JP3016304B2 - Refrigerant distributor - Google Patents

Refrigerant distributor

Info

Publication number
JP3016304B2
JP3016304B2 JP4150225A JP15022592A JP3016304B2 JP 3016304 B2 JP3016304 B2 JP 3016304B2 JP 4150225 A JP4150225 A JP 4150225A JP 15022592 A JP15022592 A JP 15022592A JP 3016304 B2 JP3016304 B2 JP 3016304B2
Authority
JP
Japan
Prior art keywords
refrigerant
distributor
liquid
gas
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4150225A
Other languages
Japanese (ja)
Other versions
JPH05340649A (en
Inventor
倫正 竹下
佳昭 谷村
等 飯島
吉隆 岩崎
建吾 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4150225A priority Critical patent/JP3016304B2/en
Publication of JPH05340649A publication Critical patent/JPH05340649A/en
Application granted granted Critical
Publication of JP3016304B2 publication Critical patent/JP3016304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、空調機用冷媒分配器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant distributor for an air conditioner.

【0002】[0002]

【従来の技術】図15、20は特開平2−17368号
公報に示された従来の空気調和機の冷媒分配器、及び冷
媒回路図である。図20において、1は圧縮機、2は凝
縮器、3は減圧器、4は蒸発器、5はアキュムレータで
あり、これらは順次冷媒配管6で連結されており冷凍サ
イクルを構成している。7は蒸発器4の複数の冷媒回路
へ冷媒を分配する分配器、8は分配管である。また、図
15において、9は縮流部である円錐形オリフィス、気
液二相冷媒の流速を徐々に減少させながら増速部である
平板オリフィス10に導く。平板オリフィス10の出口
には第1の気液混合室11、細粒化手段である金網1
2、第2の気液混合室13が配設されており、気液二相
の混合を促進して分配穴15に接続された分配管8より
蒸発器4へと送出される。
2. Description of the Related Art FIGS. 15 and 20 are a refrigerant distributor and a refrigerant circuit diagram of a conventional air conditioner disclosed in Japanese Patent Application Laid-Open No. 2-17368. In FIG. 20, 1 is a compressor, 2 is a condenser, 3 is a decompressor, 4 is an evaporator, and 5 is an accumulator, which are sequentially connected by a refrigerant pipe 6 to constitute a refrigeration cycle. 7 is a distributor for distributing the refrigerant to the plurality of refrigerant circuits of the evaporator 4, and 8 is a distribution pipe. In FIG. 15, reference numeral 9 denotes a conical orifice, which is a contraction part, and guides it to a flat plate orifice 10, which is a speed increasing part, while gradually decreasing the flow velocity of the gas-liquid two-phase refrigerant. At the outlet of the flat plate orifice 10, a first gas-liquid mixing chamber 11, a wire mesh
A second gas-liquid mixing chamber 13 is provided, which promotes mixing of the gas-liquid two-phase and is sent out to the evaporator 4 from the distribution pipe 8 connected to the distribution hole 15.

【0003】次に動作について説明する。圧縮機1によ
り圧縮され吐出された高温高圧のガス冷媒は凝縮器2を
通る間に空気と熱交換することにより凝縮され、高圧の
液冷媒となる。次いで減圧機3を通る過程で急激に減圧
され膨張し低圧の気液二相冷媒となり、分配器7及び分
配管8により分配され蒸発器4のそれぞれの冷媒流路に
送られ、空気と熱交換することにより蒸発し低圧のガス
冷媒となる。この低圧のガス冷媒はアキュムレータ5を
経て圧縮機1に吸入され再び圧縮され吐出され前記と同
様の動作を繰り返し行う冷凍サイクルを構成する。冷凍
サイクルにおいて、分配器7は低圧の気液二相冷媒を液
部が偏流することなく均一にするための物であり、図1
5において、冷媒配管6より気液二相冷媒が分配器7の
中の円錐形オリフィス9に流入する。円錐形オリフィス
9は気液二相冷媒の減速を徐々に増加させることにより
急激な圧力降下を防止している。円錐形オリフィス9の
出口には平板オリフィス10が配置されここで減速を最
大値とし気液二相冷媒の気体部及び液体部の流速の差を
最小値として第1の気液混合室11に送出することによ
り拡散させ気液を混合する。更に比較的大きめの液滴は
金網12で細粒化され第2の気液混合室13に送られ
る。ここで更に均一に混合された気液二相冷媒は分配穴
15に接続された分配管8により、均等に分配され蒸発
器4の各流路に送られる。
Next, the operation will be described. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 is condensed by exchanging heat with air while passing through the condenser 2 to become a high-pressure liquid refrigerant. Next, in the process of passing through the pressure reducer 3, the pressure is rapidly reduced and expanded to become a low-pressure gas-liquid two-phase refrigerant, which is distributed by the distributor 7 and the distribution pipe 8 and sent to the respective refrigerant channels of the evaporator 4 to exchange heat with air. By doing so, it evaporates and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant is sucked into the compressor 1 through the accumulator 5, compressed and discharged again, and constitutes a refrigeration cycle in which the same operation as described above is repeated. In the refrigeration cycle, the distributor 7 serves to make the low-pressure gas-liquid two-phase refrigerant uniform without causing the liquid part to drift.
At 5, the gas-liquid two-phase refrigerant flows from the refrigerant pipe 6 into the conical orifice 9 in the distributor 7. The conical orifice 9 prevents a rapid pressure drop by gradually increasing the deceleration of the gas-liquid two-phase refrigerant. At the outlet of the conical orifice 9, a flat plate orifice 10 is arranged and sent to the first gas-liquid mixing chamber 11 where the deceleration is the maximum value and the difference between the flow rates of the gas part and the liquid part of the gas-liquid two-phase refrigerant is the minimum value. To mix the gas and liquid. Further, the relatively large droplets are finely divided by the wire mesh 12 and sent to the second gas-liquid mixing chamber 13. Here, the gas-liquid two-phase refrigerant mixed more uniformly is distributed evenly by the distribution pipe 8 connected to the distribution hole 15 and sent to each flow path of the evaporator 4.

