対する中空部分の体積の比率のことをいい、例えば、ポロシメーター2000(アムコ社製)等を用いることにより測定することができる。
The preferable lower limit of the hollow ratio of the metal oxide hollow particles is 5% by volume, and the preferable upper limit is 90% by volume. If it is less than 5% by volume, the amount of sensitizing dye that can be adsorbed inside the pores decreases, leading to a decrease in conversion efficiency. If it exceeds 90% by volume, the particle strength of the metal oxide hollow particles may be reduced, making it difficult to maintain the particle shape.
In addition, in this specification, the hollow ratio means the ratio of the volume of the hollow part to the volume of the entire metal oxide hollow particle, and can be measured by using, for example, a porosimeter 2000 (manufactured by AMCO). it can.

上記金属酸化物中空粒子は、外壁(シェル)の形状が、図2に示すような金属酸化物ナノ粒子が凝集した構造ではなく、図1に示すようにシェルが連続的に形成された構造であることが好ましい。シェルが上記形状を有することで、入射光の過度な拡散が抑制され、入射光の透過と拡散をバランスよく行うことができる。 In the metal oxide hollow particles, the shape of the outer wall (shell) is not a structure in which metal oxide nanoparticles are aggregated as shown in FIG. 2, but a structure in which shells are continuously formed as shown in FIG. Preferably there is. When the shell has the above shape, excessive diffusion of incident light is suppressed, and transmission and diffusion of incident light can be performed in a well-balanced manner.

上記金属酸化物中空粒子の外壁の厚さの下限は0.1nmである。上記金属酸化物中空粒子の外壁の厚さが0.1nm未満であると、上記外壁層として充分な強度が得られないことがある。また、好ましい下限は0.3nmであり、好ましい上限は18nmである。
なお、上記外壁層の厚さは、透過型電子顕微鏡で撮影した写真をもとに、粒子100個について外壁層の厚さを測定したものを単純平均した値として求められるものを意味する。
The lower limit of the thickness of the outer wall of the metal oxide hollow particle is 0.1 nm. When the thickness of the outer wall of the metal oxide hollow particle is less than 0.1 nm, sufficient strength as the outer wall layer may not be obtained. Moreover, a preferable minimum is 0.3 nm and a preferable upper limit is 18 nm.
The thickness of the outer wall layer means a value obtained by simply averaging values obtained by measuring the thickness of the outer wall layer for 100 particles based on a photograph taken with a transmission electron microscope.

上記金属酸化物中空粒子は、略真球形であることが好ましく、真球度の好ましい下限は0.25である。0.25未満であると、上記金属酸化物中空粒子の中空率が著しく低下する場合がある。なお、本明細書において、真球度とは、電子顕微鏡を用いて、1つの金属酸化物中空粒子を観察した際に測定される当該1つの金属酸化物中空粒子の最小の幅を最大の幅で除した値を意味する。 The metal oxide hollow particles are preferably substantially spherical, and a preferred lower limit of sphericity is 0.25. If it is less than 0.25, the hollow ratio of the metal oxide hollow particles may be significantly reduced. In this specification, the sphericity is the minimum width of the single metal oxide hollow particle measured when the single metal oxide hollow particle is observed using an electron microscope. It means the value divided by.

上記金属酸化物中空粒子は、酸化ケイ素、酸化チタン、酸化スズ、酸化亜鉛、酸化ジルコニウム、酸化ストロンチウム、酸化ニオブ、酸化セリウム、酸化タングステン、酸化アルミニウム、酸化インジウム、酸化ガリウム及び酸化イットリウムから選択される少なくとも一種の金属酸化物、又は、前記金属酸化物を含有する複合酸化物であることが好ましい。
上記金属酸化物を含有する複合酸化物としては、例えば、酸化インジウム−酸化ガリウム−酸化亜鉛(IGZO)、酸化インジウム−酸化亜鉛(IZO)、酸化亜鉛−酸化スズ(ZTO)、酸化インジウム−酸化スズ−酸化亜鉛(ITZO)、酸化インジウム−酸化スズ(ITO)、酸化ガリウム−酸化亜鉛(GZO)等が挙げられる。
The metal oxide hollow particles are selected from silicon oxide, titanium oxide, tin oxide, zinc oxide, zirconium oxide, strontium oxide, niobium oxide, cerium oxide, tungsten oxide, aluminum oxide, indium oxide, gallium oxide and yttrium oxide. It is preferably at least one metal oxide or a complex oxide containing the metal oxide.
Examples of the composite oxide containing the metal oxide include indium oxide-gallium oxide-zinc oxide (IGZO), indium oxide-zinc oxide (IZO), zinc oxide-tin oxide (ZTO), and indium oxide-tin oxide. -Zinc oxide (ITZO), indium oxide-tin oxide (ITO), gallium oxide-zinc oxide (GZO), etc. are mentioned.

