JP2012101140A - Powder solubilization method and powder solubilization apparatus - Google Patents

Powder solubilization method and powder solubilization apparatus Download PDF

Info

Publication number
JP2012101140A
JP2012101140A JP2010249018A JP2010249018A JP2012101140A JP 2012101140 A JP2012101140 A JP 2012101140A JP 2010249018 A JP2010249018 A JP 2010249018A JP 2010249018 A JP2010249018 A JP 2010249018A JP 2012101140 A JP2012101140 A JP 2012101140A
Authority
JP
Japan
Prior art keywords
powder
voltage
liquid
electrode
frequency pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010249018A
Other languages
Japanese (ja)
Inventor
Yoshimi Nishimura
芳実 西村
Shigeji Hishida
茂二 菱田
Mitsuhiro Toyama
光宏 陶山
Osamu Takai
治 高井
Nagahiro Saito
永宏 斎藤
Junko Hieda
純子 稗田
Chiaki Terajima
千晶 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURITA SEISAKUSHO KK
Nagoya University NUC
Kurita Seisakusho Corp
Original Assignee
KURITA SEISAKUSHO KK
Nagoya University NUC
Kurita Seisakusho Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURITA SEISAKUSHO KK, Nagoya University NUC, Kurita Seisakusho Corp filed Critical KURITA SEISAKUSHO KK
Priority to JP2010249018A priority Critical patent/JP2012101140A/en
Publication of JP2012101140A publication Critical patent/JP2012101140A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a powder solubilization method in which surface modification treatment of slightly soluble powder such as a CNM is accelerated, and thereby which can perform a lot of surface modification treatment by low cost, and to provide a powder solubilization apparatus which can perform powder solubilization treatment based on the powder solubilization method.SOLUTION: A termination part 5 of a stirring member 4 is made a counter electrode of an electrode 14 in liquid, and a synthetic voltage V of a high voltage high frequency pulse generator 17 is impressed between both electrodes. A CNT at a vicinity of a water surface 32 or a CNT 11 which floats on a water surface 32 serves as a powder electrode by impression of the synthetic voltage V, and makes a plasma discharge 27 in liquid generate with the electrode 14 in liquid. A circumference of the electrode 14 in liquid reaches a boiling status by the plasma discharge 27 in liquid, an active water steam 28 containing radicals such as Hand OHarises. The floating CNT powder is made hydrophilic in such that a hydration layer is formed at a CNT circumference by contacting with the active water steam 28 and the plasma in liquid.

Description

本発明は、カーボンナノボール(carbon nanoball:CNB)、カーボンナノチューブ(carbon nanotube:CNT)、フラーレン、ダイヤモンドライクカーボン(diamond−like carbon:DLC)、ナノダイヤパウダー等の難溶解性粉体を水やアルコール等の溶媒に溶解させる粉体可溶化方法及びその粉体可溶化方法に基づいて前記難溶解性粉体の可溶化処理を行う粉体可溶化装置に関する。   In the present invention, a hardly soluble powder such as carbon nanoball (CNB), carbon nanotube (CNT), fullerene, diamond-like carbon (DLC), nanodiameter powder or the like is used as water or alcohol. The present invention relates to a powder solubilization method for dissolving in a solvent and a powder solubilization apparatus for performing the solubilization treatment of the hardly soluble powder based on the powder solubilization method.

CNB、CNT、フラーレン、DLC等のカーボンナノ材料(carbon nanomaterials:CNM)は、電子材料、医薬品、化粧品、潤滑剤など多岐に亘る応用が可能な優れた特性を有しているため、新規な機能素材として次世代への期待が高まっており、急速な開発が進められている。   Carbon nanomaterials (CNM) such as CNB, CNT, fullerene, and DLC have excellent characteristics that can be applied in a wide range of applications such as electronic materials, pharmaceuticals, cosmetics, and lubricants. Expectations for the next generation are increasing as materials, and rapid development is underway.

例えば、CNTはアルミニウムの半分という軽量性、鋼鉄の数十倍の強度、更にいくら曲げても折れないしなやかな弾力性からなる優れた材料特性を具備している。しかも、CNTは構造によって電気伝導率が変わることから、シリコン以後の半導体の素材として期待されているほか、内部に筒状の中空空間を有しているため、種々の分子を内包させることが可能であり、例えば燃料電池の電極等としての利用の可能性が秘められている。CNTとしては、単層カーボンナノボール(single wall carbon nanotube:SWCNT)と多層カーボンナノボール(multi wall carbon nanotube:MWCNT)が見出されている。   For example, CNTs have excellent material properties such as lightness that is half that of aluminum, strength several tens of times that of steel, and supple elasticity that does not break even when bent. In addition, CNTs are expected to be used as semiconductor materials after silicon because their electrical conductivity changes depending on the structure, and because they have a cylindrical hollow space inside, they can contain various molecules. For example, the possibility of use as an electrode of a fuel cell is hidden. As CNTs, single-walled carbon nanoballs (SWCNT) and multi-walled carbon nanoballs (MWCNT) have been found.

CNMの応用として、例えば、樹脂やフィルムにCNMを混練することにより機械的強度や耐摩耗性等を向上させ高機能化を図ることができる。CNMを混練するには、CNMと樹脂成分を相互に強固に化学的結合をさせるため、CNMに親水性の表面修飾を行う必要がある。例えば、CNTの表面を水酸基で修飾することにより、CNTの周りに水和層が形成されて水溶化され、この修飾CNTを樹脂に分散させることにより、上記高機能化されたCNT含有樹脂を生成することができる。   As an application of CNM, for example, by kneading CNM with a resin or a film, mechanical strength, wear resistance, etc. can be improved and higher functionality can be achieved. In order to knead CNM, it is necessary to perform hydrophilic surface modification on CNM in order to cause CNM and the resin component to chemically bond to each other firmly. For example, by modifying the surface of the CNT with a hydroxyl group, a hydrated layer is formed around the CNT to make it water-soluble, and the modified CNT is dispersed in the resin to produce the above highly functional CNT-containing resin. can do.

特開2008−13810号公報(特許文献1)には、貯留部に貯留している金属塩の溶液に配置した一対の液中電極間に液中プラズマを生じさせることにより、溶媒を構成する元素や化合物のラジカルや電子を生じさせ、この生じた元素や化合物のラジカルや電子によって溶液中の金属イオンを還元することにより金属塩を構成する金属のナノ粒子を生成するナノテクノロジーが開示されている。   Japanese Patent Laid-Open No. 2008-13810 (Patent Document 1) discloses an element that constitutes a solvent by generating in-liquid plasma between a pair of in-liquid electrodes arranged in a solution of a metal salt stored in a storage part. Nanotechnology that generates metal nanoparticles that constitute metal salts by generating radicals and electrons of compounds and compounds, and reducing metal ions in solution by the radicals and electrons of the generated elements and compounds is disclosed. .

特開2008−13810号公報JP 2008-13810 A

CNMは一般的に水やアルコール等の有機溶媒に溶けにくい難溶解性を有している。このため、従来、難溶解性粉体であるCNMに親水性の表面修飾を施すには、例えばCNTの表面に酸処理等の化学的処理を行なって表面改質を行ったり、界面活性剤をCNTの表面に物理的吸着を行ったりしている。しかしながら、これらの化学的処理あるいは物理的吸着処理では、表面修飾処理に時間を要するため、事業化に向けての高速化及び大量処理を妨げる問題があった。また、化学的処理に用いる酸等によりCNM構造に影響を与えるおそれがあり、界面活性剤による表面修飾処理の場合には物理的吸着の処理制御に困難を伴う。更に、特許文献1に開示されたナノテクノロジーを用いれば、液中プラズマによりCNT等への表面修飾処理時間を短縮できるが、難溶解性のCNTを液中電極間に導く技術を必要とし、実現困難となっていた。   CNM is generally difficult to dissolve in organic solvents such as water and alcohol. For this reason, in order to apply hydrophilic surface modification to CNM, which is a hardly soluble powder, for example, the surface of CNTs is subjected to chemical treatment such as acid treatment to modify the surface, or a surfactant is used. Physical adsorption is performed on the surface of the CNT. However, in these chemical treatments or physical adsorption treatments, the surface modification treatment takes time, and thus there has been a problem that hinders speeding up and commercialization for commercialization. In addition, there is a possibility that the CNM structure may be affected by an acid or the like used for chemical treatment. In the case of surface modification treatment with a surfactant, it is difficult to control physical adsorption treatment. Furthermore, if the nanotechnology disclosed in Patent Document 1 is used, the surface modification processing time for CNTs and the like can be shortened by in-liquid plasma, but this requires a technique for introducing hardly soluble CNTs between the electrodes in the liquid. It was difficult.

従って、本発明の目的は、CNM等の難溶解性粉体の表面修飾処理を高速化して、大量の表面修飾処理を低コストで行うことのできる粉体可溶化方法及びその粉体可溶化方法に基づき粉体可溶化処理を行える粉体可溶化装置を提供することである。   Accordingly, an object of the present invention is to provide a powder solubilization method and a powder solubilization method capable of performing a large amount of surface modification treatment at a low cost by speeding up the surface modification treatment of a hardly soluble powder such as CNM. It is providing the powder solubilization apparatus which can perform a powder solubilization process based on this.

本発明者は、液中プラズマを用いてCNM表面を高速且つ大量に修飾処理する方法を鋭意研究した結果、液面に接したCNM自体を片方のプラズマ電極として用い、液中に配した液中電極との間で液中プラズマ放電を行うことにより、難溶解性粉体の高速且つ大量の表面修飾処理が可能となる知見を得るに至った。   As a result of earnest research on a method for modifying a CNM surface at a high speed and in a large amount by using in-liquid plasma, the present inventor used CNM itself in contact with the liquid surface as one plasma electrode, and in the liquid arranged in the liquid By conducting in-liquid plasma discharge with the electrode, the inventors have come to the knowledge that high-speed and large-scale surface modification treatment of hardly soluble powders is possible.

本発明は上記課題を解決するため、上記知見に基づきになされたものであり、本発明の第1の形態は、溶媒を収容した溶媒槽の液中に少なくとも1つの液中電極を配置し、前記溶媒槽内の前記溶媒の液面に難溶解性粉体を供給し、前記難溶解性粉体により構成された粉体電極と前記液中電極との電極間に高電圧高周波パルスを印加して高電圧放電による液中プラズマを発生させ、前記難溶解性粉体を前記液中に溶解させる粉体可溶化方法である。   In order to solve the above problems, the present invention has been made based on the above knowledge, and the first aspect of the present invention is that at least one submerged electrode is disposed in a liquid in a solvent tank containing a solvent, A hardly soluble powder is supplied to the liquid surface of the solvent in the solvent tank, and a high-voltage high-frequency pulse is applied between the powder electrode composed of the hardly soluble powder and the electrode in the liquid. This is a powder solubilization method in which plasma in liquid by high voltage discharge is generated and the hardly soluble powder is dissolved in the liquid.

本発明の第2の形態は、第1の形態において、前記難溶解性粉体が非導電性物質からなり、前記液中電極に対して前記溶媒の液面を介して対向電極を配置し、前記対向電極と前記液面間に前記難溶解性粉体を供給し、前記液中電極と前記対向電極との電極間に前記高電圧高周波パルスを印加したとき、前記対向電極と前記液面間に介在する前記難溶解性粉体により形成される誘電体層により前記粉体電極を構成して、前記高電圧放電による液中プラズマを発生させる粉体可溶化方法である。   According to a second aspect of the present invention, in the first aspect, the hardly soluble powder is made of a non-conductive substance, and a counter electrode is disposed through the liquid level of the solvent with respect to the liquid electrode. When the hardly soluble powder is supplied between the counter electrode and the liquid surface, and the high-voltage high-frequency pulse is applied between the electrode in the liquid and the counter electrode, the gap between the counter electrode and the liquid surface In the powder solubilization method, the powder electrode is constituted by a dielectric layer formed of the hardly soluble powder interposed in the substrate, and plasma in liquid by the high voltage discharge is generated.