【0004】以上が分配作用についての説明であるが、
更に冷媒気泡の衝撃音の減音作用について説明する。冷
媒気泡による衝撃音は主として冷凍サイクルの始動時に
発生するものであり急激に圧力が降下する箇所で、冷媒
が急激に蒸発し始め気泡が発生成長し、それが壁面に当
たり破裂する時にその衝撃が音となって伝播する。いわ
ゆるキャビテーション気泡の破裂による衝撃音である。
分配器について言えばオリフィスを通過する時の急縮小
流れの中での圧力降下時にキャビテーション気泡が発
生、成長し気液混合室内の壁面に当たり破裂する時に衝
撃音となる。この衝撃音は周囲に液冷媒が多い程液によ
る減衰効果が大きく音としては小さくなる。冷凍サイク
ル始動時に大きな音となって生じるのは周囲に液冷媒が
少なく液滴中の気泡の破裂による衝撃音が気液混合室内
を比較的自由に伝播するためである。
The above is a description of the distribution action.
Further, the effect of reducing the impact sound of the refrigerant bubbles will be described. The impulsive sound caused by refrigerant bubbles is mainly generated at the start of the refrigeration cycle.When the pressure suddenly drops, the refrigerant starts evaporating rapidly and bubbles are generated and grown. And propagated. This is the so-called impulsive sound caused by the burst of cavitation bubbles.
With respect to the distributor, cavitation bubbles are generated at the time of pressure drop in the rapid contraction flow when passing through the orifice, and grow and hit the wall surface of the gas-liquid mixing chamber, and when it bursts, an impact sound is generated. As for the impact noise, as the amount of the liquid refrigerant in the surroundings increases, the damping effect of the liquid increases and the noise decreases. The loud noise generated at the start of the refrigeration cycle is due to the fact that there is little liquid refrigerant around and the impact sound due to the burst of bubbles in the droplets propagates relatively freely in the gas-liquid mixing chamber.

【0005】このような冷凍サイクル始動時においても
上記の衝撃音を減少させるために平板オリフィス10の
板厚、気液混合室の流れ方向の長さを変化させ始動時に
おいて音の主成分である5kHz以上のオーバーオール
騒音値を実測した結果が図17である。図16におい
て、L 1 、L 2 はそれぞれ平板オリフィスの板厚(m
m)であり、第1及び第2の気液混合室11、13の流
れ方向の長さ(mm)であり、D1 、D2 はそれぞれ平
板オリフィス10の流出口径、気液混合室の内径(φm
m)である。5kHz以上のオーバーオール騒音値を実
測した結果から、 L 2 /D2 <0.05 L 1 /D1 <0.10 という条件の時始動時の衝撃音が最も小さくなることが
判明した。尚、上記の例では円錐形オリフィスと気泡混
合室の間に金網を用いたが、連続気泡の発泡体を用いて
も同様の効果を奏する。
In order to reduce the above-mentioned impact noise even at the time of starting the refrigeration cycle, the thickness of the flat plate orifice 10 and the length of the gas-liquid mixing chamber in the flow direction are changed to be the main components of the sound at the start. FIG. 17 shows the result of actually measuring the overall noise value of 5 kHz or more. In FIG. 16, L 1 and L 2 are the plate thicknesses (m
m), and the length (mm) of the first and second gas-liquid mixing chambers 11 and 13 in the flow direction, and D 1 and D 2 are the outlet diameter of the flat plate orifice 10 and the inner diameter of the gas-liquid mixing chamber, respectively. (Φm
m). From the result of the actual measurement of the overall noise value of 5 kHz or more, it was found that the impact noise at the time of starting under the condition of L 2 / D 2 <0.05 L 1 / D 1 <0.10. Although a wire mesh is used between the conical orifice and the cell mixing chamber in the above example, the same effect can be obtained by using an open-cell foam.

【0006】また、上記の例では、平板オリフィス10
を単品部品として示したが、図18で示すように縮流部
9と一体構成とした縮流部9aとしても良い。更に金網
12は上記実施例においても位置決め及び取り付け用の
座が必要であるので、図19で示すように位置決め及び
散り着け用の座14より平板オリフィス10を一体構成
し、金網12aとしても良い。
In the above example, the flat plate orifice 10
Is shown as a single part, however, as shown in FIG. 18, a contraction portion 9a integrally formed with the contraction portion 9 may be used. Further, since the wire mesh 12 also needs a seat for positioning and mounting in the above-described embodiment, as shown in FIG. 19, the flat plate orifice 10 may be integrally formed with the seat 14 for positioning and scattering, and may be used as the wire mesh 12a.

【0007】また従来の熱交換器として特開昭63−3
8891号公報に示されたものが提案されている。
A conventional heat exchanger is disclosed in
Japanese Unexamined Patent Publication No. 8891 discloses a technique proposed.

【0008】[0008]

【発明が解決しようとする課題】従来の冷媒分配器は以
上のように構成されているので、部品点数が多くなり、
生産性は低下し、コスト高となってしまうとともに、分
配器の大きさが大きくなるため、空調機内に納めるため
に、熱交換器の大きさを小さくすることが必要で、その
ため空調機の性能が低下してしまうなどの問題点があっ
た。
Since the conventional refrigerant distributor is constructed as described above, the number of parts increases,
Productivity decreases, costs increase, and the size of the distributor increases, so it is necessary to reduce the size of the heat exchanger in order to fit it in the air conditioner. However, there was a problem such as a decrease in

【0009】また、冷媒二相流を混合し、いかに気液混
合させるかが、冷媒分配性能を左右するわけだが、従来
の分配器は以上のように構成されているので、円周方向
への混合がし難く、分配性能が悪いため、空調機の性能
が低下してしまうなどの問題点があった。
The refrigerant distribution performance depends on how the refrigerant two-phase flow is mixed and the gas-liquid mixing is performed. However, since the conventional distributor is configured as described above, the distribution in the circumferential direction is performed. Mixing is difficult and the distribution performance is poor, so that the performance of the air conditioner is reduced.

