JP2012091260A - Imaging type tool measurement device and measurement method - Google Patents

Imaging type tool measurement device and measurement method Download PDF

Info

Publication number
JP2012091260A
JP2012091260A JP2010239868A JP2010239868A JP2012091260A JP 2012091260 A JP2012091260 A JP 2012091260A JP 2010239868 A JP2010239868 A JP 2010239868A JP 2010239868 A JP2010239868 A JP 2010239868A JP 2012091260 A JP2012091260 A JP 2012091260A
Authority
JP
Japan
Prior art keywords
imaging
condition
tool
environment
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010239868A
Other languages
Japanese (ja)
Other versions
JP5383624B2 (en
Inventor
Yasuhiro Kurahashi
康浩 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2010239868A priority Critical patent/JP5383624B2/en
Priority to EP11834484.5A priority patent/EP2631032B1/en
Priority to CN201180050962.2A priority patent/CN103180094B/en
Priority to PCT/JP2011/074347 priority patent/WO2012053645A1/en
Priority to US13/824,278 priority patent/US9453716B2/en
Publication of JP2012091260A publication Critical patent/JP2012091260A/en
Application granted granted Critical
Publication of JP5383624B2 publication Critical patent/JP5383624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging type tool measurement device and an imaging type tool measurement method detecting a change in an imaging environment, automatically adjusting an imaging condition to measure dimensions of a tool with high accuracy and correcting images.SOLUTION: This imaging type tool measurement device includes: an imaging environment/condition detection part 25 for detecting an imaging environment/condition based on a signal of a tool image from an imaging part 12 or a processing signal from an image pre-processing part 20; an imaging condition determination/adjustment command part 27 for determining a proper condition for imaging based on the detection information in the imaging environment/condition detection part 25 to derive an adjustment command; and adjustment means for adjusting the imaging condition by an adjustment command signal from the imaging condition determination/adjustment command part 27.

Description

本発明は、撮像式工具測定装置および測定方法に関し、特に撮像環境の劣化を検出し、工具寸法を高精度に測定できるように撮像条件を自動的に調整したり、画像を補正するようにした、撮像式工具測定装置および測定方法に関するものである。   The present invention relates to an imaging tool measurement apparatus and measurement method, and more particularly, to detect deterioration of an imaging environment and automatically adjust imaging conditions or correct an image so that tool dimensions can be measured with high accuracy. The present invention relates to an imaging tool measuring apparatus and a measuring method.

工作機械の分野では加工精度に対する要求は年々高くなっており、近時ではサブミクロンのオーダの加工精度が要求されることも珍しくなくなっている。こうした加工精度の向上を目指して、NC工作機械においては、高速回転中の工具の刃先位置の変位を正確に測定するために、撮像素子(例えばCCD)を使用した撮像装置が用いられている。
ここでは、主軸に装着される工具を撮像して、画像処理を行い、工具の刃先の位置測定、工具の長さ、径等の形状、寸法の測定、工具の振れの測定、刃先の観察等を行うようにしており、視野内への刃先の進入の判断に関しては逐次、フレーム信号毎処理を行うことから、処理が遅くなり、刃先の進入検出ができずにSKIP信号を出力できない(SKIPが遅い)場合があり、工具Tの先端がワークに衝突する虞がある。SKIP信号とは、刃先の進入動作指令を中断させる信号のことであり、SKIP信号が出力されると刃先を進入させる送り軸の動きが停止する。
また、これらの測定は画像信号に基づくことから、視野の汚れ、照明輝度等、撮像環境に左右されやすく、この結果、測定ができず、手動調整が必要となる場合も多い。
In the field of machine tools, the demand for machining accuracy is increasing year by year, and recently, it is not uncommon to require machining accuracy on the order of submicrons. In order to improve such processing accuracy, NC machine tools use an imaging device using an imaging device (for example, a CCD) in order to accurately measure the displacement of the cutting edge position of a tool during high-speed rotation.
Here, the tool mounted on the spindle is imaged, image processing is performed, the position of the cutting edge of the tool is measured, the shape and dimensions of the tool, such as the length and diameter, the measurement of the tool runout, the observation of the cutting edge, etc. Since the determination of the approach of the blade edge into the field of view is performed sequentially for each frame signal, the processing is slowed down, the blade edge entry cannot be detected and the SKIP signal cannot be output (SKIP is The tip of the tool T may collide with the workpiece. The SKIP signal is a signal that interrupts the blade tip entry operation command. When the SKIP signal is output, the movement of the feed shaft that causes the blade tip to enter is stopped.
In addition, since these measurements are based on image signals, they are easily affected by the imaging environment such as dirt on the visual field and illumination luminance. As a result, measurement is not possible and manual adjustment is often required.

従来、CCDカメラによる、撮像対象の画像データを用いて、形状認識や、寸法計測を行う場合、撮像対象の外側輪郭が明確に判るエッジ強調の高コントラストの撮像データが得られる撮像対象の照明装置が開示されている(例えば特許文献1参照)。   Conventionally, when shape recognition or dimension measurement is performed using image data of an imaging target by a CCD camera, an imaging target illumination device capable of obtaining edge-enhanced high-contrast imaging data in which the outer contour of the imaging target is clearly understood Is disclosed (for example, see Patent Document 1).

また、加工を進めていくうち、加工部位では、切り粉や切削油などの飛散によって工具を始め、ワークなどに付着し、撮像環境が悪化しても、その工具に付着した切り粉や切削油等の異物に影響されない、工具自体の外形の特徴を得ることで、高精度に工具の形状を検査できるようにする装置が開示されている(特許文献2参照)。   In addition, as the machining progresses, even at the processing site, chips and cutting oil that adheres to the tool even if the imaging environment deteriorates, starting with tools and workpieces due to scattering of cutting chips and cutting oil, etc. An apparatus is disclosed in which the shape of a tool can be inspected with high accuracy by obtaining features of the outer shape of the tool itself that are not affected by foreign matters such as the above (see Patent Document 2).

特開平9−83843号公報Japanese Patent Laid-Open No. 9-83843 特開2007−326196号公報JP 2007-326196 A

しかしながら、前者の特許文献1における装置では、光源の配置を工夫してエッジ強調の高コントラスト撮像データを得るとしても、コントラストやエッジの鮮明度を検出して、これらを基に、撮像環境に影響を与える要素を自動調整するということを開示するものではない。
一方、後者の特許文献2における工具検査装置においても、撮像環境が悪化しても、その工具に付着した切り粉や切削油等の異物に影響されない、工具自体の外形の特徴を得ることで、高精度に工具の形状を検査できるとしても、その撮像環境の悪化の影響を補正するように、撮像環境に影響を与える要素を自動調整するということは何ら示唆されるものではない。
However, in the former device disclosed in Patent Document 1, even if the arrangement of the light source is devised to obtain edge-enhanced high-contrast imaging data, the contrast and edge sharpness are detected, and based on these, the imaging environment is affected. It does not disclose that the element that gives the value is automatically adjusted.
On the other hand, even in the tool inspection apparatus of the latter patent document 2, even if the imaging environment deteriorates, by obtaining the characteristics of the outer shape of the tool itself, which is not affected by foreign matters such as chips and cutting oil attached to the tool, Even if the shape of the tool can be inspected with high accuracy, there is no suggestion that an element that affects the imaging environment is automatically adjusted so as to correct the influence of the deterioration of the imaging environment.

本発明は、以上のような課題を改善するために提案されたものであって、撮像式工具測定装置および測定方法において、加工時における種々の撮像条件を検出して、所望の撮像条件が得られるように、少なくとも撮像条件要素の一つを自動的に調整したり画像を補正するようにした、撮像式工具測定装置および測定方法を提供することを目的とする。   The present invention has been proposed in order to improve the above-described problems. In the imaging tool measurement apparatus and measurement method, various imaging conditions at the time of machining are detected to obtain desired imaging conditions. Therefore, an object of the present invention is to provide an imaging type tool measuring apparatus and a measuring method which automatically adjust at least one of imaging condition elements and correct an image.

