JP2009298614A - Titanium oxide-based particles and its producing method - Google Patents

Titanium oxide-based particles and its producing method Download PDF

Info

Publication number
JP2009298614A
JP2009298614A JP2008152823A JP2008152823A JP2009298614A JP 2009298614 A JP2009298614 A JP 2009298614A JP 2008152823 A JP2008152823 A JP 2008152823A JP 2008152823 A JP2008152823 A JP 2008152823A JP 2009298614 A JP2009298614 A JP 2009298614A
Authority
JP
Japan
Prior art keywords
titanium oxide
particles
silica
dispersion
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008152823A
Other languages
Japanese (ja)
Other versions
JP5657197B2 (en
Inventor
Makoto Muraguchi
良 村口
Toshiharu Hirai
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2008152823A priority Critical patent/JP5657197B2/en
Publication of JP2009298614A publication Critical patent/JP2009298614A/en
Application granted granted Critical
Publication of JP5657197B2 publication Critical patent/JP5657197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide titanium oxide particles which have a low or controlled refractive index and are spherical. <P>SOLUTION: The titanium oxide-based particles consist of a silica-based hollow microparticle and a titanium oxide coating layer on the hollow microparticle surface, and its average particle diameter is in the range of 5-100 nm and its refractive index is in the range of 1.30-2.00. The method for producing the titanium oxide-based particles comprises the following processes (a)-(c); (a) a process of depositing a titanium compound hydrolysate on the surface of a silica-based hollow microparticle by hydrolyzing in adding a titanium compound aqueous solution or a titanium compound aqueous solution and an acid or an alkali to a liquid in which silica-based hollow microparticles are dispersed, (b) a process of adding a hydrogen peroxide aqueous solution to the liquid in which the silica-based hollow microparticles on the surfaces of which the titanium compound hydrolysate is deposited are dispersed so as to control a molar ratio (M<SB>HP</SB>)/(M<SB>Ti</SB>) between a mole number (M<SB>HP</SB>) as H<SB>2</SB>O<SB>2</SB>of the hydrogen peroxide aqueous solution and a mole number (M<SB>Ti</SB>) as TiO<SB>2</SB>of the titanium compound hydrolysate to be 2-50, and (c) a process of hydrothermally treating the dispersion liquid at 80-350°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低屈折率の酸化チタン系粒子およびその製造方法に関する。   The present invention relates to a low refractive index titanium oxide-based particle and a method for producing the same.

従来、酸化チタン粒子については、その化学的性質を利用した種々の用途が知られている。例えば、酸化還元触媒等の触媒材料、触媒担体材料、太陽電池用半導体膜用あるいはNOx除去用等の光触媒材料等の他、高屈折率材料として眼鏡レンズのハードコート膜用フィラー、反射防止膜の基材用高屈折率膜用フィラー等の他、紫外線遮蔽材として化粧料用材料等として用いられている。   Conventionally, various uses using the chemical properties of titanium oxide particles are known. For example, a catalyst material such as a redox catalyst, a catalyst carrier material, a photocatalyst material for a solar cell semiconductor film or NOx removal, etc., as a high refractive index material, a filler for a hard coat film of an eyeglass lens, an antireflection film, etc. In addition to fillers for high refractive index films for base materials, it is used as a material for cosmetics as an ultraviolet shielding material.

しかしながら、用途によっては高屈折率であっても、耐光性、耐候性等の点から、光触媒活性を抑制あるいは光触媒活性を持たない酸化チタンが求められている。このため、本願発明者等はアルカリ、アルカリ土類元素をドーピングしたり、シリカ等で被覆することを試みたが、光触媒活性を完全に抑制することは困難であり、屈折率が低下する問題があった。   However, there is a need for titanium oxide that suppresses photocatalytic activity or does not have photocatalytic activity from the viewpoints of light resistance, weather resistance, etc., even if the refractive index is high. For this reason, the inventors of the present application tried to dope with alkali or alkaline earth element or coat with silica or the like, but it was difficult to completely suppress the photocatalytic activity, and there was a problem that the refractive index was lowered. there were.

また、酸化チタンは、親水性、光触媒活性を有しているために、汚れ防止あるいは除去が期待されており、例えば、屋外で用いられる建材やディスプレイ等の用途が期待されている。しかしながら、酸化チタンは屈折率が高いためにギラツキ感があり、屋外での使用が限定されるという問題点があった。また、反射防止膜の下層に設ける高屈折率膜のフィラーとして用いる場合、基材の屈折率、反射防止膜の屈折率によって、高屈折率膜の屈折率を調整する必要があり、この場合、マトリックスの屈折率によって、酸化チタン粒子の屈折率、含有量を調整していた。これらの用途では、このため球状で、屈折率の低い、あるいは屈折率の調整された酸化チタン粒子が求められていた。   In addition, since titanium oxide has hydrophilicity and photocatalytic activity, it is expected to prevent or remove dirt. For example, it is expected to be used for building materials and displays used outdoors. However, since titanium oxide has a high refractive index, it has a glare and has a problem in that its use outdoors is limited. In addition, when used as a filler for a high refractive index film provided in the lower layer of the antireflection film, it is necessary to adjust the refractive index of the high refractive index film by the refractive index of the base material and the refractive index of the antireflection film. The refractive index and content of the titanium oxide particles were adjusted by the refractive index of the matrix. In these applications, titanium oxide particles that are spherical and have a low refractive index or an adjusted refractive index have been demanded.

さらに、化粧料の分野においては紫外線遮蔽材として酸化チタン粒子が使用されているが、酸化チタン自体の屈折率が高いためにギラツキ感や白浮き現象を伴うことがあり、このため屈折率の低い、あるいは屈折率の調整された酸化チタン粒子が求められている。   Furthermore, in the field of cosmetics, titanium oxide particles are used as an ultraviolet shielding material. However, since the refractive index of titanium oxide itself is high, it may be accompanied by glare and white floating phenomenon, and therefore the refractive index is low. Alternatively, there is a need for titanium oxide particles having an adjusted refractive index.

さらにまた、酸化チタン粒子が結晶性である場合は、アスペクト比が概ね2以上の棒状の粒子が得られ、このような棒状粒子を高屈折率膜用フィラー等として用いると基材との密着性が不十分であったり、粒子が細密充填しないために膜の強度が不十分となったり、光触媒性能が不十分となることがあった。さらに、化粧料に用いた場合、感触に異物感を伴う問題があった。このため本願出願人は、無機酸化物微粒子表面にチタン水酸化物を析出させて得た球状の酸化チタン粒子を提案している。(特許文献1、特開2003−12324号公報)
特開2003−12324号公報
Furthermore, when the titanium oxide particles are crystalline, rod-like particles having an aspect ratio of approximately 2 or more are obtained. When such rod-like particles are used as a filler for a high refractive index film, the adhesion to the substrate is obtained. May be insufficient, the particles may not be densely packed, resulting in insufficient film strength, and insufficient photocatalytic performance. Furthermore, when used in cosmetics, there is a problem that the touch is accompanied by a foreign body sensation. For this reason, the present applicant has proposed spherical titanium oxide particles obtained by precipitating titanium hydroxide on the surface of the inorganic oxide fine particles. (Patent Document 1, Japanese Patent Application Laid-Open No. 2003-12324)
JP 2003-12324 A

上記した屈折率の低い、あるいは屈折率の調整され、しかも球状の酸化チタン粒子が求められていた。
また、特許文献1に記載の方法では、球状の酸化チタン系粒子が得られるものの、所望の低屈折率の酸化チタン粒子が得られない場合や、粒子径が小さい場合、得られる酸化チタン粒子が凝集していたり、均一な被覆層を形成することが困難であったりするなど、問題点があった。
There has been a demand for spherical titanium oxide particles having a low refractive index or a refractive index adjusted as described above.
In addition, in the method described in Patent Document 1, although spherical titanium oxide-based particles can be obtained, when titanium oxide particles having a desired low refractive index cannot be obtained, or when the particle diameter is small, the obtained titanium oxide particles are There are problems such as aggregation and difficulty in forming a uniform coating layer.

本発明者らは、上記問題点に鑑み鋭意検討した結果、球状のシリカ系中空微粒子の表面にペルオキソチタン酸を用いて酸化チタンを被覆し、必要に応じてアルカリ存在下で水熱処理することによって屈折率が1.3〜2.0という従来の酸化チタンでは考えられなかった低屈折率で、かつ、光触媒活性の調節されたコロイド域の酸化チタン微粒子が得られることを見いだし、本発明を完成するに至った。   As a result of intensive investigations in view of the above problems, the present inventors coated titanium oxide with peroxotitanic acid on the surface of spherical silica-based hollow fine particles, and hydrothermally treated in the presence of alkali as necessary. It was found that colloidal region titanium oxide fine particles having a refractive index of 1.3 to 2.0, a low refractive index that was not conceivable with conventional titanium oxide, and whose photocatalytic activity was adjusted, were obtained, and the present invention was completed. .

本発明の構成は以下の通りである。
[1]シリカ系中空微粒子と、中空微粒子表面の酸化チタン被覆層とからなり、
平均粒子径が5〜100nmの範囲にあり、
屈折率が1.30〜2.00の範囲にあることを特徴とする酸化チタン系粒子。
[2]前記シリカ系中空微粒子の平均粒子径が3〜100nmの範囲にあり、屈折率が1.
15〜1.40の範囲にある[1]の酸化チタン系粒子。
[3]前記酸化チタン被覆層の平均厚さが0.1〜20nmの範囲にある(ただし、被覆層
の厚さは平均粒子径の1/2を越えない)[1]または[2]の酸化チタン系粒子。
The configuration of the present invention is as follows.
[1] A silica-based hollow fine particle and a titanium oxide coating layer on the surface of the hollow fine particle,
The average particle size is in the range of 5 to 100 nm,
A titanium oxide-based particle having a refractive index in the range of 1.30 to 2.00.
[2] The silica-based hollow fine particles have an average particle diameter in the range of 3 to 100 nm and a refractive index of 1.
[1] Titanium oxide-based particles in the range of 15 to 1.40.
[3] The average thickness of the titanium oxide coating layer is in the range of 0.1 to 20 nm (however, the thickness of the coating layer does not exceed 1/2 of the average particle diameter). Titanium oxide particles.

[4]前記酸化チタン粒子の下記式(1)で表される球状係数が0.5〜1の範囲にある[1]〜[3]のいずれかに記載の酸化チタン粒子。
球状係数=(DS)/(DL)・・・・・・(1)
(但し、(DL)は平均粒子最長径、(DS)は最長径の中点で最長径と直交する平均短径)
[5]前記酸化チタン被覆層がアナタース型、ルチル型またはブルッカイト型から選ばれる
1種以上の酸化チタンである[1]〜[4]の酸化チタン粒子。
[4] The titanium oxide particles according to any one of [1] to [3], wherein the spherical coefficient represented by the following formula (1) of the titanium oxide particles is in the range of 0.5 to 1.
Spherical coefficient = (D S ) / (D L ) (1)
(However, (D L ) is the longest average particle diameter, (D S ) is the midpoint of the longest diameter and the average short diameter perpendicular to the longest diameter)
[5] The titanium oxide particles according to [1] to [4], wherein the titanium oxide coating layer is one or more types of titanium oxide selected from anatase type, rutile type, and brookite type.

[6]下記式(1)で表される有機珪素化合物またはこれらの加水分解物で表面処理されている[1]〜[5]の酸化チタン系粒子。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
[7]下記の工程(a)〜(c)からなる酸化チタン系粒子の製造方法。
(a)シリカ系中空微粒子分散液に、チタン化合物水溶液またはチタン化合物水溶液と酸またはアルカリを加えながら加水分解し、シリカ系中空微粒子表面にチタン化合物加水分解物を析出させる工程。
(b)チタン化合物加水分解物を表面に析出させたシリカ系中空微粒子分散液に、過酸化水素のH22としてのモル数(MHP)とチタン化合物加水分解物のTiO2としてのモル数(MTi)とのモル比(MHP)/(MTi)が2〜50の範囲となるように過酸化水素水を加える工程。
(c)分散液を80〜350℃で水熱処理する工程。
[6] The titanium oxide-based particles according to [1] to [5], which are surface-treated with an organosilicon compound represented by the following formula (1) or a hydrolyzate thereof.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)
[7] A method for producing titanium oxide-based particles comprising the following steps (a) to (c).
(A) A step of hydrolyzing a silica-based hollow fine particle dispersion while adding a titanium compound aqueous solution or a titanium compound aqueous solution and an acid or alkali to precipitate a titanium compound hydrolyzate on the surface of the silica-based hollow fine particles.
(B) In a silica-based hollow fine particle dispersion having a titanium compound hydrolyzate deposited on the surface, the number of moles of hydrogen peroxide as H 2 O 2 (M HP ) and the mole of titanium compound hydrolyzate as TiO 2 the number (M Ti) molar ratio of (M HP) / (M Ti ) is the step of adding a hydrogen peroxide solution to be in the range of 2 to 50.
(C) A step of hydrothermally treating the dispersion at 80 to 350 ° C.

[8]下記の工程(ab)〜(c)からなる酸化チタン系粒子の製造方法。
(ab)シリカ系中空微粒子分散液に、ペルオキソチタン酸水溶液を加える工程。
(c)分散液を80〜350℃で水熱処理する工程。
[9]前記工程(c)の後、下記の工程(d)を行う[6]または[7]の酸化チタン系粒子の製造方法。
(d)pH7.5〜13.5に調整した分散液を80〜350℃で水熱処理する工程。
[10]平均粒子径が5〜500nmの範囲にあり、屈折率が1.3〜2.0の範囲にある[6]〜[8]の酸化チタン系粒子の製造方法。
[8] A method for producing titanium oxide-based particles comprising the following steps (ab) to (c).
(Ab) A step of adding a peroxotitanic acid aqueous solution to the silica-based hollow fine particle dispersion.
(C) A step of hydrothermally treating the dispersion at 80 to 350 ° C.
[9] The method for producing titanium oxide-based particles according to [6] or [7], wherein the following step (d) is performed after the step (c).
(D) A step of hydrothermally treating the dispersion adjusted to pH 7.5 to 13.5 at 80 to 350 ° C.
[10] The method for producing titanium oxide-based particles according to [6] to [8], wherein the average particle diameter is in the range of 5 to 500 nm and the refractive index is in the range of 1.3 to 2.0.