【0010】また従来の空気調和機の分配器は、空気調
和機本体の寸法などの制約により分配器直前に曲がり部
をもつような形状に分配器入口管がなっている場合、二
相冷媒の液部の偏りが大きく分配数が多い場合などオリ
フィス状円板だけでは十分にこの偏りを緩和できず、ま
たそのために蒸発器の各流路毎の冷媒流量に差が生じ、
蒸発器の能力を十分に生かしきれないという問題点があ
った。
Further, in the conventional air conditioner distributor, when the distributor inlet pipe is formed in a shape having a bent portion immediately before the distributor due to restrictions on the size of the air conditioner main body, etc., the two-phase refrigerant is not supplied. The orifice-shaped disk alone cannot sufficiently alleviate this bias, such as when the liquid portion has a large bias and the number of distributions is large, and a difference occurs in the refrigerant flow rate for each flow path of the evaporator,
There was a problem that the capacity of the evaporator could not be fully utilized.

【0011】この発明は上記のような問題点を解消する
ためになされたもので、分配器の大きさを小さく出来る
とともに、生産性の向上により低コストな分配器を得る
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to obtain a low-cost distributor by reducing the size of the distributor and improving the productivity.

【0012】また、分配性能を向上させることが出来る
とともに、分配性能を安定化させる分配器を得ることを
目的とする。
It is another object of the present invention to provide a distributor which can improve the distribution performance and stabilize the distribution performance.

【0013】また分配器直前の曲がりによる二相冷媒の
液部の偏りをより効果的に緩和し、蒸発器の各流路への
冷媒の分配を均一にすることにより蒸発器の能力を十分
に生かすことのできる空気調和機の分配器を得ることを
目的とする。
[0013] Further, the bias of the liquid portion of the two-phase refrigerant due to the bend immediately before the distributor is more effectively alleviated, and the distribution of the refrigerant to the respective flow paths of the evaporator is made uniform, so that the capacity of the evaporator is sufficiently increased. An object of the present invention is to obtain an air conditioner distributor that can be utilized.

【0014】[0014]

【課題を解決するための手段】この発明に係る冷媒分配
器は、減圧装置により減圧された冷媒を蒸発器の流路に
分配する冷媒分配器において、出口に設けられた分配管
取り付け部と、円板の一部のみ冷媒が流れる形状の二枚
のプレートを有し、液部の偏った流れを分散可能に該二
枚のプレートを組み合わせた偏流分散板とを備えたもの
である。
According to the present invention, there is provided a refrigerant distributor for distributing a refrigerant decompressed by a decompression device to a flow path of an evaporator. It has two plates having a shape in which the refrigerant flows only in a part of the circular plate, and includes a non-uniform flow dispersion plate in which the two plates are combined so as to be able to disperse the uneven flow of the liquid portion.

【0015】[0015]

【作用】請求項1の冷媒分配器は、分配器直前に曲がり
部をもつ形状に入口管がなっている場合でも、冷媒の液
部の偏りをより効果的に緩和でき、蒸発器への冷媒の分
配を均一にすることができ、蒸発器の能力を十分に生か
し効率の良い空気調和ができる。
According to the first aspect of the present invention, even when the inlet pipe has a bent portion immediately before the distributor, the bias of the liquid portion of the refrigerant can be more effectively alleviated, and the refrigerant to the evaporator can be reduced. Distribution can be made uniform and the efficiency of the evaporator can be fully utilized to achieve efficient air conditioning.

【0016】[0016]

【実施例】実施例1. 以下この発明の実施例1を図について説明する。図1は
本実施例の冷媒分配器を示す斜視図であり、図において
7aは分配管取り付け部、8は前記分配管取り付け部の
分配穴15に接続された分配管、7bは冷媒流入管取り
付け部であり、7bは冷媒分配器本体7a内に嵌め込み
後ろう付けされている。図2は本実施例の冷媒分配器の
組立て断面図であり、aは冷媒流れ方向を示しbはオリ
フィス通過後の冷媒流動方向を示した。
[Embodiment 1] Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a refrigerant distributor of the present embodiment, in which 7a is a distribution pipe mounting portion, 8 is a distribution pipe connected to the distribution hole 15 of the distribution pipe mounting portion, and 7b is a refrigerant inflow pipe mounting. The part 7b is brazed after being fitted in the refrigerant distributor main body 7a. FIG. 2 is an assembled cross-sectional view of the refrigerant distributor of the present embodiment, where a shows the refrigerant flow direction and b shows the refrigerant flow direction after passing through the orifice.

【0017】図3は冷媒流入管取り付け部7bの内面の
平板オリフィス部を廃止したものである。
FIG. 3 is a view in which the flat plate orifice portion on the inner surface of the coolant inlet pipe mounting portion 7b is omitted.