上記多孔質金属酸化物層には、上記金属酸化物中空粒子により空隙が形成される。上記空隙の直径は、使用する増感色素や電解質の種類にもよるが、0.1〜80nmであることが好ましい。上記空隙の直径が0.1nm未満であると、高粘度の増感色素や電解質を用いる場合、空隙内部への浸透・吸着が阻害され変換効率の低下を招いてしまう。 In the porous metal oxide layer, voids are formed by the metal oxide hollow particles. The diameter of the voids is preferably 0.1 to 80 nm, although it depends on the type of sensitizing dye and electrolyte used. If the diameter of the void is less than 0.1 nm, when a highly viscous sensitizing dye or electrolyte is used, penetration and adsorption into the void are inhibited, resulting in a decrease in conversion efficiency.

上記導電性基板は、透明基板と上記透明基板上に形成された透明導電層とからなるものが好ましい。 The conductive substrate is preferably composed of a transparent substrate and a transparent conductive layer formed on the transparent substrate.

上記透明基板としては、透明な基板であれば特に限定されないが、珪酸塩ガラス等のガラス基板等が挙げられる。また、上記ガラス基板は、化学的、熱的に強化させたものを用いてもよい。更に、光透過性を確保できれば、種々のプラスチック基板等を使用してもよい。
上記透明基板の厚さは、0.1〜10mmが好ましく、0.3〜5mmがより好ましい。
Although it will not specifically limit as said transparent substrate if it is a transparent substrate, Glass substrates, such as silicate glass, etc. are mentioned. The glass substrate may be chemically and thermally strengthened. Furthermore, various plastic substrates or the like may be used as long as light transmittance can be secured.
The thickness of the transparent substrate is preferably 0.1 to 10 mm, and more preferably 0.3 to 5 mm.

上記透明導電層としては、InやSnOの導電性金属酸化物からなる層や金属等の導電性材料からなる層が挙げられる。上記導電性金属酸化物としては、例えば、In:Sn(ITO)、SnO:Sb、SnO:F、ZnO:Al、ZnO:F、CdSnO等が挙げられる。 Examples of the transparent conductive layer include a layer made of a conductive metal oxide such as In 2 O 3 or SnO 2 and a layer made of a conductive material such as a metal. Examples of the conductive metal oxide include In 2 O 3 : Sn (ITO), SnO 2 : Sb, SnO 2 : F, ZnO: Al, ZnO: F, and CdSnO 4 .

本発明の金属酸化物半導体電極を製造する方法としては、例えば、金属酸化物半導体中空粒子及び溶媒を含有する金属酸化物半導体中空粒子分散組成物を導電性基板に印刷した後、乾燥する工程を行う方法を用いることができる。 As a method for producing the metal oxide semiconductor electrode of the present invention, for example, a step of printing a metal oxide semiconductor hollow particle-dispersed composition containing metal oxide semiconductor hollow particles and a solvent on a conductive substrate, followed by drying is performed. The method of doing can be used.

上記金属酸化物半導体中空粒子を製造する方法としては、特に限定されないが、酸化ケイ素からなる金属酸化物半導体中空粒子を製造する場合は、例えば、(a)珪酸塩の水溶液および/または酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に同時に添加して、複合酸化物微粒子の平均粒子径が5〜50nmになった時点で電解質塩を添加して複合酸化物微粒子分散液を調製する工程、(b)前記複合酸化物微粒子分散液に、酸を加えて前記複合酸化物微粒子を構成する珪素以外の元素の少なくとも一部を除去する工程を有する方法を用いることが好ましい。
但し、上記方法は、金属酸化物半導体中空粒子の製造の一例であり、このような方法に限定されるわけではない。また、上記方法では、酸化ケイ素からなる金属酸化物半導体中空粒子を製造する場合について記載しているが、上記方法は、酸化チタンからなる金属酸化物半導体中空粒子を製造する場合等にも応用することができる。
The method for producing the metal oxide semiconductor hollow particles is not particularly limited. However, when producing the metal oxide semiconductor hollow particles made of silicon oxide, for example, (a) an aqueous solution of silicate and / or an acidic silicate solution And an alkali-soluble inorganic compound aqueous solution are simultaneously added to the alkali aqueous solution, and when the average particle size of the composite oxide fine particles becomes 5 to 50 nm, an electrolyte salt is added to obtain a composite oxide fine particle dispersion. It is preferable to use a method comprising a step of preparing, and (b) removing at least a part of elements other than silicon constituting the composite oxide fine particles by adding an acid to the composite oxide fine particle dispersion.
However, the said method is an example of manufacture of a metal oxide semiconductor hollow particle, and is not necessarily limited to such a method. Moreover, although the said method has described about the case where the metal oxide semiconductor hollow particle which consists of silicon oxide is manufactured, the said method is applied also to the case where the metal oxide semiconductor hollow particle which consists of titanium oxide is manufactured. be able to.