本発明の第3の形態は、第2の形態において、前記難溶解性粉体を撹拌する撹拌部材を前記溶媒槽の液面近傍に配置し、前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加し、前記撹拌部材により撹拌しながら前記難溶解性粉体を前記液面側に供給する粉体可溶化方法である。   According to a third aspect of the present invention, in the second aspect, the stirring member for stirring the hardly soluble powder is disposed near the liquid surface of the solvent tank, and the terminal portion of the stirring member is used as the counter electrode. This is a powder solubilization method in which a high-voltage high-frequency pulse is applied and the hardly soluble powder is supplied to the liquid surface side while being stirred by the stirring member.

本発明の第4の形態は、第1、第2又は第3の形態において、前記難溶解性粉体が、カーボンナノボール(CNB)、単層又は多層のカーボンナノチューブ(CNT)、フラーレン等の導電性物質又はダイヤモンドライクカーボン(DLC)、ナノダイヤパウダー等の非導電性物質からなる粉体可溶化方法である。   According to a fourth aspect of the present invention, in the first, second, or third aspect, the hardly soluble powder is a conductive material such as carbon nanoball (CNB), single-walled or multi-walled carbon nanotube (CNT), or fullerene. It is a powder solubilization method made of a non-conductive substance such as a conductive substance, diamond-like carbon (DLC), or nano diamond powder.

本発明の第5の形態は、前記第1〜第4形態のいずれかにおいて、前記溶媒が、水等の水酸基を含む液体、あるいはアンモニア水等のアミノ基を含む液体のいずれかからなる粉体可溶化方法である。   The fifth aspect of the present invention is the powder according to any one of the first to fourth aspects, wherein the solvent is either a liquid containing a hydroxyl group such as water or a liquid containing an amino group such as aqueous ammonia. Solubilization method.

本発明の第6の形態は、第1〜第5の形態のいずれかにおいて、前記高電圧高周波パルスは、1kV〜20kVの範囲のいずれかのピーク間電圧値を有する粉体可溶化方法である。   A sixth aspect of the present invention is the powder solubilization method according to any one of the first to fifth aspects, wherein the high-voltage high-frequency pulse has any peak-to-peak voltage value in the range of 1 kV to 20 kV. .

本発明の第7の形態は、第1〜第6の形態のいずれかにおいて、前記高電圧高周波パルスは、0.1kHz〜300kHzの範囲のいずれかの周波数を有する粉体可溶化方法である。   A seventh aspect of the present invention is the powder solubilization method according to any one of the first to sixth aspects, wherein the high-voltage high-frequency pulse has any frequency in the range of 0.1 kHz to 300 kHz.

本発明の第8の形態は、第1〜第6の形態のいずれかにおいて、前記高電圧高周波パルスは、0.1μS〜100μSの範囲のいずれかのパルス幅を有する粉体可溶化方法である。   An eighth aspect of the present invention is the powder solubilization method according to any one of the first to sixth aspects, wherein the high-voltage high-frequency pulse has any pulse width in the range of 0.1 μS to 100 μS. .

本発明の第9の形態は、第1〜第8の形態のいずれかにおいて、前記高電圧高周波パルスは、高周波パルスにRF電圧を重畳した合成電圧からなる粉体可溶化方法である。   A ninth aspect of the present invention is the powder solubilization method according to any one of the first to eighth aspects, wherein the high-voltage high-frequency pulse is a composite voltage in which an RF voltage is superimposed on the high-frequency pulse.

本発明の第10の形態は、溶媒を収容した溶媒槽と、前記溶媒槽の液中に配置した少なくとも1つの液中電極と、前記液中電極に対向して配置した少なくとも1つの対向電極と、前記溶媒槽内の前記溶媒の液面に難溶解性粉体を供給する難溶解性粉体供給部と、前記難溶解性粉体により構成された粉体電極と前記液中電極との電極間に高電圧高周波パルスを印加する高電圧高周波パルス発生装置とを有し、前記電極間に前記高電圧高周波パルスを印加して高電圧放電を発生させ、前記難溶解性粉体を前記液中に溶解させる粉体可溶化装置である。   A tenth aspect of the present invention includes a solvent tank containing a solvent, at least one submerged electrode disposed in the liquid of the solvent tank, and at least one counter electrode disposed opposite to the submerged electrode. , A hardly soluble powder supply unit for supplying a hardly soluble powder to the liquid level of the solvent in the solvent tank, a powder electrode composed of the hardly soluble powder, and an electrode of the submerged electrode A high-voltage, high-frequency pulse generator for applying a high-voltage, high-frequency pulse between the electrodes, generating a high-voltage discharge by applying the high-voltage, high-frequency pulse between the electrodes, It is a powder solubilizer to be dissolved in.

本発明の第11の形態は、第10の形態において、前記液中電極に対して前記溶媒の液面を介して前記対向電極を配置し、前記電極間に前記難溶解性粉体供給部により非導電性物質からなる前記難溶解性粉体を供給し、前記液中電極と前記対向電極との電極間に前記高電圧高周波パルスを印加したとき、前記難溶解性粉体が、前記対向電極と前記液面間に介在する前記難溶解性粉体により形成される誘電体層により前記粉体電極を構成して、前記高電圧放電による液中プラズマを発生させる粉体可溶化装置である。   According to an eleventh aspect of the present invention, in the tenth aspect, the counter electrode is disposed via the liquid surface of the solvent with respect to the submerged electrode, and the hardly soluble powder supply unit is interposed between the electrodes. When the hardly soluble powder made of a non-conductive substance is supplied and the high-voltage high-frequency pulse is applied between the electrode in the liquid and the counter electrode, the hardly soluble powder becomes the counter electrode And a dielectric layer formed by the hardly soluble powder interposed between the liquid surfaces and the powder electrode solubilizing apparatus that generates plasma in liquid by the high voltage discharge.

本発明の第12の形態は、第10又は第11の形態において、前記溶媒槽の液面近傍に配置され、前記難溶解性粉体を撹拌する撹拌部材を備え、前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加し、前記撹拌部材により撹拌しながら前記難溶解性粉体を前記液面側に供給する粉体可溶化装置である。   A twelfth aspect of the present invention includes, in the tenth or eleventh aspect, a stirring member that is disposed in the vicinity of the liquid surface of the solvent tank and that stirs the hardly soluble powder. In the powder solubilizer, the high-voltage, high-frequency pulse is applied as the counter electrode, and the hardly soluble powder is supplied to the liquid surface side while being stirred by the stirring member.

本発明の第13の形態は、第10、第11又は第12の形態において、前記高電圧高周波パルス発生装置は、基本高周波信号を複数に分周すると共に位相を複数段にずらしたスイッチング信号に基づき直流電力をスイッチングして得られたパルス電圧を合成した高周波パルスを発生させる高周波パルス発生回路からなる粉体可溶化装置である。   According to a thirteenth aspect of the present invention, in the tenth, eleventh, or twelfth aspect, the high-voltage high-frequency pulse generator generates a switching signal in which the basic high-frequency signal is divided into a plurality of phases and the phase is shifted to a plurality of stages. This is a powder solubilizer comprising a high-frequency pulse generation circuit for generating a high-frequency pulse by synthesizing a pulse voltage obtained by switching DC power based on the above.

本発明の第14の形態は、第10〜第13の形態のいずれかにおいて、前記高電圧高周波パルス発生装置は、RF電源と、前記RF電源のRF電圧を前記高電圧高周波パルス発生回路により発生された高周波パルスに重畳する重畳装置とを含み、前記高周波パルスに前記RF電圧を重畳した合成電圧を前記高電圧高周波パルスとして印加する粉体可溶化装置である。   According to a fourteenth aspect of the present invention, in any one of the tenth to thirteenth aspects, the high voltage high frequency pulse generator generates an RF power source and an RF voltage of the RF power source by the high voltage high frequency pulse generation circuit. A powder solubilizer that applies a combined voltage obtained by superimposing the RF voltage on the high-frequency pulse as the high-voltage high-frequency pulse.

本発明の第1の形態によれば、溶媒を収容した溶媒槽の液中に少なくとも1つの液中電極を配置し、前記溶媒槽内の前記溶媒の液面に難溶解性粉体を供給し、前記難溶解性粉体により構成された粉体電極と前記液中電極との電極間に高電圧高周波パルスを印加して高電圧放電による液中プラズマを発生させ、前記難溶解性粉体を前記液中に溶解させるので、前記液中電極を配置するだけの簡単な構成で、前記難溶解性粉体を前記溶媒の液面に供給することにより、前記難溶解性粉体の親水化のための表面修飾処理を液中プラズマによって高速化して連続処理し、大量の表面修飾処理を低コストで行うことができる。   According to the first aspect of the present invention, at least one submerged electrode is disposed in a liquid in a solvent tank containing a solvent, and the hardly soluble powder is supplied to the liquid level of the solvent in the solvent tank. Applying a high-voltage, high-frequency pulse between a powder electrode composed of the hardly soluble powder and the in-liquid electrode to generate in-liquid plasma by high-voltage discharge, Since it is dissolved in the liquid, it is possible to make the hardly soluble powder hydrophilic by supplying the hardly soluble powder to the liquid surface of the solvent with a simple configuration by simply placing the electrode in liquid. Therefore, a large amount of surface modification treatment can be performed at low cost by increasing the speed of the surface modification treatment using plasma in liquid and performing continuous treatment.

本発明における表面修飾処理は、水に限らず、アルコール、各種有機溶媒、ナトリウム含有液等の溶媒に適用することができる。また、前記難溶解性粉体には、水、アルコール、有機溶媒などに溶解しにくいCNMに限らず、難溶解性を有する炭素由来の微粉末やナノ粒子、炭素被覆をしたセラミック粒子等を使用することができ、また導電性物質に限らず非導電性物質にも適用することができる。
前記液中電極の設置数は少なくとも1つあればよく、多数個設置することにより、液中プラズマの発生率を高め、より効率的な表面修飾処理を行うことができる。
The surface modification treatment in the present invention can be applied not only to water but also to solvents such as alcohol, various organic solvents, and sodium-containing liquids. In addition, the hardly soluble powder is not limited to CNM which is difficult to dissolve in water, alcohol, organic solvent, etc., but uses fine powder or nanoparticles derived from carbon having difficulty solubility, ceramic particles coated with carbon, etc. In addition, the present invention can be applied not only to a conductive material but also to a non-conductive material.
The number of the submerged electrodes need only be at least one. By installing a large number of submerged electrodes, the generation rate of submerged plasma can be increased and more efficient surface modification treatment can be performed.