【0018】冷媒を複数に分配する分配器として、実施
例1のものは図1に示すように黄銅の削り出しにて成型
されたものが使用されている。図2はその断面図を示
し、冷媒の流れを説明するためのものである。減圧器に
て断熱膨張された冷媒は、蒸発器に入る直前で分配器に
より分配される。図2において冷媒は乾き度0.1〜
0.2の気液二相で冷媒配管6より入り、円錐形オリフ
ィス9にて徐々に絞られ、平板オリフィス10にて縮流
され気液混合室11内に流入する。円錐形オリフィス9
は平板オリフィス10の挿入による冷媒流路の急激な変
化によって生じる音の発生を防止するために挿入された
ものである。気液混合室11内に流入した冷媒は液相と
気相が混合され分配管8より流出し、蒸発器へ流入す
る。
As the distributor for distributing the refrigerant into a plurality of parts, the distributor used in the first embodiment is formed by shaving brass as shown in FIG. FIG. 2 is a cross-sectional view for explaining the flow of the refrigerant. The refrigerant adiabatically expanded by the pressure reducer is distributed by the distributor immediately before entering the evaporator. In FIG. 2, the refrigerant has a dryness of 0.1 to
The gas enters the refrigerant pipe 6 in a gas-liquid two phase of 0.2, is gradually narrowed by the conical orifice 9, is contracted by the flat plate orifice 10, and flows into the gas-liquid mixing chamber 11. Conical orifice 9
Are inserted in order to prevent the generation of noise caused by a sudden change in the refrigerant flow path due to the insertion of the flat plate orifice 10. The refrigerant flowing into the gas-liquid mixing chamber 11 mixes the liquid phase and the gaseous phase, flows out of the distribution pipe 8, and flows into the evaporator.

【0019】また、この実施例による冷媒分配器の製造
方法は、まず分配管取り付け部7a及び冷媒流入管取り
付け部7bを切削加工にて製作し、前記分配管取り付け
部7aに分配管8を複数本挿入しろう付けする。また前
記冷媒流入管取り付け部7bへ冷媒配管6を挿入しろう
付けし、前記冷媒流入管取り付け部7bを分配管取り付
け部7a内に挿入しろう付けする。したがって、製造過
程におけるろう付け及び挿入の工程数は減少し低コスト
化が実現可能となる。
In the method of manufacturing a refrigerant distributor according to this embodiment, first, a distribution pipe mounting portion 7a and a refrigerant inflow pipe mounting portion 7b are manufactured by cutting, and a plurality of distribution pipes 8 are provided in the distribution pipe mounting portion 7a. Insert and braze. Also, the refrigerant pipe 6 is inserted into the refrigerant inflow pipe mounting part 7b and brazed, and the refrigerant inflow pipe mounting part 7b is inserted into the distribution pipe mounting part 7a and brazed. Therefore, the number of brazing and inserting steps in the manufacturing process is reduced, and cost reduction can be realized.

【0020】また、図3のように平板オリフィス部を廃
止し、縮流部の最小径をオリフィス径と同一にすること
により、冷媒分配器部品7の切削加工における工程数を
減少させることも出来る。
Further, by eliminating the flat plate orifice portion as shown in FIG. 3 and making the minimum diameter of the contraction portion the same as the orifice diameter, the number of steps in cutting the refrigerant distributor part 7 can be reduced. .

【0021】実施例2. 図4はこの発明の実施例2による冷媒分配器の組立て断
面図であり、オリフィス流出部と対向した気液混合室内
の冷媒衝突部c形状を球面状としたものである。
Embodiment 2 FIG. FIG. 4 is an assembled sectional view of a refrigerant distributor according to a second embodiment of the present invention, in which a refrigerant collision portion c in a gas-liquid mixing chamber facing an orifice outflow portion has a spherical shape.

【0022】減圧器にて断熱膨張された冷媒は、蒸発器
に入る直前で分配器により分配される。図4において冷
媒は乾き度0.1〜0.2の気液二相で冷媒配管6より
入り、円錐形オリフィス9にて徐々に絞られ、平板オリ
フィス10にて縮流され気液混合室11内に流入する。
円錐形オリフィス9は平板オリフィス10の挿入による
冷媒流路の急激な変化によって生じる音の発生を防止す
るために挿入されたものである。気液混合室11内に流
入した冷媒は液相と気相が混合され分配管8より流出
し、蒸発器へ流入する。気液混合室内に流入した冷媒は
前記気液混合室内の冷媒衝突点cにぶつかり、液相と気
相が混合されるわけだが、この実施例における冷媒分配
器では、この冷媒衝突部の形状が球面状となっているた
め、円周方向への冷媒の拡散作用が働き気液混合性能が
向上する。そのため、冷媒の分配性能は向上し、空調機
の性能向上が実現される。
The refrigerant adiabatically expanded in the pressure reducer is distributed by the distributor immediately before entering the evaporator. In FIG. 4, the refrigerant enters the refrigerant pipe 6 in a gas-liquid two-phase with a dryness of 0.1 to 0.2, is gradually throttled by the conical orifice 9, is contracted by the flat plate orifice 10, and is compressed by the gas-liquid mixing chamber 11 Flows into.
The conical orifice 9 is inserted in order to prevent generation of noise caused by a sudden change in the refrigerant flow path due to insertion of the flat plate orifice 10. The refrigerant flowing into the gas-liquid mixing chamber 11 mixes the liquid phase and the gaseous phase, flows out of the distribution pipe 8, and flows into the evaporator. The refrigerant flowing into the gas-liquid mixing chamber collides with the refrigerant collision point c in the gas-liquid mixing chamber, and the liquid phase and the gas phase are mixed. In the refrigerant distributor in this embodiment, the shape of the refrigerant collision part is Due to the spherical shape, the refrigerant diffuses in the circumferential direction to improve gas-liquid mixing performance. Therefore, the distribution performance of the refrigerant is improved, and the performance of the air conditioner is improved.