上記課題を解決するために、請求項1記載の発明では、工具を撮像する撮像部と、該撮像部からの撮像信号を画像処理する信号処理・制御部とを有し、工具の寸法を測定する撮像式工具測定装置において、信号処理・制御部は、撮像部からの撮像信号、または撮像信号を画像処理した信号に基づいて撮像環境・条件を検出する撮像環境・条件検出部と、撮像環境・条件検出部の情報を基に、撮像条件を判断し、調整指令を導出する撮像条件判断・調整指令部と、撮像条件判断・調整指令部からの調整指令信号により、撮像部の撮像要素の撮像条件を調整する調整手段と、を具備することを特徴とする。   In order to solve the above-described problem, the invention according to claim 1 includes an imaging unit that images a tool and a signal processing / control unit that performs image processing on an imaging signal from the imaging unit, and measures the dimensions of the tool. In the imaging type tool measuring apparatus, the signal processing / control unit includes an imaging environment / condition detection unit that detects an imaging environment / condition based on an imaging signal from the imaging unit or a signal obtained by performing image processing on the imaging signal, and an imaging environment Based on the information of the condition detection unit, the imaging condition determination / adjustment command unit for determining the imaging condition and deriving the adjustment command and the adjustment command signal from the imaging condition determination / adjustment command unit Adjusting means for adjusting the imaging condition.

これにより、撮像部からの撮像信号、または前記撮像信号を画像処理した信号に基づいて、撮像環境・条件を把握することができる。
次いで、撮像環境・条件にかかる信号から、撮像条件判断・調整指令部により撮像の適正条件を決定して調整指令信号を導出し、かかる調整指令信号により、撮像条件(例えば照明手段、主軸制御手段、シャッター制御手段)を調整する調整信号を出力し、好適に撮像環境・条件を調整することができる。
Thereby, an imaging environment / condition can be grasped based on an imaging signal from the imaging unit or a signal obtained by performing image processing on the imaging signal.
Next, an imaging condition determination / adjustment command unit determines an appropriate imaging condition from a signal related to the imaging environment / conditions to derive an adjustment command signal, and the adjustment command signal determines the imaging condition (for example, illumination means, spindle control means) The adjustment signal for adjusting the shutter control means) is output, and the imaging environment / conditions can be suitably adjusted.

請求項2記載の発明では、撮像環境・条件検出部は、画像のコントラスト、エッジの鮮明度、露光値、主軸の回転数の全て又は任意の複数個又は1個を検出対象とする。   According to the second aspect of the present invention, the imaging environment / condition detecting unit detects all or any plurality or one of image contrast, edge sharpness, exposure value, and spindle rotation speed.

これにより、信号処理・制御部は、多種の撮像環境・条件を把握することができ、測定装置の撮像環境調整に寄与することができる。   Thereby, the signal processing / control unit can grasp various imaging environments and conditions, and can contribute to the adjustment of the imaging environment of the measuring apparatus.

請求項3記載の発明では、撮像条件判断・調整指令部は、撮像環境・条件検出部の検出情報及び過去の撮像時の画像コントラスト、エッジの鮮明度、露光値、主軸の回転数の少なくとも一つの条件データから、撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数の少なくとも一つを判断する。   According to a third aspect of the present invention, the imaging condition determination / adjustment command unit includes at least one of detection information of the imaging environment / condition detection unit and image contrast at the time of past imaging, edge sharpness, exposure value, and spindle rotation speed. From the two condition data, at least one of the illumination brightness, the shutter speed, the appropriate value of the sampling time, and the spindle speed as the imaging condition is determined.

これにより、撮像環境、清浄時(基準となる時)、測定時の適時、あるいは測定後の撮像環境を比較判断することができる。   Thereby, it is possible to compare and judge the imaging environment, the time of cleaning (when serving as a reference), the timely time of measurement, or the imaging environment after measurement.

請求項4記載の発明では、調整手段は、撮像条件判断・調整指令部に基づく適正値に適合すべく、撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数の少なくとも一つを調整する。   In the invention according to claim 4, the adjusting means is adapted to an appropriate value based on the imaging condition determination / adjustment command unit, and at least of the illumination brightness, the shutter speed, the appropriate value of the sampling time, and the spindle rotation speed as the imaging condition. Adjust one.

これにより、撮像部の撮像環境調整に寄与することができる。ここで、主軸回転数は加工条件によって適正値が決められているが、何らかのタイミングでうまく撮像できないとき、加工に悪影響を与えない範囲で主軸回転数を微調整するものである。   Thereby, it can contribute to the imaging environment adjustment of an imaging part. Here, an appropriate value is determined for the spindle rotational speed depending on the machining conditions, but when the image cannot be captured well at some timing, the spindle rotational speed is finely adjusted within a range that does not adversely affect the machining.

請求項5記載の発明では、工具の撮像信号を画像処理して工具の寸法を測定する撮像式工具測定方法において、工具の撮像信号、または前記撮像信号を画像処理した信号に基づいて撮像環境・条件を検出し、撮像環境・条件にかかる情報を基に、撮像条件を判断して、調整指令を導出し、該調整指令信号により、撮像条件を調整することを特徴とする。   According to a fifth aspect of the present invention, there is provided an imaging tool measuring method for measuring a tool size by performing image processing on a tool imaging signal, based on a tool imaging signal or a signal obtained by performing image processing on the imaging signal. It is characterized in that the conditions are detected, the imaging conditions are determined based on information relating to the imaging environment and conditions, an adjustment command is derived, and the imaging conditions are adjusted by the adjustment command signal.

これにより、撮像信号、または前記撮像信号を画像処理した信号に基づいて、撮像環境・条件を把握することができる。
次いで、撮像環境・条件にかかる信号から、撮像の適正条件を決定して調整指令信号を導出し、かかる調整指令信号により、撮像条件を調整することができる。
Accordingly, it is possible to grasp the imaging environment / condition based on the imaging signal or a signal obtained by performing image processing on the imaging signal.
Next, it is possible to determine an appropriate imaging condition by deriving an adjustment command signal from a signal related to the imaging environment / condition, and to adjust the imaging condition based on the adjustment command signal.

請求項6記載の発明では、工具の撮像環境が清浄時の画像のコントラスト、エッジの鮮明度、露光値、主軸の回転数の少なくとも一つを取得し、判断して撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数の少なくとも一つを予め定め、撮像環境清浄時における撮像環境・条件として記憶し、その後側定時の適時における撮像環境・条件を検出して撮像環境清浄時における撮像環境・条件と比較することで、撮像環境の変化を判断し、前記撮像条件を調整する。   In the invention of claim 6, at least one of the contrast of the image when the imaging environment of the tool is clean, the sharpness of the edge, the exposure value, and the number of rotations of the spindle is acquired, and the illumination brightness as the imaging condition is determined. Predetermine at least one of shutter speed, appropriate value for sampling time, and spindle speed and store it as the imaging environment / condition when the imaging environment is clean. By comparing with the imaging environment / conditions at the time of cleaning, a change in the imaging environment is determined, and the imaging conditions are adjusted.

これにより、撮像環境清浄時、またその後側定時の適時において、撮像環境・条件を比較判断し、調整を行うので、撮像式工具測定装置を常時、撮像環境・条件を良好な環境、状態に補正することができる。   As a result, the imaging environment / conditions are compared and determined and adjusted when the imaging environment is clean and at a later time, so the imaging tool measurement device is always adjusted to a good environment and condition. can do.

さらに請求項7記載の発明では、撮像環境清浄時の撮像視野のみの撮像画像を予め記憶し、その後の測定による使用を経て、該測定後の撮像視野のみの撮像画像を検出し、撮像環境清浄時の撮像視野のみの撮像画像と測定後の撮像視野のみの撮像画像との差分画像を撮像レンズ面及び照明部の汚れ付着として判断し、差分画像を以降の撮像時の視野像から削除する。   According to the seventh aspect of the present invention, the captured image of only the imaging field of view at the time of cleaning the imaging environment is stored in advance, and the captured image of only the imaging field of view after the measurement is detected, and the imaging environment is cleaned. The difference image between the captured image with only the imaging field at the time and the captured image with only the imaging field after the measurement is determined as dirt adhesion on the imaging lens surface and the illumination unit, and the difference image is deleted from the field image at the subsequent imaging.

これにより、撮像対象がない状態の撮像環境清浄時に記憶した撮像視野のみの撮像画像を、またその後の測定による使用を経て、取得した撮像視野のみの撮像画像との差分画像を撮像レンズ面及び照明部の汚れ付着として判断し、差分画像を以降の撮像時の視野像から削除するので、撮像式工具測定装置は常時、誤差のない高精度な測定に寄与することができる。   As a result, the picked-up image of only the picked-up visual field stored at the time of cleaning the picking-up environment in the absence of the picked-up object, and the difference image with the picked-up image of the picked-up image pick-up only through the subsequent measurement are used for the imaging lens surface and illumination Since the difference image is deleted from the field image at the time of subsequent imaging, the imaging-type tool measuring device can always contribute to highly accurate measurement with no error.