上記金属酸化物半導体中空粒子の製造方法では、まず工程(a)を行う。
上記珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩、有機塩基の珪酸塩等が好ましい。
上記アルカリ金属珪酸塩としては、例えば、珪酸ナトリウム(水ガラス)や珪酸カリウムが挙げられ、上記有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げられる。
また、アンモニウム珪酸塩、有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。
In the method for producing metal oxide semiconductor hollow particles, step (a) is first performed.
As the silicate, alkali metal silicate, ammonium silicate, organic base silicate, and the like are preferable.
Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, monoethanolamine, diethanolamine, triethanolamine and the like. Of the amines.
The ammonium silicate and organic base silicate also include an alkaline solution obtained by adding ammonia, quaternary ammonium hydroxide, an amine compound or the like to a silicic acid solution.

上記酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られる珪酸液を用いることができ、特に、pH2〜pH4、SiO濃度が約7重量%以下の酸性珪酸液が好ましい。 As the acidic silicic acid solution, a silicic acid solution obtained by removing an alkali by treating an alkali silicate aqueous solution with a cation exchange resin or the like can be used. In particular, pH 2 to pH 4 and SiO 2 concentration is about 7 wt. % Or less acidic silicic acid solution is preferred.

上記無機酸化物としては、Al、B、TiO、ZrO、SnO、Ce、P、Sb、MoO、ZnO、WO等が挙げられる。2種以上の無機酸化物としては、TiO−Al、TiO−ZrO等が挙げられる。
このような無機酸化物の原料として、アルカリ可溶の無機化合物を用いることが好ましく、前記した無機酸化物を構成する金属または非金属のオキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができ、より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノ珪酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウム等が好適である。
Examples of the inorganic oxide, Al 2 O 3, B 2 O 3, TiO 2, ZrO 2, SnO 2, Ce 2 O 3, P 2 O 5, Sb 2 O 3, MoO 3, ZnO 2, WO 3 , etc. Is mentioned. Examples of the two or more inorganic oxides include TiO 2 —Al 2 O 3 and TiO 2 —ZrO 2 .
As a raw material for such an inorganic oxide, an alkali-soluble inorganic compound is preferably used, and an alkali metal salt, an alkaline earth metal salt, or an ammonium salt of a metal or a non-metal oxo acid constituting the inorganic oxide described above. Quaternary ammonium salts, and more specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, Sodium phosphate and the like are preferred.

上記アルカリ水溶液中に添加するシリカ原料と無機化合物の添加割合は、シリカ成分をSiOで表し、シリカ以外の無機化合物をMOで表したときのモル比MO/SiOが0.3〜1.0、特に、0.35〜0.85の範囲となるようにすることが好ましい。MO/SiOが0.3未満では、最終的に得られる金属酸化物半導体中空粒子の空孔容積が充分大きくならず、他方、MO/SiOが1.0を超えると、球状の金属酸化物半導体中空粒子を得ることが困難となり、この結果、得られる金属酸化物半導体中空粒子中の空孔容積の割合が低下する。 The addition ratio of the silica raw material and the inorganic compound added to the alkaline aqueous solution is such that the molar ratio MO X / SiO 2 is 0.3 to 0.3 when the silica component is represented by SiO 2 and the inorganic compound other than silica is represented by MO X. It is preferable to be in the range of 1.0, particularly 0.35 to 0.85. When MO X / SiO 2 is less than 0.3, the pore volume of the finally obtained metal oxide semiconductor hollow particles is not sufficiently large. On the other hand, when MO X / SiO 2 exceeds 1.0, It becomes difficult to obtain the metal oxide semiconductor hollow particles, and as a result, the ratio of the void volume in the obtained metal oxide semiconductor hollow particles decreases.

上記金属酸化物半導体中空粒子の製造方法では、工程(a)において、複合酸化物微粒子の平均粒子径が概ね5〜50nmになった時点(このときの複合酸化物微粒子を一次粒子ということがある)で電解質塩を電解質塩のモル数(M)とSiOのモル数(M)との比(M)/(M)が0.1〜10、好ましくは0.2〜8の範囲で添加することが好ましい。
上記電解質塩としては、塩化ナトリウム、塩化カリウム、硝酸ナトリウム、硝酸カリウム、硫酸ナトリウム、硫酸カリウム、硝酸アンモニウム、硫酸アンモニウム、塩化マグネシウム、硝酸マグネシウム等の水溶性の電解質塩が挙げられる。
In the method for producing metal oxide semiconductor hollow particles, in step (a), when the average particle diameter of the composite oxide fine particles becomes approximately 5 to 50 nm (the composite oxide fine particles at this time may be referred to as primary particles). the number of moles of the electrolyte salt electrolyte salt) (M E) and SiO 2 of moles (M S) and the ratio of (M E) / (M S ) is 0.1 to 10, preferably from 0.2 to 8 It is preferable to add in the range.
Examples of the electrolyte salt include water-soluble electrolyte salts such as sodium chloride, potassium chloride, sodium nitrate, potassium nitrate, sodium sulfate, potassium sulfate, ammonium nitrate, ammonium sulfate, magnesium chloride, and magnesium nitrate.