【0023】実施例3. 図5はこの発明の実施例3を示す断面図である。7は出
口部に分配管8を取付け可能な分配器、6は上記分配器
7に接続される分配器入口管、24a、24bは円板の
8等分割の6ケ所だけ冷媒の流れる形状をもつプレート
であり、液部の偏った流れが分散するような位置、この
実施例3ではプレートの中心を回転中心として24bを
基準に24aを左回りに135゜ずらして2枚のプレー
ト24a、24bが組合わされて偏流分散板24を構成
している。図6はこの偏流分散板24すなわちプレート
24a、24bの上面及び側面から見た詳細図である。
また11は上記分配器7と偏流分散板24によって形成
される分配室である。
Embodiment 3 FIG. FIG. 5 is a sectional view showing a third embodiment of the present invention. Reference numeral 7 denotes a distributor to which a distribution pipe 8 can be attached at an outlet portion, 6 denotes a distributor inlet pipe connected to the distributor 7, and 24a and 24b have a shape in which a refrigerant flows only at six equal-divided portions of a disk. In the third embodiment, the two plates 24a and 24b are displaced counterclockwise by 135 ° with respect to 24b with respect to 24b around the center of the plate as a rotation center. Combined to form the drift dispersion plate 24. FIG. 6 is a detailed view of the drift distribution plate 24, that is, the plates 24a and 24b as viewed from the top and side surfaces.
Reference numeral 11 denotes a distribution chamber formed by the distributor 7 and the deflector plate 24.

【0024】冷媒回路全体の作用・動作については図2
0により従来の空気調和機の分配器の作用・動作で述べ
たものと同様である。前記のように構成された空気調和
機の分配器7において、絞り装置3で減圧された低圧の
二相冷媒が入口管6を通り分配器7内に入り、まずプレ
ート24b、次にプレート24aという順に流れる。こ
こで前述の様な位置関係で24a、24bは組合わされ
て、偏流分散板24を構成しているので、この偏流分散
板24を通過するときに二相冷媒の液部が分散し、より
液部の偏りが緩和された状態で分配室11に入り、分配
管8により蒸発器4の各流路に均等に分配される。
FIG. 2 shows the operation and operation of the entire refrigerant circuit.
0 is the same as that described in the operation and operation of the distributor of the conventional air conditioner. In the distributor 7 of the air conditioner configured as described above, the low-pressure two-phase refrigerant depressurized by the expansion device 3 enters the distributor 7 through the inlet pipe 6, and is referred to as a plate 24b and then a plate 24a. Flow in order. Here, 24a and 24b are combined in the above-described positional relationship to form the drift distribution plate 24, so that when passing through the drift distribution plate 24, the liquid portion of the two-phase refrigerant is dispersed, and It enters the distribution chamber 11 in a state where the bias of the part is reduced, and is uniformly distributed to each flow path of the evaporator 4 by the distribution pipe 8.

【0025】ここで図7は実施例3による分配器と、従
来の分配器に同程度の液部の偏りをもった二相冷媒を流
した時の蒸発器の各流路への二相冷媒の分配の様子を示
した試験結果であり、各流路の番号を横軸とし、今回の
試験では流路数を4つとした。また縦軸は、各流路毎の
二相冷媒の分配の割合であり合計は100%である。こ
こで二相冷媒のガス部については、密度が小さいため液
部に比べ重力、遠心力等の影響をあまり受けず、比較的
どの様な場合にでも各流路に均等に分配される。従って
各流路毎の二相冷媒の分配の割合はほぼその液部の分配
の割合に等しいと考えられる。つまり、図7より従来の
分配器に比べ、実施例3による分配器のほうが各流路間
で二相冷媒の分配割合の差が小さく、すなわち実施例3
による分配器の方が二相冷媒の液部の偏りの解消に、よ
り効果的であることが分かる。
Here, FIG. 7 shows a two-phase refrigerant flowing to each flow path of the evaporator when a two-phase refrigerant having the same degree of deviation of the liquid part flows through the distributor according to the third embodiment and the conventional distributor. Is a test result showing the state of distribution, and the horizontal axis represents the number of each flow path, and the number of flow paths was four in this test. The vertical axis represents the distribution ratio of the two-phase refrigerant for each flow path, and the total is 100%. Here, the gas portion of the two-phase refrigerant is less affected by gravity, centrifugal force, and the like than the liquid portion because of its low density, and is evenly distributed to each flow path in any comparative case. Therefore, it is considered that the distribution ratio of the two-phase refrigerant in each flow path is substantially equal to the distribution ratio of the liquid part. That is, the difference in the distribution ratio of the two-phase refrigerant between the flow paths in the distributor according to the third embodiment is smaller than that in the conventional distributor as shown in FIG.
It can be seen that the distributor is more effective in eliminating the bias of the liquid portion of the two-phase refrigerant.

【0026】実施例4. 図8はこの発明の実施例4のプレートの上面及び側面か
ら見た詳細図であり、分配器の断面図は実施例3の図5
と同様である。上記、実施例3では円板の8等分割の6
ケ所だけ冷媒の流れる形状をもつプレート24a、24
bを、液部の偏った流れが分散するように、プレートの
中心を回転中心として右回りに135゜ずらして組合わ
せることにより偏流分散板24を構成したが、本実施例
4は円板の十字形の部分だけ冷媒の流れる部分をもつプ
レート24a、24bをプレートの中心を回転中心とし
て互いに45゜ずらして組合わせることにより偏流分散
板24を構成したものであって、実施例3と同様の効果
を奏する。
Embodiment 4 FIG. FIG. 8 is a detailed view of the plate according to the fourth embodiment of the present invention as viewed from the top and side surfaces.
Is the same as In the above-described third embodiment, the disk is divided into six equal parts of eight.
Plates 24a, 24 having a shape in which the refrigerant flows only at two places
b is displaced by 135 ° clockwise about the center of the plate so that the skewed flow of the liquid part is dispersed. A plate 24a, 24b having only a cross-shaped portion through which a coolant flows is formed by combining the plates 24a and 24b with a 45 ° offset from each other with the center of the plate as a center of rotation. It works.