本発明によれば、自動化に対応した高精度、高信頼性の撮像式工具測定装置、方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the highly accurate and reliable imaging type tool measuring apparatus and method corresponding to automation can be provided.

本発明にかかる撮像式工具測定装置を、工作機械の加工領域の一隅に組み込んだところを示す、模式的な要部側面図である。It is a typical principal part side view which shows the place which incorporated the imaging type tool measuring apparatus concerning this invention in the corner of the process area of a machine tool. 図1に示す撮像式工具測定装置のシステム構成の一例を示す、ブロック図である。It is a block diagram which shows an example of the system configuration | structure of the imaging type tool measuring apparatus shown in FIG. 本発明にかかる撮像式工具測定装置において、撮像環境・条件を把握し、撮像条件を判断し、調整指令を導出して、撮像部の撮像要素の撮像条件を調整する手順の一例を説明するためのフロー図である。In the imaging-type tool measuring apparatus according to the present invention, an example of a procedure for grasping an imaging environment / condition, determining an imaging condition, deriving an adjustment command, and adjusting an imaging condition of an imaging element of an imaging unit will be described. FIG.

以下、本発明にかかる撮像式工具測定装置について、システム構成の具体的な一例を挙げ、詳細に説明する。
図1に、本発明にかかる撮像式工具測定装置10を、NCフライス盤やマシニングセンタ等のNC工作機械1に組み込んだところを示す。
NC工作機械1は、ベース2上にXY軸方向に縦横移動可能なテーブル3と、テーブル3に直交するZ軸方向にコラム4上に、昇降可能に主軸5が配置されている。かかる主軸5には、工具Tが装着されている。そして、かかる工具Tを挟んで、工具Tを撮像対象として撮像を行って、工具寸法測定等を行う、撮像式工具測定装置10が搭載されている。
Hereinafter, the imaging-type tool measuring apparatus according to the present invention will be described in detail with a specific example of the system configuration.
FIG. 1 shows a state in which an imaging tool measuring apparatus 10 according to the present invention is incorporated in an NC machine tool 1 such as an NC milling machine or a machining center.
The NC machine tool 1 has a table 3 on a base 2 that can be moved vertically and horizontally in the XY-axis direction, and a spindle 5 that is movable up and down on a column 4 in the Z-axis direction orthogonal to the table 3. A tool T is mounted on the main shaft 5. And the imaging type tool measuring apparatus 10 which mounts an image with the tool T as an imaging target and performs tool dimension measurement or the like with the tool T interposed therebetween is mounted.

図2に、撮像式工具測定装置10のシステム構成図を示す。なお、このNC工作機械1は、数値制御により工具Tを装着した主軸5とワーク(図示省略)を固定したテーブル3との間で、相対移動を行わせ、ワークを加工するものである。   In FIG. 2, the system block diagram of the imaging type tool measuring apparatus 10 is shown. The NC machine tool 1 processes a workpiece by causing relative movement between a spindle 5 on which a tool T is mounted by numerical control and a table 3 on which a workpiece (not shown) is fixed.

この撮像式工具測定装置10は、かかるNC工作機械1のテーブル3に搭載されたハウジング11に撮像部12が組み込まれ、撮像部12による画像信号を所定の信号処理を施して、後述する判断、演算を行い、各種処理信号、指令信号を発する信号処理・制御部13に画像データを送出する構成としている。
撮像式工具測定装置10は、主軸5に装着された工具Tに対し、撮像部12による画像信号を取得し、該画像信号に対し、信号処理・制御部13において、所定の信号処理を施して、後述する判断、演算を行い、各種処理信号、指令信号を発して、撮像環境を決定する種々の構成手段に対応する調整指令信号をそれぞれ送出し、撮像環境を調整するようにしている。
This imaging type tool measuring apparatus 10 includes an imaging unit 12 incorporated in a housing 11 mounted on the table 3 of the NC machine tool 1, performs predetermined signal processing on an image signal from the imaging unit 12, and will be described later. The configuration is such that image data is sent to a signal processing / control unit 13 that performs calculations and generates various processing signals and command signals.
The imaging-type tool measuring apparatus 10 acquires an image signal from the imaging unit 12 for the tool T mounted on the spindle 5 and performs predetermined signal processing on the image signal in the signal processing / control unit 13. Then, judgments and calculations described later are performed, various processing signals and command signals are issued, adjustment command signals corresponding to various constituent means for determining the imaging environment are sent, and the imaging environment is adjusted.

撮像部12は、撮像対象である工具Tを照明する光源Lと、コンデンサーレンズ14を介して平行光線として工具Tを通過した光線を、撮像レンズ群15を通過させると共に、受光面に結像した像を電気信号に変換する撮像素子16とを備え、撮像素子16により取得された電気信号をデジタルデータに変換して後述する信号処理・制御部13に送出するA/D変換器17を備えている。
工具Tは、ドリル、ボールエンドミル、フラットエンドミル等様々な形状のものを想定している。
撮像レンズ群15は、工具Tを通過した光線を、撮像レンズ群15を通過させることで、後述する撮像素子16に全体が結像されるように光束を調整するためのもので、光軸を一致させるように配置した、それぞれ所定倍率の凸レンズ、凹レンズ等の組合せで構成される。
撮像素子16は、二次元のCCDイメージセンサであり、入射した画像に係る光信号から電気信号を生起するもので、アナログ信号として取り出される。
The imaging unit 12 causes the light source L that illuminates the tool T to be imaged and the light beam that has passed through the tool T as a parallel beam via the condenser lens 14 to pass through the imaging lens group 15 and form an image on the light receiving surface. An image sensor 16 that converts an image into an electrical signal, and an A / D converter 17 that converts an electrical signal acquired by the image sensor 16 into digital data and sends the digital data to a signal processing / control unit 13 described later. Yes.
The tool T assumes various shapes such as a drill, a ball end mill, and a flat end mill.
The imaging lens group 15 is for adjusting the luminous flux so that the light beam that has passed through the tool T passes through the imaging lens group 15 so that the entire image is formed on the imaging element 16 to be described later. Each is configured by a combination of a convex lens, a concave lens, and the like with a predetermined magnification, which are arranged so as to match.
The imaging device 16 is a two-dimensional CCD image sensor, which generates an electrical signal from an optical signal related to an incident image, and is taken out as an analog signal.

以上のような撮像部12において、撮像レンズ群15から撮像素子16に至る光路中において、結像光線を1/2は光路に沿って透過させて、撮像素子16に入射させる一方、残余の結像光線は、光路に直交方向に偏光させて工具Tの刃先進入を検出するためのビームスプリッタ18(以下、ハーフミラー18)が介設されている。
すなわち、刃先進入検出部としては、図示は省略するが例えば、撮像部12において、撮像レンズ群15から撮像素子16に至る光路中に介設されたハーフミラー18からは、結像光線の1/2を光路に直交方向に偏光させた画像光を線状に線状変換するシリンダレンズと、シリンダレンズからの線状に線状変換された画像信号から、線状の電気信号に変換するラインセンサを具備する。工具Tが画像取得範囲に入っていくことにより、ラインセンサによって、濃淡の画像信号として捉えてSKIP信号をCNC工作機械動作制御部に出力して、工作機械を停止させる設定である。
In the imaging unit 12 as described above, in the optical path from the imaging lens group 15 to the imaging device 16, ½ of the imaging light beam is transmitted along the optical path and is incident on the imaging device 16, while the remaining result. A beam splitter 18 (hereinafter referred to as a half mirror 18) for detecting the approach of the cutting edge of the tool T by polarizing the image light beam in a direction orthogonal to the optical path is interposed.
That is, although not shown in the drawing as the blade edge detection unit, for example, in the imaging unit 12, the half mirror 18 interposed in the optical path from the imaging lens group 15 to the imaging element 16 is 1 / of the imaging light beam. A cylinder lens that linearly converts image light polarized in a direction orthogonal to the optical path 2 and a line sensor that converts the linearly converted image signal from the cylinder lens into a linear electrical signal It comprises. When the tool T enters the image acquisition range, the line sensor detects the image as a shaded image signal and outputs a SKIP signal to the CNC machine tool operation control unit to stop the machine tool.