上記金属酸化物半導体中空粒子の製造方法では、次いで、工程(b)を行う。
上記工程(b)では上記複合酸化物微粒子から、該複合酸化物微粒子を構成する珪素以外の元素の一部または全部を除去することにより内部に空孔を有する金属酸化物半導体中空粒子を製造する。
上記元素の除去に際しては、例えば、鉱酸や有機酸を添加することによって溶解除去したり、陽イオン交換樹脂と接触させてイオン交換除去したり、あるいは、これらの方法を組み合わせることによって除去する。
Next, in the manufacturing method of the metal oxide semiconductor hollow particles, the step (b) is performed.
In the step (b), metal oxide semiconductor hollow particles having voids therein are produced by removing a part or all of elements other than silicon constituting the composite oxide fine particles from the composite oxide fine particles. .
When removing the element, for example, it is removed by dissolution by adding a mineral acid or an organic acid, by ion exchange by contacting with a cation exchange resin, or by a combination of these methods.

上記元素の除去は、得られるシリカ系微粒子のMO/SiOが、0.0001〜0.2、特に、0.0001〜0.1となるまで行うことが好ましい。
元素を除去した分散液は、限外濾過等の公知の洗浄方法により洗浄することができる。この場合、予め分散液中のアルカリ金属イオン、アルカリ土類金属イオンおよびアンモニウムイオン等の一部を除去した後に限外濾過すれば、分散安定性の高いシリカ系微粒子が分散したゾルが得られる。なお、必要に応じて有機溶媒で置換することによって有機溶媒分散ゾルを得ることができる。
上記金属酸化物半導体中空粒子の製造方法では、洗浄後、乾燥し、必要に応じて焼成することができる。
The removal of the element is preferably performed until the MO X / SiO 2 of the obtained silica-based fine particles becomes 0.0001 to 0.2, particularly 0.0001 to 0.1.
The dispersion from which the elements have been removed can be washed by a known washing method such as ultrafiltration. In this case, a sol in which silica-based fine particles with high dispersion stability are dispersed can be obtained by previously removing a part of alkali metal ions, alkaline earth metal ions, ammonium ions and the like in the dispersion liquid and then performing ultrafiltration. An organic solvent-dispersed sol can be obtained by substituting with an organic solvent as necessary.
In the manufacturing method of the said metal oxide semiconductor hollow particle, it can dry after washing | cleaning and can be baked as needed.

上記金属酸化物半導体中空粒子分散組成物を導電性基板上に印刷する方法としては、例えば、ドクターブレード法、スキージ法、ディッピング、スピンコート、スプレー法、スクリーン印刷、スロットコート、カーテンコート等が挙げられる。 Examples of the method for printing the metal oxide semiconductor hollow particle dispersion composition on a conductive substrate include a doctor blade method, a squeegee method, dipping, spin coating, spraying, screen printing, slot coating, curtain coating, and the like. It is done.

本発明の金属酸化物半導体電極の表面及び/又は内部に増感色素が担持された光電極と、対向電極と、前記光電極及び対向電極の間に充填された電解質層とを有する色素増感太陽電池もまた、本発明の1つである。 Dye sensitization comprising a photoelectrode having a sensitizing dye supported on and / or inside a metal oxide semiconductor electrode of the present invention, a counter electrode, and an electrolyte layer filled between the photoelectrode and the counter electrode A solar cell is also one aspect of the present invention.

上記増感色素としては、例えば、ルテニウム−トリス、ルテニウム−ビス型のルテニウム色素、フタロシアニンやポルフィリン、シアニジン色素、メロシアニン色素、ローダミン色素、キサンテン系色素、トリフェニルメタン色素等の有機色素が挙げられる。
また、上記対向電極及び電解質層としては、公知のものを使用することができる。
Examples of the sensitizing dye include ruthenium-tris and ruthenium-bis ruthenium dyes, and organic dyes such as phthalocyanine, porphyrin, cyanidin dye, merocyanine dye, rhodamine dye, xanthene dye, and triphenylmethane dye.
Moreover, a well-known thing can be used as said counter electrode and electrolyte layer.

本発明の金属酸化物半導体電極は、例えば、色素増感太陽電池に用いた場合、光の拡散と透過を適度なものとすることができるとともに、電解液の浸透性や色素の担持量も大幅に改善することが可能となる。 When the metal oxide semiconductor electrode of the present invention is used in, for example, a dye-sensitized solar cell, it can moderate the diffusion and transmission of light, and also greatly increases the permeability of the electrolyte and the amount of the dye supported. It becomes possible to improve.