【0027】実施例5. 以下この発明の実施例5を図9〜11について説明す
る。図9は実施例5の熱交換器の平面図、図10は図9
の断面図であり、図において、31は銅管であり、その
周囲にバーリング加工されたフィンカラー32が嵌合さ
れている。33はフィンであり、34は橋状の切り起こ
しである。銅管31の内部は冷媒が流動しており、凝縮
時は銅管31a、31c、31e(パス数分)より高温
高圧のガス冷媒が流入し、銅管31b、31d、31f
(パス数分)より流出する。ここで、その冷媒の有する
熱は、銅管31、フィンカラー32、フィン33、及び
切り起こし34へ順次伝えられる。ここで、熱交換器が
複数列の場合には列間を切断し、出入口管間の熱交換を
防止している。一方矢印方向から流動する空気流35
は、フィン間を通過する際に、冷媒から伝えられた熱
を、空気の接する面を介して間接的に交換する。伝熱管
の外径doは3.5mm以上4.5mm以下であり、ま
た前記伝熱管1列当たりのフィン巾を6mm以上、10
mm以下、段ピッチ(空気流と垂直方向の伝熱管ピッ
チ)を10mm以上、15mm以下としたために、フィ
ン効率はほぼ0.95以上となる。
Embodiment 5 FIG. Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a plan view of the heat exchanger of the fifth embodiment, and FIG.
In the figure, reference numeral 31 denotes a copper tube, around which a fin collar 32 processed by burring is fitted. 33 is a fin, and 34 is a bridge-like cut-and-raised portion. A refrigerant flows inside the copper tube 31, and at the time of condensation, a high-temperature and high-pressure gas refrigerant flows from the copper tubes 31a, 31c, and 31e (for the number of passes), and the copper tubes 31b, 31d, and 31f.
(As many as the number of passes). Here, the heat of the refrigerant is sequentially transmitted to the copper tube 31, the fin collar 32, the fin 33, and the cut-and-raised portion. Here, when the heat exchanger has a plurality of rows, the rows are cut off to prevent heat exchange between the inlet and outlet pipes. On the other hand, the air flow 35 flowing from the arrow direction
When passing between the fins, heat transmitted from the refrigerant is indirectly exchanged via a surface in contact with air. The outer diameter do of the heat transfer tube is 3.5 mm or more and 4.5 mm or less, and the fin width per row of the heat transfer tube is 6 mm or more,
mm or less, and the step pitch (heat transfer tube pitch in the direction perpendicular to the air flow) is 10 mm or more and 15 mm or less, so that the fin efficiency becomes about 0.95 or more.

【0028】また、図11は前記熱交換器の冷房時入口
側冷媒分配器の概略図である。図において、7は分配器
本体、8は熱交換器との接続配管、6は冷媒流入口、3
9はガス抜き口である。前記分配器は気液分離機能を具
備した構成となり、冷媒分配は液単相分配方式となって
いる。
FIG. 11 is a schematic view of the cooling-side inlet-side refrigerant distributor of the heat exchanger. In the figure, 7 is a distributor body, 8 is a connection pipe to a heat exchanger, 6 is a refrigerant inlet, 3
9 is a gas vent. The distributor has a configuration having a gas-liquid separation function, and the refrigerant distribution is of a liquid single-phase distribution type.

【0029】次に動作について説明する。冷房時、冷媒
流入口部6では冷媒の乾き度は0.1〜0.2であり、
気液二相状態にて冷媒分配器本体7に流入する。前記冷
媒分配器本体7に流入した冷媒は気体と液体の重量比が
数十倍から数百倍であることにより、液体は前記冷媒分
配器本体7の下部に溜り、気体は前記冷媒分配器本体7
の上部より前記ガス管へ流出する。また前記冷媒分配器
本体7の下部(液が溜まっている部分)には熱交換器と
の接続管8が設けられ、液体は前記冷媒分配器本体7の
下部に溜った冷媒液のみが前記接続管8へ流入し熱交換
器へ供給される。
Next, the operation will be described. During cooling, the dryness of the refrigerant at the refrigerant inlet 6 is 0.1 to 0.2,
The refrigerant flows into the refrigerant distributor main body 7 in a gas-liquid two-phase state. The refrigerant flowing into the refrigerant distributor main body 7 has a weight ratio of gas to liquid of several tens to several hundreds times, so that the liquid accumulates in the lower part of the refrigerant distributor main body 7 and the gas flows into the refrigerant distributor main body 7. 7
From the upper part of the gas pipe. A connection pipe 8 for connecting to a heat exchanger is provided at a lower portion (a portion where the liquid is stored) of the refrigerant distributor main body 7, and only the refrigerant liquid stored at a lower portion of the refrigerant distributor main body 7 is connected to the heat exchanger. It flows into the pipe 8 and is supplied to the heat exchanger.

【0030】実施例6. 次に、この発明の実施例6を図12から図14について
説明する。図12は実施例6の熱交換器組み立て上面
図、図13は図12の正面図であり、図14は前記ヘア
ピン管の詳細図である。図において、31aはヘアピン
管、31bはUベンド管、7は冷房時出口側分配器であ
る。ヘアピン管31aは伝熱管の長手方向の中心にて曲
げられておらず中心からズレたところ、前記冷房時出口
側分配器7に接続される方が長くなるように構成されて
いる。
Embodiment 6 FIG. Next, a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 12 is an assembled top view of the heat exchanger according to the sixth embodiment, FIG. 13 is a front view of FIG. 12, and FIG. 14 is a detailed view of the hairpin tube. In the figure, 31a is a hairpin tube, 31b is a U-bend tube, and 7 is a cooling-side outlet-side distributor. The hairpin tube 31a is configured not to be bent at the center in the longitudinal direction of the heat transfer tube but to be shifted from the center and to be longer connected to the outlet distributor 7 during cooling.