本発明の第2の形態によれば、前記難溶解性粉体が非導電性物質からなり、前記液中電極に対して前記溶媒の液面を介して対向電極を配置し、前記対向電極と前記液面間に前記難溶解性粉体を供給し、前記液中電極と前記対向電極との電極間に前記高電圧高周波パルスを印加したとき、前記対向電極と前記液面間に介在する前記難溶解性粉体により形成される誘電体層により前記粉体電極を構成して、前記高電圧放電による液中プラズマを発生させるので、前記液中電極を配置するだけの簡単な構成で、前記難溶解性粉体を前記対向電極と前記液面間に介在するように供給することにより、非導電性物質からなる難溶解性粉体の表面修飾処理を液中プラズマによって高速化して連続処理し、大量の表面修飾処理を低コストで行うことができる。   According to the second aspect of the present invention, the hardly soluble powder is made of a non-conductive substance, and the counter electrode is disposed through the liquid surface of the solvent with respect to the in-liquid electrode, The hardly soluble powder is supplied between the liquid surfaces, and when the high-voltage high-frequency pulse is applied between the electrodes in the liquid and the counter electrode, the intervening between the counter electrode and the liquid surface Since the powder electrode is constituted by a dielectric layer formed of a hardly soluble powder and the plasma in liquid due to the high voltage discharge is generated, the simple configuration in which only the liquid electrode is arranged, By supplying the hardly soluble powder so as to be interposed between the counter electrode and the liquid surface, the surface modification treatment of the hardly soluble powder made of a non-conductive substance is accelerated by the plasma in the liquid and continuously processed. A large amount of surface modification treatment can be performed at low cost

本発明の第3の形態によれば、前記難溶解性粉体を撹拌する撹拌部材を前記溶媒槽の液面近傍に配置し、前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加し、前記撹拌部材により撹拌しながら前記難溶解性粉体を前記液面側に供給するので、前記撹拌部材の撹拌作用により前記難溶解性粉体を前記液面側に連続的な供給を行え、しかも前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加することにより、液中プラズマによる表面修飾処理の高速化及び連続処理を促進して、より一層の大量処理化及び低コスト化を実現することができる。
前記撹拌部材は、スクリュー、羽根板、螺旋部材、コイル状部材等、前記難溶解性粉体を前記液面側に連続的な供給可能な形態の搬送回転翼部材を使用することができる。
According to the third aspect of the present invention, the stirring member for stirring the hardly soluble powder is disposed in the vicinity of the liquid surface of the solvent tank, and the terminal portion of the stirring member is used as the counter electrode to perform the high-voltage high-frequency pulse. And supplying the hardly soluble powder to the liquid surface side while stirring by the stirring member, so that the hardly soluble powder is continuously supplied to the liquid surface side by the stirring action of the stirring member. In addition, by applying the high-voltage and high-frequency pulse with the end portion of the stirring member as the counter electrode, the surface modification process by the plasma in liquid is accelerated and the continuous process is promoted, and the mass processing is further increased. In addition, cost reduction can be realized.
As the stirring member, a conveying rotary blade member that can continuously supply the hardly soluble powder to the liquid surface side, such as a screw, a blade, a spiral member, and a coiled member, can be used.

本発明の第4の形態によれば、カーボンナノボール(CNB)、単層又は多層のカーボンナノチューブ(CNT)、フラーレン等の導電性物質又はダイヤモンドライクカーボン(DLC)、ナノダイヤパウダー等の非導電性物質からなるCNMに適用することにより、難溶解性粉体であるCNMに対して液中プラズマによる表面修飾処理を高速且つ大量に施した修飾CNMを生成して低価格な高機能化結合材料を得ることができる。   According to the fourth embodiment of the present invention, conductive materials such as carbon nanoballs (CNB), single-walled or multi-walled carbon nanotubes (CNT), fullerene, or non-conductive materials such as diamond-like carbon (DLC), nanodia powder, etc. By applying to a CNM made of the above, a low-cost highly functional binding material is obtained by generating a modified CNM that is obtained by subjecting a CNM, which is a hardly soluble powder, to surface modification treatment with plasma in liquid at high speed and in large quantities. be able to.

本発明の第5の形態によれば、水等の水酸基を含む液体、あるいはアンモニア水等のアミノ基を含む液体のいずれかからなる前記溶媒を使用することにより、例えば、水酸基を含む液体を使用してCNMの表面にOH基を結合可能なラジカルを液中プラズマにより発生させたり、またアミノ基を含む液体を使用してアミノ基を結合可能なラジカルを発生させたりして、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することができる。   According to the fifth aspect of the present invention, by using the solvent consisting of either a liquid containing a hydroxyl group such as water or a liquid containing an amino group such as aqueous ammonia, for example, a liquid containing a hydroxyl group is used. The radicals capable of binding OH groups to the surface of CNM are generated by plasma in liquid, or radicals capable of binding amino groups are generated using a liquid containing amino groups. It is possible to realize high-speed and large-scale processing of the powder surface modification treatment.

本発明の第6の形態によれば、前記高電圧高周波パルスは、1kV〜20kVの範囲のいずれかのピーク間電圧値を有するので、表面修飾処理に好適な液中プラズマ放電を発生させて、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することができる。   According to the sixth aspect of the present invention, since the high-voltage high-frequency pulse has any peak-to-peak voltage value in the range of 1 kV to 20 kV, it generates an in-liquid plasma discharge suitable for surface modification treatment, The surface modification treatment of the hardly soluble powder can be speeded up and processed in a large amount.

本発明の第7の形態によれば、前記高電圧高周波パルスは、0.1kHz〜300kHzの範囲のいずれかの周波数を有するので、表面修飾処理に好適な液中プラズマ放電を発生させて、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することができる。   According to the seventh aspect of the present invention, since the high-voltage high-frequency pulse has any frequency in the range of 0.1 kHz to 300 kHz, the plasma discharge in liquid suitable for the surface modification treatment is generated, It is possible to realize a high-speed and large-scale surface modification treatment of the hardly soluble powder.

本発明の第8の形態によれば、前記高電圧高周波パルスは、0.1μS〜100μSの範囲のいずれかのパルス幅を有するので、表面修飾処理に好適な液中プラズマ放電を発生させて、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することができる。   According to the eighth aspect of the present invention, since the high-voltage high-frequency pulse has any pulse width in the range of 0.1 μS to 100 μS, it generates a plasma discharge in liquid suitable for surface modification treatment, The surface modification treatment of the hardly soluble powder can be speeded up and processed in a large amount.

本発明の第9の形態によれば、前記高電圧高周波パルスは、高周波パルスにRF電圧を重畳した合成電圧からなるので、RF電圧(高周波電力)によりプラズマ発生を促進し、高周波パルスによるプラズマ中のラジカルやイオンの誘引を行え、表面修飾処理に好適な液中プラズマ放電を発生させることができ、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することができる。   According to the ninth aspect of the present invention, since the high-voltage high-frequency pulse is composed of a composite voltage obtained by superimposing the RF voltage on the high-frequency pulse, plasma generation is promoted by the RF voltage (high-frequency power), and the plasma is generated by the high-frequency pulse. Radicals and ions can be attracted, plasma discharge in liquid suitable for the surface modification treatment can be generated, and the surface modification treatment of the hardly soluble powder can be speeded up and mass-treated.

本発明の第10の形態によれば、前記溶媒槽の液中に少なくとも1つの液中電極を配置し、前記溶媒槽内の前記溶媒の液面に難溶解性粉体を前記難溶解性粉体供給部により供給し、前記難溶解性粉体により構成された粉体電極と前記液中電極との電極間に前記高電圧高周波パルス発生装置により高電圧高周波パルスを印加して高電圧放電による液中プラズマを発生させ、前記難溶解性粉体を前記液中に溶解させるので、前記液中電極を配置するだけの簡単な構成で、前記難溶解性粉体を前記溶媒の液面に供給することにより、前記難溶解性粉体の親水化のための表面修飾処理を液中プラズマによって高速化して連続処理し、大量の表面修飾処理を低コストで行うことのできる粉体可溶化装置を提供することができる。   According to the tenth aspect of the present invention, at least one submerged electrode is disposed in the liquid in the solvent tank, and the hardly soluble powder is placed on the liquid surface of the solvent in the solvent tank. A high-voltage high-frequency pulse is applied by the high-voltage high-frequency pulse generator between the powder electrode composed of the hardly soluble powder and the submerged electrode, which is supplied by a body supply unit, and by high-voltage discharge Since the in-liquid plasma is generated and the hardly soluble powder is dissolved in the liquid, the hardly soluble powder is supplied to the liquid surface of the solvent with a simple configuration simply by arranging the in-liquid electrode. Thus, a powder solubilizing apparatus capable of performing a large amount of surface modification treatment at a low cost by performing a surface treatment for hydrophilization of the hardly soluble powder at a high speed by a plasma in liquid and continuously treating the powder. Can be provided.

本発明の第11の形態によれば、前記液中電極に対して前記溶媒の液面を介して対向電極を配置し、前記対向電極と前記液面間に前記難溶解性粉体供給部により、非導電性物質からなる前記難溶解性粉体を供給し、前記液中電極と前記対向電極との電極間に前記高電圧高周波パルスを印加したとき、前記対向電極と前記液面間に介在する前記難溶解性粉体により形成される誘電体層により前記粉体電極を構成して、前記高電圧放電による液中プラズマを発生させるので、前記液中電極を配置するだけの簡単な構成で、前記難溶解性粉体を前記対向電極と前記液面間に介在するように供給することにより、非導電性物質からなる難溶解性粉体の表面修飾処理を液中プラズマによって高速化して連続処理し、大量の表面修飾処理を低コストで行うことのできる粉体可溶化装置を提供することができる。   According to the eleventh aspect of the present invention, the counter electrode is disposed through the liquid level of the solvent with respect to the submerged electrode, and the hardly soluble powder supply unit is provided between the counter electrode and the liquid level. When the high-voltage high-frequency pulse is supplied between the electrode in the liquid and the counter electrode when the hardly soluble powder made of a non-conductive substance is supplied and interposed between the counter electrode and the liquid surface Since the powder electrode is constituted by the dielectric layer formed by the hardly soluble powder and the plasma in liquid due to the high voltage discharge is generated, it is possible to simply arrange the liquid electrode. By supplying the hardly soluble powder so as to be interposed between the counter electrode and the liquid surface, the surface modification treatment of the hardly soluble powder made of a non-conductive substance is accelerated and continuously performed in the liquid plasma. Process and do a lot of surface modification at low cost It is possible to provide a powder solubilization device capable of and.

本発明の第12の形態によれば、前記溶媒槽の液面近傍に配置され、前記難溶解性粉体を撹拌する撹拌部材を備え、前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加し、前記撹拌部材により撹拌しながら前記難溶解性粉体を前記液面側に供給するので、前記撹拌部材の撹拌作用により前記難溶解性粉体を前記液面側に連続的な供給を行え、しかも前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加することにより、液中プラズマによる表面修飾処理の高速化及び連続処理を促進して、より一層の大量処理化及び低コスト化を実現することのできる粉体可溶化装置を提供することができる。   According to a twelfth aspect of the present invention, the high voltage is provided with a stirring member that is disposed in the vicinity of the liquid surface of the solvent tank and stirs the hardly soluble powder, with the terminal portion of the stirring member as the counter electrode. A high-frequency pulse is applied, and the hardly soluble powder is supplied to the liquid surface side while being stirred by the stirring member. Therefore, the hardly soluble powder is continuously supplied to the liquid surface side by the stirring action of the stirring member. By applying the high-voltage, high-frequency pulse using the terminal portion of the stirring member as the counter electrode, the surface modification treatment with liquid plasma is accelerated and the continuous treatment is promoted, so that a larger amount can be obtained. It is possible to provide a powder solubilizing apparatus that can realize processing and cost reduction.