また刃先進入検出部は、次のような構成も可能である。すなわち、刃先進入検出部は、撮像される画像を結像前に光学経路からハーフミラー18により分離された画像を、絞り部材を通過させてスポット状に絞り込み、集光レンズを通してさらに点状に集光させて、フォトトランジスタに入射させるようにしている。フォトトランジスタは、点状の入射光が一定以上の光の強さになったか否かを感知することでオンオフし、工具の有無検出手段に送出して、フォトトランジスタのオンオフ信号により、工具Tの進入の有無を捉えることができ、SKIP信号生成手段によりSKIP信号を発生させ、SKIP信号をCNC工作機械動作制御部に出力して、工作機械の工具進入動作を停止させることができる。   Moreover, the following configuration is also possible for a blade edge | tip approach detection part. In other words, the blade edge entry detection unit narrows the image separated by the half mirror 18 from the optical path before the imaged image is formed into a spot shape through the diaphragm member, and further collects the image in a dot shape through the condenser lens. The light is made incident on the phototransistor. The phototransistor is turned on / off by detecting whether or not the point-like incident light has reached a certain level of intensity, and is sent to the tool presence / absence detecting means. The presence / absence of the entry can be grasped, and the SKIP signal can be generated by the SKIP signal generating means, and the SKIP signal can be output to the CNC machine tool operation control unit to stop the tool entry operation of the machine tool.

さらには、刃先進入検出部は、ハーフミラー18を用いずとも、加工部2における視野内に、非接触型検出手段である、レーザー検出手段、あるいは近接センサを配設して、工具が進入するのを検出することもできる。   Further, the blade edge detection unit is not contacted with the half mirror 18, and a laser detection unit or a proximity sensor, which is a non-contact type detection unit, is disposed in the field of view of the processing unit 2 so that the tool enters. Can also be detected.

そして、信号処理・制御部13について、全体構成を概説的に説明する。
信号処理・制御部13は、撮像素子16が取得した電気信号をA/D変換器17により変換してなるデジタルデータを取り込んで、周知の前処理を行う画像前処理部20を具備する。すなわち画像前処理部20では、シェーディング補正、ノイズリダクション、ホワイトバランス、輪郭補正、コントラスト調整を行い、画像表示手段21に逐次出力して、リアルタイムに画像を表示したり、後述する撮像環境・条件検出部に送り込んだり、画像の記憶制御により画像を逐次、フレームメモリ22に書き込んだりしている。
そして、フレームメモリ22に書き込まれたデータは、順次、視野汚れ検出部23と工具測定・演算部24とに送られ、様々な要因に起因する視野の汚れを検出したり、高速回転する工具Tの測定を行い、測定結果を出力するようにしている。
The overall configuration of the signal processing / control unit 13 will be described schematically.
The signal processing / control unit 13 includes an image preprocessing unit 20 that takes in digital data obtained by converting the electrical signal acquired by the image sensor 16 by the A / D converter 17 and performs known preprocessing. That is, the image preprocessing unit 20 performs shading correction, noise reduction, white balance, contour correction, and contrast adjustment, and sequentially outputs them to the image display means 21 to display an image in real time or to detect an imaging environment / conditions described later. The image is sequentially sent to the frame memory 22 by image storage control.
The data written in the frame memory 22 is sequentially sent to the visual field contamination detection unit 23 and the tool measurement / calculation unit 24 to detect visual field contamination due to various factors, or to rotate the tool T that rotates at high speed. The measurement results are measured and the measurement results are output.

主軸の回転と各軸方向の移動によって加工を行うワーク周囲の雰囲気は、加工に伴って飛散する切削油のミストや切り粉が充満したりして、周壁に付着したり、光学系の表面に付着して、汚れが生じ、高精度、高信頼性の測定の妨げとなるため、視野汚れ検出部23では、その汚れ度合いを把握して、補正値を導出して工具測定・演算部24に送出する。すなわち、視野汚れ検出部23では、フレームメモリ22からのデータにより、視野画像を取得する視野画像取得手段と、取得された画像を記憶する視野画像記憶手段と、視野画像記憶手段から視野汚れ画像を抽出する、視野汚れ画像抽出手段と、視野汚れ画像を記憶する視野汚れ画像記憶手段とを具備する。なお、視野画像取得手段と視野汚れ画像抽出手段とは、視野汚れ検出制御手段の制御指令により、それぞれ取得動作、画像抽出動作を実行する。   The atmosphere around the workpiece that is machined by rotating the spindle and moving in the direction of each axis is filled with cutting oil mist and chips scattered during machining, and adheres to the peripheral wall or on the surface of the optical system. The contamination is generated and hinders measurement with high accuracy and high reliability. Therefore, the visual field contamination detection unit 23 grasps the degree of contamination and derives a correction value to the tool measurement / calculation unit 24. Send it out. That is, the visual field contamination detection unit 23 uses the data from the frame memory 22 to obtain visual field image acquisition means for acquiring a visual field image, visual field image storage means for storing the acquired image, and visual field contamination image from the visual field image storage means. A visual field dirt image extracting means for extracting and a visual field dirt image storing means for storing the visual field dirt image are provided. The visual field image acquisition unit and the visual field contamination image extraction unit execute an acquisition operation and an image extraction operation, respectively, according to a control command from the visual field contamination detection control unit.

工具測定・演算部24は、フレームメモリ22からのデータと、視野汚れ検出部23の視野汚れ画像記憶手段のデータを読み出して、視野汚れ画像を除去する視野汚れ画像除去手段を備え、視野汚れ画像除去手段を経て得られたデータから、工具Tの輪郭を抽出するステップと、形状を認識するステップとを順次実行し、刃先位置演算、工具径演算、高回転の工具の振れを導出する振れ演算を実行し、測定結果として出力するようにしている。   The tool measurement / calculation unit 24 includes a field-dirt image removing unit that reads data from the frame memory 22 and data in the field-dirt image storage unit of the field-dirt detection unit 23 and removes the field-stained image. From the data obtained through the removing means, the step of extracting the contour of the tool T and the step of recognizing the shape are sequentially executed, and the blade position calculation, the tool diameter calculation, and the deflection calculation for deriving high-speed tool deflection Is executed and output as a measurement result.

また、信号処理・制御部13は、撮像環境・条件検出部25を具備する。
撮像環境・条件検出部25は、撮像部12からの撮像信号、または撮像信号を画像処理した信号に基づいて撮像環境・条件を検出するもので、詳細は後述するが、画像のコントラスト、エッジの鮮明度、露光度合い、主軸の回転数の全て又は任意の複数個又は1個を検出対象としている。
撮像環境・条件検出部25は、画像前処理部20におけるコントラスト調整後の画像信号の電圧値と適正コントラスト値記憶手段26(基準電圧値)との比較によってコントラスト判定(濃淡度合い)を行い、詳細は後述するが撮像環境・条件の検出信号として撮像条件判断・調整指令部27に送出するようになっている。
The signal processing / control unit 13 includes an imaging environment / condition detection unit 25.
The imaging environment / condition detection unit 25 detects an imaging environment / condition based on an imaging signal from the imaging unit 12 or a signal obtained by subjecting the imaging signal to image processing. Details of the imaging environment / condition detection unit 25 will be described later. All or any plural number or one of the sharpness, the degree of exposure, and the rotational speed of the spindle are set as detection targets.
The imaging environment / condition detection unit 25 performs contrast determination (shading degree) by comparing the voltage value of the image signal after contrast adjustment in the image preprocessing unit 20 and the appropriate contrast value storage unit 26 (reference voltage value). As will be described later, the signal is sent to the imaging condition determination / adjustment command unit 27 as a detection signal of the imaging environment / condition.

撮像環境・条件検出部25は、検出対象として工具を装着した主軸5の回転数を検出する。主軸5の回転数は撮像部12の撮像環境を決定する要素の一つである。すなわち、工具Tの回転数により撮像される工具Tの画像信号が変動し、それに伴って撮像環境としての照明輝度の度合いに影響を与えるからである。
主軸5は、主軸制御手段28により、回転制御がなされるが、撮像環境・条件検出部25は、この主軸制御手段28から、主軸回転数検出手段29により主軸の回転数を検出して、撮像環境・条件の検出信号として撮像条件判断・調整指令部27に送出するようになっている。
The imaging environment / condition detection unit 25 detects the number of rotations of the spindle 5 on which a tool is mounted as a detection target. The rotational speed of the main shaft 5 is one of the elements that determine the imaging environment of the imaging unit 12. That is, the image signal of the tool T that is imaged varies depending on the number of rotations of the tool T, and accordingly, the degree of illumination brightness as an imaging environment is affected.
The spindle 5 is controlled to rotate by the spindle control means 28, but the imaging environment / condition detection unit 25 detects the rotation speed of the spindle from the spindle control means 28 using the spindle rotation speed detection means 29, and performs imaging. The detection signal is sent to the imaging condition determination / adjustment command unit 27 as an environment / condition detection signal.