【0031】次に動作について説明する。実施例6の熱
交換器は、冷房時出口側分配器7とヘアピン管31aを
直接接続出来るようにしたもので、冷房時出口側分配器
7を熱交換器へUベンドと同時にろう付け可能になるよ
うにUベンド取りつけ部ヘアピンや冷房時入口側分配器
との接続部より長くしたものである。
Next, the operation will be described. In the heat exchanger of the sixth embodiment, the outlet-side distributor 7 during cooling can be directly connected to the hairpin tube 31a, and the outlet-side distributor 7 during cooling can be brazed to the heat exchanger simultaneously with the U-bend. In this case, the length of the connection portion is longer than the connection portion with the U-bend attachment portion hairpin and the inlet side distributor at the time of cooling.

【0032】[0032]

【発明の効果】この発明に係る冷媒分配器は、減圧装置
により減圧された冷媒を蒸発器の流路に分配する冷媒分
配器において、出口に設けられた分配管取り付け部と、
円板の一部のみ冷媒が流れる形状の二枚のプレートを有
し、液部の偏った流れを分散可能に該二枚のプレートを
組み合わせた偏流分散板とを備えた構成にしたので、分
配器直前に曲がり部をもつ形状に入口管がなっている場
合でも、冷媒の液部の偏りをより効果的に緩和でき、蒸
発器への冷媒の分配を均一にすることができ、蒸発器の
能力を十分に生かし効率の良い空気調和ができる。
According to the refrigerant distributor of the present invention, in a refrigerant distributor for distributing a refrigerant decompressed by a decompression device to a flow path of an evaporator, a distribution pipe mounting portion provided at an outlet;
It has two plates with a shape in which the refrigerant flows only in a part of the disk, and has a configuration including a non-uniform flow dispersion plate combining the two plates so that the non-uniform flow of the liquid part can be dispersed. Even when the inlet pipe has a bent portion just before the vessel, the bias of the liquid part of the refrigerant can be more effectively alleviated, the distribution of the refrigerant to the evaporator can be made uniform, and the It can make full use of its ability to achieve efficient air conditioning.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1による冷媒分配器の斜視図
である。
FIG. 1 is a perspective view of a refrigerant distributor according to Embodiment 1 of the present invention.

【図2】この発明の実施例1による冷媒分配器の組立断
面図である。
FIG. 2 is an assembled sectional view of the refrigerant distributor according to Embodiment 1 of the present invention.

【図3】この発明の実施例2による冷媒分配器の組立断
面図である。
FIG. 3 is an assembled sectional view of a refrigerant distributor according to Embodiment 2 of the present invention.

【図4】この発明の実施例2による冷媒分配器の組立断
面図である。
FIG. 4 is an assembled sectional view of a refrigerant distributor according to Embodiment 2 of the present invention.

【図5】この発明の実施例3による冷媒分配器の断面図
である。
FIG. 5 is a sectional view of a refrigerant distributor according to Embodiment 3 of the present invention.

【図6】この発明の実施例3による冷媒分配器のプレー
トの上面及び側面から見た詳細図である。
FIG. 6 is a detailed view of a plate of a refrigerant distributor according to Embodiment 3 of the present invention as viewed from the top and side surfaces.

【図7】この発明の実施例3と従来の分配器の各流路へ
の冷媒分配割合の試験結果を示す図である。
FIG. 7 is a diagram showing test results of a refrigerant distribution ratio to each flow path of the distributor according to the third embodiment of the present invention and a conventional distributor.

【図8】この発明の実施例4による冷媒分配器のプレー
トの上面及び側面から見た詳細図である。
FIG. 8 is a detailed view of a plate of a refrigerant distributor according to Embodiment 4 of the present invention as viewed from the top and side surfaces.

【図9】この発明の実施例5による熱交換器を示す平面
図である。
FIG. 9 is a plan view showing a heat exchanger according to Embodiment 5 of the present invention.

【図10】この発明の実施例5による熱交換器を示す断
面図である。
FIG. 10 is a sectional view showing a heat exchanger according to Embodiment 5 of the present invention.

【図11】この発明の実施例5による熱交換器用冷媒分
配器を示す概略図である。
FIG. 11 is a schematic view showing a refrigerant distributor for a heat exchanger according to Embodiment 5 of the present invention.

【図12】この発明の実施例6による熱交換器を示す組
み立て上面図である。
FIG. 12 is an assembled top view showing a heat exchanger according to Embodiment 6 of the present invention.

【図13】この発明の実施例6による熱交換器を示す組
み立て正面図である。
FIG. 13 is an assembled front view showing a heat exchanger according to Embodiment 6 of the present invention.

【図14】この発明の実施例6による熱交換器用ヘアピ
ンを示す詳細図である。
FIG. 14 is a detailed view showing a hairpin for a heat exchanger according to Embodiment 6 of the present invention.

【図15】従来冷媒分配器を示す組立断面図である。FIG. 15 is an assembled sectional view showing a conventional refrigerant distributor.

【図16】従来冷媒分配器の各部寸法の符号説明図であ
る。
FIG. 16 is an explanatory diagram of reference numerals for dimensions of respective parts of a conventional refrigerant distributor.

【図17】従来の冷媒分配器の騒音の実測データを示す
図である。
FIG. 17 is a diagram showing actual measurement data of noise of a conventional refrigerant distributor.

【図18】従来の冷媒分配器を示す部分断面図である。FIG. 18 is a partial sectional view showing a conventional refrigerant distributor.

【図19】従来の冷媒分配器を示す部分断面図である。FIG. 19 is a partial sectional view showing a conventional refrigerant distributor.

