JP2012093103A - Electronic component inspecting wiring board and manufacturing method thereof - Google Patents

Electronic component inspecting wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2012093103A
JP2012093103A JP2010238292A JP2010238292A JP2012093103A JP 2012093103 A JP2012093103 A JP 2012093103A JP 2010238292 A JP2010238292 A JP 2010238292A JP 2010238292 A JP2010238292 A JP 2010238292A JP 2012093103 A JP2012093103 A JP 2012093103A
Authority
JP
Japan
Prior art keywords
resin
layer
layers
wiring
via conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010238292A
Other languages
Japanese (ja)
Inventor
Takatoshi Tojo
孝俊 東條
Satoshi Hirano
聡 平野
Yoshiaki Nagaya
善明 長屋
Ryota Fukui
良太 福井
Muneyuki Iwata
宗之 岩田
Shinji Suzumura
真司 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2010238292A priority Critical patent/JP2012093103A/en
Publication of JP2012093103A publication Critical patent/JP2012093103A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic component inspecting wiring board including a resin insulating part in which each wiring layer formed between a plurality of resin insulating layers is accurately arranged on a predetermined position, and to provide a manufacturing method capable of surely manufacturing the wiring board.SOLUTION: The electronic component inspecting wiring board 1a includes a resin insulating part RZ including a plurality of resin insulating layers z1 to z4 laminated along the thickness direction and wiring layers 6 to 8 respectively arranged between the resin insulating layers z1 to z4. Each of the resin insulating layers z1 to z4 is configured by a first resin layer 4 composed of thermosetting resin and a pair of second resin layers 5 arranged on both the faces of the first resin layer 4 and composed of thermoplastic resin. In the thickness direction of the resin insulating layers z1 to z4, de-energized via conductors dv1, dv2 are formed so as to pierce at least one of the second resin layers 5 and continuously pierce a part or all of the first resin layer 4, and both ends of the de-energized via conductors dv1, dv2 are not brought into contact with the wiring layers 6 to 8.

Description

本発明は、Siウェハなどに多数が形成された半導体素子などの電子部品の特性を検査するための電子部品検査用配線基板およびその製造方法に関する。   The present invention relates to an electronic component inspection wiring board for inspecting the characteristics of electronic components such as semiconductor elements formed in large numbers on a Si wafer and the like, and a method of manufacturing the same.

半導体素子などの電子部品の特性を検査するため、複数の樹脂絶縁層、これらの間に形成した配線層、および該配線層間を接続し且つ上記絶縁層を貫通するビア導体を含む多層樹脂基板と、該多層樹脂基板の裏面側に積層され、複数のセラミック層、およびこれらを厚み方向に沿って貫通するビア導体を含む多層セラミック基板と、を積層したIC検査装置用基板が用いられている(例えば、特許文献1参照)。
上記IC検査装置用基板における樹脂絶縁部の主面に設けた複数のパッド上には、IC側の端子に接触する導電性金属からなるプローブが取り付けられる。
A multilayer resin substrate including a plurality of resin insulating layers, a wiring layer formed between them, and a via conductor that connects the wiring layers and penetrates the insulating layer in order to inspect the characteristics of electronic components such as semiconductor elements In addition, an IC inspection device substrate is used in which a plurality of ceramic layers stacked on the back side of the multilayer resin substrate and a multilayer ceramic substrate including via conductors penetrating the ceramic layers along the thickness direction are stacked ( For example, see Patent Document 1).
On a plurality of pads provided on the main surface of the resin insulation portion in the substrate for IC inspection apparatus, probes made of conductive metal that comes into contact with terminals on the IC side are attached.

ところで、前記IC検査装置用基板のように、複数の樹脂絶縁層および配線層を積層した多層樹脂基板を、複数のセラミック基板を積層して焼成した多層セラミック基板の主面上に圧着して積層する際、当該多層樹脂基板を加熱しつつ圧着している。そのため、上記樹脂絶縁層が熱可塑性樹脂からなる場合、加熱による粘度の低下に伴って移動するため、該熱可塑性樹脂の表面に形成された個々の配線層が当初の形状から変形したり、該配線層の位置が当初の位置からずれ、引いては断線に至る場合もあった。その結果、配線層の変形や断線によって、電子部品の正確な検査を保証し難くなるおそれがあった。   By the way, a multilayer resin substrate in which a plurality of resin insulating layers and wiring layers are laminated, as in the case of the IC inspection device substrate, is laminated by pressing on the main surface of the multilayer ceramic substrate obtained by laminating and firing a plurality of ceramic substrates. In this case, the multilayer resin substrate is pressure-bonded while being heated. Therefore, when the resin insulation layer is made of a thermoplastic resin, it moves with a decrease in viscosity due to heating, so that individual wiring layers formed on the surface of the thermoplastic resin are deformed from the original shape, In some cases, the position of the wiring layer deviates from the initial position, leading to disconnection. As a result, there is a risk that it is difficult to guarantee an accurate inspection of the electronic component due to deformation or disconnection of the wiring layer.

特開2009−76873号公報(第1〜20頁、図1〜16)JP 2009-76873 A (pages 1 to 20, FIGS. 1 to 16)

本発明は、背景技術において説明した問題点を解決し、複数の樹脂絶縁層間に形成された配線層の位置が所定の位置に精度良く配設された樹脂絶縁部を含む電子部品検査用配線基板、および該配線基板を確実に製造できる製造方法を確実に提供する、ことを課題とする。   The present invention solves the problems described in the background art, and includes an electronic component inspection wiring board including a resin insulating portion in which positions of wiring layers formed between a plurality of resin insulating layers are accurately arranged at predetermined positions. And a manufacturing method capable of reliably manufacturing the wiring board.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、配線層が表面に形成される樹脂絶縁層が製造時の加熱・圧着工程において、厚み方向と直交する平面方向に沿って変形しにくくなるように、通常のビア導体のほかに、電流が流れない非通電ビア導体を厚み方向沿って配置し、更に、該非通電ビア導体の一端または両端に接続され且つ電流が流れない非通電配線層を通常の配線層のほかに形成する、ことに着想して成されたものである。
即ち、本発明による第1の電子部品検査用配線基板(請求項1)は、厚み方向に沿って積層された複数の樹脂絶縁層と、該樹脂絶縁層の間に配置した配線層とを備える樹脂絶縁部を含む電子部品検査用配線基板であって、上記樹脂絶縁層は、熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に配設され且つ熱可塑性樹脂からなる一対の第2樹脂層とから構成され、上記樹脂絶縁層の厚み方向において、少なくとも一方の上記第2樹脂層を貫通し、且つ上記第1樹脂層の一部または全部を連続して貫通する非通電ビア導体が形成され、該非通電ビア導体の両端は、上記配線層とは接触していない、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention is generally designed so that the resin insulating layer formed on the surface of the wiring layer is less likely to be deformed along the plane direction perpendicular to the thickness direction in the heating / crimping process during manufacturing. In addition to the via conductor, a non-current-carrying via conductor that does not flow current is arranged along the thickness direction, and a non-current-carrying wiring layer that is connected to one or both ends of the non-current-carrying via conductor and does not flow current is a normal wiring layer In addition to the above, it was conceived and formed.
That is, a first electronic component inspection wiring board according to the present invention (Claim 1) includes a plurality of resin insulation layers stacked along the thickness direction, and a wiring layer disposed between the resin insulation layers. A wiring board for inspecting electronic parts including a resin insulating part, wherein the resin insulating layer is formed of a first resin layer made of a thermosetting resin, and is formed on both surfaces of the first resin layer and made of a thermoplastic resin. And a pair of second resin layers, and penetrates at least one of the second resin layers in the thickness direction of the resin insulating layer and continuously penetrates part or all of the first resin layer. An energized via conductor is formed, and both ends of the non-energized via conductor are not in contact with the wiring layer.

これによれば、製造時の加熱・圧着により各樹脂絶縁層の熱可塑性樹脂からなる第2樹脂層が加熱され、粘度の低下により変形しようとしても、一方の第2樹脂層を貫通し、且つ第1樹脂層の一部または全部を連続して貫通する前記非通電ビア導体が、厚み方向と直交する平面方向(以下、単に平面方向と言う)に沿った移動を抑制ないし低減している。そのため、各樹脂絶縁層の第2樹脂層の表面に形成されている配線層も、不用意に大きく変形したり、断線していない。従って、電子部品の正確な検査が保証し得る電子部品検査用配線基板となる。   According to this, the second resin layer made of the thermoplastic resin of each resin insulation layer is heated by heating and pressure bonding at the time of manufacture, and even if trying to deform due to a decrease in viscosity, it penetrates one of the second resin layers, and The non-energized via conductor that continuously penetrates part or all of the first resin layer suppresses or reduces movement along a plane direction orthogonal to the thickness direction (hereinafter simply referred to as the plane direction). Therefore, the wiring layer formed on the surface of the second resin layer of each resin insulating layer is not inadvertently greatly deformed or disconnected. Therefore, the wiring board for inspecting electronic components can be assured of accurate inspection of the electronic components.

尚、前記熱硬化性樹脂と熱可塑性樹脂とは、例えば、何れもポリイミド系樹脂からなる。
また、前記非通電ビア導体は、Cu、Cu合金、あるいは、Ag、Ag合金からなり、電流が流れず、且つ他の配線層などの導体とは接続されておらず、且つ電気的に絶縁されている。
更に、前記非通電ビア導体は、含有する熱硬化性のバインダ樹脂によって硬化されている。
また、前記樹脂絶縁部の各樹脂絶縁層には、前記非通電ビア導体とは別の位置に、通常の通電されるビア導体が貫通し、且つ前記配線層と接続されている。
加えて、樹脂絶縁部の表面(主面)には、複数のパッド(外部接続端子)が形成され、該パッドの上面には、検査すべきICなどの端子に接触する導電性金属からなるプローブピンが追って取り付けられる。
The thermosetting resin and the thermoplastic resin are both made of a polyimide resin, for example.
The non-conducting via conductor is made of Cu, Cu alloy, Ag, or Ag alloy, does not flow current, is not connected to a conductor such as another wiring layer, and is electrically insulated. ing.
Further, the non-energized via conductor is cured by a thermosetting binder resin contained therein.
Each resin insulating layer of the resin insulating portion has a via conductor that is normally energized at a position different from the non-energized via conductor and is connected to the wiring layer.
In addition, a plurality of pads (external connection terminals) are formed on the surface (main surface) of the resin insulating portion, and a probe made of a conductive metal that contacts a terminal such as an IC to be inspected on the upper surface of the pads. Pins are attached later.