本発明によれば、真球状で、平均粒子径が5〜500nmの範囲にあり、屈折率が1.
30〜2.00の範囲にある低屈折率の酸化チタン系粒子およびその製造方法を提供することができる。
According to the present invention, it is spherical and has an average particle diameter in the range of 5 to 500 nm and a refractive index of 1.
A titanium oxide-based particle having a low refractive index in the range of 30 to 2.00 and a method for producing the same can be provided.

かかる酸化チタン系粒子は、従来の酸化チタンでは考えられなかった、低屈折率でありながら、光触媒活性を有しており、さらに低屈折でありながら、適度に光触媒活性を有していたり、紫外線遮蔽能を有し、また、所望の屈折率に調整できることから、被膜という特性もあり、被膜配合剤、屈折率調整用配合剤、化粧料配合剤等に有用である。   Such titanium oxide-based particles have a photocatalytic activity while having a low refractive index, which has not been considered in conventional titanium oxide, and have a moderately photocatalytic activity while having a low refractive index, Since it has a shielding ability and can be adjusted to a desired refractive index, it also has a characteristic of a film, and is useful as a film compounding agent, a compounding agent for adjusting the refractive index, a cosmetic compounding agent and the like.

以下、本発明に係る酸化チタン系粒子について具体的に説明する。
[酸化チタン系粒子]
本発明に係る酸化チタン系粒子は、酸化チタンでシリカ系中空微粒子を被覆してなり、平均粒子径が5〜500nmの範囲にあり、屈折率が1.30〜2.00の範囲にあることを特徴としている。なお、本発明の「酸化チタン系」とは、酸化チタン単独物からなるものではなく、シリカ成分を含むものである。
Hereinafter, the titanium oxide particles according to the present invention will be specifically described.
[Titanium oxide particles]
The titanium oxide-based particles according to the present invention are formed by coating silica-based hollow fine particles with titanium oxide, the average particle diameter is in the range of 5 to 500 nm, and the refractive index is in the range of 1.30 to 2.00. It is characterized by. The “titanium oxide-based” of the present invention does not consist of titanium oxide alone but includes a silica component.

シリカ系中空微粒子
本発明に用いるシリカ系中空微粒子は、平均粒子径が3〜100nm、さらには5〜80nmの範囲にあることが好ましい。
Silica-based hollow fine particles The silica-based hollow fine particles used in the present invention preferably have an average particle size of 3 to 100 nm, more preferably 5 to 80 nm.

そもそもシリカ系中空微粒子の大きさは、前記範囲の下限未満のものは得ること自体が困難であり、得られたとしても、屈折率を充分に低くすることができないために、仮に被覆層を形成しても、低屈折率の酸化チタン系粒子を得ることが困難である。   In the first place, it is difficult to obtain a silica-based hollow fine particle having a size less than the lower limit of the above range, and even if it is obtained, the refractive index cannot be sufficiently lowered. Even so, it is difficult to obtain titanium oxide particles having a low refractive index.

シリカ系中空微粒子が前記範囲の平均粒子径にあると、透明性に優れた透明被膜が得られる。
本発明で使用されるシリカ系中空微粒子の屈折率は、1.15〜1.40にあり、好ましくは1.15〜1.35の範囲にある。この屈折率の範囲にあるシリカ系中空微粒子を使用すると所望の低屈折率酸化チタン系粒子を調製できる。前記範囲の下限未満の屈折率を有するシリカ系中空微粒子は得ること自体が困難であり、前記範囲を越える屈折率を有するものは、シリカ系中空微粒子を使用する意義が乏しく、あるいは実質的にシリカ系中実微粒子であり、所望の屈折率の低い酸化チタン系粒子を得ることが困難となる。
When the silica-based hollow fine particles have an average particle diameter in the above range, a transparent film having excellent transparency can be obtained.
The refractive index of the silica-based hollow fine particles used in the present invention is 1.15 to 1.40, preferably 1.15 to 1.35. When silica-based hollow fine particles in this refractive index range are used, desired low refractive index titanium oxide-based particles can be prepared. It is difficult to obtain silica-based hollow fine particles having a refractive index below the lower limit of the above range, and those having a refractive index exceeding the above range have little significance in using silica-based hollow fine particles, or substantially silica. It becomes difficult to obtain titanium oxide-based particles that are solid solid particles and have a desired low refractive index.

シリカ中空微粒子の屈折率は、中空微粒子を構成する中空部分と外殻層との量比により、中空部分の量が増えれば、屈折率は低くなり、外殻層の部分が増えれば屈折率は高くなる。   The refractive index of the hollow silica fine particles is reduced by increasing the amount of the hollow portion due to the ratio of the hollow portions constituting the hollow fine particles and the outer shell layer, and the refractive index decreases if the outer shell layer portion is increased. Get higher.

平均粒子径(Dp)に対する外殻層の厚み(Ts)の比(Ts/Dp)は1/20〜1/5、好ましくは1/20〜1/10の範囲にあることが望ましい。
シリカ系中空微粒子の形状は通常、球状形状のものが使用される。この球状形状は、後述する球状係数が0.5〜1の範囲にあるものが好ましく、この球状係数は、後述する酸化チタン被覆層を形成しても維持されるか、さらに球状度が向上する場合がある。なお後述する製造方法以外の方法では、凝集したり、表面に選択的に酸化チタンが析出せず、別途に酸化チタン微粒子が生成することがある。
The ratio (T s / D p ) of the thickness (T s ) of the outer shell layer to the average particle diameter (D p ) should be in the range of 1/20 to 1/5, preferably 1/20 to 1/10. desirable.
The shape of the silica-based hollow fine particles is usually a spherical shape. This spherical shape preferably has a spherical coefficient in the range of 0.5 to 1 described later. This spherical coefficient is maintained even when a titanium oxide coating layer described later is formed, or further improves the sphericity. There is a case. In addition, in a method other than the manufacturing method described later, agglomeration or titanium oxide does not selectively precipitate on the surface, and titanium oxide fine particles may be generated separately.

本発明に用いるシリカ系中空微粒子としては、本願出願人の出願による特開2001−233611号公報、特開2003−192994号公報等に開示したシリカ系中空微粒子は好適に採用することができる。   As the silica-based hollow fine particles used in the present invention, silica-based hollow fine particles disclosed in Japanese Patent Application Laid-Open Nos. 2001-233611 and 2003-192994 filed by the applicant of the present application can be suitably employed.

酸化チタン被覆層
本発明では前記シリカ系中空微粒子表面に酸化チタンからなる酸化チタン被覆層が形成されている。酸化チタン被覆層の平均厚さは、0.1〜100nm、好ましくは0.5〜15nmの範囲にあることが望ましい。
Titanium oxide coating layer In the present invention, a titanium oxide coating layer made of titanium oxide is formed on the surface of the silica-based hollow fine particles. The average thickness of the titanium oxide coating layer is 0.1 to 100 nm, preferably 0.5 to 15 nm.

この範囲にあれば、従来の酸化チタン系微粒子よりも、低屈折率の酸化チタン系微粒子が得られる。
酸化チタン被覆層の平均厚さが薄い場合、光触媒活性、紫外線遮蔽効果が不充分となる場合があり、酸化チタン被覆層の平均厚さが厚すぎると、シリカ系中空微粒子の平均粒子径が小さい場合に、得られる粒子の屈折率が充分低くならず、また、酸化チタン被覆層を厚くなると、被覆層とは別に、酸化チタンからのなる微細な粒子が生成し、被覆層の形成にあたらない粒子が増えることがある。
Within this range, titanium oxide-based fine particles having a lower refractive index than conventional titanium oxide-based fine particles can be obtained.
When the average thickness of the titanium oxide coating layer is thin, the photocatalytic activity and the ultraviolet shielding effect may be insufficient. When the average thickness of the titanium oxide coating layer is too thick, the average particle size of the silica-based hollow fine particles is small. In some cases, the refractive index of the obtained particles is not sufficiently low, and when the titanium oxide coating layer is thickened, fine particles made of titanium oxide are generated separately from the coating layer and do not form the coating layer. Particles may increase.

酸化チタン系粒子の屈折率は、酸化チタン被覆層の厚みと、シリカ系中空微粒子の平均粒子径との比率を適宜変更することによって、調整可能であり、比率(酸化チタン被覆層の厚み/酸化チタン系粒子の平均粒子径)を小さくすれば、屈折率は低くなり、該比率を大きくすれば屈折率は高くなる。   The refractive index of the titanium oxide-based particles can be adjusted by appropriately changing the ratio between the thickness of the titanium oxide coating layer and the average particle diameter of the silica-based hollow fine particles, and the ratio (thickness of titanium oxide coating layer / oxidation) If the average particle diameter (titanium-based particles) is reduced, the refractive index is decreased, and if the ratio is increased, the refractive index is increased.

また、酸化チタン被覆層の厚みは酸化チタン系粒子の平均粒子径の概ね1/20〜1/4、好ましくは1/10〜1/6の範囲にあることが望ましい。この範囲にあれば、充分な光触媒活性、紫外線遮蔽性能等とともに、低屈折率を達成できる。
このような被覆層の形成方法は、後述する製造方法に示されるとおりである。
Moreover, the thickness of the titanium oxide coating layer is desirably in the range of about 1/20 to 1/4, preferably 1/10 to 1/6, of the average particle diameter of the titanium oxide-based particles. If it is in this range, a low refractive index can be achieved with sufficient photocatalytic activity, ultraviolet shielding performance and the like.
The method for forming such a coating layer is as shown in the manufacturing method described later.

酸化チタン系粒子の特性
本発明の酸化チタン系粒子の平均粒子径は5〜100nm、さらには10〜80nmの範囲にあることが好ましい。
Characteristics of Titanium Oxide-Based Particles The average particle diameter of the titanium oxide-based particles of the present invention is preferably 5 to 100 nm, more preferably 10 to 80 nm.

酸化チタン系粒子の平均粒子径が前記範囲の下限より小さいものは、シリカ系中空微粒子自体を得ることが困難であり、また、酸化チタンを被覆する際に凝集する傾向があり、酸化チタン系粒子の平均粒子径が前記範囲の上限を越えると、被覆に用いるシリカ系中空微粒子自体の製造に長時間を要し、また、酸化チタン被覆層の厚い粒子を製造する場合にシリカ系中空微粒子の表面に選択的に被覆することが困難となる場合があり、生産性、経済性が問題となる他、透明性が低下することがある。   When the average particle diameter of the titanium oxide particles is smaller than the lower limit of the above range, it is difficult to obtain silica-based hollow fine particles themselves, and there is a tendency to aggregate when the titanium oxide particles are coated. When the average particle diameter of the silica exceeds the upper limit of the above range, it takes a long time to produce the silica-based hollow fine particles themselves used for coating, and the surface of the silica-based hollow fine particles when producing thick particles of the titanium oxide coating layer. In some cases, it may be difficult to selectively coat the film, which may cause problems in productivity and economy, and may reduce transparency.

本発明の酸化チタン系粒子の屈折率は1.30〜2.00、好ましくは1.30〜1.80の範囲にあることが望ましい。酸化チタン系粒子の屈折率が前記範囲の下限よりも小さい場合、場合によって、酸化チタン被覆量が少ないこと示し、充分な光触媒活性、紫外線遮蔽性能等が得られない場合がある。   The refractive index of the titanium oxide-based particles of the present invention is desirably 1.30 to 2.00, preferably 1.30 to 1.80. When the refractive index of the titanium oxide-based particles is smaller than the lower limit of the above range, it may indicate that the amount of titanium oxide coating is small, and sufficient photocatalytic activity, ultraviolet shielding performance, etc. may not be obtained.

酸化チタン系粒子の屈折率が前記範囲を越えて高いものは、本発明の構成とする必要がなく、単なる酸化チタン粒子であり、また、本発明の目的であり低屈折率を達成しない。
本発明では、シリカ系中空微粒子および酸化チタン系粒子の屈折率は下記の方法によって測定する。
When the refractive index of the titanium oxide-based particles is higher than the above range, it is not necessary to have the constitution of the present invention, and it is a mere titanium oxide particle, and is an object of the present invention and does not achieve a low refractive index.
In the present invention, the refractive index of silica-based hollow fine particles and titanium oxide-based particles is measured by the following method.

(1)粒子分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率を粒子の屈折率とする。
本発明に係る酸化チタン系粒子は、下記式(1)で表される球状係数が0.5〜1、好ま
しくは0.7〜1の範囲にあることが望ましい。
球状係数=(DS)/(DL)・・・・・・(1)
(但し、(DL)は平均粒子最長径、(DS)は最長径の中点で最長径と直交する平均短径)
酸化チタン系粒子の球状係数が1を越えることはなく、酸化チタン系粒子の球状係数が0.5未満の場合は、従来公知の方法で得られるアスペクト比が概ね2以上の棒状の酸化チタン系粒子と同様、フィラー等として用いると基材との密着性が不十分であったり、粒子が細密充填しないために膜の強度が不十分となったり、光触媒性能が不十分となることがあり、さらに、化粧料に用いた場合、感触に異物感を伴う場合がある。
(1) The particle dispersion is taken in an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is defined as the refractive index of the particles.
The titanium oxide-based particles according to the present invention desirably have a spherical coefficient represented by the following formula (1) in the range of 0.5 to 1, preferably 0.7 to 1.
Spherical coefficient = (D S ) / (D L ) (1)
(However, (D L ) is the longest average particle diameter, (D S ) is the midpoint of the longest diameter and the average short diameter perpendicular to the longest diameter)
When the spherical coefficient of the titanium oxide-based particles does not exceed 1 and the spherical coefficient of the titanium oxide-based particles is less than 0.5, a rod-shaped titanium oxide system having an aspect ratio of approximately 2 or more obtained by a conventionally known method Like the particles, if used as a filler or the like, the adhesion with the substrate is insufficient, the particles are not densely packed, the film strength is insufficient, the photocatalytic performance may be insufficient, Furthermore, when used in cosmetics, the touch may be accompanied by a foreign body sensation.