本発明の第13の形態によれば、前記高電圧高周波パルス発生装置は、基本高周波信号を複数に分周すると共に位相を複数段にずらしたスイッチング信号に基づき直流電力をスイッチングして得られたパルス電圧を合成した高周波パルスを発生させる高周波パルス発生回路からなるので、前記高周波パルスの印加により表面修飾処理に好適な液中プラズマ放電を発生させて、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することのできる粉体可溶化装置を提供実現することができる。   According to a thirteenth aspect of the present invention, the high-voltage high-frequency pulse generator is obtained by switching DC power based on a switching signal that divides a basic high-frequency signal into a plurality of frequencies and shifts the phase to a plurality of stages. Since it comprises a high-frequency pulse generation circuit that generates a high-frequency pulse synthesized with a pulse voltage, by applying the high-frequency pulse, a plasma discharge in liquid suitable for surface modification treatment is generated, and the surface modification treatment of the hardly soluble powder is performed. It is possible to provide and realize a powder solubilizer capable of realizing high speed and mass processing.

本発明の第14の形態によれば、前記高電圧高周波パルス発生装置は、RF電源と、前記RF電源のRF電圧を前記高電圧高周波パルス発生回路により発生された高周波パルスに重畳する重畳装置とを含み、前記高周波パルスに前記RF電圧を重畳した合成電圧を前記高電圧高周波パルスとして印加するので、表面修飾処理により好適な液中プラズマ放電を発生させて、前記難溶解性粉体の表面修飾処理の高速化且つ大量処理化を実現することのできる粉体可溶化装置を提供実現することができる。 According to a fourteenth aspect of the present invention, the high-voltage high-frequency pulse generator includes an RF power source, a superimposing device that superimposes an RF voltage of the RF power source on a high-frequency pulse generated by the high-voltage high-frequency pulse generator circuit, And the composite voltage obtained by superimposing the RF voltage on the high-frequency pulse is applied as the high-voltage high-frequency pulse, so that a suitable in-liquid plasma discharge is generated by a surface modification treatment to modify the surface of the hardly soluble powder. It is possible to provide and realize a powder solubilizing apparatus capable of realizing high-speed processing and mass processing.

本発明の一実施形態に係るCNT可溶化装置の概略構成図である。It is a schematic block diagram of the CNT solubilization apparatus which concerns on one Embodiment of this invention. 前記実施形態に用いる高電圧高周波パルスの波形図である。It is a wave form diagram of the high voltage high frequency pulse used for the said embodiment. 前記実施形態におけるCNT表面修飾処理制御部の概略構成ブロック図である。It is a schematic block diagram of the CNT surface modification processing control unit in the embodiment. 前記CNT表面修飾処理制御部における表面修飾処理手順を示すフローチャートである。It is a flowchart which shows the surface modification process procedure in the said CNT surface modification process control part. 本発明の別の実施形態に係る粉体可溶化装置の概略構成図である。It is a schematic block diagram of the powder solubilization apparatus which concerns on another embodiment of this invention. 図5の粉体可溶化装置におけるプラズマ発生機構を説明するための等価回路図である。It is an equivalent circuit diagram for demonstrating the plasma generation mechanism in the powder solubilization apparatus of FIG.

以下、本発明に係るプラズマ処理装置の実施形態を添付図面に基づいて詳細に説明する。   Embodiments of a plasma processing apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は本発明の一実施形態に係るCNT可溶化装置の概略構成を示す。
本実施形態に係るCNT可溶化装置は本発明の可溶化方法に基づきCNT(難溶解性粉体)を水に溶解させて、表面修飾処理を行うための親水化処理装置である。本発明に係る可溶化方法によれば、水(溶媒)31を収容した溶媒槽1の水中に2つの液中電極14を配置し、溶媒槽1内の溶媒の水面にCNT7を供給し、CNT7により構成された粉体電極と液中電極14との電極間に高電圧高周波パルスを印加して高電圧放電による液中プラズマ放電27を発生させてCNT7を水中に溶解させることができる。
FIG. 1 shows a schematic configuration of a CNT solubilizer according to an embodiment of the present invention.
The CNT solubilizer according to the present embodiment is a hydrophilization treatment device for performing surface modification treatment by dissolving CNT (hardly soluble powder) in water based on the solubilization method of the present invention. According to the solubilization method according to the present invention, the two submerged electrodes 14 are arranged in the water of the solvent tank 1 containing water (solvent) 31, CNT 7 is supplied to the water surface of the solvent in the solvent tank 1, and CNT 7 A high-voltage high-frequency pulse is applied between the powder electrode and the submerged electrode 14 configured as described above to generate a submerged plasma discharge 27 by high-voltage discharge and dissolve the CNT 7 in water.

溶媒槽1の開放口には、中央部が開口した蓋体2が取り付けられている。溶媒槽1内に溶媒の水31がほぼ満たされ、溶媒槽1上部に蓋体2がシール部材26を介してねじ部25により螺着して冠着されている。蓋体2の中央部は水面32側に垂下された筒形状を有する。各液中電極14は蓋体2の開口に向けて配置されている。蓋体2の開口周辺からは、液中電極14の配線が導出されている。溶媒槽1及び蓋体2は絶縁性樹脂により形成されている。液中電極14は導電線の先端部分を上方に向けた針状電極を形成している。導電線の両端以外はポリテトラフルオロエチレン(PTFE)製の絶縁カバー材15により覆われて、水中及び蓋体2を経て外延されている。液中電極14の先端は水面32から5〜20mmの位置に設定されている。   A lid 2 having an opening at the center is attached to the opening of the solvent tank 1. The solvent tank 1 is almost filled with solvent water 31, and the lid body 2 is screwed onto the upper part of the solvent tank 1 by a screw portion 25 via a seal member 26 and is attached. The center part of the lid body 2 has a cylindrical shape that hangs down to the water surface 32 side. Each submerged electrode 14 is arranged toward the opening of the lid 2. From the periphery of the opening of the lid 2, the wiring of the submerged electrode 14 is led out. The solvent tank 1 and the lid body 2 are formed of an insulating resin. The submerged electrode 14 forms a needle-like electrode with the tip of the conductive wire facing upward. Except for both ends of the conductive wire, it is covered with an insulating cover material 15 made of polytetrafluoroethylene (PTFE), and is extended outwardly through water and the lid 2. The tip of the in-liquid electrode 14 is set at a position of 5 to 20 mm from the water surface 32.

蓋体2の開口部分にはCNT材を収容する導電性筒体3が嵌着されている。筒体3の上側部にはCNT導入口9が開口されており、CNT導入口9にCNT搬入部6の搬入管8が連通接続されている。CNT搬入部6には開閉蓋12が取着されており、開閉蓋12を開いてCNT7をCNT搬入部6内に投入可能になっている。CNTは水等に難溶解性を有しており、水面32上に浮遊した状態で供給される。搬入管8はCNT導入口9に向けて緩やかに湾曲した管路を形成し、投入されたCNT7が自然落下により搬入管8に沿って筒体3に徐々に導入されていく。搬入管8のCNT導入口9手前側にはCNT投入検知センサ24が設置されている。CNT投入検知センサ24は、CNTの通過を検出して、センサ付近における搬入管8内の残存CNTの有無を検出する。   A conductive cylinder 3 that accommodates the CNT material is fitted into the opening of the lid 2. A CNT inlet 9 is opened on the upper side of the cylinder 3, and a carry-in tube 8 of the CNT carry-in section 6 is connected to the CNT inlet 9. An open / close lid 12 is attached to the CNT carry-in section 6 so that the CNT 7 can be put into the CNT carry-in section 6 by opening the open / close lid 12. CNT is hardly soluble in water or the like, and is supplied in a floating state on the water surface 32. The carry-in pipe 8 forms a gently curved pipe line toward the CNT introduction port 9, and the introduced CNT 7 is gradually introduced into the cylinder 3 along the carry-in pipe 8 by natural fall. A CNT insertion detection sensor 24 is installed on the front side of the CNT introduction port 9 of the carry-in pipe 8. The CNT insertion detection sensor 24 detects the passage of CNT and detects the presence or absence of residual CNT in the carry-in pipe 8 in the vicinity of the sensor.

筒体3内には、CNT導入口9より搬入されたCNT材を攪拌する導電性攪拌部材4が配設されている。攪拌部材4はコイル状の攪拌翼体を有し、該攪拌翼体の回転軸19は筒体3を貫通して上方に外延され、連結部材22を介して駆動モータ21の回転軸に連結されている。攪拌部材4は縦状に配置されており、その攪拌体の上端部はCNT導入口9に付近に達し、終端部5は蓋体2の中央部を経て水面32に所定距離(5〜20mm)を隔てて空中に配置されている。CNT材はCNT導入口9より攪拌体全体を覆う充填状態まで搬入可能である。攪拌部材4を毎秒数回転の回転数で回転させると、その攪拌輸送作用により、筒体3内に充填されたCNT10は水面32側に向けて供給される。   A conductive stirring member 4 for stirring the CNT material carried from the CNT introduction port 9 is disposed in the cylindrical body 3. The agitating member 4 has a coiled agitating blade body, and the rotating shaft 19 of the agitating blade body extends upward through the cylindrical body 3 and is connected to the rotating shaft of the drive motor 21 via a connecting member 22. ing. The stirring member 4 is arranged vertically, the upper end portion of the stirring body reaches the vicinity of the CNT inlet 9, and the end portion 5 passes through the central portion of the lid body 2 to the water surface 32 at a predetermined distance (5 to 20 mm). It is arranged in the air with a gap. The CNT material can be carried in from the CNT introduction port 9 to a filling state covering the entire stirring member. When the stirring member 4 is rotated at a rotational speed of several revolutions per second, the CNT 10 filled in the cylindrical body 3 is supplied toward the water surface 32 side by the stirring and transporting action.

本実施形態においては、筒体3内のCNT材に通電してCNT自体を粉体電極とすることにより、液中電極14との間に高電圧高周波パルスを印加して液中プラズマ放電を発生させるプラズマ発生機構を構成している。   In this embodiment, by energizing the CNT material in the cylindrical body 3 and using the CNT itself as a powder electrode, a high-voltage high-frequency pulse is applied between the submerged electrode 14 to generate submerged plasma discharge. The plasma generation mechanism is configured.

図2は高電圧高周波パルス発生装置17の高電圧高周波パルス波形を示す。図3は本実施形態におけるCNT表面修飾処理制御部40の概略構成を示す。
高電圧高周波パルス発生装置17は、発振器42の基準周波数に基づき高電圧高周波パルスを発生する高電圧高周波パルス発生回路41と、RF電源43と、RF電源43のRF電圧を高電圧高周波パルス発生回路41により発生された高周波パルスに重畳する重畳装置44とからなる。重畳装置44によりRF電源電圧が重畳された高電圧高周波パルスが印加電圧Vとして粉体電極と液中電極14間に印加可能となっている。高電圧高周波パルス発生回路41は、発振器42の基準周波数に基づき高周波を発生させ、それを多数個に分周し、且つ位相をずらす分周位相制御回路と、分周位相制御回路の複数個の出力信号をスイッチングして合成し高電圧高周波パルスを生成するスイッチング回路を含む。
FIG. 2 shows a high voltage high frequency pulse waveform of the high voltage high frequency pulse generator 17. FIG. 3 shows a schematic configuration of the CNT surface modification processing control unit 40 in the present embodiment.
The high-voltage high-frequency pulse generator 17 generates a high-voltage high-frequency pulse generation circuit 41 that generates a high-voltage high-frequency pulse based on the reference frequency of the oscillator 42, an RF power source 43, and the RF voltage of the RF power source 43 as a high-voltage high-frequency pulse generation circuit. And a superimposing device 44 that superimposes the high frequency pulse generated by 41. A high-voltage, high-frequency pulse on which the RF power supply voltage is superimposed by the superimposing device 44 can be applied as the applied voltage V between the powder electrode and the submerged electrode 14. The high-voltage, high-frequency pulse generation circuit 41 generates a high frequency based on the reference frequency of the oscillator 42, divides it into a large number and divides the phase, and a plurality of frequency division phase control circuits. It includes a switching circuit that generates a high-voltage high-frequency pulse by switching and combining the output signals.