また、本発明には、前記非通電ビア導体と前記配線層との距離は、平面視において50μm以下である、第1の電子部品検査用配線基板(請求項2)も含まれる。
これによれば、前記樹脂絶縁部の厚み方向である平面視において、前記非通電ビア導体と前記配線層との距離が、50μm以下とされているため、非通電ビア導体による前記第2樹脂層の移動や変形を確実に抑制し得る。従って、各樹脂絶縁層の第2樹脂層の表面に形成されている配線層が不用意に大きく変形しないので、断線や隣接する他の配線層との短絡を防ぐことができる。
The present invention also includes a first electronic component inspection wiring board (claim 2) in which the distance between the non-energized via conductor and the wiring layer is 50 μm or less in plan view.
According to this, since the distance between the non-conducting via conductor and the wiring layer is 50 μm or less in a plan view that is the thickness direction of the resin insulating portion, the second resin layer formed by the non-conducting via conductor Can be reliably suppressed. Therefore, since the wiring layer formed on the surface of the second resin layer of each resin insulating layer does not inadvertently greatly deform, it is possible to prevent disconnection or a short circuit with another adjacent wiring layer.

更に、本発明による第2の電子部品検査用配線基板(請求項3)は、厚み方向に沿って積層された複数の樹脂絶縁層と、該樹脂絶縁層の間に配置した配線層とを備える樹脂絶縁部を含む電子部品検査用配線基板であって、上記樹脂絶縁層は、熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に配設され且つ熱可塑性樹脂からなる一対の第2樹脂層とから構成され、上記樹脂絶縁層の厚み方向において、少なくとも一方の上記第2樹脂層を貫通し、且つ上記第1樹脂層の一部または全部を連続して貫通する非通電ビア導体が形成され、該非通電ビア導体は、上記樹脂絶縁層の間に上記配線層とは別に形成され、該配線層とは電気的に絶縁された非通電配線層に、一端または両端が接続されている、ことを特徴とする。   Furthermore, a second electronic component inspection wiring board according to the present invention (Claim 3) includes a plurality of resin insulating layers stacked along the thickness direction, and a wiring layer disposed between the resin insulating layers. A wiring board for inspecting electronic parts including a resin insulating part, wherein the resin insulating layer is formed of a first resin layer made of a thermosetting resin, and is formed on both surfaces of the first resin layer and made of a thermoplastic resin. And a pair of second resin layers, and penetrates at least one of the second resin layers in the thickness direction of the resin insulating layer and continuously penetrates part or all of the first resin layer. A current-carrying via conductor is formed, and the non-current-carrying via conductor is formed separately from the wiring layer between the resin insulating layers, and one end or both ends of the current-carrying via conductor are electrically insulated from the wiring layer. It is connected.

これによれば、製造時の加熱・圧着により各樹脂絶縁層の熱可塑性樹脂からなる第2樹脂層が加熱され、粘度の低下により変形しようとしても、一方の第2樹脂層を貫通し、且つ第1樹脂層の一部または全部を連続して貫通する前記非通電ビア導体が、更にその一端または両端で非通電配線層に接続している。そのため、非通電ビア導体と非通電配線層との双方によって、第2樹脂層の平面方向に沿った移動を一層抑制ないし低減している。従って、各樹脂絶縁層の第2樹脂層の表面に形成されている配線層も、不用意に変形したり、断線していないので、電子部品の正確な検査が保証し得る電子部品検査用配線基板となる。
尚、前記非通電配線層は、プローブピンに電気的に接続されている(電流が流れる)通常のビア導体や前記配線層とは接続されず、その一端または両端で前記非通電ビア導体のみと接続され、且つ電気的に絶縁された導体層である。また、非通電ビア導体と非通電配線層とは、両者に含まれる熱硬化性のバインダ樹脂によって一体的に接続されている。
According to this, the second resin layer made of the thermoplastic resin of each resin insulation layer is heated by heating and pressure bonding at the time of manufacture, and even if trying to deform due to a decrease in viscosity, it penetrates one of the second resin layers, and The non-conducting via conductor that continuously penetrates part or all of the first resin layer is further connected to the non-conducting wiring layer at one or both ends thereof. Therefore, the movement along the plane direction of the second resin layer is further suppressed or reduced by both the non-conductive via conductor and the non-conductive wiring layer. Therefore, since the wiring layer formed on the surface of the second resin layer of each resin insulating layer is not inadvertently deformed or disconnected, the electronic component inspection wiring that can guarantee the accurate inspection of the electronic component It becomes a substrate.
The non-conducting wiring layer is not connected to a normal via conductor or the wiring layer that is electrically connected to the probe pin (current flows), and only the non-conducting via conductor at one or both ends thereof. A conductive layer that is connected and electrically insulated. Further, the non-conductive via conductor and the non-conductive wiring layer are integrally connected by a thermosetting binder resin included in both.

加えて、本発明には、前記非通電ビア導体と非通電配線層との接続は、該非通電ビア導体の端面または該端面の一部と非通電配線層における一方の表面との面接触によるか、あるいは、上記非通電ビア導体の端部が非通電配線層に設けた透孔内に進入する挿入部によるものである、第2の電子部品検査用配線基板(請求項4)も含まれる。
これによれば、非通電ビア導体と非通電配線層との接続が、前者の端面と後者の表面との面接触による場合は、前記と同様であるが、非通電ビア導体の端部が非通電配線層に設けた透孔内に進入する形態の場合には、更に非通電配線層に対する非通電ビア導体自体の剪断応力が加味される。従って、かかる剪断応力が働く形態では、前記非通電ビア導体が最も厚み方向と直交する平面方向に沿った熱応力を一層抑制ないし低減したものとなっている。
In addition, according to the present invention, the connection between the non-conductive via conductor and the non-conductive wiring layer is based on surface contact between the end surface of the non-conductive via conductor or a part of the end surface and one surface of the non-conductive wiring layer. Alternatively, a second electronic component inspection wiring board (Claim 4) is also included in which the end portion of the non-conducting via conductor is an insertion portion that enters into a through hole provided in the non-conducting wiring layer.
According to this, when the connection between the non-conducting via conductor and the non-conducting wiring layer is due to surface contact between the former end surface and the latter surface, it is the same as described above. In the case of entering the through hole provided in the energized wiring layer, the shear stress of the non-energized via conductor itself with respect to the non-energized wiring layer is further added. Therefore, in the form in which such shear stress acts, the non-energized via conductor further suppresses or reduces the thermal stress along the plane direction orthogonal to the thickness direction.

一方、本発明による第1の電子部品検査用配線基板の製造方法(請求項5)は、熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に位置し且つ熱可塑性樹脂からなる一対の第2樹脂層と、何れ一方の第2樹脂層の外側面に貼り付けた導体箔とから構成される樹脂絶縁層において、一方の第2樹脂層を貫通し且つ第1樹脂層の厚み方向の一部に進入するビアホール、あるいは、一対の第2樹脂層および第1樹脂層を厚み方向に沿って貫通するビアホールを形成する工程と、上記導体箔の外側面に感光性樹脂フィルムを被覆し、該樹脂フィルムに露光および現像を施すことで、上記樹脂フィルムにエッチング用の開口部を有するレジストパターンを形成する工程と、該レジストパターンの開口部の底面に露出する導体箔をエッチングして除去し、且つ上記レジストパターンを除去することで、所定パターンに倣った配線層を形成する工程と、上記ビアホールに金属粉末および熱硬化性バインダ樹脂を含む導電性ペーストを充填して、非通電ビア導体を形成する工程と、上記配線層、非通電ビア導体、第1樹脂層、および一対の第2樹脂層を含む複数の樹脂絶縁層を厚み方向に積層して、加熱および圧着することにより、複数の樹脂絶縁層と、これらの間に配置された配線層と、何れかの樹脂絶縁層の全部または一部を貫通し、且つ何れの配線層とも接続されていない非通電ビア導体と、を含む樹脂絶縁部を形成する工程と、を含む、ことを特徴とする。   On the other hand, a first method for manufacturing an electronic component inspection wiring board according to the present invention (Claim 5) includes a first resin layer made of a thermosetting resin, and a thermoplastic resin positioned on both surfaces of the first resin layer. A resin insulating layer composed of a pair of second resin layers and a conductor foil attached to the outer surface of any one of the second resin layers, the first resin layer penetrating through one of the second resin layers Forming a via hole that penetrates a part of the thickness direction or a pair of the second resin layer and the first resin layer along the thickness direction, and forming a photosensitive resin film on the outer surface of the conductive foil. And forming a resist pattern having an opening for etching on the resin film, and etching the conductive foil exposed at the bottom of the opening of the resist pattern. do it And removing the resist pattern to form a wiring layer following the predetermined pattern, and filling the via hole with a conductive paste containing metal powder and a thermosetting binder resin, By laminating a plurality of resin insulation layers including the wiring layer, the non-conductive via conductor, the first resin layer, and the pair of second resin layers in the thickness direction, and heating and pressure bonding, A plurality of resin insulation layers, a wiring layer disposed between them, and a non-current-carrying via conductor that penetrates all or part of any resin insulation layer and is not connected to any wiring layer, And a step of forming a resin insulating portion.

これによれば、加熱・圧着工程で各樹脂絶縁層の熱可塑性樹脂からなる第2樹脂層が加熱され、粘度の低下により変形しようとしても、一方の第2樹脂層を貫通し、且つ第1樹脂層の一部または全部を連続して貫通する前記非通電ビア導体が、厚み方向と直交する平面方向に沿った移動を抑制ないし低減する。そのため、各樹脂絶縁層の第2樹脂層の表面に形成されている配線層も、不用意に大きく変形したり、断線しない。従って、電子部品の正確な検査が保証し得る電子部品検査用配線基板を確実に製造し得る。
尚、前記導体箔は、例えば、銅箔である。
また、前記ビアホールは、例えば、レーザ加工によって形成される。
According to this, even if the second resin layer made of the thermoplastic resin of each resin insulating layer is heated in the heating / crimping step and tries to deform due to a decrease in viscosity, the first resin layer penetrates through the first resin layer and The non-energized via conductor that continuously penetrates part or all of the resin layer suppresses or reduces movement along a plane direction orthogonal to the thickness direction. For this reason, the wiring layer formed on the surface of the second resin layer of each resin insulating layer is not inadvertently greatly deformed or disconnected. Therefore, it is possible to reliably manufacture an electronic component inspection wiring board that can guarantee accurate inspection of electronic components.
The conductor foil is, for example, a copper foil.
The via hole is formed by laser processing, for example.