本発明の金属酸化物半導体電極の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the metal oxide semiconductor electrode of this invention. 従来の金属酸化物半導体電極の一例を模式的に示す断面図である。It is sectional drawing which shows an example of the conventional metal oxide semiconductor electrode typically.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(金属酸化物中空粒子の調製)
平均粒子径5nm、固形分濃度20重量%のTiO分散液50gと純水950gの混合物を80℃まで昇温した。この反応母液のpHは11であり、同母液にTiOとして1.17重量%のチタン酸ナトリウム水溶液4500gとAlとして0.83重量%のアルミン酸ナトリウム水溶液4500gとを同時に添加した。その間、反応液の温度を80℃に保持した。滴下終了後、反応液を室温まで冷却し、透析膜で洗浄して固形分濃度約20重量%のTiO・Al一次粒子分散液を調製した。
この一次粒子分散液50gにイオン交換水170gを加えて98℃に昇温し、この温度を保持しながら、濃度0.5重量%の硫酸ナトリウム5040gを添加し、次いで、TiOとして濃度1.17重量%のチタン酸ナトリウム水溶液300gとAlとしての濃度0.5重量%のアルミン酸ナトリウム水溶液900gを添加して複合酸化物微粒子(1)の分散液を得た。
次いで、透析膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(1)の分散液500gにイオン交換水1125gを加え、さらに濃塩酸を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lとイオン交換水5Lを加えながら透析膜で溶解したアルミニウム塩を分離して固形分濃度20重量%のTiO微粒子の水分散液とし、次いで、透析膜を用いて溶媒をエタノールに置換して固形分濃度20重量%、平均粒子径55nmのTiO中空粒子のアルコール分散液を調製した。
Example 1
(Preparation of metal oxide hollow particles)
A mixture of 50 g of a TiO 2 dispersion having an average particle diameter of 5 nm and a solid content concentration of 20% by weight and 950 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 11, and 4500 g of a 1.17 wt% sodium titanate aqueous solution as TiO 2 and 4500 g of a 0.83 wt% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. After completion of the dropping, the reaction solution was cooled to room temperature and washed with a dialysis membrane to prepare a TiO 2 · Al 2 O 3 primary particle dispersion having a solid concentration of about 20% by weight.
The temperature was raised to 98 ° C. by adding ion exchange water 170g into the primary particle dispersion 50 g, while maintaining this temperature, the addition of concentration 0.5 wt% of sodium sulfate 5040G, then concentration of the TiO 2. A dispersion of composite oxide fine particles (1) was obtained by adding 300 g of a 17 wt% sodium titanate aqueous solution and 900 g of a 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 .
Next, 1125 g of ion-exchanged water is added to 500 g of the dispersion of composite oxide fine particles (1) having a solid concentration of 13 wt% by washing with a dialysis membrane, and concentrated hydrochloric acid is added dropwise to adjust the pH to 1.0. Processed. Next, the aluminum salt dissolved in the dialysis membrane is separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of ion exchange water to obtain an aqueous dispersion of TiO 2 fine particles having a solid content concentration of 20% by weight. Was replaced with ethanol to prepare an alcohol dispersion of TiO 2 hollow particles having a solid content of 20% by weight and an average particle diameter of 55 nm.

(金属酸化物半導体電極の作製)
得られたTiO中空粒子のアルコール分散液75gと、有機バインダ樹脂(ダウケミカル社製、エトセルEC−100)10gと、溶剤(ヤスハラケミカル社製;テルピネオール)80gとを混合し、混合物を得た。得られた混合物からアルコールを真空除去した後、三本ロールにて10分間混練しペースト状物を得た。
透明導電性膜(FTO)を有するガラス基材の透明導電性膜上に、上記TiOペーストをスクリーン印刷法にて塗布し、150℃で10分間乾燥した。次いで、窒素雰囲気下とし、450℃まで昇温して30分間焼成した。その後室温まで放冷して半導体電極を完成させた。なお、多孔質TiO層の厚みは18μmであった。
(Production of metal oxide semiconductor electrode)
75 g of the obtained TiO 2 hollow particle alcohol dispersion liquid, 10 g of an organic binder resin (manufactured by Dow Chemical Company, Etcel EC-100), and 80 g of a solvent (manufactured by Yasuhara Chemical Company; Terpineol) were mixed to obtain a mixture. After the alcohol was removed from the obtained mixture in a vacuum, the mixture was kneaded with a three roll for 10 minutes to obtain a paste.
On the transparent conductive film of the glass substrate having a transparent conductive film (FTO), the TiO 2 paste was applied by screen printing, and dried for 10 minutes at 0.99 ° C.. Subsequently, it was made into nitrogen atmosphere, heated up to 450 degreeC, and baked for 30 minutes. Thereafter, the semiconductor electrode was completed by cooling to room temperature. The thickness of the porous TiO 2 layer was 18 μm.