図2の(2A)、(2B)は夫々、高電圧高周波パルス発生回路41、RF電源43の電圧波形を示す。同図(2C)はこれらの出力電圧(Va、Vb)を重畳装置44により合成した合成電圧Vの波形を示す。(2B)及び(2C)においては(2A)の電圧波形に対し模式的に図示している。   (2A) and (2B) in FIG. 2 show voltage waveforms of the high-voltage and high-frequency pulse generation circuit 41 and the RF power source 43, respectively. FIG. 2C shows a waveform of a combined voltage V obtained by combining these output voltages (Va, Vb) by the superimposing device 44. In (2B) and (2C), the voltage waveform of (2A) is schematically illustrated.

液中プラズマ放電の発生には、高電圧高周波パルス(合成電圧V)の周波数を高くし、あるいは立ち上がりを急峻にすることにより、効率的に放電発生を誘引することができる。即ち、本実施形態では、液中プラズマ放電発生の効率を高めるために、以下のパルス発生条件に基づいて高電圧高周波パルス(合成電圧V)が高電圧高周波パルス発生装置17から出力される。
高電圧高周波パルス発生回路41の高電圧高周波パルスVaは1kV〜20kVの範囲のいずれかのピーク間電圧値Vppに設定される。高電圧高周波パルスVaの周波数Fは、0.1kHz〜300kHzの範囲のいずれかの周波数値に設定される。高電圧高周波パルスVaのパルス幅Wは、0.1μS〜100μSの範囲のいずれかのパルス幅値に設定される。RF電源43のRF電圧Vbは13.56MHz、27.12MHzあるいは40.68MHzのいずれかの周波数に基づいて発生される。
In the generation of plasma discharge in the liquid, the generation of the discharge can be efficiently induced by increasing the frequency of the high-voltage high-frequency pulse (synthetic voltage V) or by making the rise steep. That is, in the present embodiment, in order to increase the efficiency of in-liquid plasma discharge generation, a high voltage high frequency pulse (synthetic voltage V) is output from the high voltage high frequency pulse generator 17 based on the following pulse generation conditions.
The high voltage high frequency pulse Va of the high voltage high frequency pulse generating circuit 41 is set to a peak-to-peak voltage value Vpp in the range of 1 kV to 20 kV. The frequency F of the high voltage high frequency pulse Va is set to any frequency value in the range of 0.1 kHz to 300 kHz. The pulse width W of the high voltage high frequency pulse Va is set to any pulse width value in the range of 0.1 μS to 100 μS. The RF voltage Vb of the RF power source 43 is generated based on any frequency of 13.56 MHz, 27.12 MHz, or 40.68 MHz.

高電圧高周波パルス発生装置17によって発生された合成電圧Vは、図1に示すように、接続線16を通じて液中電極14と、接続線18及び導電性リング20を通じて攪拌部材4に印加されている。筒体3に充填されているCNT10全体に与えるように合成電圧Vが接続線18、23を通じて筒体3にも印加されている。合成電圧Vを使用すれば、RF電圧(高周波電力)によってプラズマ発生が促進され、且つ、高周波パルスによるプラズマ中のラジカルやイオンの誘引を行って、より効率的な液中プラズマ放電を発生させることが可能になる。   As shown in FIG. 1, the synthesized voltage V generated by the high-voltage high-frequency pulse generator 17 is applied to the submerged electrode 14 through the connection line 16, and the stirring member 4 through the connection line 18 and the conductive ring 20. . The composite voltage V is also applied to the cylinder 3 through the connection lines 18 and 23 so as to be applied to the entire CNT 10 filled in the cylinder 3. If the synthesized voltage V is used, plasma generation is promoted by the RF voltage (high frequency power), and radicals and ions in the plasma are attracted by the high frequency pulse to generate more efficient plasma discharge in liquid. Is possible.

上記構成のCNT可溶化装置において、攪拌部材4の終端部5を液中電極14の対向電極として、両電極間に高電圧高周波パルス発生装置17の合成電圧Vが印加される。合成電圧Vの印加により、水面32近傍のCNTあるいは水面32に浮遊するCNT11が粉体電極となって、液中電極14との間で液中プラズマ放電27を発生させる。液中プラズマ放電27により液中電極14の周囲が沸騰状態に達し、HやOH等のラジカルを含む活性水蒸気28が生ずる。この活性水蒸気28及び液中プラズマに接触することにより、浮遊CNT粉体はCNT周囲に水和層が形成され親水化(水溶化)される。活性水蒸気28は上昇して、水面32近傍の空中CNTを通過するので、液面上の空中CNTも親水化することができる。親水化された修飾CNT29、30は水中に溶解して自重により溶媒槽1の底部に落下していく。溶媒槽1の底部に堆積した修飾CNT33を回収することにより、修飾CNTからなる高機能化結合材料を得ることができる。 In the CNT solubilizer having the above-described configuration, the combined voltage V of the high-voltage, high-frequency pulse generator 17 is applied between both electrodes, with the terminal portion 5 of the stirring member 4 as the counter electrode of the submerged electrode 14. By applying the composite voltage V, the CNT near the water surface 32 or the CNT 11 floating on the water surface 32 becomes a powder electrode, and a submerged plasma discharge 27 is generated between the submerged electrode 14. Due to the plasma discharge 27 in the liquid, the periphery of the liquid electrode 14 reaches a boiling state, and active water vapor 28 containing radicals such as H + and OH is generated. By contacting the activated water vapor 28 and the plasma in liquid, the suspended CNT powder is hydrophilized (water-solubilized) by forming a hydrated layer around the CNT. Since the active water vapor 28 rises and passes through the airborne CNTs near the water surface 32, the airborne CNTs on the liquid surface can also be hydrophilized. Hydrophilic modified CNTs 29 and 30 are dissolved in water and fall to the bottom of the solvent tank 1 by their own weight. By recovering the modified CNT 33 deposited on the bottom of the solvent tank 1, a highly functional binding material composed of the modified CNT can be obtained.

上記CNT可溶化装置によれば、攪拌部材4によるCNT材の輸送撹拌を行いながら、水の界面付近において液中プラズマによる親水化処理を行うことができる。従って、上記CNT可溶化装置の稼働により、CNTの表面修飾の連続処理化及び高速化を実現でき、しかも大量に修飾CNMを生成して高機能化結合材料の低価格化を実現することができる。   According to the CNT solubilizing apparatus, the hydrophilization treatment with plasma in liquid can be performed in the vicinity of the water interface while transporting and stirring the CNT material by the stirring member 4. Therefore, by the operation of the CNT solubilizer, it is possible to realize continuous processing and speeding up of the surface modification of CNT, and also to produce a large amount of modified CNM and to realize a low cost of highly functional binding material. .

上記CNT可溶化装置は図3に示すCNT表面修飾処理制御部40による表面修飾処理の連続処理管理機能を具備する。   The CNT solubilizer has a continuous process management function of the surface modification process by the CNT surface modification process control unit 40 shown in FIG.

CNT表面修飾処理制御部40はCPU、表面修飾処理制御プログラムを記憶するプログラム記憶メモリのROM及びワーキングメモリのRAMからなるマイクロプロセッサにより構成されている。CNT表面修飾処理制御部40には、CNT投入検知センサ24及び起動SW45による入力信号が入力される。起動SW45の押下により表面修飾処理制御プログラムを起動させることができる。また、CNT表面修飾処理制御部40には、各種データの設定入力を行うためのキー入力装置46が接続されており、キー入力装置46による設定データは液晶表示装置47に外部出力されて表示される。   The CNT surface modification processing control unit 40 includes a microprocessor including a CPU, a ROM of a program storage memory for storing a surface modification processing control program, and a RAM of a working memory. Input signals from the CNT insertion detection sensor 24 and the activation SW 45 are input to the CNT surface modification processing control unit 40. The surface modification processing control program can be activated by pressing the activation SW 45. The CNT surface modification processing control unit 40 is connected to a key input device 46 for inputting various data settings. The setting data from the key input device 46 is output to the liquid crystal display device 47 and displayed. The

搬入管8途中に設置されたCNT投入検知センサ24によって、搬入管8内の残存CNTがないことを検出してから一定時間tの経過によりCNT導入口9付近の投入CNT13がすべて筒体3内に投入されたと判断され、その判断時点から、筒体3内の一定量のCNT10がすべて親水化されるまでの所要処理時間Tデータを予め計測して取得しておき、所要処理時間Tデータに基づき表面修飾処理の連続処理管理が実行される。終了検知時間(t+T)は終了検知タイマ設定モードにおいてキー入力装置46による設定入力操作により予め前記ROMに設定、記憶される。   The CNT input detection sensor 24 installed in the middle of the carry-in pipe 8 detects that there is no remaining CNT in the carry-in pipe 8, and all the charged CNTs 13 near the CNT introduction port 9 are all within the cylinder 3 after a lapse of a predetermined time t. The required processing time T data from when the determination is made until the fixed amount of CNT 10 in the cylindrical body 3 is all hydrophilized is measured and acquired in advance, and the required processing time T data is obtained. Based on this, continuous process management of the surface modification process is executed. The end detection time (t + T) is preset and stored in the ROM by a setting input operation by the key input device 46 in the end detection timer setting mode.

外部出力手段として、高電圧高周波パルス発生回路41、RF電源43及び撹拌部材4用の駆動モータ21がCNT表面修飾処理制御部40に接続されている。CNT表面修飾処理制御部40は高電圧高周波パルス発生回路41、RF電源43及び駆動モータ21に夫々、駆動制御信号を出力する。CNT表面修飾処理制御部40には、表面修飾処理の開始及び終了状態、撹拌部材4の駆動状態、CNT投入有無を夫々、報知するLEDランプからなる稼働状態表示器48が接続され、各稼働状態に応じたランプ点灯信号が稼働状態表示器48に出力される。   As external output means, a high voltage high frequency pulse generation circuit 41, an RF power source 43, and a drive motor 21 for the stirring member 4 are connected to the CNT surface modification processing control unit 40. The CNT surface modification processing control unit 40 outputs drive control signals to the high-voltage, high-frequency pulse generation circuit 41, the RF power source 43, and the drive motor 21, respectively. The CNT surface modification processing control unit 40 is connected to an operation state indicator 48 including an LED lamp for notifying the start and end states of the surface modification treatment, the driving state of the stirring member 4, and whether or not CNT is inserted, A lamp lighting signal corresponding to is output to the operating state indicator 48.