また、撮像環境・条件検出部25は、撮像部12の撮像環境を決定する要素の一つであり、エッジの鮮明度を検出対象としている。撮像環境・条件検出部25は、フレームメモリ22からのデータ、すなわち工具Tの画像信号からエッジの鮮明度(例えば工具Tの輪郭の画像データ階調度)を判定して、撮像環境・条件の検出信号として撮像条件判断・調整指令部27に送出するようになっている。   The imaging environment / condition detection unit 25 is one of the elements that determine the imaging environment of the imaging unit 12, and uses edge sharpness as a detection target. The imaging environment / condition detection unit 25 determines the sharpness of the edge (for example, the image data gradation degree of the contour of the tool T) from the data from the frame memory 22, that is, the image signal of the tool T, and detects the imaging environment / condition. A signal is sent to the imaging condition determination / adjustment command unit 27 as a signal.

さらに、撮像環境・条件検出部25は、撮像部12の撮像環境を決定する要素の一つであり、露光度合いを検出対象としている。撮像環境・条件検出部25は、撮像素子16が取得した電気信号をA/D変換器17により変換してなるデジタルデータから、露光検出を行い、適正露光値記憶手段30を基に、露光判定を行い、撮像環境・条件の信号として撮像条件判断・調整指令部27に送出するようになっている。   Furthermore, the imaging environment / condition detection unit 25 is one of the elements that determine the imaging environment of the imaging unit 12 and uses the exposure level as a detection target. The imaging environment / condition detection unit 25 performs exposure detection from digital data obtained by converting the electrical signal acquired by the imaging device 16 by the A / D converter 17 and determines exposure based on the appropriate exposure value storage unit 30. And is sent to the imaging condition determination / adjustment command unit 27 as a signal of the imaging environment / condition.

そして、撮像条件判断・調整指令部27では、以上のような撮像環境・条件にかかる信号を基に、適宜、撮像部12が高精度な工具Tの画像データが得られる所望の撮像環境にあるのかどうかを判断し、そのような撮像環境にない場合は、所望の撮像環境に補正するように、撮像部12の撮像環境を決定する要素に調整指令を発し、撮像条件の調整動作を行わせているのである。   In the imaging condition determination / adjustment command unit 27, the imaging unit 12 is appropriately in a desired imaging environment in which highly accurate image data of the tool T can be obtained based on the signals relating to the imaging environment / conditions as described above. If it is not in such an imaging environment, an adjustment command is issued to an element that determines the imaging environment of the imaging unit 12 so as to correct the imaging environment so that the imaging condition is adjusted. -ing

例えば、撮像部12の撮像環境を決定する要素としての光源Lに対しては、撮像条件判断・調整指令部27は、所定の照明調整手段31(調光回路)を制御して輝度を調整する。   For example, for the light source L as an element that determines the imaging environment of the imaging unit 12, the imaging condition determination / adjustment command unit 27 controls the predetermined illumination adjustment unit 31 (dimming circuit) to adjust the luminance. .

また、工具Tを装着した主軸5に対しては、撮像条件判断・調整指令部27は、主軸制御手段28に回転数を変える調整指令信号を与えて、主軸5の回転数の増減を行う。   For the spindle 5 on which the tool T is mounted, the imaging condition determination / adjustment command unit 27 gives an adjustment command signal for changing the rotation speed to the spindle control means 28 to increase or decrease the rotation speed of the spindle 5.

そして、撮像素子16により取得された電気信号をデジタルデータに変換する、A/D変換器17に対しては、撮像条件判断・調整指令部27はシャッター制御手段32に調整指令を送出することにより、サンプリング時間の適正値を調整してフレームレートを変える。   For the A / D converter 17 that converts the electrical signal acquired by the image sensor 16 into digital data, the imaging condition determination / adjustment command unit 27 sends an adjustment command to the shutter control unit 32. Adjust the sampling time to change the frame rate.

さらには、撮像条件判断・調整指令部27は絞り制御手段33に調整指令信号を与えることで、デジタルデータの変換範囲を変える。   Further, the imaging condition determination / adjustment command unit 27 changes the digital data conversion range by giving an adjustment command signal to the aperture control means 33.

その他、テーブル上の測定対象である工具Tの位置が撮像範囲からずれているような場合に、測定対象の位置変更手段34に対し、撮像条件判断・調整指令部27は測定装置10を載置したテーブル3をXY方向に移動調整するように調整指令信号を送出する。   In addition, when the position of the tool T as the measurement target on the table is deviated from the imaging range, the imaging condition determination / adjustment command unit 27 places the measurement apparatus 10 on the measurement target position changing unit 34. An adjustment command signal is sent to adjust the movement of the table 3 in the XY directions.

また、ワークを固定するテーブル3、ワークなどが加工によって発生する切り粉や切削油等が付着していたり、加工周囲雰囲気が切削油のミストなどが浮遊しているような場合には、撮像条件判断・調整指令部27は、高圧エアーをワーク周囲に噴射するようにエアーブロー制御手段35に、制御指令信号を送出する。   In addition, when the table 3 for fixing the workpiece, the workpiece or the like is attached with chips or cutting oil generated by machining, or the atmosphere around the machining is where the mist of cutting oil is floating, the imaging conditions The judgment / adjustment command unit 27 sends a control command signal to the air blow control means 35 so as to inject high-pressure air around the workpiece.

そして撮像条件判断・調整指令部27は、撮像環境・条件検出部25の情報及び過去の撮像時の画像のコントラスト、エッジの鮮明度、露光値、主軸の回転数の条件データ(撮像環境記憶手段36)から、撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、主軸回転数を判断するようにしている。
すなわち、測定動作開始に先立ち、撮像条件判断・調整指令部27は、撮像環境・条件検出部25において撮像環境清浄時の撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数を予め検出したものを撮像環境記憶手段36に、撮像環境清浄時における撮像環境・条件として記憶し、その後側定時の適時における撮像環境・条件を撮像環境・条件検出部25において検出して、撮像条件判断・調整指令部27が、撮像環境清浄時における撮像環境・条件と比較することで、撮像環境の変化を判断し、撮像条件を調整するようにしている。
The imaging condition determination / adjustment command unit 27 includes information of the imaging environment / condition detection unit 25 and condition data of image contrast at the time of past imaging, edge sharpness, exposure value, and spindle rotation speed (imaging environment storage unit 36), the illumination brightness, the shutter speed, the appropriate value of the sampling time, and the spindle speed as the imaging conditions are determined.
That is, prior to the start of the measurement operation, the imaging condition determination / adjustment command unit 27 causes the imaging environment / condition detection unit 25 to perform illumination brightness, shutter speed, appropriate sampling time, and spindle rotation as imaging conditions when the imaging environment is clean. The number detected in advance is stored in the imaging environment storage means 36 as the imaging environment / condition when the imaging environment is clean, and the imaging environment / condition detection unit 25 detects the imaging environment / condition at a later time in a timely manner, The imaging condition determination / adjustment command unit 27 determines a change in the imaging environment by comparing with the imaging environment / condition when the imaging environment is clean, and adjusts the imaging condition.

さらに撮像環境記憶手段36は、工具Tなど撮像対象がない状態で撮像環境清浄時の撮像視野のみの撮像画像を予め記憶し、その後の測定による使用を経て、撮像対象がない状態での撮像画像を撮像環境・条件検出部25において検出して、撮像条件判断・調整指令部27は、撮像環境清浄時の撮像視野のみの撮像画像と測定後の撮像視野のみの撮像画像との差分画像を撮像レンズ15面及び光源Lの汚れ付着として判断し、差分画像を以降の撮像時の視野像から削除するようにしている。   Furthermore, the imaging environment storage means 36 stores in advance a captured image of only the imaging field of view when the imaging environment is clean, such as the tool T, and after the measurement is used, the captured image without the imaging target is stored. Is detected by the imaging environment / condition detection unit 25, and the imaging condition determination / adjustment command unit 27 captures a difference image between the captured image of the imaging field only when the imaging environment is clean and the captured image of only the imaging field after measurement. It is determined that the lens 15 surface and the light source L are contaminated, and the difference image is deleted from the visual field image at the time of subsequent imaging.

本測定装置10は、測定動作開始に先立ち、またその後側定時の適時において、さらにはその後の測定による使用を経て、以上のような撮像環境判断、調整を行うので、撮像式工具測定装置10を常時、誤差のない高精度な測定に寄与することができる。   Prior to the start of the measurement operation, the measurement apparatus 10 performs the above-described imaging environment determination and adjustment at a later timely timing, and further through subsequent measurement use. It can always contribute to highly accurate measurement without error.