(実施例2)
平均粒子径6nm、固形分濃度20重量%のZnO分散液50gと純水950gの混合物を80℃まで昇温したものを母液として用い、ZnOとして1.17重量%の亜鉛酸ナトリウム水溶液を用いたこと以外は、実施例1と同様にして中空粒子を作製した。また実施例1と同様にして多孔質酸化亜鉛の電極を作製した。
(Example 2)
A mixture of 50 g of ZnO dispersion having an average particle size of 6 nm and a solid content concentration of 20 wt% and pure water of 950 g was heated to 80 ° C. as a mother liquor, and 1.17 wt% sodium zincate aqueous solution was used as ZnO. Except for this, hollow particles were produced in the same manner as in Example 1. A porous zinc oxide electrode was prepared in the same manner as in Example 1.

(実施例3)
平均粒子径3nm、固形分濃度17重量%のSb分散液50gと純水950gの混合物を80℃まで昇温したものを母液として用い、Sbとして1.17重量%のニオブ酸ナトリウム水溶液を用いたこと以外は、実施例1と同様にして中空粒子を作製した。また実施例1と同様にして多孔質酸化ニオブの電極を作製した。
(Example 3)
A mixture of 50 g of Sb 2 O 5 dispersion having an average particle diameter of 3 nm and a solid concentration of 17 wt% and 950 g of pure water heated to 80 ° C. was used as a mother liquor, and 1.17 wt% niobium as Sb 2 O 5 Hollow particles were produced in the same manner as in Example 1 except that an aqueous sodium acid solution was used. A porous niobium oxide electrode was prepared in the same manner as in Example 1.

(比較例1)
(金属酸化物中空粒子の調製)
チタンイオンを含む硝酸溶液(チタンイオン濃度:2.0mol/l)315mlに、185mlのケロシンと少量の分散剤を加え攪拌することでエマルジョンを得た。このエマルジョンをエマルジョン燃焼装置を用いて700℃にて噴霧燃焼させることによりTiO中空粒子を得た。この中空粒子を大気中400℃で4時間熱処理し、乾燥粉体を得た。このTiO中空粒子粉体をエタノール中に分散して固形分濃度20重量%、平均粒子径458nmのTiO中空粒子のアルコール分散液を調製した。以下実施例1と同様にして多孔質酸化チタンの電極を作製した。
(Comparative Example 1)
(Preparation of metal oxide hollow particles)
An emulsion was obtained by adding 185 ml of kerosene and a small amount of a dispersant to 315 ml of a nitric acid solution containing titanium ions (titanium ion concentration: 2.0 mol / l) and stirring. The emulsion was spray burned at 700 ° C. using an emulsion combustion apparatus to obtain TiO 2 hollow particles. The hollow particles were heat-treated in the atmosphere at 400 ° C. for 4 hours to obtain a dry powder. This TiO 2 hollow particle powder was dispersed in ethanol to prepare an alcohol dispersion of TiO 2 hollow particles having a solid concentration of 20% by weight and an average particle diameter of 458 nm. Thereafter, a porous titanium oxide electrode was produced in the same manner as in Example 1.

(比較例2)
TiO中空粒子の代わりに、中空ではない平均粒子径30nmのTiO粒子(テイカ社製、AMT−600)を用いたこと以外は、実施例1と同様に金属酸化物の電極を作製した。
(Comparative Example 2)
A metal oxide electrode was prepared in the same manner as in Example 1 except that TiO 2 particles having an average particle diameter of 30 nm that were not hollow (AMT-600, manufactured by Teica) were used instead of the TiO 2 hollow particles.

(評価)
(1)平均粒子径の測定
動的光散乱式粒度分布計(Particle Sizing Systems社製、「NICOMP model 380 ZLS−S」)を用いて、実施例及び比較例で得られた粒子の体積平均粒子径及び粒子径のCV値を測定した。
(Evaluation)
(1) Measurement of average particle size Volume average particle size of particles obtained in Examples and Comparative Examples using a dynamic light scattering particle size distribution meter (manufactured by Particle Sizing Systems, "NICOMP model 380 ZLS-S") The CV value of the diameter and the particle diameter was measured.

(2)シェルの膜厚、中空度及び真球度の測定
実施例及び比較例で得られた粒子100個について、透過型電子顕微鏡(TEM)で撮影した写真をもとに、外壁層の厚さを測定したものを単純平均した値としてシェルの膜厚を求めた。また、当該TEM写真から、粒子外径と内孔径を測定し、粒子外径と内孔径の比から中空度を求めた。更に、各粒子の短径と長径を測定した後、短径と長径の比より真球度を求めた。
(2) Measurement of shell film thickness, hollowness and sphericity The thickness of the outer wall layer of 100 particles obtained in Examples and Comparative Examples was taken with a transmission electron microscope (TEM). The thickness of the shell was determined as a simple average of the measured thicknesses. Further, the particle outer diameter and the inner pore diameter were measured from the TEM photograph, and the hollowness was determined from the ratio of the particle outer diameter and the inner pore diameter. Furthermore, after measuring the minor axis and major axis of each particle, the sphericity was determined from the ratio of the minor axis to the major axis.