本発明の球状係数は、透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について最長径(DL)および最長径の中点で直交する短径(DS)を測定し、各平均値の比として求めることができる。なお、同一粒子について3回測定したところ、実質的に同じ値が得られた。 The spherical coefficient of the present invention was obtained by taking a transmission electron micrograph (TEM), measuring the longest diameter (D L ) and the short diameter (D S ) perpendicular to the midpoint of the longest diameter for 100 particles, It can be obtained as a ratio of average values. When the same particle was measured three times, substantially the same value was obtained.

酸化チタン系粒子の平均粒子径は前記最長径(DL)+短径(DS)の1/2として表した。
また、本発明に用いるシリカ系中空微粒子の平均粒子径は、電子顕微鏡写真を撮影し、100個の粒子について粒子径を測定し、その平均値として求めることができる。
The average particle diameter of the titanium oxide-based particles was expressed as ½ of the longest diameter (D L ) + short diameter (D S ).
The average particle diameter of the silica-based hollow fine particles used in the present invention can be determined as an average value obtained by taking an electron micrograph and measuring the particle diameter of 100 particles.

本発明の酸化チタン粒子は、酸化チタン被覆層がアナタース型、ルチル型またはブルッカイト型から選ばれる1種以上の酸化チタンであることが好ましい。酸化チタンがこのような結晶形を有していると、光触媒活性、紫外線遮蔽性能に優れている。   In the titanium oxide particles of the present invention, the titanium oxide coating layer is preferably at least one titanium oxide selected from anatase type, rutile type, and brookite type. When titanium oxide has such a crystal form, it is excellent in photocatalytic activity and ultraviolet shielding performance.

なお、結晶形はX線回折法(例えば、理学電機製:LAD−IIC型、Cu管球、
35kV、12.5mA)により同定することができる。
The crystal form is X-ray diffractometry (for example, manufactured by Rigaku Corporation: LAD-IIC type, Cu tube,
35 kV, 12.5 mA).

本発明の酸化チタン系粒子は、下記式(1)で表される有機珪素化合物またはこれらの加
水分解物で表面処理されていることが好ましい。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
The titanium oxide-based particles of the present invention are preferably surface-treated with an organosilicon compound represented by the following formula (1) or a hydrolyzate thereof.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)

このような式(1)で表される有機珪素化合物としてはテトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプ
ロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメ
トキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエ
トキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピル
メチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラ
ン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン、等が挙げられる。
Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3- Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxy Silane, γ-glycidoxymethyltriexisilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) a Acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyl Triethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriiso Propoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β ( Minoechiru) .gamma.-aminopropyltrimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyltrichlorosilane, and the like.

このような有機珪素化合物で表面処理されていると、被膜配合剤として被膜に配合する場合に、分散媒、バインダーあるいはマトリックス中に均一に分散するとともに密に充填することができ、膜の強度、耐擦傷性に優れた透明被膜を得ることができる。   When surface-treated with such an organosilicon compound, when blended into a film as a film compounding agent, it can be uniformly dispersed and dispersed in a dispersion medium, binder or matrix, and the film strength, A transparent film excellent in scratch resistance can be obtained.

また、用途によって、紫外線遮蔽能を維持しつつ、光触媒活性を抑制したり、耐光性を向上させることができる。
酸化チタン系粒子と有機珪素化合物との量比(有機珪素化合物の固形分としての重量/酸化チタン系粒子の重量)は酸化チタン系粒子の平均粒子径によっても異なるが概ね1.0以下、好ましくは0.3以下の範囲にあることが望ましい。
Moreover, photocatalytic activity can be suppressed or light resistance can be improved, maintaining an ultraviolet-ray shielding capability depending on a use.
The amount ratio of titanium oxide-based particles to the organosilicon compound (weight as the solid content of the organosilicon compound / weight of the titanium oxide-based particles) varies depending on the average particle diameter of the titanium oxide-based particles, but is generally 1.0 or less, preferably Is preferably in the range of 0.3 or less.

前記重量比が少ないと、たとえば塗布液に配合する場合、マトリックス形成成分との親和性が低く、塗料中での分散性、安定性が不充分となり、塗料中で微粒子が凝集することがあり、緻密な透明被膜が得られないことがあり、基材との密着性、膜の強度、耐擦傷性等が不充分となることがある。   When the weight ratio is small, for example, when blended in a coating solution, the affinity with the matrix forming component is low, the dispersibility in the paint, the stability is insufficient, and the fine particles may aggregate in the paint, A dense transparent film may not be obtained, and adhesion to the substrate, film strength, scratch resistance, and the like may be insufficient.

前記重量比が高すぎても、塗料中での分散性がさらに向上することもなく、酸化チタン系粒子中の酸化チタンの割合が低くなるために充分な紫外線遮蔽能が得られない場合がある。
このような本発明に係る酸化チタン系粒子は以下の製造方法で作製することができる。
Even if the weight ratio is too high, dispersibility in the paint is not further improved, and the ratio of titanium oxide in the titanium oxide-based particles is low, so that sufficient ultraviolet light shielding ability may not be obtained. .
Such titanium oxide-based particles according to the present invention can be produced by the following production method.

[酸化チタン系粒子の製造方法]
まず、本発明に係る第1の酸化チタン系粒子の製造方法について説明する。
[Method for producing titanium oxide-based particles]
First, the manufacturing method of the 1st titanium oxide type particle | grains which concern on this invention is demonstrated.

本発明に係る第1の酸化チタン系粒子の製造方法は、下記の工程(a)〜(c)からなる。
(a)シリカ系中空微粒子分散液に、チタン化合物水溶液またはチタン化合物水溶液と酸またはアルカリを加えながら加水分解し、シリカ系中空微粒子表面にチタン化合物加水分解物を析出させる工程。
(b)チタン化合物加水分解物を表面に析出させたシリカ系中空微粒子分散液に過酸化水素水を加える工程。
(c)分散液を80〜350℃で水熱処理する工程。
The manufacturing method of the 1st titanium oxide type particle which concerns on this invention consists of the following process (a)-(c).
(A) A step of hydrolyzing a silica-based hollow fine particle dispersion while adding a titanium compound aqueous solution or a titanium compound aqueous solution and an acid or alkali to precipitate a titanium compound hydrolyzate on the surface of the silica-based hollow fine particles.
(B) A step of adding aqueous hydrogen peroxide to a silica-based hollow fine particle dispersion having a titanium compound hydrolyzate deposited on the surface thereof.
(C) A step of hydrothermally treating the dispersion at 80 to 350 ° C.

工程(a)
シリカ系中空微粒子は前記した通りである。
チタン化合物としては、水溶性であれば特に制限はなく、具体的には4塩化チタン、3塩化チタン、硫酸チタン、硫酸チタニル、水素化チタン等があげられる。さらに、チタンアルコキシドあるいはこれらの部分加水分解物を用いることもできる。またチタンアルコ
キシドとしては、Ti(OR)4(R:炭化水素基)で表されるチタンアルコキシドが好適に用いられ、例えば、テトライソプロピルチタネート、テトラノルマルブチルチタネート、テトラ(2−エチルヘキシル)チタネート等が挙げられる。チタンアルコキシドはそのまま用いてもよく、アルコール溶液として用いることもできる。
Step (a)
The silica-based hollow fine particles are as described above.
The titanium compound is not particularly limited as long as it is water-soluble, and specific examples include titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, and titanium hydride. Furthermore, titanium alkoxide or a partial hydrolyzate thereof can also be used. As the titanium alkoxide, a titanium alkoxide represented by Ti (OR) 4 (R: hydrocarbon group) is preferably used. For example, tetraisopropyl titanate, tetranormal butyl titanate, tetra (2-ethylhexyl) titanate, etc. Can be mentioned. Titanium alkoxide may be used as it is or as an alcohol solution.

シリカ系中空微粒子分散液に、前記チタン化合物の水溶液またはチタン化合物水溶液と酸またはアルカリを加えながら加水分解(以下、「中和」ということもある)する。シリカ系中空微粒子分散液の固形分濃度は0.01〜30重量%、好ましくは0.1〜20重量%の範囲
にあることが望ましい。このとき、チタン化合物の濃度は固形分として0.05〜30重量%、さらには0.1〜20重量%の範囲にあることが好ましい。該固形分濃度が低いと過大な容器を必要とすることに加えて生産効率が低下し、固形分濃度が高すぎると加水分解した際に、加水分解が不均一になったり、ゲルの粘度が高くなり、ゲルの扱いが容易でなく、必要に応じて洗浄する際に洗浄が困難になることがある。酸化チタン被覆層を厚くしたければ、前記範囲で、チタン化合物の量を増やせばよく、薄くしたければ、前記範囲でチタン化合物の量を減らせばよい。
The silica-based hollow fine particle dispersion is hydrolyzed (hereinafter sometimes referred to as “neutralization”) while adding an aqueous solution of the titanium compound or an aqueous solution of the titanium compound and an acid or an alkali. The solid content concentration of the silica-based hollow fine particle dispersion is desirably 0.01 to 30% by weight, preferably 0.1 to 20% by weight. At this time, it is preferable that the density | concentration of a titanium compound exists in the range of 0.05-30 weight% as solid content, and also 0.1-20 weight%. If the solid content concentration is low, the production efficiency is lowered in addition to requiring an excessively large container. If the solid content concentration is too high, the hydrolysis becomes uneven or the viscosity of the gel is reduced. The gel becomes high, handling of the gel is not easy, and cleaning may be difficult when cleaning as required. If the titanium oxide coating layer is to be thickened, the amount of the titanium compound may be increased within the above range, and if it is to be thinned, the amount of the titanium compound may be decreased within the above range.

また、チタン化合物の添加量は、酸化チタン被覆層が、得られる酸化チタン粒子の平均粒子径の1/20〜1/4、好ましくは1/10〜1/6の範囲になるように添加される。この範囲にあれば、前記した、酸化チタン被覆層を有する酸化チタン系粒子が得られる。   The amount of the titanium compound added is such that the titanium oxide coating layer is in the range of 1/20 to 1/4, preferably 1/10 to 1/6, of the average particle diameter of the resulting titanium oxide particles. The If it exists in this range, the above-mentioned titanium oxide type particle | grains which have a titanium oxide coating layer will be obtained.

酸としては、塩酸、硝酸、硫酸等の他、有機酸を用いることができ、アルカリとしては、アンモニア、有機アミン、NaOH、KOHなどを用いることができる。加水分解する際の分散液のpHは概ね8〜14、さらには9〜13の範囲にあることが好ましい。   As the acid, in addition to hydrochloric acid, nitric acid, sulfuric acid and the like, an organic acid can be used, and as the alkali, ammonia, organic amine, NaOH, KOH and the like can be used. The pH of the dispersion during hydrolysis is preferably in the range of 8 to 14, more preferably 9 to 13.

この加水分解によって、シリカ中空微粒子表面に、チタン化合物の加水分解物が析出する。
本発明では、加水分解した後、必要に応じて洗浄することができる。洗浄方法としてはチタン化合物加水分解物を表面に析出させたシリカ系中空微粒子中の不純物イオンを低減できれば特に制限はなく従来公知の方法を採用することができる。例えば、チタン化合物加水分解物を表面に析出させたシリカ系中空微粒子分散液を濾過した後、充分な水、温水、希アンモニア水等を掛けることによって洗浄することができる。また、限外濾過膜法、イオン交換樹脂法等従来公知の方法を採用することもできる。洗浄を行うと、結晶性が高く光触媒性能に優れた酸化チタン系粒子を得ることができる。
By this hydrolysis, a hydrolyzate of the titanium compound is precipitated on the surface of the silica hollow fine particles.
In this invention, after hydrolyzing, it can wash | clean as needed. The washing method is not particularly limited as long as the impurity ions in the silica-based hollow fine particles on which the titanium compound hydrolyzate is deposited can be reduced, and a conventionally known method can be employed. For example, after filtering a silica-based hollow fine particle dispersion having a titanium compound hydrolyzate deposited on the surface, it can be washed by applying sufficient water, warm water, dilute ammonia water or the like. Moreover, conventionally well-known methods, such as an ultrafiltration membrane method and an ion exchange resin method, can also be employ | adopted. When washed, titanium oxide-based particles having high crystallinity and excellent photocatalytic performance can be obtained.

洗浄後のアニオンおよび/またはアルカリ等の不純物の残存量は、酸化チタン系粒子固形分中に1重量%以下、さらには0.1重量%以下であることが好ましい。
さらに、加水分解した後、あるいは洗浄した後、必要に応じて熟成することができる。熟成条件としては、概ね30〜120℃で通常0.1〜24時間、撹拌するか無撹拌下静置する。
このような熟成を行うと、凝集粒子がなくなるとともに酸化チタン被覆層の厚さが均一になり、粒度分布の均一な酸化チタン系粒子が得られる。
The residual amount of impurities such as anions and / or alkalis after washing is preferably 1% by weight or less, more preferably 0.1% by weight or less in the solid content of the titanium oxide particles.
Further, after hydrolysis or washing, aging can be performed as necessary. As aging conditions, it is generally stirred at 30 to 120 ° C. for 0.1 to 24 hours, or left unstirred.
When such aging is performed, the aggregated particles disappear, the thickness of the titanium oxide coating layer becomes uniform, and titanium oxide-based particles having a uniform particle size distribution can be obtained.

工程(b)
過酸化水素水を、(a)工程のチタン化合物加水分解物を表面に析出させたシリカ系中空
微粒子分散液に添加するが、かかる分散液の濃度は固形分として0.1〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。
Step (b)
Hydrogen peroxide water is added to the silica-based hollow fine particle dispersion on which the titanium compound hydrolyzate of step (a) is deposited, and the concentration of the dispersion is 0.1 to 30% by weight as a solid content, Further, it is preferably in the range of 1 to 20% by weight.