また、本発明による第2の電子部品検査用配線基板の製造方法(請求項6)は、硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に位置し且つ熱可塑性樹脂からなる一対の第2樹脂層と、何れ一方の第2樹脂層の外側面に貼り付けた導体箔とから構成される樹脂絶縁層において、一方の第2樹脂層を貫通し且つ第1樹脂層の一部に厚み方向に沿って進入するビアホール、導体箔と一方の第2樹脂層とを貫通し且つ第1樹脂層の一部とに厚み方向に沿って進入するビアホール、あるいは、一対の第2樹脂層および第1樹脂層を厚み方向に沿って貫通するビアホールを形成する工程と、上記導体箔の外側面に感光性樹脂フィルムを被覆し、該樹脂フィルムに露光および現像を施すことで、上記樹脂フィルムにエッチング用の開口部を有するレジストパターンを形成する工程と、該レジストパターンの開口部の底面に露出する導体箔をエッチングして除去し、且つ上記レジストパターンを除去することで、所定パターンに倣った配線層および非通電配線層を形成する工程と、上記ビアホールに金属粉末および熱硬化性バインダ樹脂を含む導電性ペーストを充填して、非通電ビア導体を形成する工程と、上記配線層、非通電配線層、非通電ビア導体、第1樹脂層および一対の第2樹脂層を含む複数の樹脂絶縁層を厚み方向に積層して、加熱および圧着することにより、複数の樹脂絶縁層と、これらの間に配置された非通電配線層および配線層と、何れかの樹脂絶縁層の全部または一部を貫通し、且つ非通電配線層とのみ接続する非通電ビア導体とを含む樹脂絶縁部を形成する工程と、を含む、ことを特徴とする。   A second electronic component inspection wiring board manufacturing method according to the present invention (Claim 6) includes a first resin layer made of a curable resin, and a thermoplastic resin located on both surfaces of the first resin layer. A resin insulating layer composed of a pair of second resin layers and a conductor foil attached to the outer surface of any one of the second resin layers, and penetrates one of the second resin layers and A via hole that penetrates partly along the thickness direction, a via hole that penetrates the conductor foil and one second resin layer and enters part of the first resin layer, or a pair of second holes A step of forming a via hole penetrating the resin layer and the first resin layer along the thickness direction, a photosensitive resin film is coated on the outer surface of the conductor foil, and the resin film is exposed and developed, Resin film has an opening for etching A step of forming a resist pattern, and a conductive foil exposed on the bottom surface of the opening of the resist pattern is removed by etching, and the resist pattern is removed, whereby a wiring layer and a non-conductive wiring layer following the predetermined pattern Forming a non-conducting via conductor by filling the via hole with a conductive paste containing a metal powder and a thermosetting binder resin, and the wiring layer, non-conducting wiring layer, non-conducting via conductor A plurality of resin insulation layers including a first resin layer and a pair of second resin layers are laminated in the thickness direction, and heated and pressed to provide a plurality of resin insulation layers and a non-energization disposed therebetween Forming a resin insulating portion including a wiring layer and a wiring layer, and a non-conductive via conductor that penetrates all or part of any resin insulating layer and is connected only to the non-conductive wiring layer; It includes, characterized in that.

これによれば、加熱・圧着工程において、各樹脂絶縁層の熱可塑性樹脂からなる第2樹脂層が加熱され、粘度の低下により変形しようとしても、一方の第2樹脂層を貫通し、且つ第1樹脂層の一部または全部を連続して貫通する前記非通電ビア導体が、その一端または両端で更に非通電配線層に接続している。そのため、前記第2樹脂層の厚み方向と直交する平面方向に沿った移動を一層抑制ないし低減し得る。従って、各樹脂絶縁層の第2樹脂層の表面に形成されている配線層も、不用意に変形したり、断線していないので、電子部品の正確な検査が保証し得る電子部品検査用配線基板を一層確実に提供することができる。   According to this, in the heating / compression bonding process, even if the second resin layer made of the thermoplastic resin of each resin insulating layer is heated and tries to deform due to a decrease in viscosity, the second resin layer penetrates through the second resin layer and The non-conducting via conductor that continuously penetrates part or all of one resin layer is further connected to the non-conducting wiring layer at one or both ends thereof. Therefore, the movement along the plane direction orthogonal to the thickness direction of the second resin layer can be further suppressed or reduced. Therefore, since the wiring layer formed on the surface of the second resin layer of each resin insulating layer is not inadvertently deformed or disconnected, the electronic component inspection wiring that can guarantee the accurate inspection of the electronic component The substrate can be provided more reliably.

更に、本発明には、前記積層、加熱、および圧着工程は、前記樹脂絶縁部における一対の主面のうち、検査側主面と反対側の主面に、複数のセラミック層または複数の樹脂層を積層してなり、且つ少なくとも厚み方向に沿ったビア導体を含むベース側基板部を併せて積層、加熱、および圧着するものである、第1または第2の電子部品検査用配線基板の製造方法(請求項7)も含まれる。
これによれば、前記変形や断線が皆無の配線層を含む樹脂絶縁部と、少なくとも厚み方向に沿ったビア導体を含むベース側基板部とを、積層、加熱、熱圧着して、正確な検査が可能な電子部品検査用配線基板を確実に製造することができる。
尚、ベース側基板部は、前記検査用配線基板をプリント基板などに搭載するための接続部として用いられ、複数のセラミック層あるいは複数の樹脂層を積層し、これらの厚み方向に沿って貫通する複数のビア導体を有し、所定の設計仕様として予め設定されたものが、製造工数的且つ製造コスト的な観点から推奨される。
Furthermore, in the present invention, the laminating, heating, and pressure-bonding steps include a plurality of ceramic layers or a plurality of resin layers on a main surface opposite to the inspection-side main surface among the pair of main surfaces in the resin insulating portion. And the base side substrate portion including at least the via conductor along the thickness direction is laminated, heated, and pressure-bonded together. (Claim 7) is also included.
According to this, accurate inspection is performed by laminating, heating, and thermocompression bonding the resin insulating portion including the wiring layer having no deformation or disconnection and the base side substrate portion including at least the via conductor along the thickness direction. Therefore, it is possible to reliably manufacture a wiring board for inspecting electronic components.
The base side substrate portion is used as a connecting portion for mounting the inspection wiring board on a printed circuit board or the like, and a plurality of ceramic layers or a plurality of resin layers are laminated and penetrated along the thickness direction thereof. One having a plurality of via conductors and preset as a predetermined design specification is recommended from the viewpoint of manufacturing man-hours and manufacturing costs.

第1および第2の電子部品検査用配線基板の要部を示す断面図。Sectional drawing which shows the principal part of the wiring board for 1st and 2nd electronic component inspection. 上記電子部品検査用配線基板の一製造工程を示す概略断面図。The schematic sectional drawing which shows one manufacturing process of the said wiring board for electronic component inspection. 図2に続く製造工程を示す概略断面図。FIG. 3 is a schematic cross-sectional view showing a manufacturing process subsequent to FIG. 2. 図3に続く製造工程を示す概略断面図。FIG. 4 is a schematic cross-sectional view showing a manufacturing process following FIG. 3. 図4に続く製造工程を示す概略断面図。FIG. 5 is a schematic cross-sectional view showing a manufacturing process following FIG. 4. 図5に続く製造工程を示す概略断面図。FIG. 6 is a schematic cross-sectional view showing a manufacturing process subsequent to FIG. 5. 図6に続く製造工程を示す概略断面図。FIG. 7 is a schematic cross-sectional view showing a manufacturing process subsequent to FIG. 6. 図7に続く製造工程を示す概略断面図。FIG. 8 is a schematic cross-sectional view showing a manufacturing process following FIG. 7. 上記とは異なる形態の非通電ビア導体の製造工程を示す概略断面図。The schematic sectional drawing which shows the manufacturing process of the non-electric conduction via conductor of the form different from the above. 以上の各工程によって得られた複数の樹脂絶縁層を示す概略断面図。The schematic sectional drawing which shows the some resin insulating layer obtained by the above each process. 図10に続く製造工程を示す概略断面図。FIG. 11 is a schematic cross-sectional view showing a manufacturing process following FIG. 10. 第1の電子部品検査用配線基板の要部を示す断面図。Sectional drawing which shows the principal part of the wiring board for 1st electronic component inspection. 第2の電子部品検査用配線基板の要部を示す断面図。Sectional drawing which shows the principal part of the wiring board for 2nd electronic component inspection.

以下において、本発明を実施するための形態について説明する。
図1は、本発明の第1および第2の電子部品検査用配線基板(請求項1,2)を併有する電子部品検査用配線基板(プローブカード用基板)1を示す断面図である。
電子部品検査用配線基板(以下、単に配線基板と言う)1は、図1に示すように、厚み方向に沿って積層された複数の樹脂絶縁層z1〜z4、および該樹脂絶縁層z1〜z4の間に配置した配線層6〜8を有する樹脂絶縁部RZと、該樹脂絶縁部RZの裏面(主面)2a側に積層された複数のセラミック層s1〜s4、およびこれらを厚み方向に沿って貫通するビア導体14,15を含むベース側基板部BPと、から構成されている。
尚、上記配線層6〜8は、厚さが約3〜12μmのCuからなり、上記セラミック層s1〜s4は、アルミナあるいはガラス−セラミックからなる。
樹脂絶縁層z1〜z4は、ポリイミド系の熱硬化性樹脂からなる第1樹脂層4と、該第1樹脂層4の両面に配設され、ポリイミド系の熱可塑性樹脂からなる上下一対の第2樹脂層5とから構成されている。尚、上記第1樹脂層4の厚みは、約15μmであり、第2樹脂層5の厚みは、約5μmである。
Hereinafter, modes for carrying out the present invention will be described.
FIG. 1 is a cross-sectional view showing an electronic component inspection wiring substrate (probe card substrate) 1 having both the first and second electronic component inspection wiring substrates (claims 1 and 2) of the present invention.
As shown in FIG. 1, an electronic component inspection wiring board (hereinafter simply referred to as a wiring board) 1 includes a plurality of resin insulation layers z1 to z4 stacked along the thickness direction, and the resin insulation layers z1 to z4. A resin insulation part RZ having wiring layers 6 to 8 arranged between them, a plurality of ceramic layers s1 to s4 laminated on the back surface (main surface) 2a side of the resin insulation part RZ, and these in the thickness direction And a base side substrate portion BP including via conductors 14 and 15 penetrating therethrough.
The wiring layers 6 to 8 are made of Cu having a thickness of about 3 to 12 μm, and the ceramic layers s1 to s4 are made of alumina or glass-ceramic.
The resin insulation layers z1 to z4 are disposed on both surfaces of the first resin layer 4 made of polyimide thermosetting resin and the first resin layer 4, and a pair of upper and lower second made of polyimide thermoplastic resin. And a resin layer 5. The first resin layer 4 has a thickness of about 15 μm, and the second resin layer 5 has a thickness of about 5 μm.