(3)色素増感太陽電池セルの評価
実施例及び比較例で得られた金属酸化物半導体電極を、色素(ソラロニクス社製、N719)の0.3mMアルコール溶液に室温にて24時間浸した。色素吸着された多孔質金属酸化物層の周りに、30μm厚みのシリコンゴムシートをスペーサーとして設置した。ここに、電解液(ソラロニクス社製、Iodolyte50)を注入し、その上に、気泡を巻き込まないように、対極として白金コーティング付きガラスを重ねて、ダブルクリップにて圧着させ、色素増感太陽電池の簡易セルを得た。有効面積は5mm角とした。
ソーラーシミュレーター及びIV特性測定装置を接続した評価装置にて、AM1.5及び100mW/cmにて、得られた簡易セルの光電変換効率を評価した。
(3) Evaluation of dye-sensitized solar cells The metal oxide semiconductor electrodes obtained in the examples and comparative examples were immersed in a 0.3 mM alcohol solution of a dye (manufactured by Solaronics, N719) at room temperature for 24 hours. A silicon rubber sheet having a thickness of 30 μm was placed as a spacer around the porous metal oxide layer adsorbed with the dye. An electrolyte solution (Iodolyte 50, manufactured by Solaronics Co., Ltd.) is injected here, and a glass with platinum coating is stacked as a counter electrode so as not to entrap air bubbles, and pressure-bonded with a double clip. A simple cell was obtained. The effective area was 5 mm square.
The photoelectric conversion efficiency of the obtained simple cell was evaluated at AM 1.5 and 100 mW / cm 2 using an evaluation apparatus connected with a solar simulator and an IV characteristic measurement apparatus.

Figure 2012104230
Figure 2012104230

本発明によれば、例えば、色素増感太陽電池に用いた場合、光の拡散と透過を適度なものとすることができるとともに、電解液の浸透性や色素の担持量も大幅に改善することが可能な金属酸化物半導体電極、及び、該金属酸化物半導体電極を用いた色素増感太陽電池を提供できる。 According to the present invention, for example, when used in a dye-sensitized solar cell, the diffusion and transmission of light can be made moderate, and the permeability of the electrolyte and the amount of the dye supported can be greatly improved. Can be provided, and a dye-sensitized solar cell using the metal oxide semiconductor electrode can be provided.

Claims (3)

導電性基板と、前記導電性基板の両面又は片面に形成された多孔質金属酸化物層とを有する金属酸化物半導体電極であって、前記多孔質金属酸化物層は、平均粒子径が1〜95nmの金属酸化物中空粒子を含有することを特徴とする金属酸化物半導体電極。 A metal oxide semiconductor electrode having a conductive substrate and a porous metal oxide layer formed on both sides or one side of the conductive substrate, wherein the porous metal oxide layer has an average particle diameter of 1 to 1 A metal oxide semiconductor electrode comprising 95 nm metal oxide hollow particles. 金属酸化物中空粒子は、酸化ケイ素、酸化チタン、酸化スズ、酸化亜鉛、酸化ジルコニウム、酸化ストロンチウム、酸化ニオブ、酸化セリウム、酸化タングステン、酸化アルミニウム、酸化インジウム、酸化ガリウム及び酸化イットリウムから選択される少なくとも一種の金属酸化物、又は、前記金属酸化物を含有する複合酸化物であることを特徴とする請求項1記載の金属酸化物半導体電極。 The metal oxide hollow particles are at least selected from silicon oxide, titanium oxide, tin oxide, zinc oxide, zirconium oxide, strontium oxide, niobium oxide, cerium oxide, tungsten oxide, aluminum oxide, indium oxide, gallium oxide and yttrium oxide. The metal oxide semiconductor electrode according to claim 1, wherein the metal oxide semiconductor electrode is a kind of metal oxide or a composite oxide containing the metal oxide. 請求項1又は2記載の金属酸化物半導体電極の表面及び/又は内部に色素が担持された光電極と、対向電極と、前記光電極及び対向電極の間に充填された電解質層とを有することを特徴とする色素増感太陽電池。
3. A photoelectrode having a dye supported on the surface and / or inside of the metal oxide semiconductor electrode according to claim 1, a counter electrode, and an electrolyte layer filled between the photoelectrode and the counter electrode. A dye-sensitized solar cell characterized by
JP2010248953A 2010-11-05 2010-11-05 Metal oxide semiconductor electrode and dye-sensitized solar cell Pending JP2012104230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010248953A JP2012104230A (en) 2010-11-05 2010-11-05 Metal oxide semiconductor electrode and dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010248953A JP2012104230A (en) 2010-11-05 2010-11-05 Metal oxide semiconductor electrode and dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2012104230A true JP2012104230A (en) 2012-05-31