【図20】従来の空気調和機の冷媒回路図である。FIG. 20 is a refrigerant circuit diagram of a conventional air conditioner.

【符号の説明】 1 圧縮機 2 凝縮器 3 減圧器 4 蒸発器 5 アキュムレータ 6 冷媒配管 7 分配器 8 分配管 9 円錐形オリフィス 10 平板オリフィス 11 第1の気液混合室 12 金網 13 第2の気液混合室 14 座 15 分配穴 24 偏流分散板 24a プレート 24b プレート 31 銅管 32 フィンカラー 33 フィン 34 切り起し[Description of Signs] 1 Compressor 2 Condenser 3 Decompressor 4 Evaporator 5 Accumulator 6 Refrigerant pipe 7 Distributor 8 Minute pipe 9 Conical orifice 10 Flat plate orifice 11 First gas-liquid mixing chamber 12 Metal mesh 13 Second gas Liquid mixing chamber 14 Seat 15 Distribution hole 24 Non-uniform flow dispersion plate 24a plate 24b plate 31 Copper tube 32 Fin collar 33 Fin 34 Cut and raised

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩崎 吉隆 静岡市小鹿三丁目18番1号 三菱電機エ ンジニアリング株式会社 名古屋事業所 静岡支所内 (72)発明者 高橋 建吾 静岡市小鹿三丁目18番1号 三菱電機株 式会社 静岡製作所内 (56)参考文献 特開 昭58−99670(JP,A) 特開 平2−17368(JP,A) 実開 昭59−80665(JP,U) 実開 昭52−112552(JP,U) 実開 昭51−124654(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 41/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yoshitaka Iwasaki 3-18-1, Oka, Shizuoka-shi Mitsubishi Electric Engineering Co., Ltd. Nagoya Office Shizuoka Branch (72) Inventor Kengo Takahashi 3--18, Oka, Shizuoka-shi No. 1 Mitsubishi Electric Corporation Shizuoka Works (56) References JP-A-58-99670 (JP, A) JP-A-2-17368 (JP, A) Full-scale operation Sho-59-80665 (JP, U) Actually operation Showa 52-112552 (JP, U) Actually open Showa 51-124654 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 41/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 減圧装置により減圧された冷媒を蒸発器
の流路に分配する冷媒分配器において、出口に設けられ
た分配管取り付け部と、円板の一部のみ冷媒が流れる形
状の二枚のプレートを有し、液部の偏った流れを分散可
能に該二枚のプレートを組み合わせた偏流分散板とを備
えたことを特徴とする冷媒分配器。
1. A refrigerant distributor for distributing a refrigerant decompressed by a decompression device to a flow path of an evaporator, comprising a distribution pipe mounting portion provided at an outlet, and a two-disc shape having a shape in which the refrigerant flows only in a part of a disk. And a deflected dispersion plate combining the two plates so as to be able to disperse the deviated flow of the liquid part.
JP4150225A 1992-06-10 1992-06-10 Refrigerant distributor Expired - Lifetime JP3016304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150225A JP3016304B2 (en) 1992-06-10 1992-06-10 Refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150225A JP3016304B2 (en) 1992-06-10 1992-06-10 Refrigerant distributor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10062444A Division JPH10232069A (en) 1998-03-13 1998-03-13 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH05340649A JPH05340649A (en) 1993-12-21
JP3016304B2 true JP3016304B2 (en) 2000-03-06

Family

ID=15492281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150225A Expired - Lifetime JP3016304B2 (en) 1992-06-10 1992-06-10 Refrigerant distributor

Country Status (1)

Country Link
JP (1) JP3016304B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720855B2 (en) 2008-06-02 2011-07-13 株式会社デンソー Heat exchanger
CN104567118B (en) * 2015-01-14 2017-01-18 合肥天鹅制冷科技有限公司 Evaporator system having flexible adjusting function
CN215638163U (en) * 2021-08-18 2022-01-25 广东美的制冷设备有限公司 Distributor and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124654U (en) * 1975-04-04 1976-10-08
JPS52112552U (en) * 1976-02-24 1977-08-26
JPS5980665U (en) * 1982-11-25 1984-05-31 三菱電機株式会社 air conditioner distributor

Also Published As

Publication number Publication date
JPH05340649A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP3358250B2 (en) Refrigerant evaporator
EP1809958B1 (en) Parallel flow evaporator with variable channel insertion depth
US6973805B2 (en) Layered heat exchanger, layered evaporator for motor vehicle air conditioners and refrigeration system
US20080105420A1 (en) Parallel Flow Heat Exchanger With Crimped Channel Entrance
JP2013137193A5 (en)
AU2002238890A1 (en) Layered heat exchanger, layered evaporator for motor vehicle air conditioners and refrigeration system
WO2006053311A2 (en) Parallel flow evaporator with shaped manifolds
CN105492855A (en) Laminate-type header, heat exchanger, and air-conditioning apparatus
JP5100818B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle apparatus
JP3016304B2 (en) Refrigerant distributor
WO2014155816A1 (en) Expansion valve and cooling cycle device using same
JP2003214727A (en) Fluid distributor and air conditioner with the same
JP2010139113A (en) Heat exchanger and air conditioning refrigerating device
JPH10185363A (en) Refrigerant distributor for refrigerating cycle
JPH10232069A (en) Heat exchanger
JPH06194003A (en) Air conditioner
JP5193630B2 (en) Heat exchanger
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP6715958B2 (en) Expansion valve and refrigeration cycle apparatus including the same
JPH0781761B2 (en) Air conditioner distributor
JP3326930B2 (en) Refrigerant shunt
WO2021234955A1 (en) Heat exchanger and air conditioner
JP3405882B2 (en) Refrigerant flow divider
KR20170093513A (en) Refrigerant distributor and plate type heat exchanger for evaporator of air conditioning system having the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13