図4は表面修飾処理制御プログラムに基づき実行される表面修飾処理手順を示す。
表面修飾処理の実行に先立ち、終了検知タイマ設定モードにおいて、キー入力装置46を操作して、表面修飾処理の終了検知時間(t+T)の入力設定が行われる。次に、起動SW45のONにより表面修飾処理制御プログラムが起動すると、CNTの投入済みか否か判断する(ステップS1、S2)。CNT投入検知センサ24がONか否かによりCNTの投入済みが確認される。CNT投入検知センサ24がONしていないとき、CNT材投入未了と判断して稼働状態表示器48のCNT材投入未了ランプの点灯で報知される。CNT材投入未了時には、開閉蓋12を開いてCNT7をCNT搬入部6内に投入し、CNT投入検知センサ24がONするまで筒体3内に充填する(ステップS8)。
FIG. 4 shows a surface modification processing procedure executed based on the surface modification processing control program.
Prior to the execution of the surface modification process, in the end detection timer setting mode, the key input device 46 is operated to set the input of the end detection time (t + T) of the surface modification process. Next, when the surface modification processing control program is activated by turning on the activation SW 45, it is determined whether or not CNT has been inserted (steps S1 and S2). Whether or not CNT has been inserted is confirmed by whether or not the CNT insertion detection sensor 24 is ON. When the CNT input detection sensor 24 is not ON, it is determined that the CNT material has not been input, and a notification is given by the lighting of the CNT material input incomplete lamp of the operation status indicator 48. When the introduction of the CNT material has not been completed, the opening / closing lid 12 is opened and the CNT 7 is introduced into the CNT carry-in section 6 and filled into the cylinder 3 until the CNT insertion detection sensor 24 is turned on (step S8).

CNT投入検知センサ24がONし、CNTの投入済みが確認されたとき(ステップS2)、高電圧高周波パルス発生回路41及びRF電源43を駆動し、合成電圧Vを発生させる(ステップS3)。同時に、駆動モータ21を駆動して撹拌部材4を回転させる(ステップS4)。高電圧高周波パルス(合成電圧V)の発生及び撹拌部材4の回転開始により、水面32近傍あるいは水面32に浮遊するCNT11が粉体電極となって、液中電極14との間で液中プラズマ放電27を発生させるプラズマ発生機構により、筒体3内のCNT10が攪拌部材4による撹拌輸送作用を受けて速やかに親水化されていく。   When the CNT input detection sensor 24 is turned on and it is confirmed that CNT has been input (step S2), the high-voltage high-frequency pulse generation circuit 41 and the RF power source 43 are driven to generate a composite voltage V (step S3). At the same time, the drive motor 21 is driven to rotate the stirring member 4 (step S4). Due to the generation of the high-voltage high-frequency pulse (synthetic voltage V) and the rotation of the stirring member 4, the CNT 11 floating near the water surface 32 or on the water surface 32 becomes a powder electrode, and the plasma discharge in liquid between the liquid electrode 14. Due to the plasma generation mechanism that generates 27, the CNTs 10 in the cylinder 3 are quickly hydrophilized by the stirring and transporting action of the stirring member 4.

筒体3内のCNT10の表面修飾処理が進行し、CNT投入検知センサ24がOFFとなると、CPUのタイマ機能が作動して、予め設定された終了検知時間(t+T)の計時が開始され、終了検知時間(t+T)の経過により投入CNTの全量の表面修飾処理の終了と判断し(ステップS5)、高電圧高周波パルスの発生及び撹拌部材4の回転を停止する(ステップS6、S7)。表面修飾処理の終了時には稼働状態表示器48の終了ランプの点灯で報知される。   When the surface modification process of the CNT 10 in the cylindrical body 3 proceeds and the CNT insertion detection sensor 24 is turned off, the timer function of the CPU is activated to start and measure the preset end detection time (t + T). When the detection time (t + T) has elapsed, it is determined that the surface modification process for the entire amount of input CNT has been completed (step S5), and the generation of the high-voltage high-frequency pulse and the rotation of the stirring member 4 are stopped (steps S6 and S7). At the end of the surface modification process, a notification is given by turning on the end lamp of the operating state indicator 48.

上記表面修飾処理手順により、表面修飾処理の連続処理管理が行われるので、液中プラズマによる親水化処理を自動化することができ、修飾CNTの高速且つ大量生成工程の省人化及び低コスト化を図ることができる。   Since the surface modification treatment procedure allows continuous treatment management of the surface modification treatment, hydrophilization treatment using in-liquid plasma can be automated, reducing the labor and cost of the modified CNTs at high speed and in large quantities. Can be planned.

上記実施形態においては、CNTに限らず、例えば、カーボンナノボール(CNB)やフラーレン等の導電性物質からなるCNM等の難溶解性粉体に対する表面修飾処理を行うことができる。   In the above embodiment, not only CNT but also surface modification treatment can be performed on hardly soluble powder such as CNM made of conductive material such as carbon nanoball (CNB) or fullerene.

図5は本発明の別の実施形態に係る粉体可溶化装置の概略構成を示す。
上記実施形態の粉体可溶化装置は、難溶解性粉体自体に通電し粉体電極として使用するので、CNT、CNB、フラーレン等の導電性物質からなるCNM等の難溶解性粉体に対する表面修飾処理に好適であるが、図5は、ダイヤモンドライクカーボン(DLC)、ナノダイヤパウダー等の非導電性物質からなる難溶解性粉体に対する表面修飾処理に好適な粉体可溶化装置を示す。以下の実施形態はDLCの水溶化の一例である。
FIG. 5 shows a schematic configuration of a powder solubilizer according to another embodiment of the present invention.
Since the powder solubilization apparatus of the above embodiment is used as a powder electrode by energizing the hardly soluble powder itself, the surface with respect to the hardly soluble powder such as CNM made of a conductive substance such as CNT, CNB, fullerene, etc. Although suitable for the modification treatment, FIG. 5 shows a powder solubilization apparatus suitable for the surface modification treatment of a hardly soluble powder made of a non-conductive substance such as diamond-like carbon (DLC) or nanodiamond powder. The following embodiment is an example of water-solubilization of DLC.

ボトル形状の溶媒槽50上方の筒部53には蓋体70が冠着されている。溶媒の水51が筒部53根元付近まで満たされている。4個の液中電極71は水面52に向けて配置されている。液中電極71の配線は溶媒槽50の側部から漏水防止シール材73を介して外方に導出されている。溶媒槽50及び蓋体70は絶縁性樹脂により形成されている。液中電極71は、液中電極14と同様に、導電線の先端部分を上方に向けた針状電極を形成している。導電線の両端以外はPTFE製の絶縁カバー材72により覆われて、水中及び溶媒槽50を経て外延されている。液中電極71の先端は水面52から5〜20mmの位置に設定されている。   A lid 70 is attached to the cylindrical portion 53 above the bottle-shaped solvent tank 50. The solvent water 51 is filled up to the vicinity of the root of the cylindrical portion 53. The four in-liquid electrodes 71 are arranged toward the water surface 52. The wiring of the submerged electrode 71 is led out from the side portion of the solvent tank 50 through the water leakage preventing sealing material 73. The solvent tank 50 and the lid 70 are made of an insulating resin. The submerged electrode 71 forms a needle-like electrode with the end portion of the conductive wire facing upward, like the submerged electrode 14. Except both ends of the conductive wire, it is covered with an insulating cover material 72 made of PTFE, and is extended through the water and the solvent tank 50. The tip of the submerged electrode 71 is set at a position of 5 to 20 mm from the water surface 52.

筒部53の側面にはDLC導入口58が開口されており、DLC導入口58にDLC搬入路59が連通接続されている。DLC搬入路59の上部は開口されており、DLC67を溶媒槽50内に投入可能になっている。DLCは水等に難溶解性を有しており、水面52上に浮遊した状態で供給される。   A DLC introduction port 58 is opened on the side surface of the cylindrical portion 53, and a DLC carry-in path 59 is connected to the DLC introduction port 58. An upper portion of the DLC carry-in path 59 is opened, and the DLC 67 can be put into the solvent tank 50. DLC has poor solubility in water or the like, and is supplied in a state of floating on the water surface 52.

筒部53内には、DLC搬入路59より搬入されたDLC材を攪拌する攪拌部材55が配設されている。攪拌部材55は積層状に配置した3枚のプロペラ型攪拌翼体からなり、該攪拌翼体の導電性回転軸54は蓋体70を貫通して上方に外延され、連結部材76を介して駆動モータ57の回転軸に連結されている。攪拌部材55は縦状に配置されており、最上部の攪拌翼体はDLC導入口58付近に位置する。回転軸54の終端には、多数の貫通穴が形成されたメッシュ状対向電極56が取着されている。該貫通穴はDLC粉体が通過可能な大きさ(1mm径)を有する。対向電極56は平坦な円板形状を有し、その平坦面を水面52に並行に、所定距離(5〜20mm)を隔てて空中に配置されている。DLC67はDLC搬入路59より搬入して攪拌体全体を覆う充填状態まで搬入可能である。攪拌部材55を毎秒数回転の回転数で回転させると、その攪拌輸送作用により、筒部53内に充填されたDLC78はメッシュ状対向電極56の貫通穴を通過して水面52側に向けて供給される。   An agitating member 55 for agitating the DLC material carried in from the DLC carry-in path 59 is disposed in the cylindrical portion 53. The stirring member 55 is composed of three propeller-type stirring blades arranged in a stacked manner, and the conductive rotating shaft 54 of the stirring blade body extends outwardly through the lid 70 and is driven through a connecting member 76. It is connected to the rotating shaft of the motor 57. The stirring member 55 is arranged vertically, and the uppermost stirring blade body is located in the vicinity of the DLC inlet 58. A mesh-like counter electrode 56 having a large number of through holes is attached to the end of the rotating shaft 54. The through hole has a size (1 mm diameter) through which DLC powder can pass. The counter electrode 56 has a flat disk shape, and the flat surface is disposed in the air in parallel with the water surface 52 with a predetermined distance (5 to 20 mm) therebetween. The DLC 67 can be carried in from the DLC carry-in path 59 to a filling state covering the entire stirring body. When the stirring member 55 is rotated at a rotational speed of several revolutions per second, the DLC 78 filled in the cylindrical portion 53 passes through the through hole of the mesh-like counter electrode 56 and is supplied toward the water surface 52 side by the stirring and transporting action. Is done.

液中電極74と対向電極56の電極間には、高電圧高周波パルス発生装置60により、前記実施形態の高電圧高周波パルス発生装置17によって発生された合成電圧と同様にして、合成電圧Vが発生されて印加される。即ち、図5に示すように、合成電圧Vが、接続線61〜64を通じて各液中電極71と、接続線65、導電性リング66及び回転軸54を通じて対向電極56に印加されている。   A composite voltage V is generated between the in-liquid electrode 74 and the counter electrode 56 by the high-voltage high-frequency pulse generator 60 in the same manner as the composite voltage generated by the high-voltage high-frequency pulse generator 17 of the above embodiment. Applied. That is, as shown in FIG. 5, the composite voltage V is applied to each of the liquid electrodes 71 through the connection lines 61 to 64, and to the counter electrode 56 through the connection line 65, the conductive ring 66, and the rotating shaft 54.

図6は図5の実施形態におけるプラズマ発生機構を説明するための等価回路図である。
図5の実施形態においては、液中電極71と対向電極56との電極間に高電圧高周波パルス(合成電圧V)を印加したとき、対向電極56と液面52間に介在するDLC粉体の誘電率により形成される誘電体層によって粉体電極を構成して、高電圧放電による液中プラズマを発生させるプラズマ発生機構を構成している。
FIG. 6 is an equivalent circuit diagram for explaining the plasma generation mechanism in the embodiment of FIG.
In the embodiment of FIG. 5, when a high-voltage high-frequency pulse (synthetic voltage V) is applied between the in-liquid electrode 71 and the counter electrode 56, the DLC powder interposed between the counter electrode 56 and the liquid surface 52 A powder electrode is constituted by a dielectric layer formed by a dielectric constant to constitute a plasma generation mechanism for generating in-liquid plasma by high voltage discharge.