Family

ID=46394419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010248953A Pending JP2012104230A (en) 2010-11-05 2010-11-05 Metal oxide semiconductor electrode and dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2012104230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133488A1 (en) * 2011-03-28 2012-10-04 積水化学工業株式会社 Photoelectrode, and dye-sensitized solar cell provided with photoelectrode
CN103022267A (en) * 2013-01-14 2013-04-03 厦门大学 Production method of ZnO spherical-empty-shell nanoparticle array
CN113044808A (en) * 2021-03-10 2021-06-29 东南大学 Preparation method of high-refractive-index all-dielectric nanosphere particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105967A (en) * 2006-10-24 2008-05-08 Sumitomo Chemical Co Ltd Compound, photoelectric transducer and photoelectrochemical cell
US20090032104A1 (en) * 2007-08-02 2009-02-05 Electronics And Telecommunications Research Institute Dye-sensitized solar cell having improved energy conversion efficiency and method of fabricating the same
JP2009298614A (en) * 2008-06-11 2009-12-24 Jgc Catalysts & Chemicals Ltd Titanium oxide-based particles and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105967A (en) * 2006-10-24 2008-05-08 Sumitomo Chemical Co Ltd Compound, photoelectric transducer and photoelectrochemical cell
US20090032104A1 (en) * 2007-08-02 2009-02-05 Electronics And Telecommunications Research Institute Dye-sensitized solar cell having improved energy conversion efficiency and method of fabricating the same
JP2009298614A (en) * 2008-06-11 2009-12-24 Jgc Catalysts & Chemicals Ltd Titanium oxide-based particles and its producing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133488A1 (en) * 2011-03-28 2012-10-04 積水化学工業株式会社 Photoelectrode, and dye-sensitized solar cell provided with photoelectrode
CN103022267A (en) * 2013-01-14 2013-04-03 厦门大学 Production method of ZnO spherical-empty-shell nanoparticle array
CN113044808A (en) * 2021-03-10 2021-06-29 东南大学 Preparation method of high-refractive-index all-dielectric nanosphere particles

Similar Documents

Publication Publication Date Title
CN100511718C (en) Nanometer oxide porous membrane electrode and preparing method and application thereof
Zhao et al. TiO2 hollow spheres as light scattering centers in TiO2 photoanodes for dye-sensitized solar cells: the effect of sphere diameter
CN106128772B (en) A kind of preparation method of vulcanized lead quantum dot photovoltaic battery
CN104167293B (en) Dye-sensitized solar cell photoanode and producing method thereof
Wang et al. Hierarchically macro–mesoporous TiO2 film via self-assembled strategy for enhanced efficiency of dye sensitized solar cells
Du et al. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of hierarchically ordered macro-mesoporous TiO 2 film
CN106571240B (en) A kind of preparation method and its usage of hollow silica/titanium dioxide microballoon sphere of original position carbon doped layer time structure
JP2012104230A (en) Metal oxide semiconductor electrode and dye-sensitized solar cell
JP2007179766A (en) Dye-sensitized solar cell
KR101347702B1 (en) Hierarchically structured titanium dioxide powder manufacturing method and quantum-dot-sensitized solar cell manufacturing method using the same
CN111029157B (en) Preparation method of hollow prismatic quaternary nickel-cobalt-tungsten sulfide counter electrode catalyst
CN105244171B (en) A kind of fabricated in situ ZnO nano piece photo-anode film and preparation method thereof
JP5024582B2 (en) Oxide semiconductor electrode, method for producing the same, and dye-sensitized solar cell provided with the same
KR101363709B1 (en) Fabrication of photoanoded of dye sensitized solar cells containing metal nanoparticles decorated silica-titania hollow nanoparticles
KR101264202B1 (en) Mesoporous titanium dioxide membrane, dye-sensitive solar cell comprising the same, and preparation method therof
CN102760579B (en) Titanium dioxide thin-film electrode material for dye-sensitized solar cell and method for preparing titanium oxide thin-film electrode material
CN104538189B (en) Spongy TiO2/ZnO porous nanometer ring material, and preparation and application methods thereof
Yu et al. Enhanced photoelectrochemical performance of mesoporous TiO2 photoanode prepared by multi-step evaporation-induced self-assembly method
CN103021669B (en) A kind of DSSC to electrode and preparation method thereof
Lim et al. One-dimensional SnO2 nanotube solid-state electrolyte for fast electron transport and high light harvesting in solar energy conversion
JP2019054294A (en) Porous semiconductor layer, paste for the same, and dye-sensitized solar cell
CN105869897A (en) Preparation method and application of hollow material CeO2@TiO2
JP5194286B2 (en) Method for producing photoelectrode for dye-sensitized solar cell
CN206726965U (en) Dssc
US20150083225A1 (en) Titania microstructure in a dye solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930