図1に示すように、前記配線層6〜8は、樹脂絶縁層z1〜z3を貫通するビア導体Vを介して相互に導通可能とされ、最上層の樹脂絶縁層z1の表面(主面)2には、該樹脂絶縁層z1を貫通するビア導体Vに接続されたパッド12が複数形成されている。各パッド12の上面には、追って導電性金属からなるプローブピン13が立設される。従って、前記配線層6〜8は、該プローブピン13にも電気的に接続されている。尚、上記ビア導体Vの直径は、約50μmである。
また、最下層の樹脂絶縁層z4とベース側基板BPにおける最上層のセラミック層s1との間には、上記樹脂絶縁層z4を貫通するビア導体Vの下端に接続し、且つ前記ビア導体14の上端とも接続するビアカバー9が配置されている。
更に、ベース側基板部BPのセラミック層s1〜s4を貫通するビア導体14,15間にもビアカバー10が配置され、且つ下層側のビア導体15は、最下層のセラミック層s4の裏面(主面)3に設けた外部接続端子11と接続されている。
従って、外部接続端子11とパッド12とは、ビア導体14,15、ビアカバー9,10、ビア導体V、および配線層6〜8を介して、導通可能とされている。
尚、上記外部接続端子11、パッド12、ビア導体V,14,15、ビアカバー9,10は、Cu、あるいは主にCuからなる。
As shown in FIG. 1, the wiring layers 6 to 8 can be electrically connected to each other via via conductors V penetrating the resin insulating layers z1 to z3, and the surface (main surface) of the uppermost resin insulating layer z1. 2, a plurality of pads 12 connected to the via conductors V penetrating the resin insulating layer z1 are formed. Probe pins 13 made of a conductive metal are erected on the upper surface of each pad 12. Accordingly, the wiring layers 6 to 8 are also electrically connected to the probe pin 13. The via conductor V has a diameter of about 50 μm.
Further, between the lowermost resin insulating layer z4 and the uppermost ceramic layer s1 in the base substrate BP, the lower end of the via conductor V penetrating the resin insulating layer z4 is connected, and the via conductor 14 A via cover 9 connected to the upper end is arranged.
Furthermore, the via cover 10 is also disposed between the via conductors 14 and 15 penetrating the ceramic layers s1 to s4 of the base-side substrate part BP, and the lower-layer via conductor 15 is formed on the back surface (main surface) of the lowermost ceramic layer s4. ) Is connected to the external connection terminal 11 provided in 3.
Therefore, the external connection terminal 11 and the pad 12 can be electrically connected via the via conductors 14 and 15, the via covers 9 and 10, the via conductor V, and the wiring layers 6 to 8.
The external connection terminal 11, the pad 12, the via conductors V, 14, 15 and the via covers 9, 10 are made of Cu or mainly Cu.

図1に示すように、樹脂絶縁部RZの樹脂絶縁層z1〜z4には、第1樹脂層4とその両面に位置する一対の第2樹脂層5とを貫通し、且つ配線層6〜8、ビアカバー9、およびパッド12とは接続されておらず、且つ電気的に絶縁された非通電ビア導体dv1が、前記ビア導体V,V間に形成されている。
また、上記非通電ビア導体dv1と同様に配線層6〜8などとは接続されておらず、且つ電気的に絶縁されており、樹脂絶縁層z1〜z4間に形成された非通電配線層dpとのみ一端が接続する非通電ビア導体dv3も、前記ビア導体V,Vなどの間に形成されている。尚、該非通電ビア導体dv3は、両端で非通電配線層dpと接続されていても良い。
上記非通電配線層dpは、樹脂絶縁層z1〜z4間において、配線層6〜8とは離れた位置に形成され、且つ電気的に絶縁されている。
As shown in FIG. 1, the resin insulating layers z1 to z4 of the resin insulating portion RZ penetrate the first resin layer 4 and the pair of second resin layers 5 located on both surfaces thereof, and the wiring layers 6 to 8 are used. A non-energized via conductor dv1 that is not connected to the via cover 9 and the pad 12 and is electrically insulated is formed between the via conductors V and V.
Similarly to the non-conductive via conductor dv1, the non-conductive wiring layer dp formed between the resin insulating layers z1 to z4 is not connected to the wiring layers 6 to 8 and is electrically insulated. A non-energized via conductor dv3 whose one end is connected to each other is also formed between the via conductors V, V and the like. The non-conduction via conductor dv3 may be connected to the non-conduction wiring layer dp at both ends.
The non-energized wiring layer dp is formed at a position away from the wiring layers 6 to 8 between the resin insulating layers z1 to z4 and is electrically insulated.

更に、最上層の樹脂絶縁層z1には、下層側の第2樹脂層5を貫通し、且つ第1樹脂層4の一部にまで連続しつ貫通する軸方向が短い非通電ビア導体dv2が、前記ビア導体V,Vなどの間に形成されている。
加えて、最上層から第2層目の樹脂絶縁層z2には、上層側の第2樹脂層5を貫通し、且つ第1樹脂層4の一部にまで連続しつ貫通すると共に、樹脂絶縁層z1,z2間に形成された非通電配線層dpとのみ一端が接続する短い非通電ビア導体dv4も、前記ビア導体V,Vなどの間に形成されている。
尚、非通電ビア導体dv2,dv4は、樹脂絶縁層z3,z4に形成しても良い。また、非通電配線層dpは、Cuからなり、非通電ビア導体dv1〜dv4は、主にCuからなる。更に、非通電ビア導体dv4は、後述する非通電ビア導体dv5としても良い。
Further, in the uppermost resin insulation layer z1, a non-conducting via conductor dv2 having a short axial direction that penetrates the second resin layer 5 on the lower layer side and continues to a part of the first resin layer 4 is provided. Are formed between the via conductors V, V and the like.
In addition, the resin insulating layer z2 from the top layer to the second layer penetrates through the second resin layer 5 on the upper layer side, and continuously penetrates to a part of the first resin layer 4, and resin insulation. A short non-conductive via conductor dv4 whose one end is connected only to the non-conductive wiring layer dp formed between the layers z1 and z2 is also formed between the via conductors V and V.
The non-energized via conductors dv2 and dv4 may be formed in the resin insulating layers z3 and z4. Further, the non-conduction wiring layer dp is made of Cu, and the non-conduction via conductors dv1 to dv4 are mainly made of Cu. Further, the non-conductive via conductor dv4 may be a non-conductive via conductor dv5 described later.

図1に示すように、前記非通電ビア導体dv1〜dv4は、樹脂絶縁部RZの樹脂絶縁層z1〜z4を構成する一対あるいは一方の第2樹脂層5を必ず貫通しており、予め含有している熱硬化性のバインダ樹脂によって硬化されている。このうち、非通電ビア導体dv1,dv2は、図1中で示すように、最接近する配線層6〜8との距離kが50μm以下に設定されている。
また、前記非通電ビア導体dv3は、非通電ビア導体dv1の一端面または両端面に非通電配線層dpの一方の表面と面接触して形成されている。
更に、前記非通電ビア導体dv4は、非通電ビア導体dv2の一端面に、隣接する樹脂絶縁層znに形成された非通電配線層dpの一方の表面と面接触して形成しているか、あるいは、後述するように、一端部が非通電配線層dpに設けた透孔19内に挿入する形態の非通電ビア導体dv5として形成しても良い。
As shown in FIG. 1, the non-conducting via conductors dv1 to dv4 always pass through a pair or one of the second resin layers 5 constituting the resin insulation layers z1 to z4 of the resin insulation portion RZ and are contained in advance. It is cured by a thermosetting binder resin. Among these, as shown in FIG. 1, the non-conducting via conductors dv1 and dv2 have a distance k between the closest wiring layers 6 to 8 set to 50 μm or less.
The non-conductive via conductor dv3 is formed on one end surface or both end surfaces of the non-conductive via conductor dv1 in surface contact with one surface of the non-conductive wiring layer dp.
Further, the non-conductive via conductor dv4 is formed on one end surface of the non-conductive via conductor dv2 in surface contact with one surface of the non-conductive wiring layer dp formed in the adjacent resin insulation layer zn, or As will be described later, one end portion may be formed as a non-conductive via conductor dv5 in a form of being inserted into a through hole 19 provided in the non-conductive wiring layer dp.