次に、撮像式工具測定装置10について、図3に示すフローチャートの一例を基に、具体的に撮像環境を調整する手順を説明する。   Next, a procedure for specifically adjusting the imaging environment of the imaging tool measuring apparatus 10 will be described based on an example of a flowchart shown in FIG.

測定動作開始指令で、NC工作機械1において、主軸5に装着された工具Tを回転駆動させ、Z軸方向に沿って下降指令を出し、テーブル3に固定したワークに向けて下降移動させる。これにより、光源Lから、コンデンサーレンズ14を介して平行光線として入射する視野内に、回転状態の測定対象である工具Tを進入させることができる(STEP1)。   In response to the measurement operation start command, the NC machine tool 1 rotates and drives the tool T mounted on the spindle 5, issues a lowering command along the Z-axis direction, and moves it downward toward the workpiece fixed to the table 3. Thereby, the tool T which is the measurement object in the rotating state can be caused to enter from the light source L into the visual field incident as a parallel light beam through the condenser lens 14 (STEP 1).

光源Lから、コンデンサーレンズ14を介して平行光線として工具Tを通過した光線は、撮像レンズ群15を通過し、ハーフミラー18を透過して、撮像素子16である二次元のCCDイメージセンサの受光面において結像する。この結像した画像を撮像素子16により電気信号に変換され、この電気信号がA/D変換器17により所定のフレームレートでデジタルデータに変換され、信号処理・制御部13の画像前処理部20に送出される。   Light rays that have passed through the tool T as parallel rays from the light source L via the condenser lens 14 pass through the imaging lens group 15, pass through the half mirror 18, and are received by the two-dimensional CCD image sensor that is the imaging element 16. The image is formed on the surface. The formed image is converted into an electric signal by the image pickup device 16, and this electric signal is converted into digital data at a predetermined frame rate by the A / D converter 17, and the image preprocessing unit 20 of the signal processing / control unit 13. Is sent out.

信号処理・制御部13は、A/D変換器17から露光値を取得し(STEP2)、露光検出信号を取り出し、撮像環境・条件検出部25に送られ、撮像環境・条件検出部25は、露光値が適正露光値にあるか否かを判定する(STEP3)。かかるSTEP3において、撮像環境・条件検出部25は、適正露光値記憶手段30を基に、露光判定を行い、撮像条件判断・調整指令部27は露光値が適正露光値にあれば、露光上は好ましい撮像環境にあるとして、撮像条件の一つである露光値を調整する手順を終了する。
一方、撮像環境・条件検出部25が露光値が適正露光値にないと判定した場合は、撮像条件判断・調整指令部27は、他の撮像環境・条件を示す信号として、撮像環境・条件検出部25から主軸回転数を取得する他(STEP4)、コントラスト値を取得し(STEP5)、さらに撮像環境・条件検出部25において判定された工具Tの輪郭の鮮明度を、エッジ度合いとして取得する(STEP6)。
The signal processing / control unit 13 acquires an exposure value from the A / D converter 17 (STEP 2), extracts an exposure detection signal, and sends the exposure detection signal to the imaging environment / condition detection unit 25. The imaging environment / condition detection unit 25 It is determined whether or not the exposure value is an appropriate exposure value (STEP 3). In STEP 3, the imaging environment / condition detection unit 25 performs exposure determination based on the appropriate exposure value storage unit 30, and the imaging condition determination / adjustment command unit 27 determines that the exposure value is within the appropriate exposure value. Assuming that there is a preferable imaging environment, the procedure for adjusting the exposure value, which is one of the imaging conditions, is terminated.
On the other hand, when the imaging environment / condition detection unit 25 determines that the exposure value is not the appropriate exposure value, the imaging condition determination / adjustment instruction unit 27 detects the imaging environment / condition as a signal indicating another imaging environment / condition. In addition to acquiring the spindle rotation speed from the unit 25 (STEP 4), the contrast value is acquired (STEP 5), and the sharpness of the contour of the tool T determined by the imaging environment / condition detection unit 25 is acquired as the edge degree ( (STEP6).

STEP4において、撮像条件判断・調整指令部27は、撮像環境・条件検出部25において主軸回転数検出手段29からの検出信号を基に主軸回転数を取得し、次いで主軸回転数からA/D変換器17においてデジタルデータを取得するためのシャッター速度を決定する(STEP7)。次いで撮像条件判断・調整指令部27は、主軸5の回転数の調整が必要か否かを判定する(STEP8)。回転数の調整が必要であれば、主軸制御手段28に調整指令を出して(STEP9)、主軸5の回転数を調整し、STEP2に戻る。一方、回転数の調整が不要であれば、撮像条件判断・調整指令部27は、その回転数に適合した適正シャッター速度を算定し(STEP10)、シャッター制御手段32へ調整指令を出し(STEP11)、A/D変換器17においてデジタルデータを取得するためのシャッター速度を変え、STEP2に戻る。   In STEP 4, the imaging condition determination / adjustment command unit 27 acquires the spindle rotation speed based on the detection signal from the spindle rotation speed detection unit 29 in the imaging environment / condition detection unit 25, and then performs A / D conversion from the spindle rotation speed. The shutter speed for acquiring digital data is determined in the device 17 (STEP 7). Next, the imaging condition determination / adjustment command unit 27 determines whether or not the rotation speed of the spindle 5 needs to be adjusted (STEP 8). If the rotation speed needs to be adjusted, an adjustment command is issued to the spindle control means 28 (STEP 9), the rotation speed of the spindle 5 is adjusted, and the process returns to STEP2. On the other hand, if it is not necessary to adjust the rotational speed, the imaging condition determination / adjustment command unit 27 calculates an appropriate shutter speed suitable for the rotational speed (STEP 10), and issues an adjustment command to the shutter control means 32 (STEP 11). The A / D converter 17 changes the shutter speed for acquiring digital data, and the process returns to STEP2.

上述のSTEP5においてコントラスト値を取得する際、撮像環境・条件検出部25は、適正コントラスト値記憶手段26と画像前処理部20からの処理信号とを比較してコントラスト判定をした結果をコントラスト値として、撮像環境・条件を示す信号として、撮像条件判断・調整指令部27に送り、撮像条件判断・調整指令部27はコントラスト値が適正値にあるか否か判定を行う(STEP12)。コントラスト値が適正値にあれば、好ましい撮像環境にあるとして、撮像環境を調整する手順を終了する。一方、コントラスト値が適正値になければ、撮像条件判断・調整指令部27は照明の調整が必要か否かを判定する(STEP13)。
STEP13において、照明の調整が必要であると判定がなされると、撮像条件判断・調整指令部27は、適正な照明強度の算定を行い(STEP14)、照明調整手段31に調整指令を出して(STEP15)光源Lの調整を行い、STEP2に戻る。一方、照明の調整が必要ないと判定した場合は、撮像条件判断・調整指令部27は、撮像条件判断・調整指令部27は、適正絞り値の算定を行い(STEP16)、絞り制御手段33に調整指令信号を与えることで(STEP17)、デジタルデータの変換範囲を変え、STEP2に戻る。
When acquiring the contrast value in STEP 5 described above, the imaging environment / condition detection unit 25 compares the processed signal from the appropriate contrast value storage unit 26 and the processing signal from the image preprocessing unit 20 as a contrast value. Then, the signal is sent to the imaging condition determination / adjustment command unit 27 as a signal indicating the imaging environment / condition, and the imaging condition determination / adjustment command unit 27 determines whether or not the contrast value is an appropriate value (STEP 12). If the contrast value is an appropriate value, it is determined that the imaging environment is preferable, and the procedure for adjusting the imaging environment is terminated. On the other hand, if the contrast value is not an appropriate value, the imaging condition determination / adjustment command unit 27 determines whether or not the illumination needs to be adjusted (STEP 13).
When it is determined in STEP 13 that the illumination needs to be adjusted, the imaging condition determination / adjustment command unit 27 calculates an appropriate illumination intensity (STEP 14), and issues an adjustment command to the illumination adjustment means 31 ( (STEP 15) The light source L is adjusted and the process returns to STEP 2. On the other hand, when it is determined that the illumination adjustment is not necessary, the imaging condition determination / adjustment command unit 27 calculates an appropriate aperture value (STEP 16), and the aperture control unit 33 By giving the adjustment command signal (STEP 17), the conversion range of the digital data is changed, and the process returns to STEP 2.