上記構成の粉体可溶化装置において、攪拌部材55の終端部に設けた対向電極56と液中電極71の電極間に高電圧高周波パルス発生装置60の合成電圧Vが印加される。合成電圧Vの印加により、対向電極56の下方で水面52上に介在するDLC層77による誘電体79が粉体電極を構成して、前記プラズマ発生機構に基づき、液中電極71との間で液中プラズマ放電74を発生させる。液中プラズマ放電74により液中電極71の周囲が沸騰状態に達し、HやOHのラジカルを含む活性水蒸気75が生ずる。この活性水蒸気75及び液中プラズマに接触することにより、水面52上に浮遊するDLC粉体はDLC周囲に水和層が形成され親水化(水溶化)される。活性水蒸気75は上昇して、水面52近傍の空中DLCを通過するので、液面上の空中DLCも親水化することができる。親水化された修飾DLC68、69は水中に溶解して自重により溶媒槽50の底部に落下していく。溶媒槽50の底部に堆積した修飾DLCを回収することにより、修飾DLCからなる高機能化結合材料を得ることができる。 In the powder solubilizer having the above-described configuration, the composite voltage V of the high-voltage and high-frequency pulse generator 60 is applied between the counter electrode 56 provided at the end portion of the stirring member 55 and the electrode 71 in the liquid. By applying the composite voltage V, the dielectric 79 by the DLC layer 77 interposed on the water surface 52 below the counter electrode 56 constitutes a powder electrode, and between the submerged electrode 71 based on the plasma generation mechanism. An in-liquid plasma discharge 74 is generated. The liquid plasma discharge 74 causes the periphery of the liquid electrode 71 to reach a boiling state, and active water vapor 75 containing radicals of H + and OH is generated. By contacting the active water vapor 75 and the plasma in liquid, the DLC powder floating on the water surface 52 is hydrophilized by forming a hydrated layer around the DLC. Since the active water vapor 75 rises and passes through the air DLC near the water surface 52, the air DLC on the liquid surface can also be hydrophilized. The modified DLC 68 and 69 having been made hydrophilic are dissolved in water and fall to the bottom of the solvent tank 50 by their own weight. By collecting the modified DLC deposited on the bottom of the solvent tank 50, a highly functional binding material composed of the modified DLC can be obtained.

前記プラズマ発生機構に基づいて、高電圧放電による液中プラズマを発生させるので、液中電極71及び対向電極56を配置するだけの簡単な構成で、非導電性の難溶解性粉体を対向電極56と液面52間に介在するように、攪拌部材55の撹拌輸送作用により供給することにより、DLC等の非導電性物質の表面修飾処理を液中プラズマによって高速化して連続処理し、大量の表面修飾処理を低コストで行うことができる。
る。
Since in-liquid plasma is generated by high-voltage discharge based on the plasma generation mechanism, the non-electroconductive and hardly soluble powder can be applied to the counter electrode with a simple configuration by simply arranging the in-liquid electrode 71 and the counter electrode 56. 56 and the liquid level 52 are supplied by the stirring and transporting action of the stirring member 55, so that the surface modification treatment of the non-conductive substance such as DLC is accelerated by the plasma in the liquid and continuously processed. Surface modification treatment can be performed at low cost.
The

図1及び図5の実施形態では溶媒に水31、51を用いた水溶化の例を示したが、アンモニア水を溶媒に使用してアミノ基により修飾した修飾CNMなどを生成することができる。例えば、CNTにアミノ基により修飾することにより、ポリアミドとの分散性に優れた修飾CNTからなる高機能化結合材料を高速且つ大量に製造することができる。   In the embodiment of FIGS. 1 and 5, an example of water solubilization using water 31 and 51 as a solvent has been shown, but modified CNM modified with an amino group can be generated using aqueous ammonia as a solvent. For example, by modifying CNT with an amino group, a highly functional binding material composed of modified CNT excellent in dispersibility with polyamide can be produced at high speed and in large quantities.

本発明は、上記実施形態や変形例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。   The present invention is not limited to the above-described embodiments and modifications, and includes various modifications and design changes within the technical scope without departing from the technical idea of the present invention. Needless to say.

本発明によれば、難溶解性粉体の親水化のための表面修飾処理を液中プラズマによって高速化して連続処理し、大量の表面修飾処理を低コストで行うことができるので、例えばCNM材の利用分野、特に高機能化結合材料への応用範囲の拡大を図ることができる。   According to the present invention, the surface modification treatment for hydrophilizing the hardly soluble powder can be performed continuously at a high speed by plasma in liquid, and a large amount of surface modification treatment can be performed at low cost. The application range to the high-performance bonding material can be expanded.

1 溶媒槽
2 蓋体
3 筒体
4 攪拌部材
5 終端部
6 CNT搬入部
7 CNT
8 搬入管
9 CNT導入口
10 CNT
11 CNT
12 開閉蓋
13 CNT
14 液中電極
15 絶縁カバー材
16 接続線
17 高電圧高周波パルス発生装置
18 接続線
19 回転軸
20 導電性リング
21 駆動モータ
22 連結部材
23 接続線
24 CNT投入検知センサ
25 ねじ部
26 シール部材
27 液中プラズマ放電
28 活性水蒸気
29 修飾CNT
30 修飾CNT
31 水
32 水面
33 修飾CNT
40 CNT表面修飾処理制御部
41 高電圧高周波パルス発生回路
42 発振器
43 RF電源
44 重畳装置
45 起動SW
46 キー入力装置
47 液晶表示装置
48 稼働状態表示器
50 溶媒槽
51 水
52 水面
53 筒部
54 回転軸
55 攪拌部材
56 対向電極
57 駆動モータ
58 DLC導入口
59 DLC搬入路
60 高電圧高周波パルス発生装置
61 接続線
62 接続線
63 接続線
64 接続線
65 接続線
66 導電性リング
67 DLC
68 修飾DLC
69 修飾DLC
70 蓋体
71 液中電極
72 絶縁カバー材
73 漏水防止シール材
74 液中プラズマ放電
75 活性水蒸気
76 連結部材
77 DLC
78 DLC
79 誘電体
DESCRIPTION OF SYMBOLS 1 Solvent tank 2 Lid body 3 Cylinder body 4 Stirring member 5 Termination part 6 CNT carrying-in part 7 CNT
8 Carry-in tube 9 CNT inlet 10 CNT
11 CNT
12 Open / close lid 13 CNT
14 Electrode 15 in liquid 15 Insulating cover material 16 Connection line 17 High-voltage high-frequency pulse generator 18 Connection line 19 Rotating shaft 20 Conductive ring 21 Drive motor 22 Connection member 23 Connection line 24 CNT insertion detection sensor 25 Screw part 26 Seal member 27 Liquid Medium plasma discharge 28 Active water vapor 29 Modified CNT
30 Modified CNT
31 Water 32 Water surface 33 Modified CNT
40 CNT surface modification processing control unit 41 High voltage high frequency pulse generation circuit 42 Oscillator 43 RF power supply 44 Superimposing device 45 Start SW
46 Key input device 47 Liquid crystal display device 48 Operating state indicator 50 Solvent tank 51 Water 52 Water surface 53 Tube portion 54 Rotating shaft 55 Stirring member 56 Counter electrode 57 Drive motor 58 DLC inlet 59 DLC carry-in path 60 High voltage high frequency pulse generator 61 Connection Line 62 Connection Line 63 Connection Line 64 Connection Line 65 Connection Line 66 Conductive Ring 67 DLC
68 Modified DLC
69 Modified DLC
70 Lid 71 Electrode in liquid 72 Insulating cover material 73 Water leakage prevention seal material 74 Plasma discharge in liquid 75 Active water vapor 76 Connecting member 77 DLC
78 DLC
79 Dielectric

Claims (14)

溶媒を収容した溶媒槽の液中に少なくとも1つの液中電極を配置し、前記溶媒槽内の前記溶媒の液面に難溶解性粉体を供給し、前記難溶解性粉体により構成された粉体電極と前記液中電極との電極間に高電圧高周波パルスを印加して高電圧放電による液中プラズマを発生させ、前記難溶解性粉体を前記液中に溶解させることを特徴とする粉体可溶化方法。 At least one submerged electrode is arranged in the liquid of the solvent tank containing the solvent, and the hardly soluble powder is supplied to the liquid surface of the solvent in the solvent tank, and is configured by the hardly soluble powder. A high-voltage high-frequency pulse is applied between the electrode between the powder electrode and the submerged electrode to generate submerged plasma by high-voltage discharge, and the hardly soluble powder is dissolved in the submerged liquid. Powder solubilization method. 前記難溶解性粉体が非導電性物質からなり、前記液中電極に対して前記溶媒の液面を介して対向電極を配置し、前記対向電極と前記液面間に前記難溶解性粉体を供給し、前記液中電極と前記対向電極との電極間に前記高電圧高周波パルスを印加したとき、前記対向電極と前記液面間に介在する前記難溶解性粉体により形成される誘電体層により前記粉体電極を構成して、前記高電圧放電による液中プラズマを発生させる請求項1に記載の粉体可溶化方法。 The hardly soluble powder is made of a non-conductive substance, and a counter electrode is disposed through the liquid level of the solvent with respect to the in-liquid electrode, and the hardly soluble powder is interposed between the counter electrode and the liquid level. Is formed by the hardly soluble powder interposed between the counter electrode and the liquid surface when the high-voltage high-frequency pulse is applied between the electrode in the liquid and the counter electrode. The powder solubilization method according to claim 1, wherein the powder electrode is constituted by a layer to generate in-liquid plasma by the high voltage discharge. 前記難溶解性粉体を撹拌する撹拌部材を前記溶媒槽の液面近傍に配置し、前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加し、前記撹拌部材により撹拌しながら前記難溶解性粉体を前記液面側に供給する請求項2に記載の粉体可溶化方法。 An agitating member for agitating the hardly soluble powder is disposed in the vicinity of the liquid surface of the solvent tank, and the high-voltage, high-frequency pulse is applied using the terminal portion of the agitating member as the counter electrode, while agitating by the agitating member. The powder solubilization method according to claim 2, wherein the hardly soluble powder is supplied to the liquid surface side. 前記難溶解性粉体が、カーボンナノボール(CNB)、単層又は多層のカーボンナノチューブ(CNT)、フラーレン等の導電性物質又はダイヤモンドライクカーボン(DLC)、ナノダイヤパウダー等の非導電性物質からなる請求項1、2又は3に記載の粉体可溶化方法。 The insoluble powder is made of a conductive material such as carbon nanoball (CNB), single-walled or multi-walled carbon nanotube (CNT), fullerene, or non-conductive material such as diamond-like carbon (DLC) or nanodiameter powder. Item 4. The powder solubilization method according to Item 1, 2, or 3. 前記溶媒が、水等の水酸基を含む液体、あるいはアンモニア水等のアミノ基を含む液体のいずれかからなる請求項1〜4のいずれかに記載の粉体可溶化方法。 The powder solubilization method according to any one of claims 1 to 4, wherein the solvent is one of a liquid containing a hydroxyl group such as water or a liquid containing an amino group such as aqueous ammonia. 前記高電圧高周波パルスは、1kV〜20kVの範囲のいずれかのピーク間電圧値を有する請求項1〜5のいずれかに記載の粉体可溶化方法。 The powder solubilization method according to any one of claims 1 to 5, wherein the high-voltage high-frequency pulse has a peak-to-peak voltage value in a range of 1 kV to 20 kV. 前記高電圧高周波パルスは、0.1kHz〜300kHzの範囲のいずれかの周波数を有する請求項1〜6のいずれかに記載の粉体可溶化方法。 The powder solubilization method according to any one of claims 1 to 6, wherein the high-voltage high-frequency pulse has any frequency within a range of 0.1 kHz to 300 kHz. 前記高電圧高周波パルスは、0.1μS〜100μSの範囲のいずれかのパルス幅を有する請求項1〜6のいずれかに記載の粉体可溶化方法。 The powder solubilization method according to any one of claims 1 to 6, wherein the high-voltage high-frequency pulse has any pulse width in a range of 0.1 µS to 100 µS. 前記高電圧高周波パルスは、高周波パルスにRF電圧を重畳した合成電圧からなる請求項1〜8のいずれかに記載の粉体可溶化方法。 The powder solubilization method according to any one of claims 1 to 8, wherein the high-voltage high-frequency pulse includes a synthesized voltage obtained by superimposing an RF voltage on the high-frequency pulse. 溶媒を収容した溶媒槽と、前記溶媒槽の液中に配置した少なくとも1つの液中電極と、前記液中電極に対向して配置した少なくとも1つの対向電極と、前記溶媒槽内の前記溶媒の液面に難溶解性粉体を供給する難溶解性粉体供給部と、前記難溶解性粉体により構成された粉体電極と前記液中電極との電極間に高電圧高周波パルスを印加する高電圧高周波パルス発生装置とを有し、前記電極間に前記高電圧高周波パルスを印加して高電圧放電を発生させ、前記難溶解性粉体を前記液中に溶解させることを特徴とする粉体可溶化装置。 A solvent tank containing a solvent, at least one submerged electrode disposed in the liquid of the solvent tank, at least one counter electrode disposed opposite to the submerged electrode, and the solvent in the solvent tank. A high-voltage, high-frequency pulse is applied between the poorly soluble powder supply unit for supplying the hardly soluble powder to the liquid surface, and the electrode between the powder electrode made of the hardly soluble powder and the in-liquid electrode. A high-voltage high-frequency pulse generator, applying the high-voltage high-frequency pulse between the electrodes to generate a high-voltage discharge, and dissolving the hardly soluble powder in the liquid Body solubilizer. 前記液中電極に対して前記溶媒の液面を介して前記対向電極を配置し、前記電極間に前記難溶解性粉体供給部により非導電性物質からなる前記難溶解性粉体を供給し、前記液中電極と前記対向電極との電極間に前記高電圧高周波パルスを印加したとき、前記難溶解性粉体が、前記対向電極と前記液面間に介在する前記難溶解性粉体により形成される誘電体層により前記粉体電極を構成して、前記高電圧放電による液中プラズマを発生させる請求項10に記載の粉体可溶化装置。 The counter electrode is disposed through the liquid surface of the solvent with respect to the submerged electrode, and the hardly soluble powder made of a non-conductive substance is supplied between the electrodes by the hardly soluble powder supply unit. When the high-voltage, high-frequency pulse is applied between the electrode in the liquid and the counter electrode, the hardly soluble powder is caused by the hardly soluble powder interposed between the counter electrode and the liquid surface. The powder solubilizer according to claim 10, wherein the powder electrode is constituted by the formed dielectric layer, and plasma in liquid by the high voltage discharge is generated. 前記溶媒槽の液面近傍に配置され、前記難溶解性粉体を撹拌する撹拌部材を備え、前記撹拌部材の終端部を前記対向電極として前記高電圧高周波パルスを印加し、前記撹拌部材により撹拌しながら前記難溶解性粉体を前記液面側に供給する請求項10又は11に記載の粉体可溶化装置。 A stirring member that is disposed in the vicinity of the liquid surface of the solvent tank and stirs the hardly soluble powder. The high-voltage, high-frequency pulse is applied using the terminal portion of the stirring member as the counter electrode, and stirring is performed by the stirring member. The powder solubilizer according to claim 10 or 11, wherein the hardly soluble powder is supplied to the liquid surface side. 前記高電圧高周波パルス発生装置は、基本高周波信号を複数に分周すると共に位相を複数段にずらしたスイッチング信号に基づき直流電力をスイッチングして得られたパルス電圧を合成した高周波パルスを発生させる高周波パルス発生回路からなる請求項10、11又は12に記載の粉体可溶化装置。 The high-voltage high-frequency pulse generator generates a high-frequency pulse that synthesizes a pulse voltage obtained by switching DC power based on a switching signal in which a basic high-frequency signal is divided into a plurality of phases and a phase is shifted to a plurality of stages. The powder solubilizer according to claim 10, 11 or 12, comprising a pulse generation circuit. 前記高電圧高周波パルス発生装置は、RF電源と、前記RF電源のRF電圧を前記高電圧高周波パルス発生回路により発生された高周波パルスに重畳する重畳装置とを含み、前記高周波パルスに前記RF電圧を重畳した合成電圧を前記高電圧高周波パルスとして印加する請求項10〜13のいずれかに記載の粉体可溶化装置。 The high-voltage high-frequency pulse generator includes an RF power source and a superimposing device that superimposes an RF voltage of the RF power source on a high-frequency pulse generated by the high-voltage high-frequency pulse generator circuit, and the RF voltage is applied to the high-frequency pulse. The powder solubilizer according to any one of claims 10 to 13, wherein the superimposed composite voltage is applied as the high-voltage high-frequency pulse.
JP2010249018A 2010-11-05 2010-11-05 Powder solubilization method and powder solubilization apparatus Pending JP2012101140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249018A JP2012101140A (en) 2010-11-05 2010-11-05 Powder solubilization method and powder solubilization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249018A JP2012101140A (en) 2010-11-05 2010-11-05 Powder solubilization method and powder solubilization apparatus

Publications (1)

Publication Number Publication Date
JP2012101140A true JP2012101140A (en) 2012-05-31

Family

ID=46392217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249018A Pending JP2012101140A (en) 2010-11-05 2010-11-05 Powder solubilization method and powder solubilization apparatus

Country Status (1)

Country Link
JP (1) JP2012101140A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152095A (en) * 2013-02-13 2014-08-25 Nagoya Univ Method for producing graphene
JP2015065085A (en) * 2013-09-25 2015-04-09 株式会社栗田製作所 Paint for forming lithium ion secondary battery electrode, method for manufacturing the same, method for manufacturing electrode, and paint manufacturing apparatus
WO2016129431A1 (en) * 2015-02-13 2016-08-18 日本スピンドル製造株式会社 Dispersion method and dispersion apparatus for substance to be treated, and method for producing mixed liquid of treated substance and dispersion medium produced thereby
JP2017101301A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Method for forming copper film
JP2018027537A (en) * 2017-08-31 2018-02-22 好浩 岡 In-liquid plasma treatment device
US10446375B2 (en) 2017-03-14 2019-10-15 Panasonic Intellectual Property Management Co., Ltd. Liquid processing apparatus including container, first and second electrodes, insulator surrounding at least part of side face of the first electrode, gas supply device, metallic member surrounding part of side face of the first electrode, and power source
WO2020195800A1 (en) * 2019-03-27 2020-10-01 日本ゼオン株式会社 Fibrous carbon nanostructure, method for producing fibrous carbon nanostructure, and method for producing surface-modified fibrous carbon nanostructure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152095A (en) * 2013-02-13 2014-08-25 Nagoya Univ Method for producing graphene
JP2015065085A (en) * 2013-09-25 2015-04-09 株式会社栗田製作所 Paint for forming lithium ion secondary battery electrode, method for manufacturing the same, method for manufacturing electrode, and paint manufacturing apparatus
WO2016129431A1 (en) * 2015-02-13 2016-08-18 日本スピンドル製造株式会社 Dispersion method and dispersion apparatus for substance to be treated, and method for producing mixed liquid of treated substance and dispersion medium produced thereby
JPWO2016129431A1 (en) * 2015-02-13 2017-10-19 日本スピンドル製造株式会社 Dispersion method and dispersion apparatus for material to be treated, and method for producing liquid in which material to be treated and dispersion medium produced thereby are mixed
US11541361B2 (en) 2015-02-13 2023-01-03 Nihon Spindle Manufacturing Co., Ltd. Dispersion method and dispersion apparatus for material to be processed and method for producing mixed liquid of material to be processed and dispersion medium produced thereby
JP2017101301A (en) * 2015-12-03 2017-06-08 トヨタ自動車株式会社 Method for forming copper film
US10446375B2 (en) 2017-03-14 2019-10-15 Panasonic Intellectual Property Management Co., Ltd. Liquid processing apparatus including container, first and second electrodes, insulator surrounding at least part of side face of the first electrode, gas supply device, metallic member surrounding part of side face of the first electrode, and power source
JP2018027537A (en) * 2017-08-31 2018-02-22 好浩 岡 In-liquid plasma treatment device
WO2020195800A1 (en) * 2019-03-27 2020-10-01 日本ゼオン株式会社 Fibrous carbon nanostructure, method for producing fibrous carbon nanostructure, and method for producing surface-modified fibrous carbon nanostructure

Similar Documents

Publication Publication Date Title
JP2012101140A (en) Powder solubilization method and powder solubilization apparatus
Liu et al. Carbon-based flexible micro-supercapacitor fabrication via mask-free ambient micro-plasma-jet etching
Norizan et al. Carbon nanotubes: Functionalisation and their application in chemical sensors
Okada et al. Electrically triggered insertion of single-stranded DNA into single-walled carbon nanotubes
Loget et al. Single point electrodeposition of nickel for the dissymmetric decoration of carbon tubes
JP6114270B2 (en) Method and device for controlling pattern and structure formation by electric field
JP5463282B2 (en) Method for producing graphene
Barai et al. Template-free synthesis of two-dimensional titania/titanate nanosheets as electrodes for high-performance supercapacitor applications
JP4825968B2 (en) Carbon nanotube sensor and manufacturing method thereof
JP2013001882A (en) Graphene ink and method for producing the same
Gupta et al. Palladium oxide nanoparticles supported on reduced graphene oxide and gold doped: Preparation, characterization and electrochemical study of supercapacitor electrode
Wang et al. Electrohydrodynamic jet printing and a preliminary electrochemistry test of graphene micro-scale electrodes
Thiha et al. Microplasma direct writing for site-selective surface functionalization of carbon microelectrodes
Palumbo et al. Electrical investigations of layer-by-layer films of carbon nanotubes
CN107792847A (en) The method that arc discharge method prepares graphene
Nowacki et al. 3D printed triboelectric nanogenerator for underwater ultrasonic sensing
JP2013231208A (en) Bubble generating apparatus
Zhang et al. Preparation of rGO/NiO nanocomposites by AC and nanosecond pulsed DBD
Jones et al. Plasma enhanced vortex fluidic device manipulation of graphene oxide
Seo et al. Manipulation of carbon nanotubes and nanowires
JP2008105136A (en) Method for manufacturing nanoparticle and catalyst for fuel cell
KR101094741B1 (en) Plasma equipment for treating powder/capsules surface
JP2007182356A (en) Method for forming carbon nanotube thin film
JP4958085B2 (en) Carbon-coated metal element-containing nanowire manufacturing method
Jalilian et al. Methanol-Single Walled Carbon Nano Tubes Nano Sensors: A Quantum Mechanics/Molecular Mechanic Simulation