以上のような配線基板1によれば、製造時の加熱・圧着により各樹脂絶縁層z1〜z4の熱可塑性樹脂からなる第2樹脂層5が加熱され、粘度の低下により変形しようとしても、一方または一対の第2樹脂層5を貫通し、且つ第1樹脂層4の一部または全部を連続して貫通する前記非通電ビア導体dv1〜dv4が、厚み方向と直交する平面方向に沿った移動を抑制ないし低減している。更に、非通電ビア導体dv3,dv4は、その一端または両端で更に非通電配線層dpに接続しているため、該非通電配線層dpが接着している第2樹脂層5の上記移動を一層抑制できる。しかも、樹脂絶縁層z1〜z4に対し、非通電ビア導体dv1〜dv4を所要位置ごとに最少数により組み合わせて形成し、且つ樹脂絶縁層z1〜z4間の所要位置ごとに非通電配線層dpを効果的に配置することができる。
そのため、各樹脂絶縁層z1〜z4の第2樹脂層5の表面に形成されている配線層6〜8も、不用意に大きく変形したり、断線していない。従って、前記配線基板1によれば、電子部品の正確な検査を保証し得る。
According to the wiring board 1 as described above, even if the second resin layer 5 made of the thermoplastic resin of each of the resin insulating layers z1 to z4 is heated by heating and pressure bonding during manufacturing, Alternatively, the non-conducting via conductors dv1 to dv4 that pass through the pair of second resin layers 5 and continuously pass through part or all of the first resin layer 4 are moved along a plane direction orthogonal to the thickness direction. Is suppressed or reduced. Further, since the non-conductive via conductors dv3 and dv4 are further connected to the non-conductive wiring layer dp at one end or both ends thereof, the movement of the second resin layer 5 to which the non-conductive wiring layer dp is bonded is further suppressed. it can. In addition, the resin insulating layers z1 to z4 are formed by combining the non-conductive via conductors dv1 to dv4 with the minimum number for each required position, and the non-conductive wiring layer dp is formed for each required position between the resin insulating layers z1 to z4. Can be arranged effectively.
Therefore, the wiring layers 6 to 8 formed on the surface of the second resin layer 5 of the resin insulation layers z1 to z4 are not inadvertently greatly deformed or disconnected. Therefore, according to the wiring board 1, it is possible to guarantee an accurate inspection of the electronic component.

以下において、前記配線基板1の製造方法(請求項5,6)について説明する。
予め、図2に示すように、ポリイミド系の熱硬化性樹脂からなる第1樹脂層4と、該第1樹脂層4の両面に配設され、上記とは別種類のポリイミド系の熱可塑性樹脂からなる上下一対の第2樹脂層5と、上層側の第2樹脂層5の外側面に貼り付けた銅箔(導体箔)16とから構成された市販の樹脂絶縁層znを用意した。尚、該樹脂絶縁層znは、例えば、宇部日東化成(株)製の銅箔付き複合樹脂シートのSE0310,SE0510,SE1310,またはSE1410を用いた。
次に、図2中の矢印で示すように、銅箔16のない第2樹脂層5側の表面から、所定の位置にレーザLを厚み方向に沿って照射した。この際、照射すべき位置ごとのレーザLの照射条件を変更した。その結果、図3に示すように、樹脂絶縁層znの厚み方向に沿って、第1樹脂層4と一対の第2樹脂層5とを貫通し且つ銅箔16の内側面に突き当たる貫通孔h1と、一方の第2樹脂層5と第1樹脂層4の厚み方向の一部にまで進入する貫通孔h2とが所要数ずつ形成された。
Hereinafter, a method for manufacturing the wiring substrate 1 (claims 5 and 6) will be described.
As shown in FIG. 2, the first resin layer 4 made of a polyimide-based thermosetting resin is disposed on both surfaces of the first resin layer 4 in advance, and a different type of polyimide-based thermoplastic resin is used. A commercially available resin insulation layer zn composed of a pair of upper and lower second resin layers 5 and copper foil (conductor foil) 16 attached to the outer surface of the upper second resin layer 5 was prepared. For example, SE0310, SE0510, SE1310, or SE1410 of a composite resin sheet with a copper foil manufactured by Ube Nitto Kasei Co., Ltd. was used as the resin insulating layer zn.
Next, as indicated by an arrow in FIG. 2, a laser L was irradiated along a thickness direction at a predetermined position from the surface on the second resin layer 5 side without the copper foil 16. At this time, the irradiation condition of the laser L for each position to be irradiated was changed. As a result, as shown in FIG. 3, a through-hole h <b> 1 that penetrates the first resin layer 4 and the pair of second resin layers 5 and hits the inner surface of the copper foil 16 along the thickness direction of the resin insulating layer zn. And the required number of through-holes h2 that enter the second resin layer 5 on one side and part of the thickness direction of the first resin layer 4 were formed.

次いで、図4に示すように、銅箔16の外側面に感光性樹脂フィルム(ドライフィルム)17を被覆し、該フィルム17側から樹脂絶縁層znの厚み方向に沿って、紫外線UVを所定パターンで露光した後、上記フィルム17に対して現像液を接触させた。その結果、図5に示すように、上記紫外線UVに露光されていた部分が除去されて、エッチング用の開口部となり、該開口部を含む所定パターンのレジストパターン18が形成された。
更に、レジストパターン18の開口部の底面に露出する銅箔16に対し、エッチング液を浸漬するエッチングを施した。その結果、図6に示すように、レジストパターン18の直下に、該パターン18と相似形のパターンを有するCu製の配線層6〜8と非通電配線層dpとを形成した。
Next, as shown in FIG. 4, a photosensitive resin film (dry film) 17 is coated on the outer surface of the copper foil 16, and ultraviolet rays UV are applied in a predetermined pattern along the thickness direction of the resin insulating layer zn from the film 17 side. Then, the developer was brought into contact with the film 17. As a result, as shown in FIG. 5, the portion exposed to the ultraviolet ray UV was removed to form an opening for etching, and a resist pattern 18 having a predetermined pattern including the opening was formed.
Further, the copper foil 16 exposed on the bottom surface of the opening of the resist pattern 18 was etched by immersing an etching solution. As a result, as shown in FIG. 6, Cu wiring layers 6 to 8 and a non-conducting wiring layer dp having patterns similar to the pattern 18 were formed immediately below the resist pattern 18.

次に、図7に示すように、配線層6〜8と非通電配線層dpとの上に位置するレジストパターン18を所定のエッチング液により剥離した。
次いで、前記樹脂絶縁層znの貫通孔h1,h2における配線層6〜8のない第2樹脂層5側の開口から、Cu粉末、熱硬化性のバインダ樹脂、および溶剤などを含む導電性ペースト(図示せず)を個別に充填した。
その結果、図8に示すように、第1樹脂層4と一対の第2樹脂層5とを貫通する非通電ビア導体dv1と、更に配線層6〜8の何れかの一方の面に一端面が面接触したビア導体Vと、非通電配線層dpの一方の面に一端面が面接触し、且つ第1樹脂層4と一対の第2樹脂層5とを貫通する非通電ビア導体dv3とを形成できた。同時に、一方の第2樹脂層5と第1樹脂層4の一部とを貫通する非通電ビア導体dv2も形成できた。
Next, as shown in FIG. 7, the resist pattern 18 located on the wiring layers 6 to 8 and the non-conducting wiring layer dp was peeled off with a predetermined etching solution.
Next, a conductive paste containing Cu powder, a thermosetting binder resin, a solvent, and the like from the opening on the second resin layer 5 side without the wiring layers 6 to 8 in the through holes h1 and h2 of the resin insulating layer zn ( (Not shown) were filled individually.
As a result, as shown in FIG. 8, one end face is formed on the non-conducting via conductor dv <b> 1 penetrating the first resin layer 4 and the pair of second resin layers 5, and one of the wiring layers 6 to 8. Are in surface contact with each other, and a non-conductive via conductor dv3 having one end surface in contact with one surface of the non-conductive wiring layer dp and penetrating through the first resin layer 4 and the pair of second resin layers 5. Could be formed. At the same time, a non-conduction via conductor dv2 penetrating through one second resin layer 5 and a part of the first resin layer 4 could be formed.

尚、図9の左側に示すように、前記樹脂絶縁層znにおいて、銅箔16側からレーザLを前記同様に照射して、該銅箔16、これに隣接する第2樹脂層5、および第1樹脂層4の一部までに貫通する貫通孔h3を形成し、前記同様の感光性樹脂フィルム17の被覆、露光、現像、レジストパターン18の除去を行って、図9の中央に示すように、非通電配線層dpの中央付近に貫通孔h3を貫通させた後、該貫通孔h3に前期同様の導電性ペーストを充填しても良い。その結果、図9の右側に示すように、非通電配線層dpに設けた透孔19に一端部が進入した非通電ビア導体dv5を得ることができた。
上記非通電ビア導体dv5は、一端面が非通電配線層dpの表面と面接触する形態の図1で示した前記非通電ビア導体dv4に比べて、一端部が非通電配線層dpの透孔19に進入しているため、貫通している第2樹脂層5の平面方向に沿った移動による剪断力に対し、高い抵抗力を発揮し得る。
As shown on the left side of FIG. 9, the resin insulation layer zn is irradiated with laser L from the copper foil 16 side in the same manner as described above, and the copper foil 16, the second resin layer 5 adjacent thereto, A through hole h3 penetrating up to a part of the resin layer 4 is formed, and the same photosensitive resin film 17 is coated, exposed, developed, and the resist pattern 18 is removed as shown in the center of FIG. Alternatively, after penetrating the through hole h3 in the vicinity of the center of the non-conductive wiring layer dp, the through hole h3 may be filled with the same conductive paste as in the previous period. As a result, as shown on the right side of FIG. 9, it was possible to obtain a non-conductive via conductor dv5 whose one end entered the through hole 19 provided in the non-conductive wiring layer dp.
The non-conductive via conductor dv5 has one end portion through-hole of the non-conductive wiring layer dp as compared with the non-conductive via conductor dv4 shown in FIG. 1 in which one end surface is in surface contact with the surface of the non-conductive wiring layer dp. Since it has entered 19, a high resistance can be exerted against the shearing force caused by the movement of the penetrating second resin layer 5 along the planar direction.

以上の各工程を4層の樹脂絶縁層z1〜z4に対して、個別に施した。
その結果、図10に示すように、第1樹脂層4と一対の第2樹脂層5とを貫通する非通電ビア導体dv1,dv3、ビア導体Vと、一方の第2樹脂層5と第1樹脂層4の一部まで貫通する非通電ビア導体dv2,(dv4,dv5)と、表面にビア導体Vと接続したパッド12あるいは配線層6〜8が形成された樹脂絶縁層z1〜z4が得られた。
一方、別に図示ない複数のグリーンシートを用意し、これらを貫通する複数のビアホールを形成し、該ビアホールにWあるいはMoなどの高融点金属粉末を含む導電性ペーストを充填して未焼成のビア導体14,15を形成した。上記グリーンシートの表面または裏面に上記同様の導電性ペーストを印刷形成して未焼成のビアカバー9,10あるいは外部接続端子11を形成した後、これらのグリーンシートを積層および圧着した後、所定の温度で焼成した。
その結果、図11の下側に示すように、複数セラミック層s1〜s4が積層され、これらを貫通し且つ相互に導通可能とされたビア導体14,15、ビアカバー9,10、および外部端子11を有するベース側基板部BPが形成された。
Each of the above steps was individually applied to the four resin insulating layers z1 to z4.
As a result, as shown in FIG. 10, the non-conductive via conductors dv1 and dv3 and the via conductor V penetrating the first resin layer 4 and the pair of second resin layers 5, and the second resin layer 5 and the first resin layer 5 Resin insulating layers z1 to z4 having non-conducting via conductors dv2, (dv4, dv5) penetrating to a part of the resin layer 4 and pads 12 or wiring layers 6 to 8 connected to the via conductor V on the surface are obtained. It was.
On the other hand, a plurality of green sheets (not shown) are prepared separately, a plurality of via holes penetrating them are formed, and the via holes are filled with a conductive paste containing a refractory metal powder such as W or Mo to form an unfired via conductor 14 and 15 were formed. After the conductive paste similar to the above is printed on the front or back surface of the green sheet to form the unfired via covers 9, 10 or the external connection terminals 11, these green sheets are laminated and pressure-bonded, and then at a predetermined temperature. Baked in.
As a result, as shown in the lower side of FIG. 11, the plurality of ceramic layers s1 to s4 are stacked, and the via conductors 14 and 15, the via covers 9, 10 and the external terminals 11 that pass through these layers and are mutually conductive. A base-side substrate portion BP having the structure was formed.

更に、非通電ビア導体dv1,dv3、非通電ビア導体dv2,(dv4,dv5)、およびビア導体Vと、パッド12あるいは配線層6〜8とが形成された樹脂絶縁層z1〜z4の裏面2a側に、ベース側基板部BPを積層し、加熱し且つ圧着した。この加熱温度は、300℃以上であり、且つ圧着時の圧力は、約200N/cm2であった。
その結果、図11に示すように、ベース側基板部BPの上に、前記樹脂絶縁層z1〜z4を有する樹脂絶縁部RZを積層した前記配線基板1が形成された。この際、前記加熱によって、樹脂絶縁層z1〜z4の各第2樹脂層5が可塑化するが、前記ビア導体Vに加え、更に非通電ビア導体dv1〜dv4が樹脂絶縁層z1〜z4を貫通していため、第2樹脂層5の平面方向に沿った熱応力による移動を抑制ないし低減できた。更に、非通電ビア導体dv3,dv4は、少なくとも一端面が非通電配線層dpと熱硬化性のバインダ樹脂を介して接着しているため、上記第2樹脂層5の移動を一層抑制できた。
尚、前記樹脂絶縁層z1〜z4は、予めこれらのみを積層、加熱、および圧着して樹脂絶縁部RZを形成した後に、前記ベース側基板部BPと積層、加熱、および圧着して、前記配線基板1を製造するようにしても良い。
また、前記加熱・圧着工程において、前記ビア導体V、および非通電ビア導体dv2,(dv4,dv5)も含有していたバインダ樹脂が硬化処理された。
Further, the back surface 2a of the resin insulation layers z1 to z4 on which the non-conductive via conductors dv1 and dv3, the non-conductive via conductors dv2 and (dv4, dv5), the via conductor V, and the pad 12 or the wiring layers 6 to 8 are formed. On the side, the base side substrate part BP was laminated, heated and pressure-bonded. The heating temperature was 300 ° C. or higher, and the pressure during pressure bonding was about 200 N / cm 2 .
As a result, as shown in FIG. 11, the wiring substrate 1 was formed by laminating the resin insulating portion RZ having the resin insulating layers z1 to z4 on the base side substrate portion BP. At this time, the second resin layers 5 of the resin insulation layers z1 to z4 are plasticized by the heating, but in addition to the via conductor V, the non-conductive via conductors dv1 to dv4 penetrate the resin insulation layers z1 to z4. Therefore, the movement by the thermal stress along the planar direction of the second resin layer 5 can be suppressed or reduced. Further, since at least one end face of the non-conductive via conductors dv3 and dv4 is bonded to the non-conductive wiring layer dp via a thermosetting binder resin, the movement of the second resin layer 5 can be further suppressed.
The resin insulation layers z1 to z4 are laminated, heated, and pressure-bonded only in advance to form the resin insulation portion RZ, and then laminated, heated, and pressure-bonded with the base-side substrate portion BP to form the wiring. The substrate 1 may be manufactured.
In the heating / crimping step, the binder resin that also contained the via conductor V and the non-conducting via conductor dv2, (dv4, dv5) was cured.

以上のような配線基板1の製造方法によれば、積層、加熱、および圧着工程により各樹脂絶縁層z1〜z4の熱可塑性樹脂からなる第2樹脂層5が加熱され、粘度の低下により変形しようとしても、一方または一対の第2樹脂層5を貫通し、且つ第1樹脂層4の一部または全部を連続して貫通する前記非通電ビア導体dv1〜dv4が、厚み方向と直交する平面方向に沿った移動を抑制ないし低減していた。しかも、非通電ビア導体dv3,dv4は、その一端または両端で更に非通電配線層dpに面接触しているため、該非通電配線層dpが接着している第2樹脂層5の移動を一層抑制できた。加えて、樹脂絶縁層z1〜z4に対し、非通電ビア導体dv1〜dv4を最適位置ごとに最少数により組み合わせて形成し、且つ樹脂絶縁層z1〜z4間に非通電配線層dpを同様に配置することができた。
そのため、各樹脂絶縁層z1〜z4の第2樹脂層5の表面に形成されている配線層6〜8も、不用意に大きく変形したり、断線していなかった。従って、電子部品の正確な検査を保証できる前記配線基板1を確実に提供できた。
According to the manufacturing method of the wiring board 1 as described above, the second resin layer 5 made of the thermoplastic resin of each of the resin insulating layers z1 to z4 is heated by the laminating, heating, and pressure bonding processes, and is likely to be deformed due to a decrease in viscosity. However, the non-conducting via conductors dv1 to dv4 that penetrate one or the pair of second resin layers 5 and continuously penetrate part or all of the first resin layer 4 are planar directions perpendicular to the thickness direction. The movement along is suppressed or reduced. In addition, since the non-conductive via conductors dv3 and dv4 are further in surface contact with the non-conductive wiring layer dp at one or both ends thereof, the movement of the second resin layer 5 to which the non-conductive wiring layer dp is bonded is further suppressed. did it. In addition, the non-conductive via conductors dv1 to dv4 are formed by combining the resin insulation layers z1 to z4 with a minimum number at each optimum position, and the non-conductive wiring layer dp is similarly arranged between the resin insulation layers z1 to z4. We were able to.
For this reason, the wiring layers 6 to 8 formed on the surface of the second resin layer 5 of each of the resin insulating layers z1 to z4 are not inadvertently greatly deformed or disconnected. Therefore, the wiring board 1 that can guarantee an accurate inspection of the electronic component can be provided reliably.

図12は、本発明による第1の配線基板(請求項1)1aの主要部を示す断面図である。
配線基板1aは、図12に示すように、厚み方向に沿って積層した前記同様の樹脂絶縁層z1〜z4、およびこれらの間に形成した配線層6〜8を備えた樹脂絶縁部RZと、前記同様のセラミック層s1〜s4およびビア導体14,15などを有するベース側基板部BPとを、一体に積層している。
上記樹脂絶縁部RZの樹脂絶縁層z1〜z4には、配線層6〜8やビア導体14,15と接続あるいは導通する前記同様のビア導体Vが貫通している共に、該ビア導体V,Vの間には、電気的に独立した非通電ビア導体dv1,dv2が形成されている。尚、非通電ビア導体dv1,dv2と最接近する配線層6〜8との距離kは、50μm以下である。
以上の配線基板1aは、前述した製造方法に準じて、容易に製造できる。
以上のような配線基板1aによれば、製造時の加熱・圧着により各樹脂絶縁層z1〜z4の熱可塑性樹脂からなる第2樹脂層5が加熱され、粘度の低下により変形しようとしても、一方または一対の第2樹脂層5を貫通し、且つ第1樹脂層4の一部または全部を連続して貫通する前記非通電ビア導体dv1,dv2が、厚み方向と直交する平面方向に沿った移動を抑制ないし低減している。従って、前記配線基板1と同様に電子部品の正確な検査を保証し得る。
FIG. 12 is a cross-sectional view showing the main part of a first wiring board (claim 1) 1a according to the present invention.
As shown in FIG. 12, the wiring board 1 a includes the same resin insulating layers z <b> 1 to z <b> 4 stacked along the thickness direction, and the resin insulating portion RZ including the wiring layers 6 to 8 formed therebetween, The same ceramic layers s1 to s4 and the base side substrate portion BP having the via conductors 14 and 15 are laminated together.
The resin insulating layers z1 to z4 of the resin insulating portion RZ are penetrated by the same via conductors V that are connected to or conductive with the wiring layers 6 to 8 and the via conductors 14 and 15, respectively. In between, electrically independent non-conduction via conductors dv1 and dv2 are formed. The distance k between the non-energized via conductors dv1 and dv2 and the closest wiring layers 6 to 8 is 50 μm or less.
The above wiring board 1a can be easily manufactured according to the manufacturing method described above.
According to the wiring board 1a as described above, even if the second resin layer 5 made of the thermoplastic resin of each of the resin insulating layers z1 to z4 is heated by heating and pressure bonding during manufacturing, Alternatively, the non-conducting via conductors dv1 and dv2 that pass through the pair of second resin layers 5 and continuously pass through part or all of the first resin layer 4 are moved along a plane direction perpendicular to the thickness direction. Is suppressed or reduced. Therefore, as in the case of the wiring board 1, it is possible to guarantee an accurate inspection of the electronic component.

図13は、本発明による第2の配線基板(請求項3)1bの主要部を示す断面図である。
配線基板1bは、図13に示すように、厚み方向に沿って積層した前記同様の樹脂絶縁層z1〜z4、およびこれらの間に形成した配線層6〜8、非通電配線層dpを備えた樹脂絶縁部RZと、前記同様のセラミック層s1〜s4およびビア導体14,15などを有するベース側基板部BPとを、一体に積層している。
上記樹脂絶縁部RZの樹脂絶縁層z1〜z4には、前記同様のビア導体Vのほかに、非通電ビア導体dv3,dv4が貫通し、該非通電ビア導体dv3,dv4は、一端で非通電配線層dpと接続されている。
尚、非通電ビア導体dv3,dv4は、両端で非通電配線層dpと接続しても良い。また非通電ビア導体dv4は、前記非通電ビア導体dv5としても良い。
以上の配線基板1bも、前述した製造方法に準じて、容易に製造できる。
FIG. 13 is a sectional view showing a main part of a second wiring board (claim 3) 1b according to the present invention.
As shown in FIG. 13, the wiring board 1b includes the same resin insulating layers z1 to z4 stacked in the thickness direction, wiring layers 6 to 8 formed therebetween, and a non-conducting wiring layer dp. The resin insulation portion RZ and the base side substrate portion BP having the ceramic layers s1 to s4 and the via conductors 14 and 15 similar to the above are laminated integrally.
In addition to the same via conductor V as described above, non-conductive via conductors dv3 and dv4 pass through the resin insulating layers z1 to z4 of the resin insulating portion RZ, and the non-conductive via conductors dv3 and dv4 are connected to the non-conductive wiring at one end. Connected to the layer dp.
The non-energized via conductors dv3 and dv4 may be connected to the non-conductive wiring layer dp at both ends. The non-conductive via conductor dv4 may be the non-conductive via conductor dv5.
The above wiring board 1b can also be easily manufactured according to the manufacturing method mentioned above.

以上のような配線基板1bによれば、製造時の加熱・圧着により各樹脂絶縁層z1〜z4の熱可塑性樹脂からなる第2樹脂層5が加熱され、粘度の低下により変形しようとしても、一方または一対の第2樹脂層5を貫通し、且つ第1樹脂層4の一部または全部を連続して貫通する前記非通電ビア導体dv3,dv4が、厚み方向と直交する平面方向に沿った移動を抑制ないし低減している。更に、非通電ビア導体dv3,dv4は、その一端または両端で更に非通電配線層dpに接続しているため、該非通電配線層dpが接着している第2樹脂層5の上記移動を一層抑制できる。しかも、樹脂絶縁層z1〜z4に対し、非通電ビア導体dv3,dv4を所要位置ごとに最少数で形成し、且つ樹脂絶縁層z1〜z4間の所要位置ごとに非通電配線層dpを配置することができる。
そのため、各樹脂絶縁層z1〜z4の第2樹脂層5の表面に形成されている配線層6〜8も、不用意に変形したり、断線していない。従って、前記配線基板1と同様に電子部品の正確な検査を保証し得る。
According to the wiring board 1b as described above, even if the second resin layer 5 made of the thermoplastic resin of each of the resin insulating layers z1 to z4 is heated by heating and pressure bonding during manufacturing, Alternatively, the non-conducting via conductors dv3 and dv4 that pass through the pair of second resin layers 5 and continuously pass through part or all of the first resin layer 4 are moved along a plane direction orthogonal to the thickness direction. Is suppressed or reduced. Further, since the non-conductive via conductors dv3 and dv4 are further connected to the non-conductive wiring layer dp at one end or both ends thereof, the movement of the second resin layer 5 to which the non-conductive wiring layer dp is bonded is further suppressed. it can. In addition, with respect to the resin insulating layers z1 to z4, the minimum number of non-conductive via conductors dv3 and dv4 are formed for each required position, and the non-conductive wiring layer dp is arranged for each required position between the resin insulating layers z1 to z4. be able to.
Therefore, the wiring layers 6 to 8 formed on the surface of the second resin layer 5 of the resin insulating layers z1 to z4 are not inadvertently deformed or disconnected. Therefore, as in the case of the wiring board 1, it is possible to guarantee an accurate inspection of the electronic component.

本発明は、以上において説明した各形態に限定されるものではない。
例えば、前記樹脂絶縁層は、熱硬化性樹脂からなる第1樹脂層と、その両面に配設され且つ熱可塑性樹脂からなる一対の第2樹脂層とから構成されていれば、それらの樹脂の種類は、特に限定されるものではない。
また、前記樹脂絶縁部を構成する樹脂絶縁層は、少なくとも2層以上を積層したものであれば良い。
更に、前記ビア導体Vと、非通電ビア導体dv1〜dv5とは、互いに異なる種類の金属粉末を含むもの導電性ペーストにより形成しても良い。
The present invention is not limited to the embodiments described above.
For example, if the resin insulation layer is composed of a first resin layer made of a thermosetting resin and a pair of second resin layers made of a thermoplastic resin and disposed on both surfaces thereof, The type is not particularly limited.
Moreover, the resin insulation layer which comprises the said resin insulation part should just laminate | stack two or more layers.
Further, the via conductor V and the non-conducting via conductors dv1 to dv5 may be formed of conductive paste containing different kinds of metal powder.

また、前記樹脂絶縁層znの外側面に貼り付ける導体箔は、前記銅箔に限らず、Ag箔やAl箔などにしても良い。
更に、前記ベース側基板部は、厚み方向に沿って積層した複数の樹脂層と、これらの間や表・裏面に形成したビアカバーや外部接続端子と、上記樹脂層を貫通し且つ上記ビアカバー間などを接続するビア導体としても良い。この場合、ビアカバー、外部接続端子、およびビア導体は、主にCuあるいはAgを主成分とする金属とされる。
また、前記ベース側基板部を構成するセラミック層や樹脂層は、少なくとも2層以上を積層したものであれば良い。
更に、前記ベース側基板部の厚みは、前記樹脂絶縁部の厚みよりも大でも良い。
Further, the conductor foil to be attached to the outer surface of the resin insulating layer zn is not limited to the copper foil, but may be Ag foil, Al foil, or the like.
Further, the base side substrate portion includes a plurality of resin layers laminated along the thickness direction, via covers and external connection terminals formed between these and between the front and back surfaces, and between the via covers penetrating the resin layer. Via conductors that connect to each other may be used. In this case, the via cover, the external connection terminal, and the via conductor are mainly made of metal containing Cu or Ag as a main component.
Moreover, the ceramic layer and resin layer which comprise the said base side board | substrate part should just laminate | stack two or more layers.
Furthermore, the thickness of the base side substrate portion may be larger than the thickness of the resin insulating portion.

本発明は、例えば、Siウェハなどに多数が形成された半導体素子などの電子部品の特性を正確に検査し、かかる電子部品の信頼性を確実に保証することが可能となる。   According to the present invention, for example, it is possible to accurately inspect the characteristics of an electronic component such as a semiconductor element formed in large numbers on a Si wafer or the like, and to ensure the reliability of the electronic component.

1,1a,1b……電子部品検査用配線基板
2,2a……………表/裏面(主面)
4……………………第1樹脂層
5……………………第2樹脂層
6〜8………………配線層
14,15…………ビア導体
16…………………銅箔(導体箔)
17…………………感光性樹脂フィルム
18…………………レジストパターン
19…………………透孔ビア導体
z1〜z4,zn…樹脂絶縁層
dp…………………非通電配線層
dv1〜dv5……非通電ビア導体
V……………………ビア導体
RZ…………………樹脂絶縁部
BP…………………ベース側基板部
s1〜s4…………セラミック層
k……………………距離
1, 1a, 1b …… Electronic component inspection wiring board 2, 2a ……… Front / Back (Main surface)
4 …………………… First resin layer 5 …………………… Second resin layer 6-8 ……………… Wiring layer 14, 15 ………… Via conductor 16 ………… ………… Copper foil (conductor foil)
17 ……………… Photosensitive resin film 18 …………………… Resist pattern 19 …………………… Through hole via conductors z 1 to z 4, zn… resin insulating layer dp ……………… … Non-energized wiring layer dv1 to dv5 …… Non-conductive via conductor V …………………… Via conductor RZ ………………… Resin insulation part BP ………………… Base side substrate part s1 s4 ………… Ceramic layer k …………………… Distance

Claims (7)

厚み方向に沿って積層された複数の樹脂絶縁層と、該樹脂絶縁層の間に配置した配線層とを備える樹脂絶縁部を含む電子部品検査用配線基板であって、
上記樹脂絶縁層は、熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に配設され且つ熱可塑性樹脂からなる一対の第2樹脂層とから構成され、
上記樹脂絶縁層の厚み方向において、少なくとも一方の上記第2樹脂層を貫通し、且つ上記第1樹脂層の一部または全部を連続して貫通する非通電ビア導体が形成され、該非通電ビア導体の両端は、上記配線層とは接触していない、
ことを特徴とする電子部品検査用配線基板。
An electronic component inspection wiring board including a plurality of resin insulating layers laminated along a thickness direction and a resin insulating portion including a wiring layer disposed between the resin insulating layers,
The resin insulation layer includes a first resin layer made of a thermosetting resin and a pair of second resin layers made of a thermoplastic resin and disposed on both surfaces of the first resin layer.
In the thickness direction of the resin insulation layer, a non-conducting via conductor that penetrates at least one of the second resin layers and continuously penetrates part or all of the first resin layer is formed. Both ends of the are not in contact with the wiring layer,
A wiring board for inspecting electronic components.
前記非通電ビア導体と前記配線層との距離は、平面視において50μm以下である、
ことを特徴とする請求項1に記載の電子部品検査用配線基板。
The distance between the non-conduction via conductor and the wiring layer is 50 μm or less in plan view.
The wiring board for electronic component inspection according to claim 1.
厚み方向に沿って積層された複数の樹脂絶縁層と、該樹脂絶縁層の間に配置した配線層とを備える樹脂絶縁部を含む電子部品検査用配線基板であって、
上記樹脂絶縁層は、熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に配設され且つ熱可塑性樹脂からなる一対の第2樹脂層とから構成され、
上記樹脂絶縁層の厚み方向において、少なくとも一方の上記第2樹脂層を貫通し、且つ上記第1樹脂層の一部または全部を連続して貫通する非通電ビア導体が形成され、
上記非通電ビア導体は、上記樹脂絶縁層の間に上記配線層とは別に形成され、該配線層とは電気的に絶縁された非通電配線層に、一端または両端が接続されている、
ことを特徴とする電子部品検査用配線基板。
An electronic component inspection wiring board including a plurality of resin insulating layers laminated along a thickness direction and a resin insulating portion including a wiring layer disposed between the resin insulating layers,
The resin insulation layer includes a first resin layer made of a thermosetting resin and a pair of second resin layers made of a thermoplastic resin and disposed on both surfaces of the first resin layer.
In the thickness direction of the resin insulation layer, a non-conducting via conductor that penetrates at least one of the second resin layers and continuously penetrates part or all of the first resin layer is formed,
The non-conductive via conductor is formed separately from the wiring layer between the resin insulation layers, and one or both ends are connected to a non-conductive wiring layer that is electrically insulated from the wiring layer.
A wiring board for inspecting electronic components.
前記非通電ビア導体と非通電配線層との接続は、該非通電ビア導体の端面または該端面の一部と非通電配線層における一方の表面との面接触によるか、あるいは、上記非通電ビア導体の端部が非通電配線層に設けた透孔内に進入する挿入部によるものである、
ことを特徴とする請求項3に記載の電子部品検査用配線基板。
The connection between the non-conducting via conductor and the non-conducting wiring layer is made by surface contact between the end surface of the non-conducting via conductor or a part of the end surface and one surface of the non-conducting wiring layer, or the non-conducting via conductor. This is due to the insertion part that enters the through-hole provided in the non-conducting wiring layer.
The wiring board for electronic component inspection according to claim 3.
熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に位置し且つ熱可塑性樹脂からなる一対の第2樹脂層と、何れ一方の第2樹脂層の外側面に貼り付けた導体箔とから構成される樹脂絶縁層において、一方の第2樹脂層を貫通し且つ第1樹脂層の厚み方向の一部に進入するビアホール、あるいは、一対の第2樹脂層および第1樹脂層を厚み方向に沿って貫通するビアホールを形成する工程と、
上記導体箔の外側面に感光性樹脂フィルムを被覆し、該樹脂フィルムに露光および現像を施すことで、上記樹脂フィルムにエッチング用の開口部を有するレジストパターンを形成する工程と、
上記レジストパターンの開口部の底面に露出する導体箔をエッチングして除去し、且つ上記レジストパターンを除去することで、所定パターンに倣った配線層を形成する工程と、
上記ビアホールに金属粉末および熱硬化性バインダ樹脂を含む導電性ペーストを充填して、非通電ビア導体を形成する工程と、
上記配線層、非通電ビア導体、第1樹脂層、および一対の第2樹脂層を含む複数の樹脂絶縁層を厚み方向に積層して、加熱および圧着することにより、複数の樹脂絶縁層と、これらの間に配置された配線層と、何れかの樹脂絶縁層の全部または一部を貫通し、且つ何れの配線層とも接続されていない非通電ビア導体と、を含む樹脂絶縁部を形成する工程と、を含む、
ことを特徴とする電子部品検査用配線基板の製造方法。
A first resin layer made of a thermosetting resin, a pair of second resin layers located on both sides of the first resin layer and made of a thermoplastic resin, and attached to the outer surface of any one of the second resin layers. In a resin insulating layer composed of a conductor foil, a via hole that penetrates one second resin layer and enters a part in the thickness direction of the first resin layer, or a pair of second resin layer and first resin layer Forming a via hole penetrating through the thickness direction,
A step of forming a resist pattern having an opening for etching on the resin film by coating a photosensitive resin film on the outer surface of the conductor foil and exposing and developing the resin film;
Etching and removing the conductive foil exposed at the bottom of the opening of the resist pattern, and removing the resist pattern to form a wiring layer following the predetermined pattern;
Filling the via hole with a conductive paste containing a metal powder and a thermosetting binder resin to form a non-conductive via conductor;
By laminating a plurality of resin insulation layers including the wiring layer, the non-conducting via conductor, the first resin layer, and the pair of second resin layers in the thickness direction, and heating and pressing, a plurality of resin insulation layers; Forming a resin insulating portion including a wiring layer disposed between them and a non-conducting via conductor that passes through all or a part of any of the resin insulating layers and is not connected to any of the wiring layers; Including a process,
A method for manufacturing an electronic component inspection wiring board.
熱硬化性樹脂からなる第1樹脂層と、該第1樹脂層の両面に位置し且つ熱可塑性樹脂からなる一対の第2樹脂層と、何れ一方の第2樹脂層の外側面に貼り付けた導体箔とから構成される樹脂絶縁層において、一方の第2樹脂層を貫通し且つ第1樹脂層の一部に厚み方向に沿って進入するビアホール、導体箔と一方の第2樹脂層とを貫通し且つ第1樹脂層の一部とに厚み方向に沿って進入するビアホール、あるいは、一対の第2樹脂層および第1樹脂層を厚み方向に沿って貫通するビアホールを形成する工程と、
上記導体箔の外側面に感光性樹脂フィルムを被覆し、該樹脂フィルムに露光および現像を施すことで、上記樹脂フィルムにエッチング用の開口部を有するレジストパターンを形成する工程と、
上記レジストパターンの開口部の底面に露出する導体箔をエッチングして除去し、且つ上記レジストパターンを除去することで、所定パターンに倣った配線層および非通電配線層を形成する工程と、
上記ビアホールに金属粉末および熱硬化性バインダ樹脂を含む導電性ペーストを充填して、非通電ビア導体を形成する工程と、
上記配線層、非通電配線層、非通電ビア導体、第1樹脂層および一対の第2樹脂層を含む複数の樹脂絶縁層を厚み方向に積層して、加熱および圧着することにより、複数の樹脂絶縁層と、これらの間に配置された非通電配線層および配線層と、何れかの樹脂絶縁層の全部または一部を貫通し、且つ非通電配線層とのみ接続する非通電ビア導体とを含む樹脂絶縁部を形成する工程と、を含む、
ことを特徴とする電子部品検査用配線基板の製造方法。
A first resin layer made of a thermosetting resin, a pair of second resin layers located on both sides of the first resin layer and made of a thermoplastic resin, and attached to the outer surface of any one of the second resin layers. In the resin insulation layer composed of the conductor foil, a via hole penetrating through one second resin layer and entering a part of the first resin layer along the thickness direction, the conductor foil and one second resin layer A step of forming a via hole penetrating and entering a part of the first resin layer along the thickness direction, or a via hole penetrating the pair of second resin layer and the first resin layer along the thickness direction;
A step of forming a resist pattern having an opening for etching on the resin film by coating a photosensitive resin film on the outer surface of the conductor foil and exposing and developing the resin film;
Etching and removing the conductive foil exposed at the bottom of the opening of the resist pattern, and removing the resist pattern to form a wiring layer and a non-conducting wiring layer following the predetermined pattern;
Filling the via hole with a conductive paste containing a metal powder and a thermosetting binder resin to form a non-conductive via conductor;
By laminating a plurality of resin insulation layers including the wiring layer, the non-conducting wiring layer, the non-conducting via conductor, the first resin layer and the pair of second resin layers in the thickness direction, and heating and press-bonding a plurality of resins An insulating layer, a non-conducting wiring layer and a wiring layer disposed therebetween, and a non-conducting via conductor that penetrates all or part of any resin insulating layer and is connected only to the non-conducting wiring layer. Forming a resin insulation part including,
A method for manufacturing an electronic component inspection wiring board.
前記積層、加熱、および圧着工程は、前記樹脂絶縁部における一対の主面のうち、検査側主面と反対側の主面に、複数のセラミック層または複数の樹脂層を積層してなり、且つ少なくとも厚み方向に沿ったビア導体を含むベース側基板部を併せて積層、加熱、および圧着するものである、
ことを特徴とする請求項5または6に記載の電子部品検査用配線基板の製造方法。
The laminating, heating, and pressure-bonding steps are formed by laminating a plurality of ceramic layers or a plurality of resin layers on the main surface opposite to the inspection-side main surface among the pair of main surfaces in the resin insulating portion, and Lamination, heating, and pressure bonding together at least the base side substrate portion including the via conductor along the thickness direction,
The method for manufacturing a wiring board for inspecting electronic components according to claim 5 or 6.
JP2010238292A 2010-10-25 2010-10-25 Electronic component inspecting wiring board and manufacturing method thereof Withdrawn JP2012093103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238292A JP2012093103A (en) 2010-10-25 2010-10-25 Electronic component inspecting wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238292A JP2012093103A (en) 2010-10-25 2010-10-25 Electronic component inspecting wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012093103A true JP2012093103A (en) 2012-05-17

Family

ID=46386608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238292A Withdrawn JP2012093103A (en) 2010-10-25 2010-10-25 Electronic component inspecting wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012093103A (en)

Similar Documents

Publication Publication Date Title
US8609991B2 (en) Flex-rigid wiring board and method for manufacturing the same
US8238109B2 (en) Flex-rigid wiring board and electronic device
JP5500870B2 (en) Substrate with connection terminal and socket for electronic parts
JP4756710B2 (en) Bending type rigid printed wiring board and manufacturing method thereof
JP6139653B2 (en) Component built-in resin multilayer board
WO2007091582A1 (en) Method for manufacturing multilayer wiring board
TW201419960A (en) Printed circuit board having buried component and method for manufacturing same
JP4597631B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
WO2017217138A1 (en) Multilayer wiring board for inspection of electronic components
JP2018133572A (en) Multilayer wiring board and probe card having the same
JP2018032660A (en) Printed wiring board and method for manufacturing the same
WO2012117872A1 (en) Resin substrate with built-in electronic component
CN107770946B (en) Printed wiring board and method for manufacturing the same
JP2007088058A (en) Multilayer substrate and method of manufacturing same
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
TW201034540A (en) A printing circuit board and manufacturing method(s) for making the same of
JP2019021863A (en) Multilayer substrate
JP5108253B2 (en) Component mounting module
JP2014049509A (en) Wiring board manufacturing method
JP2012089568A (en) Organic multilayer substrate and manufacturing method therefor
JP2014157857A (en) Resin multilayer substrate with built-in component and method of manufacturing the same
JP2012099591A (en) Wiring board for inspecting electronic component, and method of manufacturing the same
JP2012093103A (en) Electronic component inspecting wiring board and manufacturing method thereof
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
KR100997880B1 (en) Method of interconnection between bonding pad and substrate conducting layer and multi-functional printed circuit board manufactured thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107