そして、上述のSTEP6において、エッジ度合いを取得する際、撮像条件判断・調整指令部27は、撮像環境・条件検出部25からエッジ度合いにかかる信号を撮像環境・条件を示す信号として取り込み、そのエッジ度合い、すなわち、工具T画像の輪郭が鮮明であるかを判定するために適正値にあるか否かで判定を行なう(STEP18)。エッジ度合いが適正値にあれば、好ましい撮像環境にあるとして、撮像条件判断・調整指令部27は撮像条件としてのエッジ度合いを調整する手順を終了する。一方、エッジ度合いが適正値になければ、STEP13に戻り、撮像条件判断・調整指令部27は、照明の調整が必要か否かを判定する。   In STEP 6 described above, when acquiring the edge degree, the imaging condition determination / adjustment instruction unit 27 takes in a signal related to the edge degree from the imaging environment / condition detection unit 25 as a signal indicating the imaging environment / condition, and the edge The determination is made based on the degree, that is, whether or not the contour of the tool T image is clear in order to determine whether it is an appropriate value (STEP 18). If the edge degree is an appropriate value, the imaging condition determination / adjustment instruction unit 27 ends the procedure for adjusting the edge degree as the imaging condition, assuming that the imaging environment is preferable. On the other hand, if the edge degree is not an appropriate value, the process returns to STEP 13 and the imaging condition determination / adjustment command unit 27 determines whether or not the illumination needs to be adjusted.

以上、説明した撮像環境を調整する手順を、一つ一つ撮像環境・条件を示す信号として取り込み、撮像条件判断・調整指令を、測定動作と並行して繰り返し実行されることで、撮像式工具測定装置10を常時、高精度、且つ高信頼性の測定に寄与することができ、自動化に対応した高精度、高信頼性の撮像式工具測定装置、方法を提供することができる。
なお、上述の撮像環境を調整する手順は一例であり、その他、工作機械の機能、仕様に応じて、適宜、撮像環境を調整する手順を設定できるのは勿論である。また、本実施形態では、ハーフミラー18により分離された画像を用いてSKIP信号を生成させたが、ハーフミラー18を用いずに、撮像素子16で取得した画像を用いてSKIP信号を生成させてもよい。
As described above, the procedure for adjusting the imaging environment described above is captured as a signal indicating the imaging environment / condition one by one, and the imaging condition determination / adjustment command is repeatedly executed in parallel with the measurement operation. The measurement apparatus 10 can always contribute to high-precision and high-reliability measurement, and a high-accuracy and high-reliability imaging-type tool measurement apparatus and method corresponding to automation can be provided.
Note that the above-described procedure for adjusting the imaging environment is an example, and it is a matter of course that the procedure for adjusting the imaging environment can be set as appropriate according to the function and specification of the machine tool. In the present embodiment, the SKIP signal is generated using the image separated by the half mirror 18, but the SKIP signal is generated using the image acquired by the image sensor 16 without using the half mirror 18. Also good.

1 NC工作機械
2 ベース
3 テーブル
4 コラム
5 主軸
10 撮像式工具測定装置
11 ハウジング
12 撮像部
13 信号処理・制御部
14 コンデンサーレンズ
15 撮像レンズ群
16 撮像素子
17 A/D変換器
18 ハーフミラー
20 画像前処理部
21 画像表示手段
22 フレームメモリ
23 視野汚れ検出部
24 工具測定・演算部
25 撮像環境・条件検出部
26 適正コントラスト値記憶手段
27 撮像条件判断・調整指令部
28 主軸制御手段
29 主軸回転数検出手段
30 適正露光値記憶手段
31 照明調整手段
32 シャッター制御手段
33 絞り制御手段
34 測定対象の位置変更手段
35 エアーブロー制御手段
36 撮像環境記憶手段
T 工具
DESCRIPTION OF SYMBOLS 1 NC machine tool 2 Base 3 Table 4 Column 5 Spindle 10 Imaging type tool measuring apparatus 11 Housing 12 Imaging part 13 Signal processing / control part 14 Condenser lens 15 Imaging lens group 16 Imaging element 17 A / D converter 18 Half mirror 20 Image Preprocessing section 21 Image display means 22 Frame memory 23 Field dirt detection section 24 Tool measurement / calculation section 25 Imaging environment / condition detection section 26 Appropriate contrast value storage section 27 Imaging condition judgment / adjustment instruction section 28 Spindle control section 29 Spindle speed Detection means 30 Appropriate exposure value storage means 31 Illumination adjustment means 32 Shutter control means 33 Aperture control means 34 Position change means for measurement object 35 Air blow control means 36 Imaging environment storage means T tool

Claims (7)

工具を撮像する撮像部と、該撮像部からの撮像信号を画像処理する信号処理・制御部とを有し、前記工具の寸法を測定する撮像式工具測定装置において、
前記信号処理・制御部は、前記撮像部からの撮像信号、または前記撮像信号を画像処理した信号に基づいて撮像環境・条件を検出する撮像環境・条件検出部と、
前記撮像環境・条件検出部の情報を基に、撮像条件を判断し、調整指令を導出する撮像条件判断・調整指令部と、
前記撮像条件判断・調整指令部からの調整指令信号により、前記撮像部の撮像要素の撮像条件を調整する調整手段と、
を具備することを特徴とする撮像式工具測定装置。
In an imaging-type tool measuring device that has an imaging unit that images a tool, and a signal processing / control unit that performs image processing on an imaging signal from the imaging unit, and measures the dimensions of the tool,
The signal processing / control unit includes an imaging environment / condition detection unit that detects an imaging environment / condition based on an imaging signal from the imaging unit or a signal obtained by performing image processing on the imaging signal;
Based on information of the imaging environment / condition detection unit, an imaging condition determination / adjustment command unit that determines an imaging condition and derives an adjustment command;
An adjustment unit that adjusts an imaging condition of an imaging element of the imaging unit according to an adjustment command signal from the imaging condition determination / adjustment command unit;
An imaging-type tool measuring device comprising:
前記撮像環境・条件検出部は、画像のコントラスト、エッジの鮮明度、露光値、主軸の回転数の全て又は任意の複数個又は1個を検出対象とする請求項1記載の撮像式工具測定装置。   2. The imaging tool measurement apparatus according to claim 1, wherein the imaging environment / condition detection unit detects all or any plurality or one of image contrast, edge sharpness, exposure value, and spindle rotation speed. . 前記撮像条件判断・調整指令部は、前記撮像環境・条件検出部の検出情報及び過去の撮像時の画像コントラスト、エッジの鮮明度、露光値、主軸の回転数の少なくとも一つの条件データから、撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数の少なくとも一つを判断する請求項1記載の撮像式工具測定装置。   The imaging condition determination / adjustment command unit captures an image from at least one condition data of detection information of the imaging environment / condition detection unit and past image contrast, edge sharpness, exposure value, and spindle rotation speed. The imaging tool measuring apparatus according to claim 1, wherein at least one of illumination brightness, shutter speed, sampling time appropriate value, and spindle speed as conditions is determined. 前記調整手段は、前記撮像条件判断・調整指令部に基づく適正値に適合すべく、撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数の少なくとも一つを調整する請求項1記載の撮像式工具測定装置。   The adjustment means adjusts at least one of illumination brightness, shutter speed, appropriate value of sampling time, and spindle rotation speed as imaging conditions so as to conform to an appropriate value based on the imaging condition determination / adjustment command unit. Item 1. The imaging tool measuring device according to Item 1. 工具の撮像信号を画像処理して工具の寸法を測定する撮像式工具測定方法において、
前記工具の撮像信号、または前記撮像信号を画像処理した信号に基づいて撮像環境・条件を検出し、
前記撮像環境・条件にかかる情報を基に、撮像条件を判断して、調整指令を導出し、
該調整指令信号により、前記撮像条件を調整することを特徴とする撮像式工具測定方法。
In an imaging tool measuring method for measuring the dimensions of a tool by performing image processing on the imaging signal of the tool,
An imaging environment / condition is detected based on an imaging signal of the tool or a signal obtained by performing image processing on the imaging signal,
Based on the information related to the imaging environment and conditions, determine the imaging conditions, derive an adjustment command,
An imaging type tool measuring method, wherein the imaging condition is adjusted by the adjustment command signal.
前記工具の撮像環境が清浄時の画像のコントラスト、エッジの鮮明度、露光値、主軸の回転数の少なくとも一つを取得し、判断して撮像条件としての照明輝度、シャッター速度、サンプリング時間の適正値、及び主軸回転数の少なくとも一つを予め定め、前記撮像環境清浄時における撮像環境・条件として記憶し、その後側定時の適時における撮像環境・条件を検出して前記撮像環境清浄時における撮像環境・条件と比較することで、撮像環境の変化を判断し、前記撮像条件を調整する請求項5記載の撮像式工具測定方法。   Obtain at least one of image contrast, edge sharpness, exposure value, and spindle rotation speed when the imaging environment of the tool is clean, and determine the appropriate illumination brightness, shutter speed, and sampling time as imaging conditions At least one of a value and a spindle rotational speed is preliminarily stored and stored as an imaging environment / condition when the imaging environment is cleaned, and an imaging environment / condition is detected at a later time and the imaging environment is cleaned when the imaging environment is cleaned 6. The imaging tool measurement method according to claim 5, wherein a change in imaging environment is determined by comparing with a condition, and the imaging condition is adjusted. 前記撮像環境清浄時の撮像視野のみの撮像画像を予め記憶し、その後の測定による使用を経て、該測定後の撮像視野のみの撮像画像を検出し、前記撮像環境清浄時の撮像視野のみの撮像画像と前記測定後の撮像視野のみの撮像画像との差分画像を撮像レンズ面及び照明部の汚れ付着として判断し、前記差分画像を以降の撮像時の視野像から削除する請求項5記載の撮像式工具測定方法。   The captured image of only the imaging field of view when the imaging environment is cleaned is stored in advance, the captured image of only the imaging field of view after the measurement is detected through the subsequent measurement, and the imaging field only when the imaging environment is cleaned is captured. The imaging according to claim 5, wherein a difference image between the image and the captured image of only the imaging field after the measurement is determined as dirt adhesion on the imaging lens surface and the illumination unit, and the difference image is deleted from the field image during subsequent imaging. Type tool measurement method.
JP2010239868A 2010-10-22 2010-10-26 Imaging tool measuring apparatus and measuring method Expired - Fee Related JP5383624B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010239868A JP5383624B2 (en) 2010-10-26 2010-10-26 Imaging tool measuring apparatus and measuring method
EP11834484.5A EP2631032B1 (en) 2010-10-22 2011-10-21 Method for measuring tool dimensions and measurement device
CN201180050962.2A CN103180094B (en) 2010-10-22 2011-10-21 The assay method of tool sizes and determinator
PCT/JP2011/074347 WO2012053645A1 (en) 2010-10-22 2011-10-21 Method for measuring tool dimensions and measurement device
US13/824,278 US9453716B2 (en) 2010-10-22 2011-10-21 Method of measurement and apparatus for measurement of tool dimensions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239868A JP5383624B2 (en) 2010-10-26 2010-10-26 Imaging tool measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2012091260A true JP2012091260A (en) 2012-05-17
JP5383624B2 JP5383624B2 (en) 2014-01-08