固形分濃度が低すぎると、生産性、生産効率が低下し、固形分濃度が高すぎても、後述する過酸化水素の添加量によっても異なるが、チタン化合物加水分解物の溶解が不均一に
なるためか、得られる酸化チタン系粒子の結晶性が不十分になる場合がある。
If the solid content concentration is too low, the productivity and production efficiency will decrease, and even if the solid content concentration is too high, it will depend on the amount of hydrogen peroxide to be described later, but the dissolution of the titanium compound hydrolyzate will be uneven. For this reason, the crystallinity of the resulting titanium oxide particles may be insufficient.

過酸化水素の添加量は、過酸化水素のH22としてのモル数(MHP)とチタン化合物加水
分解物のTiO2としてのモル数(MTi)とのモル比(MHP)/(MTi)が2〜50、さらには5〜
40の範囲にあることが好ましい。モル比(MHP)/(MTi)が低すぎると、得られる酸化チタン系粒子の結晶性が不十分になる場合がある。モル比(MHP)/(MTi)が高すぎても、チタン化合物加水分解物の溶解速度が向上したり、溶解がさらに均一になることもなく、経済的でない。
The amount of hydrogen peroxide added is the molar ratio (M HP ) / mole ratio of hydrogen peroxide as H 2 O 2 (M HP ) to the number of moles of titanium compound hydrolyzate as TiO 2 (M Ti ) / (M Ti ) is 2 to 50, more preferably 5
A range of 40 is preferable. If the molar ratio (M HP ) / (M Ti ) is too low, the resulting titanium oxide particles may have insufficient crystallinity. Even if the molar ratio (M HP ) / (M Ti ) is too high, the dissolution rate of the titanium compound hydrolyzate is not improved and the dissolution becomes more uniform, which is not economical.

このように過酸化水素水を添加することで、最終的に(工程(c)を経て)得られる酸化
チタン系粒子の形状係数が向上し、また酸化チタン被覆層が緻密になり、結晶性にも優れた酸化チタン系粒子が得られる。
By adding hydrogen peroxide solution in this way, the shape factor of the titanium oxide-based particles finally obtained (through step (c)) is improved, and the titanium oxide coating layer becomes dense and crystallized. Excellent titanium oxide particles can be obtained.

工程(c)
ついで、分散液を80〜350℃、好ましくは80〜200℃で水熱処理する。水熱処理温度が低いと、被覆した酸チタン層の緻密化、結晶化が不充分となることがあり、水熱処理温度が高すぎても、緻密化、結晶化が促進されることもなく、凝集した酸化チタン系粒子が得られる場合がある。
Step (c)
Next, the dispersion is hydrothermally treated at 80 to 350 ° C., preferably 80 to 200 ° C. If the hydrothermal treatment temperature is low, densification and crystallization of the coated titanium oxide layer may be insufficient. Even if the hydrothermal treatment temperature is too high, densification and crystallization are not promoted and agglomeration occurs. Titanium oxide-based particles may be obtained.

水熱処理時間は概ね0.1〜24時間であることが望ましい。
本発明に係る酸化チタン系粒子の製造方法は、上記工程(a)〜(c)のかわりに、下記(ab)〜(c)からなるもの(第2の製造方法)であってもよい。
(ab)シリカ系中空微粒子分散液に、ペルオキソチタン酸水溶液を加える工程。
(c)分散液を80〜350℃で水熱処理する工程。
The hydrothermal treatment time is preferably about 0.1 to 24 hours.
The method for producing titanium oxide-based particles according to the present invention may be the one consisting of the following (ab) to (c) (second production method) instead of the steps (a) to (c).
(Ab) A step of adding a peroxotitanic acid aqueous solution to the silica-based hollow fine particle dispersion.
(C) A step of hydrothermally treating the dispersion at 80 to 350 ° C.

工程(ab)
シリカ系中空微粒子としては前記したシリカ系中空微粒子を用いる。
ペルオキソチタン酸水溶液としては、チタン化合物と過酸化水素とを反応させて得られるペルオキソチタン酸、あるいはチタン水酸化物と過酸化水素とを反応させて得られるペルオキソチタン酸等の水溶液が挙げられる。
Process (ab)
The silica-based hollow fine particles described above are used as the silica-based hollow fine particles.
Examples of the aqueous solution of peroxotitanic acid include aqueous solutions of peroxotitanic acid obtained by reacting a titanium compound and hydrogen peroxide, or peroxotitanic acid obtained by reacting titanium hydroxide and hydrogen peroxide.

ペルオキソチタン酸水溶液を調製するには、例えば、チタン化合物、あるいはチタン水酸化物と過酸化水素とを反応させる際の過酸化水素のH22としてのモル数(MHP)とチタ
ン化合物、チタン水酸化物のTiO2としてのモル数(MTi)とのモル比(MHP)/(MTi)は2〜
50、好ましくは5〜40の範囲となるように混合し、必要に応じて加熱する従来公知の方法を採用することができる。
In order to prepare a peroxotitanic acid aqueous solution, for example, a titanium compound, or a mole number (M HP ) of hydrogen peroxide as H 2 O 2 in reacting a titanium hydroxide with hydrogen peroxide and a titanium compound, moles as TiO 2 of titanium hydroxide (M Ti) molar ratio of (M HP) / (M Ti ) is 2
It is possible to employ a conventionally known method of mixing so as to be in the range of 50, preferably 5 to 40, and heating as necessary.

なお、チタンアルコキシドと過酸化水素とを反応させて得られるペルオキソチタン酸を用いると、酸化チタン被覆層がルチル型酸化チタンである酸化チタン系粒子が得られる傾向にある。   When peroxotitanic acid obtained by reacting titanium alkoxide with hydrogen peroxide is used, titanium oxide-based particles in which the titanium oxide coating layer is rutile titanium oxide tend to be obtained.

ペルオキソチタン酸水溶液の濃度は酸化チタン換算で、1〜30重量%、好ましくは2〜20重量%の範囲にあることが好ましい。
また、チタン化合物の添加量は、酸化チタン被覆層が、得られる酸化チタン粒子の平均粒子径の1/20〜1/4、好ましくは1/10〜1/6の範囲になるように添加される。この範囲にあれば、前記した、酸化チタン被覆層を有する酸化チタン系粒子が得られる。
The concentration of the peroxotitanic acid aqueous solution is preferably in the range of 1 to 30% by weight, preferably 2 to 20% by weight in terms of titanium oxide.
The amount of the titanium compound added is such that the titanium oxide coating layer is in the range of 1/20 to 1/4, preferably 1/10 to 1/6, of the average particle diameter of the resulting titanium oxide particles. The If it exists in this range, the above-mentioned titanium oxide type particle | grains which have a titanium oxide coating layer will be obtained.

シリカ系中空微粒子分散液の固形分濃度は、前記第1の方法と同様である。
シリカ系中空微粒子分散液にペルオキソチタン酸水溶液を混合した後の濃度は固形分と
して0.1〜30重量%、さらには1〜20重量%の範囲にあることが好ましい。
The solid content concentration of the silica-based hollow fine particle dispersion is the same as in the first method.
The concentration after mixing the aqueous peroxotitanic acid solution with the silica-based hollow fine particle dispersion is preferably in the range of 0.1 to 30% by weight, more preferably 1 to 20% by weight as the solid content.

固形分濃度が少ないと、生産性、生産効率が低下し、固形分濃度が高すぎると、得られる酸化チタン系粒子の結晶性が不十分になる場合がある。
なお、第2の方法の工程(c)については、上記第1の方法と同様である。
本発明では、(c)工程の後に、下記(d)工程を行っても良い。
When the solid content concentration is low, productivity and production efficiency are lowered, and when the solid content concentration is too high, crystallinity of the obtained titanium oxide-based particles may be insufficient.
The step (c) of the second method is the same as the first method.
In the present invention, the following step (d) may be performed after step (c).

工程(d)
(c)工程で水熱処理した後、分散液をpH7.5〜13.5、好ましくは8〜13.5
に調整する。
Step (d)
After the hydrothermal treatment in step (c), the dispersion is adjusted to pH 7.5 to 13.5, preferably 8 to 13.5.
Adjust to.

分散液のpH調整には、NaOH、KOHなどのアルカリ金属水酸化物、アンモニア、有機塩基等を用いることができる。有機塩基としては、テトラメチルアンモニウム塩等の第4級アンモニウム塩または水酸化物、モノエタノールアミン、ジエタノールアミン等のアミン類が挙げられる。   For adjusting the pH of the dispersion, alkali metal hydroxides such as NaOH and KOH, ammonia, organic bases and the like can be used. Examples of the organic base include quaternary ammonium salts such as tetramethylammonium salt or amines such as hydroxide, monoethanolamine and diethanolamine.

分散液のpHが中性ないし酸性の場合は酸化チタン層は無定型であり、pHが上記範囲にあれば結晶性の酸化チタン層を有する酸化チタン系粒子が得られる。結晶形の種類は、pH、アルカリ、有機塩基等の種類および量によって異なる。例えば、有機塩基が少ないとアナタース型となり、有機塩基が多いとブルッカイト型になる傾向がある。   When the pH of the dispersion is neutral or acidic, the titanium oxide layer is amorphous. When the pH is in the above range, titanium oxide particles having a crystalline titanium oxide layer can be obtained. The type of crystal form varies depending on the type and amount of pH, alkali, organic base and the like. For example, if there are few organic bases, it will become an anatase type, and if there are many organic bases, it will become a brookite type.

pH調整した分散液を80〜350℃、好ましくは80〜200℃で水熱処理する。
水熱処理温度が低いと、結晶化が不充分となったり、長時間を要する場合がある。水熱処理温度が高すぎても、さらに結晶化時間が短縮されたり、結晶性が向上することもなく、凝集した酸化チタン系粒子が得られる場合がある。
The pH adjusted dispersion is hydrothermally treated at 80 to 350 ° C, preferably 80 to 200 ° C.
If the hydrothermal treatment temperature is low, crystallization may be insufficient or a long time may be required. Even if the hydrothermal treatment temperature is too high, aggregated titanium oxide-based particles may be obtained without further shortening the crystallization time or improving the crystallinity.

この処理によって、球状係数が高く、酸化チタン被覆層が緻密であり、さらに、製造条件によっては結晶性にも優れた酸化チタン系粒子が得られる。
水熱処理時間は、温度によっても異なるが、通常0.1〜48時間である。
By this treatment, titanium oxide particles having a high spherical coefficient, a dense titanium oxide coating layer, and excellent crystallinity depending on production conditions can be obtained.
The hydrothermal treatment time varies depending on the temperature, but is usually 0.1 to 48 hours.

水熱処理後の分散液は、限外濾過膜法やイオン交換樹脂にて洗浄したり、濃縮してもよい。
この様にして得られる酸化チタン系粒子は、シリカ系中空微粒子の平均粒子径や酸化チタン被覆層の厚さにもよるが、平均粒子径が5〜100nm、さらには10〜80nmの範囲にあることが好ましい。また、得られる酸化チタン系粒子の屈折率が1.30〜2.00、さらには1.30〜1.80の範囲にあることが好ましい。
The dispersion after hydrothermal treatment may be washed or concentrated by an ultrafiltration membrane method or an ion exchange resin.
The titanium oxide-based particles thus obtained have an average particle diameter of 5 to 100 nm, more preferably 10 to 80 nm, depending on the average particle diameter of the silica-based hollow fine particles and the thickness of the titanium oxide coating layer. It is preferable. Moreover, it is preferable that the refractive index of the titanium oxide type particle | grains obtained exists in the range of 1.30-2.00, Furthermore, 1.30-1.80.

[用途]
このような本発明に係る酸化チタン系粒子は、光電気セルや光触媒などの用途に使用できる。
光電気セルとしては、表面に電極層(1)を有し、かつ該電極層(1)表面に光増感材を吸着した金属酸化物半導体膜(2)が形成されてなる基板と、表面に電極層(3)を有する基板とが、前記電極層(1)および電極層(3)が対向するように配置してなり、金属酸化物半導体膜(2)と電極層(3)との間に電解質層を設けてなる光電気セルにおいて、少なくとも一方の基板および電極が透明性を有し、金属酸化物半導体膜(2)が本発明の酸化チタン系粒子を含むものである。
[Usage]
Such titanium oxide-based particles according to the present invention can be used for applications such as a photoelectric cell and a photocatalyst.
The photoelectric cell includes an electrode layer (1) on the surface and a substrate on which a metal oxide semiconductor film (2) having a photosensitizer adsorbed on the surface of the electrode layer (1) is formed; A substrate having an electrode layer (3) is disposed so that the electrode layer (1) and the electrode layer (3) face each other, and the metal oxide semiconductor film (2) and the electrode layer (3) In a photoelectric cell in which an electrolyte layer is provided therebetween, at least one of the substrate and the electrode has transparency, and the metal oxide semiconductor film (2) contains the titanium oxide-based particles of the present invention.

また光触媒としては、前記酸化チタン系粒子を使用したものであればよく、光触媒は、前記した酸化チタン系粒子をそのまま用いることもできるし、他の活性成分を酸化チタン系粒子に担持あるいはドーピングしたり、これら管状酸化チタン粒子を混合して用いるこ
ともできる。さらに必要に応じてバインダー成分前駆体を含んでいても良い。このような光触媒 の使用形態としては特に制限はなく、たとえば、上記管状酸化チタン粒子をその
まま水等の溶媒に分散させて用いることができるし、バインダー成分前駆体と混合して光触媒 層形成用塗布液とし、ガラス、PET、金属、セラミックスなどの基材に塗布・乾
燥して所望の膜厚の触媒層を形成して用いることもできる。さらに、球状、ペレット状、ハニカム状等に成形して用いることもできる。上記他の活性成分としては、Ag、Cu、Zn等の抗菌、防黴目的に用いられる金属成分の他、Pt、Pd、Rh、Ru、Os、Ir、Au、Fe等の酸化還元性能を有する金属成分が挙げられる。これら金属成分の担持、ドーピング方法は従来公知の方法を採用することができ、たとえば管状酸化チタン粒子の分散液に金属成分の可溶性塩の水溶液を添加したり、必要に応じて加水分解させて析出させることによって調製することができる。
As the photocatalyst, any titanium oxide-based particles may be used. As the photocatalyst, the above-described titanium oxide-based particles can be used as they are, or other active components are supported or doped on the titanium oxide-based particles. Or these tubular titanium oxide particles can be mixed and used. Furthermore, a binder component precursor may be included as necessary. There is no particular limitation on the use form of such a photocatalyst. For example, the tubular titanium oxide particles can be used as they are dispersed in a solvent such as water, or mixed with a binder component precursor and applied for forming a photocatalyst layer. It can also be used by forming a catalyst layer having a desired film thickness by coating and drying on a substrate such as glass, PET, metal, or ceramics. Furthermore, it can be formed into a spherical shape, a pellet shape, a honeycomb shape, or the like. Other active components include metal components used for antibacterial and antifungal purposes such as Ag, Cu, and Zn, as well as redox performance such as Pt, Pd, Rh, Ru, Os, Ir, Au, and Fe. A metal component is mentioned. Conventionally known methods can be used for loading and doping these metal components. For example, an aqueous solution of a soluble salt of a metal component is added to a dispersion of tubular titanium oxide particles, or hydrolyzed as necessary to precipitate. Can be prepared.

また、光電気セル、光触媒のほかバッテリーの負極材料、光センサーの感知部等としても有用である。
また、本発明の酸化チタン系粒子は、可視光や紫外線遮蔽膜形成用塗料、化粧料組成物、透明被膜形成用塗料などにも好適に使用できる。たとえば紫外線遮蔽膜形成用塗料の場合、必要に応じて着色顔料粒子とともにを塗料用樹脂に混合すればよい。
Moreover, it is useful as a negative electrode material of a battery in addition to a photoelectric cell and a photocatalyst, and a sensing part of a photosensor.
In addition, the titanium oxide-based particles of the present invention can be suitably used for visible light and ultraviolet light shielding film-forming paints, cosmetic compositions, transparent film-forming paints, and the like. For example, in the case of a coating material for forming an ultraviolet shielding film, it may be mixed with coloring pigment particles in a coating resin as required.

化粧料組成物に使用する場合、組成物全量に対して、酸化チタン系粒子を1〜80重量%程度の料で配合すればよい。化粧料組成物は、通常、化粧料に配合されている各種成分、たとえば高級脂肪族アルコール、高級脂肪酸、エステル油、パラフィン油、ワックスなどの油分、エチルアルコール、プロピレングリコール、ソルビトールなどのアルコール類、ムコ多糖類、コラーゲン類、PCA塩、乳酸塩などの保湿剤、ノニオン系、カチオン系、アニオン系あるいは両性の各種界面活性剤、アラビアガム、キサンタンガム、ポリビニルピロリドン、エチルセルロース、カルボキシメチルセルロース、カルボキシビニルポリマー、変性または未変性の粘土鉱物などの増粘剤、酢酸エチル、アセトン、トルエンなどの溶剤、無機顔染料および有機顔染料、BHT、トコフェノールなどの酸化防止剤、水、薬剤、紫外線吸収剤、有機酸または無機酸の塩からなるpH緩衝剤、キレート化剤、防腐剤、香料などの1種以上を含んでいてもよく、必要に応じて、シリカ、タルク、カオリン、マイカ、セリサイトおよび合成無機化合物などの無機顔料、各種有機樹脂の1種または2種以上を含んでいてもよい。   What is necessary is just to mix | blend a titanium oxide type particle | grain with a raw material of about 1 to 80 weight% with respect to the composition whole quantity, when using for a cosmetic composition. Cosmetic compositions are usually various ingredients blended in cosmetics, for example, higher fatty alcohols, higher fatty acids, ester oils, paraffin oils, waxes and other oils, ethyl alcohol, propylene glycol, sorbitol and other alcohols, Moisturizers such as mucopolysaccharides, collagens, PCA salts, lactates, nonionic, cationic, anionic or amphoteric surfactants, gum arabic, xanthan gum, polyvinylpyrrolidone, ethylcellulose, carboxymethylcellulose, carboxyvinyl polymer, Thickeners such as modified or unmodified clay minerals, solvents such as ethyl acetate, acetone and toluene, inorganic and organic facial dyes, antioxidants such as BHT and tocophenol, water, chemicals, UV absorbers, organic PH consisting of acid or inorganic acid salts It may contain one or more of impactants, chelating agents, preservatives, fragrances, etc. If necessary, inorganic pigments such as silica, talc, kaolin, mica, sericite and synthetic inorganic compounds, various organic resins 1 type (s) or 2 or more types may be included.

また、透明被膜に使用する場合、シリカ(ポリシロキサン)や透明性樹脂などのマトリックス成分と本発明の酸化チタン系粒子を含んでいればよい。   Moreover, when using for a transparent film, it should just contain the matrix components, such as a silica (polysiloxane) and transparent resin, and the titanium oxide type particle | grains of this invention.

[実施例]
以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to these Examples.

[実施例1]
酸化チタン系粒子(1)の調製
シリカ系中空微粒子分散液(触媒化成工業(株)製:スルーリアP1420、平均粒子径50nm、屈折率1.30、固形分濃度20重量%、100gを希釈して固形分濃度5重量%のシリカ系中空微粒子分散液とした。これに、TiO2として濃度2重量%の四塩
化チタン水溶液100gを加え、濃度4重量%のアンモニア水を0.5時間で添加し、pH=8.5の水和酸化チタン・シリカ系中空微粒子混合スラリーを得た。
[Example 1]
Preparation of titanium oxide-based particles (1) Silica-based hollow fine particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Thruria P1420, average particle size 50 nm, refractive index 1.30, solid content concentration 20% by weight, diluted 100 g) A silica-based hollow fine particle dispersion having a solid concentration of 5% by weight was added with 100 g of a titanium tetrachloride aqueous solution having a concentration of 2% by weight as TiO 2 and ammonia water having a concentration of 4% by weight was added in 0.5 hour. Thus, a hydrated titanium oxide / silica hollow particle mixed slurry having a pH of 8.5 was obtained.

ついで、40℃で2時間静置して熟成した後、このスラリーを濾過洗浄し、固形分濃度が4重量%の水和酸化チタン・シリカ系中空微粒子混合分散液を得た。分散液のpHは8.5であった。   Next, after standing at 40 ° C. for 2 hours for aging, this slurry was washed by filtration to obtain a mixed dispersion of hydrated titanium oxide / silica hollow particles having a solid content concentration of 4% by weight. The pH of the dispersion was 8.5.

この混合分散液500gに、濃度35重量%の過酸化水素水13gを添加した後、165℃で3時間水熱処理して酸化チタン系粒子(1)分散液を調製し、限外濾過膜法にて洗浄
し、濃縮して固形分濃度20重量%の酸化チタン系粒子(1)分散液を調製した。
After adding 13 g of 35% by weight hydrogen peroxide water to 500 g of the mixed dispersion, hydrothermal treatment was performed at 165 ° C. for 3 hours to prepare a titanium oxide-based particle (1) dispersion, which was applied to the ultrafiltration membrane method. Washed and concentrated to prepare a dispersion of titanium oxide particles (1) having a solid content of 20% by weight.

得られた酸化チタン系粒子(1)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚さ、結晶形、特性(1)(光沢度(ギラツキ感))および特性(2)(紫外線遮蔽性能:吸光度および透過率)を測定し、結果を表に示した。
なお、酸化チタン被覆層の厚さは、酸化チタン系粒子(1)の平均粒子径とシリカ系中空
微粒子の平均粒子径を測定し、粒子径の差の1/2として示した。
About the obtained titanium oxide-based particles (1), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) (glossiness (glare)) and characteristics (2) (Ultraviolet shielding performance: absorbance and transmittance) were measured, and the results are shown in the table.
The thickness of the titanium oxide coating layer was measured as the average particle size of the titanium oxide-based particles (1) and the average particle size of the silica-based hollow fine particles, and was shown as ½ of the difference in particle size.

特性(1)
固形分濃度20重量%の酸化チタン系粒子(1)分散液を希釈して固形分濃度10重量%
とした。
Characteristics (1)
Titanium oxide particles (1) with a solid content of 20% by weight Dispersion is diluted to a solid content of 10% by weight.
It was.

固形分濃度10重量%の酸化チタン系粒子(1)分散液90重量部とポリビニルアルコー
ル水溶液10重量部とを混合して光沢膜形成用塗布液を調製した。この塗布液をバーコーターを用いてPETフィルム上に塗布し、90℃で2時間乾燥後、140℃で2時間加熱処理して光沢膜を形成した。
A coating solution for forming a glossy film was prepared by mixing 90 parts by weight of a dispersion of titanium oxide particles (1) having a solid concentration of 10% by weight and 10 parts by weight of an aqueous polyvinyl alcohol solution. This coating solution was applied onto a PET film using a bar coater, dried at 90 ° C. for 2 hours, and then heat-treated at 140 ° C. for 2 hours to form a glossy film.

得られた光沢膜について、光沢度計(スガ試験機(株)製:デジタル変角光沢度計 UGV−5D)により、入射角60°、受光角60°の条件で光沢度を測定し、結果を表に示した。   About the obtained glossy film, the glossiness was measured under the conditions of an incident angle of 60 ° and a light receiving angle of 60 ° with a gloss meter (manufactured by Suga Test Instruments Co., Ltd .: Digital variable angle gloss meter UGV-5D). Is shown in the table.

特性(2)
固形分濃度20重量%の酸化チタン系粒子(1)分散液を希釈して固形分濃度0.005
重量%とした。この分散液について、分光光度計(日立製作所製:330型)により、波長300nmでの吸光度および波長400nmでの透過率を測定し、結果を表1に示した。
なお、粒子の屈折率は以下の方法で評価した。
Characteristics (2)
Titanium oxide particles (1) with a solid content of 20% by weight are diluted to a solid content of 0.005
% By weight. With respect to this dispersion, the absorbance at a wavelength of 300 nm and the transmittance at a wavelength of 400 nm were measured with a spectrophotometer (manufactured by Hitachi, Ltd .: Model 330), and the results are shown in Table 1.
In addition, the refractive index of particle | grains was evaluated with the following method.

標準屈折率液法
(1)粒子分散液をエバポレーターにとり、分散媒を蒸発させる。
(2)これを120℃で乾燥して、粉末とする。
(3)屈折率が既知の標準屈折液を2,3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
Standard refractive index liquid method
(1) Take the particle dispersion in an evaporator and evaporate the dispersion medium.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refracting liquid having a known refractive index is dropped on a glass plate in a few drops, and the above powder is mixed therewith.
(4) The above operation (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is used as the refractive index of the fine particles.

[実施例2]
酸化チタン系粒子(2)の調製
実施例1において、濃度35重量%の過酸化水素水6.5gを添加した以外は同様にして酸化チタン系粒子(2)分散液を調製した。得られた酸化チタン系粒子(2)について、平均粒子径、球状係数、屈折率、酸化チタン被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表に示す。
[Example 2]
Preparation of titanium oxide-based particles (2) A dispersion of titanium oxide-based particles (2) was prepared in the same manner as in Example 1 except that 6.5 g of 35% by weight hydrogen peroxide water was added. With respect to the obtained titanium oxide-based particles (2), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) and characteristics (2) were measured, and the results are shown in the table. .

[実施例3]
酸化チタン系粒子(3)の調製
実施例1において、濃度35重量%の過酸化水素水52gを添加した以外は同様にして酸化チタン系粒子(3)分散液を調製した。
得られた酸化チタン系粒子(3)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示す。
[Example 3]
Preparation of titanium oxide-based particles (3) A titanium oxide-based particle (3) dispersion was prepared in the same manner as in Example 1, except that 52 g of hydrogen peroxide solution having a concentration of 35% by weight was added.
The obtained titanium oxide-based particles (3) were measured for average particle diameter, spherical coefficient, refractive index, titanium oxide coating layer thickness, crystal shape, characteristic (1) and characteristic (2), and the results are shown in Table 1. Show.

[実施例4]
酸化チタン系粒子(4)の調製
シリカ系中空微粒子分散液(触媒化成工業(株)製:スルーリアP1420、平均粒子径50nm、屈折率1.30、固形分濃度20重量%)100gを希釈して固形分濃度5重量%のシリカ系中空微粒子分散液とした。これに、TiO2として濃度2重量%の四塩
化チタン水溶液50gを加え、ついで、濃度4重量%のアンモニア水を0.5時間で添加し、pH=8.5の水和酸化チタン・シリカ系中空微粒子混合スラリーを得た。ついで、40℃で2時間静置して熟成した後、このスラリーを濾過洗浄し、固形分濃度が4重量%の水和酸化チタン・シリカ系中空微粒子混合分散液を得た。分散液のpHは8.5であった。
[Example 4]
Preparation of titanium oxide-based particles (4) Silica-based hollow fine particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Thruria P1420, average particle size 50 nm, refractive index 1.30, solid content concentration 20% by weight) was diluted 100 g. A silica-based hollow fine particle dispersion having a solid content concentration of 5% by weight was obtained. To this was added 50 g of a titanium tetrachloride aqueous solution having a concentration of 2% by weight as TiO 2 , and then ammonia water having a concentration of 4% by weight was added in 0.5 hour, and the hydrated titanium oxide-silica system having a pH of 8.5. A hollow fine particle mixed slurry was obtained. Next, after standing at 40 ° C. for 2 hours for aging, this slurry was washed by filtration to obtain a mixed dispersion of hydrated titanium oxide / silica hollow particles having a solid content concentration of 4% by weight. The pH of the dispersion was 8.5.

この混合分散液500gに、濃度35重量%の過酸化水素水3.2gを添加した後、165℃で3時間水熱処理して酸化チタン系粒子(4)分散液を調製した。ついで、限外濾過
膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(4)分散液を調製し
た。
得られた酸化チタン系粒子(4)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
To 500 g of this mixed dispersion, 3.2 g of 35% by weight hydrogen peroxide water was added and then hydrothermally treated at 165 ° C. for 3 hours to prepare a titanium oxide-based particle (4) dispersion. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide particles (4) having a solid content concentration of 20% by weight.
The obtained titanium oxide-based particles (4) were measured for average particle diameter, spherical coefficient, refractive index, titanium oxide coating layer thickness, crystal shape, characteristic (1) and characteristic (2), and the results are shown in Table 1. Indicated.

[実施例5]
酸化チタン系粒子(5)の調製
シリカ系中空微粒子分散液(触媒化成工業(株)製:スルーリアP1420、平均粒子径50nm、屈折率1.30、固形分濃度20重量%)100gを希釈して固形分濃度5重量%のシリカ系中空微粒子分散液とした。これに、TiO2として濃度2重量%の四塩
化チタン水溶液300gを加え、さらに濃度4重量%のアンモニア水を0.5時間で添加し、pH=8.5の水和酸化チタン・シリカ系中空微粒子混合スラリーを得た。ついで、40℃で2時間静置して熟成した後、このスラリーを濾過洗浄し、固形分濃度が3.5重量%の水和酸化チタン・シリカ系中空微粒子混合分散液を得た。分散液のpHは8.5であった。
[Example 5]
Preparation of titanium oxide-based particles (5) Silica-based hollow fine particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Thruria P1420, average particle size 50 nm, refractive index 1.30, solid content concentration 20% by weight) was diluted 100 g. A silica-based hollow fine particle dispersion having a solid content concentration of 5% by weight was obtained. To this was added 300 g of a titanium tetrachloride aqueous solution having a concentration of 2% by weight as TiO 2 , and ammonia water having a concentration of 4% by weight was further added in 0.5 hour, and the hydrated titanium oxide / silica hollow with pH = 8.5 was added. A fine particle mixed slurry was obtained. Next, after standing at 40 ° C. for 2 hours for aging, this slurry was washed by filtration to obtain a mixed dispersion of hydrated titanium oxide / silica hollow particles having a solid content concentration of 3.5% by weight. The pH of the dispersion was 8.5.

この混合分散液700gに、濃度35重量%の過酸化水素水84gを添加した後、165℃で3時間水熱処理して酸化チタン系粒子(5)分散液を調製した。ついで、限外濾過膜
法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(5)分散液を調製した

得られた酸化チタン系粒子(5)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
After adding 84 g of hydrogen peroxide water having a concentration of 35% by weight to 700 g of this mixed dispersion, hydrothermal treatment was performed at 165 ° C. for 3 hours to prepare a titanium oxide particle (5) dispersion. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide particles (5) having a solid content concentration of 20% by weight.
With respect to the obtained titanium oxide-based particles (5), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) and characteristics (2) were measured, and the results are shown in Table 1. Indicated.

[実施例6]
酸化チタン系粒子(6)の調製
実施例1と同様にして調製した酸化チタン系粒子(1)分散液に、濃度15重量%のアン
モニア水を添加して分散液のpHを9.0とし、ついで、165℃で3時間水熱処理して酸化チタン系粒子(6)分散液を調製した。ついで、限外濾過膜法にて洗浄し、濃縮して固
形分濃度20重量%の酸化チタン系粒子(6)分散液を調製した。
得られた酸化チタン系粒子(6)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
[Example 6]
Preparation of Titanium Oxide-Based Particles (6) To the titanium oxide-based particle (1) dispersion prepared in the same manner as in Example 1, 15% by weight ammonia water was added to adjust the pH of the dispersion to 9.0. Subsequently, a hydrothermal treatment was performed at 165 ° C. for 3 hours to prepare a titanium oxide particle (6) dispersion. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a titanium oxide-based particle (6) dispersion having a solid content of 20% by weight.
With respect to the obtained titanium oxide-based particles (6), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) and characteristics (2) were measured, and the results are shown in Table 1. Indicated.

[実施例7]
酸化チタン系粒子(7)の調製
実施例1と同様にして調製した酸化チタン系粒子(1)分散液に、濃度25重量%のテト
ラメチルアンモニウムハイドロオキサイド(TMAH)を添加して分散液のpHを12.0とし、ついで、165℃で3時間水熱処理して酸化チタン系粒子(7)分散液を調製した。
ついで、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(7)分散液を調製した。
得られた酸化チタン系粒子(7)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
[Example 7]
Preparation of Titanium Oxide-Based Particles (7) To a dispersion of titanium oxide-based particles (1) prepared in the same manner as in Example 1, tetramethylammonium hydroxide (TMAH) with a concentration of 25% by weight was added to adjust the pH of the dispersion. Was then 12.0, followed by hydrothermal treatment at 165 ° C. for 3 hours to prepare a dispersion of titanium oxide particles (7).
Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a titanium oxide-based particle (7) dispersion having a solid concentration of 20% by weight.
With respect to the obtained titanium oxide-based particles (7), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal form, characteristics (1) and characteristics (2) were measured, and the results are shown in Table 1. Indicated.

[実施例8]
酸化チタン系粒子(8)の調製
実施例1において、TiO2として濃度2重量%の四塩化チタン水溶液100gの代わ
りにTiO2として濃度1重量%のテトライソプロピルチタネートのアルコール溶液20
0gを用いた以外は同様にして水和酸化チタン・シリカ系中空微粒子混合スラリーを調製したのち、熟成、洗浄後、過酸化水素を加えて水熱処理して酸化チタン系粒子分散液を調製した。ついで、濃度15重量%のアンモニア水を添加して分散液のpHを8.5と、ついで、165℃で3時間水熱処理して酸化チタン系粒子(8)分散液を調製した。該分散液
を、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(8)分
散液を調製した。
[Example 8]
In Preparation Example 1 of the titanium oxide-based particles (8), an alcohol solution of a concentration of 1% by weight of tetraisopropyl titanate as TiO 2 in place of the concentration of 2% by weight of the aqueous titanium tetrachloride solution 100g as TiO 2 20
A hydrated titanium oxide / silica hollow particle mixed slurry was prepared in the same manner except that 0 g was used. After aging and washing, hydrogen peroxide was added and hydrothermal treatment was performed to prepare a titanium oxide particle dispersion. Subsequently, aqueous ammonia having a concentration of 15% by weight was added to adjust the pH of the dispersion to 8.5, and then hydrothermally treated at 165 ° C. for 3 hours to prepare a dispersion of titanium oxide particles (8). The dispersion was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide particles (8) having a solid concentration of 20% by weight.

得られた分散液に、濃度15重量%のアンモニア水を添加して分散液のpHを9.0とし、再び、165℃で3時間水熱処理して酸化チタン系粒子(8)分散液を調製した。つい
で、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(8)分
散液を調製した。
得られた酸化チタン系粒子(8)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
Ammonia water having a concentration of 15% by weight was added to the obtained dispersion to adjust the pH of the dispersion to 9.0, and again hydrothermally treated at 165 ° C. for 3 hours to prepare a titanium oxide particle (8) dispersion. did. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide particles (8) having a solid content concentration of 20% by weight.
With respect to the obtained titanium oxide-based particles (8), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) and characteristics (2) were measured, and the results are shown in Table 1. Indicated.

[実施例9]
酸化チタン系粒子(9)の調製
シリカ系中空微粒子分散液(触媒化成工業(株)製:スルーリアP1420、平均粒子径50nm、屈折率1.30、固形分濃度20重量%)100gを希釈して固形分濃度5重量%のシリカ系中空微粒子分散液とした。
[Example 9]
Preparation of titanium oxide-based particles (9) Silica-based hollow fine particle dispersion (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Thruria P1420, average particle size 50 nm, refractive index 1.30, solid content concentration 20% by weight) was diluted 100 g. A silica-based hollow fine particle dispersion having a solid content concentration of 5% by weight was obtained.

別途、TiO2として濃度2重量%の四塩化チタン水溶液100gに、濃度4重量%の
アンモニア水を添加し、四塩化チタンを加水分解して水和酸化チタンゲルスラリーを得た。該ゲルスラリーを洗浄した後、濃度35重量%の過酸化水素水14gを添加し、30℃で1時間溶解し、TiO2として濃度1.7重量%のペルオキソチタン酸水溶液を調製し
た。
Separately, 4 wt% ammonia water was added to 100 g of 2 wt% titanium tetrachloride aqueous solution as TiO 2 to hydrolyze titanium tetrachloride to obtain a hydrated titanium oxide gel slurry. After the gel slurry was washed, 14 g of hydrogen peroxide solution having a concentration of 35% by weight was added and dissolved for 1 hour at 30 ° C. to prepare a peroxotitanic acid aqueous solution having a concentration of 1.7% by weight as TiO 2 .

ついで、シリカ系中空微粒子分散液にペルオキソチタン酸水溶液を加え、165℃で3時間水熱処理して酸化チタン系粒子分散液を調製した。ついで、濃度25重量%のテトラメチルアンモニウムハイドロオキサイド(TMAH)を添加して分散液のpHを12とし、ついで、165℃で3時間水熱処理して酸化チタン系粒子(9)分散液を調製した。   Next, a peroxotitanic acid aqueous solution was added to the silica-based hollow fine particle dispersion and hydrothermally treated at 165 ° C. for 3 hours to prepare a titanium oxide-based particle dispersion. Next, tetramethylammonium hydroxide (TMAH) with a concentration of 25% by weight was added to adjust the pH of the dispersion to 12, and then hydrothermally treated at 165 ° C. for 3 hours to prepare a dispersion of titanium oxide particles (9). .

ついで、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(9)分散液を調製した。
濃度15重量%のアンモニア水を添加して分散液のpHを9.0に調整し、再び、165℃で3時間水熱処理して酸化チタン系粒子(9)分散液を調製した。ついで、限外濾過膜
法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(9)分散液を調製した
Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide-based particles (9) having a solid content concentration of 20% by weight.
A dispersion of 15% by weight of ammonia water was added to adjust the pH of the dispersion to 9.0, and the mixture was again hydrothermally treated at 165 ° C. for 3 hours to prepare a titanium oxide-based particle (9) dispersion. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide-based particles (9) having a solid content concentration of 20% by weight.

表面処理
酸化チタン系粒子(9)分散液の一部100gをエタノールに溶媒置換した後、メタクリ
ルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱処
理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換して固形分濃度20重量%の酸化チタン系粒子(9)のアルコール分散液を調製した。
得られた酸化チタン系粒子(9)について、平均粒子径、球状係数、屈折率、酸化チタン
被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表に示した。
Surface-treated titanium oxide particles (9) After 100 g of the dispersion was solvent-substituted with ethanol, 3 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added and heat-treated at 50 ° C. Then, using an ultrafiltration membrane, the solvent was replaced with ethanol to prepare an alcohol dispersion of titanium oxide particles (9) having a solid content concentration of 20% by weight.
The obtained titanium oxide particles (9) were measured for average particle diameter, spherical coefficient, refractive index, titanium oxide coating layer thickness, crystal shape, characteristic (1) and characteristic (2), and the results are shown in the table. It was.

[実施例10]
酸化チタン系粒子(10)の調製
(i)シリカ系中空微粒子の調製
シリカ・アルミナゾル(触媒化成工業(株)製:USBB−120、平均粒子径25nm、SiO2・Al2O3濃度20重量%、固形分中Al2O3含有量27重量%)100gと純水3900gの混合物を98℃に加温し、この温度を保持しながら、SiO2として濃度1.
5重量%の珪酸ナトリウム水溶液2090gとAl2O3としての濃度0.5重量%のアルミ
ン酸ナトリウム水溶液700gを添加して、SiO2・Al2O3粒子分散液を得た。このときの反応液のpHは12.0であった。
[Example 10]
Preparation of titanium oxide particles (10)
(i) Preparation of silica-based hollow fine particles Silica / alumina sol (manufactured by Catalytic Chemical Industry Co., Ltd .: USBB-120, average particle size 25 nm, SiO 2 · Al 2 O 3 concentration 20% by weight, containing Al 2 O 3 in solid content the amount 27 wt%) 100 g of a mixture of pure water 3900g was warmed to 98 ° C., while maintaining this temperature, concentration 1 as SiO 2.
2090 g of 5 wt% sodium silicate aqueous solution and 700 g of 0.5 wt% sodium aluminate aqueous solution as Al 2 O 3 were added to obtain a SiO 2 .Al 2 O 3 particle dispersion. The pH of the reaction solution at this time was 12.0.

ついで、限外濾過膜で洗浄して固形分濃度13重量%になった複合酸化物微粒子(1)の
分散液500gに純水1,125gを加え、さらに濃塩酸(濃度35.5重量%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと
純水5Lを加えながら、限外濾過膜で溶解したアルミニウム塩を分離・洗浄して固形分濃度20重量%のシリカ系中空微粒子前駆体(P-1-2)の水分散液を得た。
Next, 1,125 g of pure water was added to 500 g of the dispersion of the composite oxide fine particles (1) having a solid concentration of 13 wt% by washing with an ultrafiltration membrane, and concentrated hydrochloric acid (concentration 35.5 wt%). Was dropped to pH 1.0, and dealumination was performed. Next, while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, the aluminum salt dissolved in the ultrafiltration membrane is separated and washed to obtain a silica-based hollow fine particle precursor having a solid content concentration of 20% by weight (P-1-2). An aqueous dispersion was obtained.

ついで、シリカ系中空微粒子前駆体(P-1-2)の水分散液150gと、純水500g、エ
タノール1,750gおよび濃度28重量%のアンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO2濃度28重量%)51gを添加してシリカ被覆層を形成し、純水5Lを加えながら限外濾過膜で洗浄して固形分濃度20重量%のシリカ被覆層を形成したシリカ系中空微粒子(P-1-2)の水分散液を得た。
Next, a mixed liquid of 150 g of an aqueous dispersion of silica-based hollow fine particle precursor (P-1-2), 500 g of pure water, 1,750 g of ethanol, and 626 g of ammonia water having a concentration of 28% by weight was heated to 35 ° C. Thereafter, 51 g of ethyl silicate (SiO 2 concentration 28 wt%) was added to form a silica coating layer, and washed with an ultrafiltration membrane while adding 5 L of pure water to form a silica coating layer with a solid content concentration of 20 wt%. An aqueous dispersion of silica-based hollow fine particles (P-1-2) was obtained.

つぎに、シリカ被覆層を形成したシリカ系中空微粒子(P-1-2)分散液にアンモニア水を
添加して分散液のpHを10.5に調整し、ついで200℃にて11時間熟成した後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、さらに陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、さらにまた陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)200gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%固形分濃度20重量%のシリカ系微粒子(P-1-3)の水
分散液を得た。
Next, aqueous ammonia was added to the silica-based hollow fine particle (P-1-2) dispersion having a silica coating layer to adjust the pH of the dispersion to 10.5, and then aged at 200 ° C. for 11 hours. Then, it is cooled to room temperature, ion-exchanged for 3 hours using 400 g of a cation exchange resin (Mitsubishi Chemical Corporation: Diaion SK1B), and further anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). Using 200 g for ion exchange for 3 hours, and using 200 g of cation exchange resin (Mitsubishi Chemical Co., Ltd .: Diaion SK1B) for ion exchange at 80 ° C. for 3 hours for washing, solid content concentration 20 weight An aqueous dispersion of silica-based fine particles (P-1-3) having a% solid content concentration of 20% by weight was obtained.

ついで、再び、シリカ系中空微粒子(P-1-3)分散液を150℃にて11時間水熱処理し
た後、常温に冷却し、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)400gを用いて3時間イオン交換し、さらに、陰イオン交換樹脂(三菱化学(株)製:ダイヤイオンSA20A)200gを用いて3時間イオン交換し、固形分濃度20重量%のシリカ系中空微粒子(P-1-4)の水分散液を得た。
得られたシリカ系中空微粒子(P-1-4)の屈折率、平均粒子径を測定し、結果を表1に示
した。
Next, again, the silica-based hollow fine particle (P-1-3) dispersion was hydrothermally treated at 150 ° C. for 11 hours, then cooled to room temperature, and a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B). Ion exchange was performed for 3 hours using 400 g, and further ion exchange was performed for 3 hours using 200 g of an anion exchange resin (Mitsubishi Chemical Corporation: Diaion SA20A). An aqueous dispersion of P-1-4) was obtained.
The refractive index and average particle diameter of the obtained silica-based hollow fine particles (P-1-4) were measured, and the results are shown in Table 1.

(ii)酸化チタン被覆層の形成
固形分濃度20重量%のシリカ系中空微粒子(P-1-4)の水分散液100gを希釈して固
形分濃度5重量%のシリカ系中空微粒子分散液とした。これに、TiO2として濃度2重
量%の四塩化チタン水溶液100gを加え、濃度4重量%のアンモニア水を0.5時間で添加し、pH=8.5の水和酸化チタン・シリカ系中空微粒子混合スラリーを得た。このスラリーを、40℃で2時間静置して熟成した後、濾過洗浄し、固形分濃度が4重量%の水和酸化チタン・シリカ系中空微粒子混合分散液を得た。分散液のpHは8.5であった。
(ii) Formation of titanium oxide coating layer A silica-based hollow fine particle dispersion having a solid content concentration of 5% by weight was prepared by diluting 100 g of an aqueous dispersion of silica-based hollow fine particles (P-1-4) having a solid content concentration of 20% by weight. did. To this, 100 g of a titanium tetrachloride aqueous solution having a concentration of 2% by weight as TiO 2 was added, and ammonia water having a concentration of 4% by weight was added in 0.5 hour, and the hydrated titanium oxide / silica hollow particles having a pH of 8.5. A mixed slurry was obtained. The slurry was allowed to stand at 40 ° C. for 2 hours for aging, followed by filtration and washing to obtain a mixed dispersion of hydrated titanium oxide / silica hollow particles having a solid concentration of 4% by weight. The pH of the dispersion was 8.5.

この混合分散液500gに、濃度35重量%の過酸化水素水13gを添加した後、165℃で3時間水熱処理して酸化チタン系粒子(10-1)分散液を調製した。ついで、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(10-2)分散液を調製した。さらに濃度15重量%のアンモニア水を添加して分散液のpHを9.0とし、再び、165℃で3時間水熱処理して酸化チタン系粒子(10)分散液を調製した。ついで、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン系粒子(10)分散液を調製した。   To 500 g of this mixed dispersion, 13 g of hydrogen peroxide having a concentration of 35% by weight was added, followed by hydrothermal treatment at 165 ° C. for 3 hours to prepare a titanium oxide particle (10-1) dispersion. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide particles (10-2) having a solid content concentration of 20% by weight. Further, aqueous ammonia having a concentration of 15% by weight was added to adjust the pH of the dispersion to 9.0, and hydrothermal treatment was again performed at 165 ° C. for 3 hours to prepare a dispersion of titanium oxide particles (10). Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a dispersion of titanium oxide particles (10) having a solid content concentration of 20% by weight.

表面処理
調製した酸化チタン系粒子(10)分散液100gをエタノールに溶媒置換した後、メタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを添加し、50℃で加熱
処理を行い、再び限外濾過膜を用いて溶媒をエタノールに置換して固形分濃度20重量%の酸化チタン系粒子(10)のアルコール分散液を調製した。
得られた酸化チタン系粒子(10)について、平均粒子径、球状係数、屈折率、酸化チタン被覆層の厚み、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
After the surface-treated titanium oxide-based particle (10) dispersion 100 g was solvent-substituted with ethanol, 3 g of methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added, and heat treatment was performed at 50 ° C. Then, the solvent was replaced with ethanol again using an ultrafiltration membrane to prepare an alcohol dispersion of titanium oxide-based particles (10) having a solid content concentration of 20% by weight.
With respect to the obtained titanium oxide-based particles (10), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) and characteristics (2) were measured, and the results are shown in Table 1. Indicated.

[実施例11]
酸化チタン系粒子(11)の調製
表面処理
実施例1と同様にして調製した酸化チタン系粒子(1)分散液の一部100gをエタノールに
溶媒置換した後、メタクリルシランカップリング剤(信越化学(株)製:KBM-503)3gを
添加し、50℃で加熱処理を行い、再び限外濾過膜を使用して溶媒をエタノールに置換して固形分濃度20重量%の酸化チタン系粒子(11)のアルコール分散液を調製した。
得られた酸化チタン系粒子(11)について、平均粒子径、球状係数、屈折率、酸化チタン被覆層の厚み、結晶形、特性(1)および(2)を測定し、結果を表1に示した。
[Example 11]
Preparation of titanium oxide particles (11)
Surface treatment 100 parts of the titanium oxide particles (1) prepared in the same manner as in Example 1 were substituted with ethanol, and then 3 g of a methacrylsilane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) Was added, and heat treatment was performed at 50 ° C., and the solvent was replaced with ethanol again using an ultrafiltration membrane to prepare an alcohol dispersion of titanium oxide-based particles (11) having a solid content concentration of 20% by weight.
With respect to the obtained titanium oxide-based particles (11), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal shape, characteristics (1) and (2) were measured, and the results are shown in Table 1. It was.

[比較例1]
酸化チタン粒子(R1)の調製
TiO2として濃度0.4重量%の硫酸チタン水溶液を撹拌しながら、濃度15重量%のアンモニア水を徐々に添加し、pH8.5の白色スラリーを得た。ついで、このスラリーを濾過し、洗浄して、固形分濃度9重量%のチタニアゲルスラリーを得た。このケーキ5.55Kgに濃度33重量%の過酸化水素水6.06Kgと水13.4Kgとを混合し、80℃で5時間加熱し、TiO2として濃度2.0重量%のペルオキソチタン酸水溶液を得た。このとき、水溶液は褐色で、pHは8.1であった。
[Comparative Example 1]
Preparation of Titanium Oxide Particles (R1) While stirring an aqueous solution of titanium sulfate having a concentration of 0.4% by weight as TiO 2 , ammonia water having a concentration of 15% by weight was gradually added to obtain a white slurry having a pH of 8.5. The slurry was then filtered and washed to obtain a titania gel slurry having a solid content of 9% by weight. This cake 5.55 kg was mixed with 6.06 kg of hydrogen peroxide solution having a concentration of 33 wt% and 13.4 kg of water, heated at 80 ° C. for 5 hours, and an aqueous peroxotitanic acid solution having a concentration of 2.0 wt% as TiO 2. Got. At this time, the aqueous solution was brown and the pH was 8.1.

得られたペルオキソチタン酸水溶液10gと水2000gとを混合し、95℃で2時間加熱し、TiO2として濃度0.01重量%のチタニアゾルを得た。
先に調製したペルオキソチタン酸水溶液(TiO2濃度2.0重量%)9Kgと、水191Kgとチタニアゾル130g(TiO2濃度0.01重量%)とを混合し、95℃で60時間加熱して酸化チタン粒子(R1)分散液を調製した。
10 g of the obtained aqueous solution of peroxotitanic acid and 2000 g of water were mixed and heated at 95 ° C. for 2 hours to obtain a titania sol having a concentration of 0.01% by weight as TiO 2 .
9 Kg of the previously prepared peroxotitanic acid aqueous solution (TiO 2 concentration 2.0 wt%), 191 Kg of water and 130 g of titania sol (TiO 2 concentration 0.01 wt%) were mixed and heated at 95 ° C. for 60 hours to oxidize. A dispersion of titanium particles (R1) was prepared.

得られた酸化チタン粒子(R1)は、短軸径が11nm、長軸径が57nm、アスペクト比5.2の棒状の粒子であった。また、結晶形はアナタース型で、屈折率は2.1であった。
得られた酸化チタン系粒子(R1)について、平均粒子径、球状係数、屈折率、酸化チタン被覆層の厚さ、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
The obtained titanium oxide particles (R1) were rod-shaped particles having a minor axis diameter of 11 nm, a major axis diameter of 57 nm, and an aspect ratio of 5.2. The crystal form was anatase and the refractive index was 2.1.
For the obtained titanium oxide-based particles (R1), the average particle diameter, spherical coefficient, refractive index, thickness of the titanium oxide coating layer, crystal form, characteristics (1) and characteristics (2) were measured, and the results are shown in Table 1. It was shown to.

[比較例2]
酸化チタン粒子(R2)の調製
シリカゾル(触媒化成工業(株)製:SI-30、平均粒子径12nm、屈折率1.4
4、固形分濃度40重量%)50gを希釈して固形分濃度5重量%のシリカ微粒子分散液とした。これに、TiO2として濃度2重量%の四塩化チタン水溶液100gを加え、つ
いで、濃度4重量%のアンモニア水を0.5時間で添加し、pH=8.5の水和酸化チタン・シリカ微粒子混合スラリーを得た。
[Comparative Example 2]
Preparation of titanium oxide particles (R2) Silica sol (manufactured by Catalyst Chemical Industry Co., Ltd .: SI-30, average particle size 12 nm, refractive index 1.4
4 and a solid content concentration of 40% by weight) was diluted to obtain a silica fine particle dispersion having a solid content concentration of 5% by weight. To this was added 100 g of a titanium tetrachloride aqueous solution with a concentration of 2% by weight as TiO 2 , and then ammonia water with a concentration of 4% by weight was added in 0.5 hour, and the hydrated titanium oxide / silica fine particles having a pH of 8.5. A mixed slurry was obtained.

その後、このスラリーを40℃で2時間静置して熟成した後、濾過洗浄し、固形分濃度が20重量%の水和酸化チタン・シリカ微粒子混合分散液を得た。分散液のpHは8.5であった。   Thereafter, the slurry was allowed to stand at 40 ° C. for 2 hours for aging, followed by filtration and washing to obtain a hydrated titanium oxide / silica fine particle mixed dispersion having a solid content concentration of 20% by weight. The pH of the dispersion was 8.5.

得られた混合分散液を165℃で3時間水熱処理して酸化チタン粒子(R2)分散液を調製した。ついで、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン粒子(R2)分散液を調製した。酸化チタン粒子(R2)は凝集状態であった。また、結晶形は無定型であった。
得られた酸化チタン系粒子(R2)について、平均粒子径、球状係数、屈折率、酸化チタン被覆層の厚さ、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。
The obtained mixed dispersion was hydrothermally treated at 165 ° C. for 3 hours to prepare a titanium oxide particle (R2) dispersion. Subsequently, it was washed by an ultrafiltration membrane method and concentrated to prepare a titanium oxide particle (R2) dispersion having a solid concentration of 20% by weight. The titanium oxide particles (R2) were in an aggregated state. The crystal form was amorphous.
The obtained titanium oxide particles (R2) were measured for average particle diameter, spherical coefficient, refractive index, titanium oxide coating layer thickness, crystal shape, characteristic (1) and characteristic (2), and the results are shown in Table 1. It was shown to.

[比較例3]
酸化チタン粒子(R3)の調製
シリカゾル(触媒化成工業(株)製:SI-30、平均粒子径12nm、屈折率1.4
4、固形分濃度40重量%)50gを希釈して固形分濃度5重量%のシリカ微粒子分散液とした。これに、TiO2として濃度2重量%の四塩化チタン水溶液100gと、濃度4
重量%のアンモニア水を同時に2時間で添加し、pH=8.5の水和酸化チタンゲルとシリカ微粒子との混合スラリーを得た。
[Comparative Example 3]
Preparation of titanium oxide particles (R3) Silica sol (manufactured by Catalyst Chemical Industry Co., Ltd .: SI-30, average particle size 12 nm, refractive index 1.4
4 and a solid content concentration of 40% by weight) was diluted to obtain a silica fine particle dispersion having a solid content concentration of 5% by weight. To this, 100 g of a titanium tetrachloride aqueous solution having a concentration of 2% by weight as TiO 2 , and a concentration of 4
Weight% aqueous ammonia was simultaneously added in 2 hours to obtain a mixed slurry of hydrated titanium oxide gel having pH = 8.5 and silica fine particles.

かかるスラリーを、40℃で2時間静置して熟成した後、濾過洗浄し、固形分濃度が20重量%の水和酸化チタン・シリカ微粒子混合分散液を得た。分散液のpHは8.5であった。   The slurry was allowed to stand at 40 ° C. for 2 hours for aging, followed by filtration and washing to obtain a hydrated titanium oxide / silica fine particle mixed dispersion having a solid concentration of 20% by weight. The pH of the dispersion was 8.5.

得られたこの混合分散液を165℃で3時間水熱処理して酸化チタン粒子(R3)分散液を調製し、ついで、限外濾過膜法にて洗浄し、濃縮して固形分濃度20重量%の酸化チタン粒子(R3)分散液を調製した。酸化チタン粒子(R3)は凝集状態であった。また、結晶形は無定型であった。   The obtained mixed dispersion was hydrothermally treated at 165 ° C. for 3 hours to prepare a titanium oxide particle (R3) dispersion, then washed by an ultrafiltration membrane method and concentrated to a solid concentration of 20% by weight. A dispersion of titanium oxide particles (R3) was prepared. The titanium oxide particles (R3) were in an aggregated state. The crystal form was amorphous.

得られた酸化チタン系粒子(R3)について、平均粒子径、球状係数、屈折率、酸化チタン被覆層の厚さ、結晶形、特性(1)および特性(2)を測定し、結果を表1に示した。   The resulting titanium oxide particles (R3) were measured for average particle diameter, spherical coefficient, refractive index, titanium oxide coating layer thickness, crystal shape, characteristic (1) and characteristic (2), and the results are shown in Table 1. It was shown to.

Figure 2009298614
Figure 2009298614

Claims (10)

シリカ系中空微粒子と、中空微粒子表面の酸化チタン被覆層とからなり、
平均粒子径が5〜100nmの範囲にあり、
屈折率が1.30〜2.00の範囲にあることを特徴とする酸化チタン系粒子。
It consists of silica-based hollow fine particles and a titanium oxide coating layer on the surface of the hollow fine particles,
The average particle size is in the range of 5 to 100 nm,
A titanium oxide-based particle having a refractive index in the range of 1.30 to 2.00.
前記シリカ系中空微粒子の平均粒子径が3〜100nmの範囲にあり、屈折率が1.15〜1.40の範囲にあることを特徴とする請求項1に記載の酸化チタン系粒子。   2. The titanium oxide-based particles according to claim 1, wherein the silica-based hollow fine particles have an average particle diameter in the range of 3 to 100 nm and a refractive index in the range of 1.15 to 1.40. 前記酸化チタン被覆層の平均厚さが0.1〜20nmの範囲にある(ただし、被覆層の厚さは平均粒子径の1/2を越えない)ことを特徴とする請求項1または2に記載の酸化チ
タン系粒子。
The average thickness of the titanium oxide coating layer is in the range of 0.1 to 20 nm (however, the thickness of the coating layer does not exceed 1/2 of the average particle diameter). The titanium oxide-based particles described.
前記酸化チタン粒子の下記式(1)で表される球状係数が0.5〜1の範囲にあることを
特徴とする請求項1〜3のいずれかに記載の酸化チタン粒子。
球状係数=(DS)/(DL)・・・・・・(1)
(但し、(DL)は平均粒子最長径、(DS)は最長径の中点で最長径と直交する平均短径)
The titanium oxide particles according to any one of claims 1 to 3, wherein the titanium oxide particles have a spherical coefficient represented by the following formula (1) in a range of 0.5 to 1.
Spherical coefficient = (D S ) / (D L ) (1)
(However, (D L ) is the longest average particle diameter, (D S ) is the midpoint of the longest diameter and the average short diameter perpendicular to the longest diameter)
前記酸化チタン被覆層がアナタース型、ルチル型またはブルッカイト型から選ばれる1種以上の酸化チタンであることを特徴とする請求項1〜4のいずれかに記載の酸化チタン粒子。   The titanium oxide particles according to any one of claims 1 to 4, wherein the titanium oxide coating layer is one or more types of titanium oxide selected from anatase type, rutile type, and brookite type. 下記式(1)で表される有機珪素化合物またはこれらの加水分解物で表面処理されている
ことを特徴とする請求項1〜5のいずれかに記載の酸化チタン系粒子。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数)
The titanium oxide-based particles according to any one of claims 1 to 5, wherein the titanium oxide-based particles are surface-treated with an organosilicon compound represented by the following formula (1) or a hydrolyzate thereof.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms or a silanol group) , Halogen, hydrogen, n: an integer of 0 to 3)
下記の工程(a)〜(c)からなることを特徴とする酸化チタン系粒子の製造方法。
(a)シリカ系中空微粒子分散液に、チタン化合物水溶液またはチタン化合物水溶液と酸またはアルカリを加えながら加水分解し、シリカ系中空微粒子表面にチタン化合物加水分解物を析出させる工程。
(b)チタン化合物加水分解物を表面に析出させたシリカ系中空微粒子分散液に、過酸化水素のH22としてのモル数(MHP)とチタン化合物加水分解物のTiO2としてのモル数(MTi)とのモル比(MHP)/(MTi)が2〜50の範囲となるように過酸化水素水を加える工程。
(c)分散液を80〜350℃で水熱処理する工程。
The manufacturing method of the titanium oxide type particle | grains characterized by consisting of the following process (a)-(c).
(A) A step of hydrolyzing a silica-based hollow fine particle dispersion while adding a titanium compound aqueous solution or a titanium compound aqueous solution and an acid or alkali to precipitate a titanium compound hydrolyzate on the surface of the silica-based hollow fine particles.
(B) In a silica-based hollow fine particle dispersion having a titanium compound hydrolyzate deposited on the surface, the number of moles of hydrogen peroxide as H 2 O 2 (M HP ) and the mole of titanium compound hydrolyzate as TiO 2 the number (M Ti) molar ratio of (M HP) / (M Ti ) is the step of adding a hydrogen peroxide solution to be in the range of 2 to 50.
(C) A step of hydrothermally treating the dispersion at 80 to 350 ° C.
下記の工程(ab)〜(c)からなることを特徴とする酸化チタン系粒子の製造方法。
(ab)シリカ系中空微粒子分散液に、ペルオキソチタン酸水溶液を加える工程。
(c)分散液を80〜350℃で水熱処理する工程。
The manufacturing method of the titanium oxide type particle | grains characterized by including the following process (ab)-(c).
(Ab) A step of adding a peroxotitanic acid aqueous solution to the silica-based hollow fine particle dispersion.
(C) A step of hydrothermally treating the dispersion at 80 to 350 ° C.
前記工程(c)の後、下記の工程(d)を行うことを特徴とする請求項6または7に記
載の酸化チタン系粒子の製造方法。
(d)pH7.5〜13.5に調整した分散液を80〜350℃で水熱処理する工程。
The method for producing titanium oxide-based particles according to claim 6 or 7, wherein the following step (d) is performed after the step (c).
(D) A step of hydrothermally treating the dispersion adjusted to pH 7.5 to 13.5 at 80 to 350 ° C.
平均粒子径が5〜500nmの範囲にあり、屈折率が1.3〜2.0の範囲にあることを特徴とする請求項6〜8のいずれかに記載の酸化チタン系粒子の製造方法。   The method for producing titanium oxide-based particles according to any one of claims 6 to 8, wherein the average particle diameter is in the range of 5 to 500 nm and the refractive index is in the range of 1.3 to 2.0.
JP2008152823A 2008-06-11 2008-06-11 Titanium oxide particles and method for producing the same Active JP5657197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152823A JP5657197B2 (en) 2008-06-11 2008-06-11 Titanium oxide particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152823A JP5657197B2 (en) 2008-06-11 2008-06-11 Titanium oxide particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009298614A true JP2009298614A (en) 2009-12-24
JP5657197B2 JP5657197B2 (en) 2015-01-21

Family

ID=41545919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152823A Active JP5657197B2 (en) 2008-06-11 2008-06-11 Titanium oxide particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5657197B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104230A (en) * 2010-11-05 2012-05-31 Sekisui Chem Co Ltd Metal oxide semiconductor electrode and dye-sensitized solar cell
JP2013023676A (en) * 2011-07-26 2013-02-04 General Co Ltd White ink for inkjet
JP2014534141A (en) * 2011-08-31 2014-12-18 シャンハイ ワールド−プロスペクト ケミテック カンパニーリミテッド Inorganic nonmetallic mineral composite material carrying titanium dioxide layer, production method and application
JP2015117277A (en) * 2013-12-17 2015-06-25 日揮触媒化成株式会社 Coating for forming high-refractive-index inorganic planarization layer and method for producing the same
CN105521774A (en) * 2015-12-22 2016-04-27 镇江市高等专科学校 Titanium dioxide hollow nano-material, and preparation method and application thereof
JP2017160117A (en) * 2016-03-04 2017-09-14 富士ゼロックス株式会社 Silica particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
CN107867717A (en) * 2017-09-30 2018-04-03 常熟理工学院 Based on hollow-core construction purple TiO2Michaelis resonance anti-fake product and its method for anti-counterfeit
CN110582347A (en) * 2017-05-11 2019-12-17 日本化药株式会社 Hollow-structure particle, method for producing same, and white ink
CN113697853A (en) * 2021-08-28 2021-11-26 上海大学 Titanium suboxide and preparation method thereof
US11345820B2 (en) 2017-12-11 2022-05-31 Nippon Kayaku Kabushiki Kaisha Hollow particles and production method therefor, and white ink

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241644A (en) * 2001-02-14 2002-08-28 Nittetsu Mining Co Ltd Titanium oxide film-coated powder and method for manufacturing the same
JP2003012324A (en) * 2001-06-28 2003-01-15 Catalysts & Chem Ind Co Ltd Spherical particles with titanium oxide coating layer and their producing method
WO2003031683A1 (en) * 2001-10-04 2003-04-17 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241644A (en) * 2001-02-14 2002-08-28 Nittetsu Mining Co Ltd Titanium oxide film-coated powder and method for manufacturing the same
JP2003012324A (en) * 2001-06-28 2003-01-15 Catalysts & Chem Ind Co Ltd Spherical particles with titanium oxide coating layer and their producing method
WO2003031683A1 (en) * 2001-10-04 2003-04-17 Nittetsu Mining Co., Ltd. Powder coated with titania film and method for production thereof
JP2005119909A (en) * 2003-10-17 2005-05-12 Catalysts & Chem Ind Co Ltd Antimony oxide coated silica particulate, manufacturing method thereof and substrate having coating film containing the particulate
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104230A (en) * 2010-11-05 2012-05-31 Sekisui Chem Co Ltd Metal oxide semiconductor electrode and dye-sensitized solar cell
JP2013023676A (en) * 2011-07-26 2013-02-04 General Co Ltd White ink for inkjet
JP2014534141A (en) * 2011-08-31 2014-12-18 シャンハイ ワールド−プロスペクト ケミテック カンパニーリミテッド Inorganic nonmetallic mineral composite material carrying titanium dioxide layer, production method and application
JP2015117277A (en) * 2013-12-17 2015-06-25 日揮触媒化成株式会社 Coating for forming high-refractive-index inorganic planarization layer and method for producing the same
CN105521774A (en) * 2015-12-22 2016-04-27 镇江市高等专科学校 Titanium dioxide hollow nano-material, and preparation method and application thereof
JP2017160117A (en) * 2016-03-04 2017-09-14 富士ゼロックス株式会社 Silica particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
EP3623041A4 (en) * 2017-05-11 2020-03-18 Nippon Kayaku Kabushiki Kaisha Hollow structure particles, method for producing same and white ink
CN110582347A (en) * 2017-05-11 2019-12-17 日本化药株式会社 Hollow-structure particle, method for producing same, and white ink
US10995228B2 (en) 2017-05-11 2021-05-04 Nippon Kayaku Kabushiki Kaisha Hollow structure particles, method for producing same and white ink
CN110582347B (en) * 2017-05-11 2022-05-06 日本化药株式会社 Hollow-structure particle, method for producing same, and white ink
CN107867717B (en) * 2017-09-30 2019-10-18 常熟理工学院 Based on hollow structure purple TiO2Michaelis resonance anti-fake product and its method for anti-counterfeit
CN107867717A (en) * 2017-09-30 2018-04-03 常熟理工学院 Based on hollow-core construction purple TiO2Michaelis resonance anti-fake product and its method for anti-counterfeit
US11345820B2 (en) 2017-12-11 2022-05-31 Nippon Kayaku Kabushiki Kaisha Hollow particles and production method therefor, and white ink
CN113697853A (en) * 2021-08-28 2021-11-26 上海大学 Titanium suboxide and preparation method thereof

Also Published As

Publication number Publication date
JP5657197B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5657197B2 (en) Titanium oxide particles and method for producing the same
JP4550753B2 (en) Method for producing surface-treated titanium oxide sol
JP2783417B2 (en) Manufacturing method of rutile type titanium oxide sol
US7582276B2 (en) Nanoscale rutile or anatase oxide and method for producing same
KR101437200B1 (en) Surface-coated titanium dioxide, process for producing the same, and coating compositions containing the same
JP4126788B2 (en) Silica-magnesium fluoride hydrate composite sol and process for producing the same
US20080031806A1 (en) Continuous process for making nanocrystalline metal dioxide
JP3898792B2 (en) Method for producing surface-treated titanium oxide sol
JP5253095B2 (en) Method for producing zirconia sol
JP4994187B2 (en) Method for producing modified zirconia fine particles
JP4891021B2 (en) Method for producing niobium oxide fine particles
JP4312299B2 (en) Method for producing titanium oxide fine particles containing brookite-type crystals
JP5703549B2 (en) Alumina-doped zirconia nanoparticles and production method thereof
JP5258447B2 (en) Dispersion of titanium oxide composite particles and method for producing the dispersion
JP6214412B2 (en) Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof
JPH07100611B2 (en) Method for producing modified titania sol
JP4139090B2 (en) Method for producing spherical particles with crystalline titanium oxide coating layer
CN1288213C (en) Method for preparing silicon oxide/titanium dioxide composite oxide ultraviolet screening agent
JPH04214028A (en) Titanium oxide/cerium oxide composite sol and transparent thin film formed from this sol
JP2014152226A (en) Surface-modified inorganic complex oxide fine particle and method for producing the same, dispersion liquid including fine particle, coating liquid for optical substrate, coating film for optical substrate, and substrate with coating film
JP5625929B2 (en) Method for producing silica-containing hydrous titanium oxide and silica-containing anatase-type titanium oxide
JPH0980203A (en) Modified metal oxide sol and its production
JP2005296940A (en) Modified stannic oxide-zirconium oxide composite sol, and method for preparing it
KR20090003140A (en) Process for preparing zirconia sol
JP2005169160A (en) Liquid photocatalyst composition and photocatalytic body formed by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141126

R150 Certificate of patent or registration of utility model

Ref document number: 5657197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250