Family

ID=46385207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239868A Expired - Fee Related JP5383624B2 (en) 2010-10-22 2010-10-26 Imaging tool measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP5383624B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020082280A (en) * 2018-11-27 2020-06-04 共立精機株式会社 Device and method for measuring tool shape in tool presetter
JP2020142316A (en) * 2019-03-05 2020-09-10 Dmg森精機株式会社 Photographing device
JP2020535025A (en) * 2017-09-29 2020-12-03 フェスツール ゲーエムベーハー Portable machine tool
KR20210083320A (en) * 2018-10-30 2021-07-06 시바우라 기카이 가부시키가이샤 Tool shape measuring device and tool shape measuring method
JP2021133489A (en) * 2020-02-28 2021-09-13 Dmg森精機株式会社 Machine tool
JP6946587B1 (en) * 2021-03-15 2021-10-06 Dmg森精機株式会社 Image processing equipment and machine tools

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241856A (en) * 1988-07-28 1990-02-13 Toyoda Mach Works Ltd Machine tool equipped with cutting tool shape measuring function
JPH06294619A (en) * 1993-04-09 1994-10-21 Mitsutoyo Corp Microdiameter measuring equipment
JPH10178584A (en) * 1996-12-19 1998-06-30 Canon Inc Image pickup device, image pickup condition database device and image pickup system
JP2005311924A (en) * 2004-04-26 2005-11-04 Casio Comput Co Ltd Electronic camera and program
JP2006186796A (en) * 2004-12-28 2006-07-13 Casio Comput Co Ltd Photographic apparatus, photographing method, and photographing program
JP2010136748A (en) * 2008-12-09 2010-06-24 Fujifilm Corp Endoscope apparatus and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241856A (en) * 1988-07-28 1990-02-13 Toyoda Mach Works Ltd Machine tool equipped with cutting tool shape measuring function
JPH06294619A (en) * 1993-04-09 1994-10-21 Mitsutoyo Corp Microdiameter measuring equipment
JPH10178584A (en) * 1996-12-19 1998-06-30 Canon Inc Image pickup device, image pickup condition database device and image pickup system
JP2005311924A (en) * 2004-04-26 2005-11-04 Casio Comput Co Ltd Electronic camera and program
JP2006186796A (en) * 2004-12-28 2006-07-13 Casio Comput Co Ltd Photographic apparatus, photographing method, and photographing program
JP2010136748A (en) * 2008-12-09 2010-06-24 Fujifilm Corp Endoscope apparatus and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535025A (en) * 2017-09-29 2020-12-03 フェスツール ゲーエムベーハー Portable machine tool
KR20210083320A (en) * 2018-10-30 2021-07-06 시바우라 기카이 가부시키가이샤 Tool shape measuring device and tool shape measuring method
KR102579691B1 (en) * 2018-10-30 2023-09-19 시바우라 기카이 가부시키가이샤 Tool shape measuring device and tool shape measuring method
JP2020082280A (en) * 2018-11-27 2020-06-04 共立精機株式会社 Device and method for measuring tool shape in tool presetter
JP7159021B2 (en) 2018-11-27 2022-10-24 共立精機株式会社 Measuring device and measuring method for tool shape in tool presetter
JP2020142316A (en) * 2019-03-05 2020-09-10 Dmg森精機株式会社 Photographing device
JP2021133489A (en) * 2020-02-28 2021-09-13 Dmg森精機株式会社 Machine tool
JP6946587B1 (en) * 2021-03-15 2021-10-06 Dmg森精機株式会社 Image processing equipment and machine tools
WO2022195975A1 (en) * 2021-03-15 2022-09-22 Dmg森精機株式会社 Image processing device and machine tool
JP2022140871A (en) * 2021-03-15 2022-09-29 Dmg森精機株式会社 Image processing system and machine tool

Also Published As

Publication number Publication date
JP5383624B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
CN108655826B (en) Cutter abrasion visual inspection device and visual inspection method for numerical control turning
WO2012053645A1 (en) Method for measuring tool dimensions and measurement device
JP5383624B2 (en) Imaging tool measuring apparatus and measuring method
JP5220081B2 (en) IMAGING TOOL MEASURING APPARATUS AND METHOD FOR DETECTING FINE TOOL END IN IMAGING TOOL
CN106903553B (en) Micro-diameter milling tool wear detecting method
US7266420B2 (en) Automatic detection system for broken tools in CNC machining centers using advanced machine vision techniques
US20120072170A1 (en) Vision measurement probe and method of operation
US8654351B2 (en) Offset amount calibrating method and surface profile measuring machine
JP7259111B2 (en) Method for measuring at least one dimension of an object
SG181170A1 (en) Apparatus for inspecting rotary parts and the method of the inspection
JP2010234451A (en) Workpiece machining method and machining center
JP2016040531A (en) Working tool measuring method and measuring device
CN104132612A (en) Leading-screw dimension parameter detection method and device
JP6927790B2 (en) Inspection method and inspection equipment
JP2018205011A (en) Screw shape measurement device and method
CN210720188U (en) Rapid automatic optical detection system
WO2018005404A1 (en) Method and system for measuring geometric parameters of through holes
TWI608226B (en) Providing examination and measurement of auto focus apparatus and method using the same
CN111999296A (en) Big data based self-learning workpiece intelligent appearance detection system and method
TW201017091A (en) An image-measuring apparatus for dimensional parameters of drill and method to performing the same
Su et al. New approach to spindle thermal extension measuring based on machine vision for the vertical maching centre
JP2022026913A (en) Image measurement head device attachable to nc machine tool and control method of nc machine tool system
TWM535319U (en) Auto focusing device providing inspection and measurement
Chen et al. A method for rapid detection and evaluation of position errors of patterns of small holes on complex curved and freeform surfaces
CN110806722A (en) On-machine detection method for machining part of numerical control machine tool

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees