JP2012084438A - Microwave heating element and welding method thereby - Google Patents

Microwave heating element and welding method thereby Download PDF

Info

Publication number
JP2012084438A
JP2012084438A JP2010230812A JP2010230812A JP2012084438A JP 2012084438 A JP2012084438 A JP 2012084438A JP 2010230812 A JP2010230812 A JP 2010230812A JP 2010230812 A JP2010230812 A JP 2010230812A JP 2012084438 A JP2012084438 A JP 2012084438A
Authority
JP
Japan
Prior art keywords
microwave heating
heating element
microwave
resin
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010230812A
Other languages
Japanese (ja)
Other versions
JP5586410B2 (en
Inventor
Takayuki Ohira
隆行 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP2010230812A priority Critical patent/JP5586410B2/en
Publication of JP2012084438A publication Critical patent/JP2012084438A/en
Application granted granted Critical
Publication of JP5586410B2 publication Critical patent/JP5586410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/148Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges

Abstract

PROBLEM TO BE SOLVED: To perform welding of a synthetic resin-molded body uniformly with high accuracy and to prevent distortion from being given to the synthetic resin-molded body even if slight disturbance occurs in absorption of microwave energy and then, even if heat capacity in the circumference is not uniform.SOLUTION: Respective layers of valve body resin-molded bodies 11, ---, 16 as the synthetic resin-molded body via microwave heating elements 21, ---, 25 are laminated on one another, and the microwave is irradiated to the microwave heating elements 21, ---, 25 formed by this lamination. In that case, the respective layers among the valve body resin-molded bodies 11, ---, 16 are pressurized by a pressurization force of 0.1 to 5.0 MPa, respectively, so that welding among the respective layers of the valve body resin-molded bodies 11, ---, 16 can be performed sufficiently.

Description

本発明は、樹脂製成型体相互間を溶着可能なマイクロ波発熱体に関するものであり、特に、複数箇所の樹脂製成型体相互間を溶着するのに使用可能なマイクロ波発熱体及びマイクロ波発熱体による溶着方法に関するものである。   TECHNICAL FIELD The present invention relates to a microwave heating element capable of welding between resin molded bodies, and in particular, a microwave heating element and a micro that can be used for welding between a plurality of resin molded bodies. The present invention relates to a welding method using a wave heating element.

2つの樹脂成形品を溶着させることは公知の技術であり、その加熱手段として、例えば、レーザ、超音波等の熱源による溶着面の加熱による方法が採用されてきた。
しかし、このような方法は2つの樹脂成形品を溶着させる手段として採用することができても、3つ以上の樹脂成形品を一度に溶着することはできない。
したがって、従来のAT車のバルブボディ等については、合成樹脂で、しかも溶着によって製造することは困難であった。
It is a known technique to weld two resin molded products, and as a heating means, for example, a method by heating the welding surface with a heat source such as a laser or an ultrasonic wave has been adopted.
However, even if such a method can be adopted as a means for welding two resin molded products, it is not possible to weld three or more resin molded products at a time.
Therefore, it has been difficult to manufacture a valve body or the like of a conventional AT vehicle using a synthetic resin and by welding.

合成樹脂の溶着方法には熱風溶着、振動溶着等が知られ、原理的には接合面を加熱することで樹脂を溶融させて接着させる技術である。ここで接合面の加熱手段としてマイクロ波の照射を行うことにより、2つの樹脂成形品を溶着する方法が考えられる。特許文献1に記載の方法は、まさにその方法であり、溶着媒体である熱可塑性樹脂の紐状物を、該樹脂成形品の溶着面に設けた溝に配置し、2つの樹脂成形品の溶着面同士を密着させて、マイクロ波を照射することにより2つの樹脂成形品の溶着を行っている。   Known methods for welding synthetic resins include hot air welding, vibration welding, and the like. In principle, the resin is melted and bonded by heating the bonding surfaces. Here, a method of welding two resin molded products by irradiating microwaves as a heating means for the joint surface is conceivable. The method described in Patent Document 1 is just that method, and a thermoplastic resin string-like material as a welding medium is disposed in a groove provided on the welding surface of the resin molded product, and the two resin molded products are welded. The two resin molded products are welded by bringing the surfaces into close contact with each other and irradiating with microwaves.

また、特許文献2に記載の方法は、発泡剤とマイクロ波吸収体を混合してなる組成物を、表皮材と基材の間に設置し、加熱して発泡させると同時に、該表皮材と該基材を溶着させている。   In addition, the method described in Patent Document 2 is a composition obtained by mixing a foaming agent and a microwave absorber, placed between a skin material and a base material, heated and foamed, and at the same time, The base material is welded.

特開2000−233450号公報JP 2000-233450 A 特開2000−229328号公報JP 2000-229328 A

特許文献1の方法では、発熱体である溶着媒体を押し出し成形で製造するので、2つ以上に分岐した複雑形状の溶着媒体を得ることが困難であり、また、紐状物を使用した場合には、マイクロ波エネルギの吸収が均一でなく、そして、マイクロ波エネルギの吸収が均一であっても、周囲の熱容量が均一でないために両者を均一に溶着させることが困難であった。
また、特許文献2は、発泡剤とマイクロ波吸収体を混合してなる組成物を、表皮材と基材の間に設置し、加熱して発泡すると同時に、該表皮材と該基材を溶着させる方法であるから、マイクロ波を吸収体させる全体的な接合には適しているが、成形物に歪を残さないように、接合面の一部を溶着したい場合には使用できない。
In the method of Patent Document 1, since a welding medium as a heating element is manufactured by extrusion molding, it is difficult to obtain a welding medium having a complex shape branched into two or more, and when a string-like material is used. However, the absorption of the microwave energy is not uniform, and even if the absorption of the microwave energy is uniform, the surrounding heat capacity is not uniform, so it is difficult to weld the two uniformly.
Patent Document 2 discloses that a composition obtained by mixing a foaming agent and a microwave absorber is placed between a skin material and a base material, heated and foamed, and at the same time, the skin material and the base material are welded together. Therefore, it is suitable for the entire joining that absorbs the microwave, but cannot be used when a part of the joining surface is welded so as not to leave a distortion in the molded product.

そこで、本発明は、上記問題点を解消すべく、樹脂製成型体の熱容量が均一でなくても、また、樹脂製成型体相互間の溶着を均一に高精度で行うことができるマイクロ波発熱体及びそれによる溶着方法の提供を課題とするものである。   Therefore, in order to solve the above problems, the present invention is a micro that can perform welding between resin molded bodies uniformly and with high accuracy even if the heat capacity of the resin molded bodies is not uniform. An object is to provide a wave heating element and a welding method therefor.

請求項1の発明にかかるマイクロ波発熱体においては、導電体である金属粉末を混練して2mm以下の厚みとしたマイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムとし、この熱可塑性樹脂フィルムが複数の合成樹脂成型体相互間に配置され、前記合成樹脂成型体相互間に押圧力を加えて溶着するものである。
ここで、上記合成樹脂成型体相互間に配置され、マイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムのマイクロ波発熱体は、マイクロ波を照射することによって熱可塑性樹脂フィルムが溶融するものであればよい。
In the microwave heating element according to the first aspect of the present invention, a thermoplastic resin film that is dielectrically heated by a microwave having a thickness of 2 mm or less is obtained by kneading a metal powder as a conductor, and a plurality of the thermoplastic resin films are provided. Between the synthetic resin moldings, and welding is performed by applying a pressing force between the synthetic resin moldings.
Here, the microwave heating element of the thermoplastic resin film disposed between the synthetic resin moldings and freely dielectrically heated by the microwave is any material that melts the thermoplastic resin film when irradiated with the microwave. Good.

請求項2の発明にかかるマイクロ波発熱体においては、金属薄膜をコーティングして2mm以下の厚みとしたマイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムとし、この熱可塑性樹脂フィルムが複数の合成樹脂成型体相互間に配置され、前記合成樹脂成型体相互間に押圧力を加えて溶着するものである。
ここで、上記合成樹脂成型体相互間に配置され、マイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムのマイクロ波発熱体は、マイクロ波を照射することによって熱可塑性樹脂フィルムが溶融するものであればよい。
In the microwave heating element according to the second aspect of the present invention, a thermoplastic resin film that can be dielectrically heated by microwaves having a thickness of 2 mm or less coated with a metal thin film is formed, and the thermoplastic resin film is formed by molding a plurality of synthetic resins. It arrange | positions between bodies and applies a pressing force between the said synthetic resin moldings, and it welds them.
Here, the microwave heating element of the thermoplastic resin film disposed between the synthetic resin moldings and freely dielectrically heated by the microwave is any material that melts the thermoplastic resin film when irradiated with the microwave. Good.

請求項3の発明にかかるマイクロ波発熱体においては、複数の合成樹脂成型体相互間に配置された0.5mm以下の厚みの金属箔に対して、マイクロ波によって誘電加熱自在とし、前記合成樹脂成型体相互間に押圧力を加えて溶着するものである。
ここで、上記樹脂成型体相互間に挟まれたマイクロ波によって誘電加熱自在なマイクロ波発熱体は、マイクロ波を照射することによって金属箔が自己加熱し、合成樹脂製成型体が溶融するものであればよい。
In the microwave heating element according to the invention of claim 3, the metal foil having a thickness of 0.5 mm or less disposed between a plurality of synthetic resin moldings can be freely heated by a dielectric, and the synthetic resin It is welded by applying a pressing force between the molded bodies.
Here, the microwave heating element that can be dielectrically heated by the microwaves sandwiched between the resin moldings described above is that the metal foil self-heats by melting the microwave, and the synthetic resin molding is melted. If it is.

請求項4の発明にかかるマイクロ波発熱体は、前記合成樹脂成型体相互の接合面の形状に沿って形成されているものである。ここで合成樹脂成型体の接合面に沿った形状とは、合成樹脂成型体を2以上に分割した合成樹脂成型体の接合面の外周側及び内周側に所定の幅を残して接合面に沿った形状である。勿論、接合面と同じ大きさの形状に形成することを除外するものではない。   The microwave heating element according to the invention of claim 4 is formed along the shape of the joint surface between the synthetic resin moldings. Here, the shape along the joint surface of the synthetic resin molding refers to the joint surface leaving a predetermined width on the outer peripheral side and inner peripheral side of the joint surface of the synthetic resin molding obtained by dividing the synthetic resin molding into two or more. It is a shape along. Of course, it does not exclude the formation of the same size as the joint surface.

請求項5の発明にかかるマイクロ波発熱体は、全角が面取り処理されているものである。
ここで、全角の面取り処理とは、マイクロ波発熱体の平面の角を円弧状または斜めに加工することを意味し、マイクロ波のエネルギが集中し火花の発生に繋がらなければよく、それによって角の面取りが決定される。
The microwave heating element according to the invention of claim 5 is one in which all angles are chamfered.
Here, full-width chamfering means that the corners of the plane of the microwave heating element are processed in an arc shape or obliquely, and it is sufficient that the energy of the microwaves does not concentrate and lead to the generation of sparks. Chamfering is determined.

請求項6の発明にかかるマイクロ波発熱体は、位置決めする貫通孔が穿設されているものである。
ここで、位置決めする貫通孔とは、合成樹脂成型体側に突起を設け、そこにマイクロ波発熱体を位置決めするものであればよく、複数の突起による基準点を設けることでマイクロ波発熱体の合成樹脂成型体相互における位置精度を上げることができる。
The microwave heating element according to the invention of claim 6 is provided with a through hole for positioning.
Here, the through-hole to be positioned is not particularly limited as long as a projection is provided on the side of the synthetic resin molding and the microwave heating element is positioned there. By providing a reference point with a plurality of projections, the microwave heating element is synthesized. The positional accuracy between the resin moldings can be increased.

請求項7の発明にかかるマイクロ波発熱体による溶着方法においては、導電体粉末を混練して、若しくは金属薄膜をコーティングしてなる2mm以下の厚みの熱可塑性樹脂フィルムを、または0.5mm以下の金属箔を合成樹脂成型体相互間に配置し、前記熱可塑性樹脂フィルムまたは前記金属箔を挟持する方向に外力を加えながら、マイクロ波によって前記熱可塑性樹脂フィルムまたは前記金属箔を誘電加熱し、前記合成樹脂成型体相互間を溶着するものである。
ここで、上記合成樹脂成型体相互間に挟まれたマイクロ波によって誘電加熱自在なマイクロ波発熱体は、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルムまたはマイクロ波によって誘電加熱自在な金属箔としたものであればよい。そして、導電体である金属粉末を混練した熱可塑性樹脂フィルムの場合はマイクロ波によって誘電加熱自在なマイクロ波発熱体と合成樹脂成型体相互間は、同一合成樹脂材料が望ましい。
In the welding method using the microwave heating element according to the invention of claim 7, a thermoplastic resin film having a thickness of 2 mm or less formed by kneading the conductor powder or coating a metal thin film, or 0.5 mm or less. Metal foil is disposed between synthetic resin moldings, while applying an external force in the direction of sandwiching the thermoplastic resin film or the metal foil, the thermoplastic resin film or the metal foil is dielectrically heated by microwaves, The synthetic resin moldings are welded together.
Here, the microwave heating element that can be dielectrically heated by the microwave sandwiched between the synthetic resin molded bodies is a thermoplastic resin film kneaded with metal powder as a conductor, or a thermoplastic resin film having a metal thin film, or Any metal foil that can be dielectrically heated by microwaves may be used. And in the case of the thermoplastic resin film which knead | mixed the metal powder which is a conductor, the same synthetic resin material is desirable between the microwave heat generating body which can be dielectrically heated by a microwave, and a synthetic resin molding.

請求項1の発明のマイクロ波発熱体においては、導電体粉末を混練して2mm以下の厚みとしたマイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムとし、それを複数の合成樹脂成型体相互間に配置し、前記合成樹脂成型体相互間に押圧力を加え、前記熱可塑性樹脂フィルムのマイクロ波による発熱によって溶着するものである。
したがって、マイクロ波を照射して誘電加熱自在なマイクロ波発熱体を加熱する際、誘電加熱自在なマイクロ波発熱体が薄く、発熱温度を一様に高く制御することができるので、安定した溶着が可能であり、溶着によって複数の合成樹脂成型体を一体化した合成樹脂成型体をより容易に製造することが可能となる。したがって、直接一体化した合成樹脂成型体を得るために行う切削加工、その切削加工の加工屑等の除去が不要となり、それらの加工及び清掃を簡略化できるので生産性が向上する。また、導電体粉末の混入量やマイクロ波発熱体としての熱可塑性樹脂フィルムの厚みによって任意のマイクロ波照射-温度特性が得られる。
また、溶着時に上記マイクロ波発熱体を挟んだ合成樹脂成型体相互間に、合成樹脂成型体相互を接合する接合方向に押圧力を加えることで合成樹脂成型体相互間の間隙を減少することができ仕上がり精度を上げることができる。ここで、マイクロ波発熱体の厚みは、マイクロ波エネルギの制御(マイクロ波発熱体の温度制御)及び接合面に加わる押圧力によって決定され、押圧力は自重に置き換えることもできる。
そして、マイクロ波によって誘電加熱自在なマイクロ波発熱体の熱容量が小さいから、発熱時間が極めて短時間で済み、量産化が可能である。
更に、3個以上の合成樹脂成型体相互間を一度に溶着させる際でも、マイクロ波発熱体を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。また、マイクロ波によって誘電加熱自在なマイクロ波発熱体の形状を、熱容量を基に設定すれば均一な溶融状態が得られ、合成樹脂樹脂成型体に熱的に変形する歪を残すことはない。
よって、合成樹脂製成型体の熱容量が均一でなくても、また、樹脂製成型体相互間の溶着を均一に高精度で行うことができるマイクロ波発熱体が得られる。
In the microwave heating element according to the first aspect of the present invention, a thermoplastic resin film that is dielectrically heated by microwaves having a thickness of 2 mm or less by kneading the conductive powder is formed between a plurality of synthetic resin moldings. It arrange | positions, a pressing force is applied between the said synthetic resin moldings, and it welds by the heat_generation | fever by the microwave of the said thermoplastic resin film.
Therefore, when heating a microwave heating element that can be dielectrically heated by irradiating microwaves, the microwave heating element that can be dielectrically heated is thin, and the heating temperature can be controlled uniformly high, so that stable welding can be achieved. It is possible, and it becomes possible to more easily manufacture a synthetic resin molded body in which a plurality of synthetic resin molded bodies are integrated by welding. Therefore, it is not necessary to perform a cutting process for obtaining a directly integrated synthetic resin molded body and to remove machining wastes and the like of the cutting process, and the processing and cleaning can be simplified, so that productivity is improved. Moreover, arbitrary microwave irradiation-temperature characteristics can be obtained depending on the mixing amount of the conductor powder and the thickness of the thermoplastic resin film as the microwave heating element.
In addition, the gap between the synthetic resin moldings can be reduced by applying a pressing force in the joining direction for joining the synthetic resin moldings between the synthetic resin moldings sandwiching the microwave heating element during welding. And finish accuracy can be increased. Here, the thickness of the microwave heating element is determined by the control of the microwave energy (temperature control of the microwave heating element) and the pressing force applied to the bonding surface, and the pressing force can be replaced by its own weight.
And since the heat capacity of the microwave heating element that can be dielectrically heated by microwaves is small, the heat generation time is very short, and mass production is possible.
Furthermore, even when three or more synthetic resin moldings are welded at a time, it is possible to adjust the degree of heating of each welded portion by adjusting the microwave heating element. Moreover, if the shape of the microwave heating element that can be dielectrically heated by microwaves is set on the basis of the heat capacity, a uniform molten state can be obtained, and there is no distortion left in the synthetic resin resin molded body.
Therefore, even if the heat capacity of the synthetic resin molding is not uniform, a microwave heating element can be obtained that can perform welding between the resin moldings uniformly and with high accuracy.

請求項2の発明のマイクロ波発熱体においては、金属薄膜をコーティングして2mm以下の厚みとしたマイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムとし、それを複数の合成樹脂成型体相互間に配置し、前記合成樹脂成型体相互間に押圧力を加え、前記熱可塑性樹脂フィルムのマイクロ波による発熱によって溶着するものである。
したがって、マイクロ波を照射して誘電加熱自在なマイクロ波発熱体を加熱する際、誘電加熱自在なマイクロ波発熱体が薄く、発熱温度を一様に高く制御することができるので、安定した溶着が可能であり、溶着によって合成樹脂成型体をより容易に製造することが可能となり、切削加工、その切削加工の加工屑等の除去が不要となり、それらの加工及び清掃を簡略化できるので生産性が向上する。また、金属薄膜のコーティング厚によって任意のマイクロ波照射-温度特性が得られる。
また、溶着時に上記マイクロ波発熱体を挟んだ合成樹脂成型体相互間に、合成樹脂成型体相互の接合方向に押圧力を加えることで合成樹脂成型体相互間の間隙を減少することができ、仕上がり精度を上げることができる。ここで、マイクロ波発熱体の厚みは、マイクロ波エネルギの制御(マイクロ波板状発熱体の温度制御)及び接合面に加える押圧力によって決定され、押圧力は自重に置き換えることもできる。
そして、マイクロ波によって誘電加熱自在なマイクロ波発熱体の熱容量が小さいから、発熱時間が極めて短時間で済み、量産化が可能である。
更に、3個以上の合成樹脂成型体相互間を一度に溶着させる際でも、マイクロ波発熱体を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。また、マイクロ波によって誘電加熱自在なマイクロ波発熱体の形状を、熱容量を基に設定すれば均一な溶融状態が得られ、合成樹脂樹脂成型体に熱的に変形する歪を残すことはない。
よって、合成樹脂製成型体の熱容量が均一でなくても、また、樹脂製成型体相互間の溶着を均一に高精度で行うことができるマイクロ波発熱体が得られる。
In the microwave heating element according to the second aspect of the present invention, a thermoplastic resin film that can be dielectrically heated by microwaves coated with a metal thin film and having a thickness of 2 mm or less is disposed between a plurality of synthetic resin moldings. Then, a pressing force is applied between the synthetic resin moldings, and the thermoplastic resin film is welded by heat generated by microwaves.
Therefore, when heating a microwave heating element that can be dielectrically heated by irradiating microwaves, the microwave heating element that can be dielectrically heated is thin, and the heating temperature can be controlled uniformly high, so that stable welding can be achieved. It is possible, and it becomes possible to manufacture a synthetic resin molding more easily by welding, eliminating the need for cutting and removal of processing scraps of the cutting, and simplifying the processing and cleaning, thus increasing productivity. improves. Moreover, arbitrary microwave irradiation-temperature characteristics can be obtained depending on the coating thickness of the metal thin film.
In addition, the gap between the synthetic resin moldings can be reduced by applying a pressing force between the synthetic resin moldings between the synthetic resin moldings sandwiching the microwave heating element during welding, Finishing accuracy can be increased. Here, the thickness of the microwave heating element is determined by the control of the microwave energy (temperature control of the microwave plate heating element) and the pressing force applied to the joining surface, and the pressing force can be replaced with its own weight.
And since the heat capacity of the microwave heating element that can be dielectrically heated by microwaves is small, the heat generation time is very short, and mass production is possible.
Furthermore, even when three or more synthetic resin moldings are welded at a time, it is possible to adjust the degree of heating of each welded portion by adjusting the microwave heating element. Moreover, if the shape of the microwave heating element that can be dielectrically heated by microwaves is set on the basis of the heat capacity, a uniform molten state can be obtained, and there is no distortion left in the synthetic resin resin molded body.
Therefore, even if the heat capacity of the synthetic resin molding is not uniform, a microwave heating element can be obtained that can perform welding between the resin moldings uniformly and with high accuracy.

請求項3の発明のマイクロ波発熱体においては、金属箔を0.5mm以下の厚みとし、それを複数の合成樹脂成型体相互間に配置し、前記合成樹脂成型体相互間に押圧力を加え、前記金属箔のマイクロ波による発熱によって溶着するものである。
したがって、マイクロ波を照射して誘電加熱自在なマイクロ波発熱体を加熱する際、誘電加熱自在なマイクロ波発熱体が非常に薄く、発熱温度を一様に高く制御することができるので、安定した溶着が可能であり、溶着によって合成樹脂成型体をより容易に製造することが可能となり、切削加工、その切削加工の加工屑等の除去が不要となり、それらの加工及び清掃を簡略化できるので生産性が向上する。
また、溶着時に上記マイクロ波発熱体を挟んだ合成樹脂成型体相互間に、合成樹脂成型体相互の接合方向に押圧力を加えることで合成樹脂成型体相互間の間隙を減少すことができ仕上がり精度を上げることができる。ここで、マイクロ波発熱体の厚みは、マイクロ波エネルギの制御(マイクロ波板状発熱体の温度制御)及び接合面に加える押圧力によって決定され、押圧力は自重に置き換えることもできる。
そして、マイクロ波によって誘電加熱自在なマイクロ波発熱体の熱容量が小さいから、発熱時間が極めて短時間で済み、量産化が可能である。
更に、3個以上の合成樹脂成型体相互間を一度に溶着させる際でも、マイクロ波発熱体を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。また、マイクロ波によって誘電加熱自在なマイクロ波発熱体の形状を、熱容量を基に設定すれば均一な溶融状態が得られ、合成樹脂樹脂成型体に熱的に変形する歪を残すことはない。
よって、合成樹脂製成型体の熱容量が均一でなくても、また、樹脂製成型体相互間の溶着を均一に高精度で行うことができるマイクロ波発熱体が得られる。
In the microwave heating element of the invention of claim 3, the metal foil has a thickness of 0.5 mm or less, is disposed between a plurality of synthetic resin moldings, and a pressing force is applied between the synthetic resin moldings. The metal foil is welded by heat generated by microwaves.
Therefore, when heating a microwave heating element that can be dielectrically heated by irradiating microwaves, the microwave heating element that can be dielectrically heated is very thin, and the heat generation temperature can be controlled uniformly high, so that it is stable. Welding is possible, making it possible to manufacture synthetic resin moldings more easily by welding, eliminating the need for cutting and removal of cutting waste, and simplifying their processing and cleaning. Improves.
In addition, the gap between the synthetic resin moldings can be reduced by applying a pressing force between the synthetic resin moldings sandwiching the microwave heating element at the time of welding. The accuracy can be increased. Here, the thickness of the microwave heating element is determined by the control of the microwave energy (temperature control of the microwave plate heating element) and the pressing force applied to the joining surface, and the pressing force can be replaced with its own weight.
And since the heat capacity of the microwave heating element that can be dielectrically heated by microwaves is small, the heat generation time is very short, and mass production is possible.
Furthermore, even when three or more synthetic resin moldings are welded at a time, it is possible to adjust the degree of heating of each welded portion by adjusting the microwave heating element. Moreover, if the shape of the microwave heating element that can be dielectrically heated by microwaves is set on the basis of the heat capacity, a uniform molten state can be obtained, and there is no distortion left in the synthetic resin resin molded body.
Therefore, even if the heat capacity of the synthetic resin molding is not uniform, a microwave heating element can be obtained that can perform welding between the resin moldings uniformly and with high accuracy.

請求項4の発明のマイクロ波発熱体は、前記合成樹脂成型体相互の接合面の形状に沿って形成されている。したがって、請求項1乃至請求項3の何れか1つに記載の効果に加えて、合成樹脂成型体相互間の接合面が複雑な形状であっても、その形状に適合した複雑な形状のマイクロ波発熱体を得ることができるので、その複雑な形状に対しても溶着が可能である。   The microwave heating element of the invention of claim 4 is formed along the shape of the joint surface between the synthetic resin moldings. Therefore, in addition to the effect described in any one of claims 1 to 3, even if the joint surface between the synthetic resin moldings has a complicated shape, the micro shape of the complicated shape adapted to the shape is obtained. Since a wave heating element can be obtained, welding can be performed even on its complicated shape.

請求項5の発明のマイクロ波発熱体は、全角に面取り処理をされているものであるから、請求項1乃至請求項4の何れか1つに記載の効果に加えて、マイクロ波のエネルギの集中が生じないので、火花が入ったり、合成樹脂成型体を焼いたりすることがない。   Since the microwave heating element of the invention of claim 5 is chamfered at all angles, in addition to the effect of any one of claims 1 to 4, in addition to the effect of microwave energy There is no concentration, so there is no spark and no burning of synthetic resin moldings.

請求項6の発明のマイクロ波発熱体は、位置決めする貫通孔が穿設されているものであるから、請求項1乃至請求項5の何れか1つに記載の効果に加えて、合成樹脂成型体の接合面に対するマイクロ波発熱体の位置決めを正確に行うことができる。   Since the microwave heating element of the invention of claim 6 has a through hole for positioning, in addition to the effect of any one of claims 1 to 5, synthetic resin molding The microwave heating element can be accurately positioned with respect to the joint surface of the body.

請求項7の発明のマイクロ波発熱体による溶着方法においては、導電体粉末を混練して、若しくは金属薄膜をコーティングしてなる2mm以下の厚みの熱可塑性樹脂フィルム、または0.5mm以下の金属箔を複数の合成樹脂成型体相互間に配置し、前記熱可塑性樹脂フィルムまたは前記金属箔を挟持する方向に押圧力を加えると共に、マイクロ波によって前記熱可塑性樹脂フィルムまたは前記金属箔を誘電加熱して前記前記合成樹脂成型体相互間を溶着するものである。
したがって、マイクロ波を照射して誘電加熱自在なマイクロ波発熱体を加熱する際、誘電加熱自在なマイクロ波発熱体が薄く、発熱温度を一様に高く制御することができるので、安定した溶着が可能であり、溶着によって複数の合成樹脂成型体を一体化した合成樹脂成型体をより容易に製造することが可能となる。したがって、直接一体化した合成樹脂成型体を得るために行う切削加工、その切削加工の加工屑等の除去が不要となり、それらの加工及び清掃を簡略化できるので生産性が向上する。また、導電体粉末の混入量または金属薄膜の厚みによって任意のマイクロ波照射-温度特性が得られ、最適な溶着方法が選択できる。
また、また、溶着時に上記マイクロ波発熱体を挟んだ合成樹脂成型体相互間に、合成樹脂成型体相互の接合方向に押圧力を加えることで合成樹脂成型体相互間の間隙を減少すことができ仕上がり精度を上げることができる。ここで、マイクロ波発熱体の厚みは、マイクロ波エネルギの制御マイクロ波エネルギの制御(マイクロ波板状発熱体の温度制御)及び接合面に加える押圧力によって決定され、自重に置き換えることもできる。
そして、マイクロ波によって誘電加熱自在なマイクロ波発熱体の熱容量が小さいから、発熱時間が極めて短時間で済み、量産化が可能である。
更に、3個以上の合成樹脂成型体相互間を一度に溶着させる際でも、マイクロ波発熱体を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。また、マイクロ波によって誘電加熱自在なマイクロ波発熱体の形状を、熱容量を基に設定すれば均一な溶融状態が得られ、合成樹脂樹脂成型体に熱的に変形する歪を残すことはない。
したがって、樹脂製成型体の熱容量が均一でなくても、また、樹脂製成型体相互間の溶着を均一に高精度で行うことができるマイクロ波発熱体による溶着方法となる。
In the welding method using the microwave heating element according to the seventh aspect of the present invention, a thermoplastic resin film having a thickness of 2 mm or less, or a metal foil having a thickness of 0.5 mm or less, obtained by kneading a conductor powder or coating a metal thin film. Is placed between a plurality of synthetic resin moldings, a pressing force is applied in a direction to sandwich the thermoplastic resin film or the metal foil, and the thermoplastic resin film or the metal foil is dielectrically heated by a microwave. The synthetic resin moldings are welded together.
Therefore, when heating a microwave heating element that can be dielectrically heated by irradiating microwaves, the microwave heating element that can be dielectrically heated is thin, and the heating temperature can be controlled uniformly high, so that stable welding can be achieved. It is possible, and it becomes possible to more easily manufacture a synthetic resin molded body in which a plurality of synthetic resin molded bodies are integrated by welding. Therefore, it is not necessary to perform a cutting process for obtaining a directly integrated synthetic resin molded body and to remove machining wastes and the like of the cutting process, and the processing and cleaning can be simplified, so that productivity is improved. Further, an arbitrary microwave irradiation-temperature characteristic can be obtained depending on the amount of the conductor powder mixed in or the thickness of the metal thin film, and an optimum welding method can be selected.
In addition, the gap between the synthetic resin moldings can be reduced by applying a pressing force between the synthetic resin moldings sandwiching the microwave heating element during welding. And finish accuracy can be increased. Here, the thickness of the microwave heating element is determined by the control of the microwave energy, the control of the microwave energy (the temperature control of the microwave plate-like heating element), and the pressing force applied to the joining surface, and can be replaced with its own weight.
And since the heat capacity of the microwave heating element that can be dielectrically heated by microwaves is small, the heat generation time is very short, and mass production is possible.
Furthermore, even when three or more synthetic resin moldings are welded at a time, it is possible to adjust the degree of heating of each welded portion by adjusting the microwave heating element. Moreover, if the shape of the microwave heating element that can be dielectrically heated by microwaves is set on the basis of the heat capacity, a uniform molten state can be obtained, and there is no distortion left in the synthetic resin resin molded body.
Therefore, even if the heat capacity of the resin molded body is not uniform, the welding method using the microwave heating element can perform the welding between the resin molded bodies uniformly and with high accuracy.

図1は本発明の実施の形態にかかる合成樹脂成型体としての樹脂製バルブボディの組み立て工程の概念図であり、(a)は組み付け概念図、(b)は組み付け溶着前完成図を説明する製造工程を示すものである。1A and 1B are conceptual diagrams of an assembly process of a resin valve body as a synthetic resin molded body according to an embodiment of the present invention, where FIG. 1A is a conceptual diagram of assembly and FIG. 1B is a completed diagram before assembly welding. A manufacturing process is shown. 図2は本発明の実施の形態にかかる合成樹脂成型体としての樹脂製バルブボディの一部断面図である。FIG. 2 is a partial sectional view of a resin valve body as a synthetic resin molding according to an embodiment of the present invention. 図3は本発明の実施の形態にかかるマイクロ波発熱体の平面図で、基本形状の平面図(a)、穿孔形状の平面図(b)、長円形状の平面図(c)、メッシュ形状の平面図(d)を示すものである。FIG. 3 is a plan view of the microwave heating element according to the embodiment of the present invention, in which a plan view of a basic shape (a), a plan view of a perforated shape (b), a plan view of an oval shape (c), and a mesh shape The top view (d) of is shown. 図4は本発明の実施の形態にかかるマイクロ波発熱体と合成樹脂成型体の溶着面との関係を説明する説明図で、(a)は溶着面が狭い場合(b)は溶着面が広い場合である。FIG. 4 is an explanatory view for explaining the relationship between the microwave heating element according to the embodiment of the present invention and the welding surface of the synthetic resin molded body. FIG. 4A is a case where the welding surface is narrow, and FIG. Is the case. 図5は本発明の実施の形態にかかるマイクロ波発熱体にマイクロ波を照射した場合の時間−温度特性図である。FIG. 5 is a time-temperature characteristic diagram when the microwave heating element according to the embodiment of the present invention is irradiated with microwaves. 図6は本発明の実施の形態にかかるマイクロ波発熱体にマイクロ波を照射するマイクロ波の出力パターンを示す説明図である。FIG. 6 is an explanatory view showing a microwave output pattern for irradiating the microwave to the microwave heating element according to the embodiment of the present invention. 図7は本発明の実施の形態にかかるマイクロ波発熱体の時間−温度特性図である。FIG. 7 is a time-temperature characteristic diagram of the microwave heating element according to the embodiment of the present invention. 図8は本発明の実施の形態にかかるマイクロ波発熱体を用いて製造した樹脂製バルブボディの製造過程の工程図である。FIG. 8 is a process diagram of the manufacturing process of the resin valve body manufactured using the microwave heating element according to the embodiment of the present invention.

[実施の形態]
以下、本発明の実施の形態について、図面に基づいて説明する。なお、図中、本実施の形態における同一記号及び同一符号は、同一または相当する機能部分であるから、ここでは重複する説明を省略する。
図1乃至図5において、まず、本発明の実施の形態にかかるマイクロ波発熱体を合成樹脂成型体としての樹脂製バルブボディに使用する場合の全体の構成を概略的に説明する。
合成樹脂成型体としては、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブが収容された後リニアソレノイド(図示では1個)を収容する樹脂製バルブボディ100を2個以上に、コントロールバルブ収容部位の中心線に沿って分割して形成し、前記複数の本実施の形態では、6個に分割してなるバルブボディ樹脂成型体11,12,13,14,15,16から構成されている。この実施の形態で示すコントロールバルブとしてのリニアソレノイドバルブAは、電磁制御部A1とバルブ部A2で構成されている。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same symbols and the same reference numerals in the present embodiment are the same or corresponding functional parts, and therefore, duplicate description is omitted here.
1 to 5, the overall configuration when the microwave heating element according to the embodiment of the present invention is used for a resin valve body as a synthetic resin molded body will be schematically described.
As the synthetic resin molded body, two or more resin valve bodies 100 for accommodating linear solenoids (one in the drawing) are accommodated after accommodating a plurality of control valves for controlling oil pressure and oil amount for automatic transmission in an automatic transmission. The valve body resin molded bodies 11, 12, 13, 14, 15, 16 are formed by being divided along the center line of the control valve housing portion and divided into six in the plurality of the present embodiments. It is composed of A linear solenoid valve A as a control valve shown in this embodiment is composed of an electromagnetic control unit A1 and a valve unit A2.

それら合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16の相互間には、マイクロ波によって誘電加熱自在なマイクロ波発熱体21,22,23,24,25が配置され、マイクロ波発熱体21,22,23,24,25間を狭める方向に、即ち、積載方向に外力を与えて、そこにマイクロ波を照射することによって両者を溶着するものである。   Between these valve body resin molded bodies 11, 12, 13, 14, 15, 16 as synthetic resin molded bodies are microwave heating elements 21, 22, 23, 24, 25 that can be dielectrically heated by microwaves. They are arranged and welded together by applying an external force in the direction of narrowing the space between the microwave heating elements 21, 22, 23, 24, and 25, that is, in the stacking direction, and irradiating them with microwaves.

次に、本実施の形態にかかる合成樹脂成型体としての樹脂製バルブボディを仔細に説明する。
合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16は、オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブ収容部位の中心線に沿って開口面(端面)を形成し、前記複数のコントロールバルブを収容する樹脂製バルブボディ100を、本実施の形態では6個、即ち、上から順にアッパー(U)、ミドル(1)、ミドル(2)、ミドル(3)、ミドル(4)、ロアー(L)に分割したものである。
なお、この樹脂製バルブボディ100は、従来は金属製であり、鋳込み、切削加工等を経て製造されたものを、本実施の形態では、合成樹脂製とし6個に分割して成型し、その後溶着して一体化したものである。
Next, a resin valve body as a synthetic resin molding according to the present embodiment will be described in detail.
The valve body resin moldings 11, 12, 13, 14, 15, and 16 as synthetic resin moldings are arranged along the center lines of a plurality of control valve housing parts that control the hydraulic pressure and oil amount for automatic transmission in the automatic transmission. In the present embodiment, there are six resin valve bodies 100 that form an opening surface (end surface) and accommodate the plurality of control valves, that is, upper (U), middle (1), middle (2 ), Middle (3), middle (4), and lower (L).
The resin valve body 100 is conventionally made of metal, and is manufactured by casting, cutting, etc., and in this embodiment, is made of synthetic resin, divided into six parts, and then molded. It is welded and integrated.

なお、図1に示すように、バルブボディ樹脂成型体11,12,13,14,15,16は、積層させて、この各層間を溶着させるために、各層間に本発明の実施の形態のマイクロ波発熱体21,22,23,24,25を配置するが、各層の両面には必要に応じて、凹部や溝、孔部、凸部を設け、全ての層を溶着させた後には、これらの凹部、溝、孔部、凸部が互いに接続され、目的とする機能を発揮させることになる。
したがって、後述するマイクロ波発熱体21,22,23,24,25は、当該形状に合致した形状に形成される。
As shown in FIG. 1, the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are stacked and welded between the respective layers in order to weld the respective layers. Although the microwave heating elements 21, 22, 23, 24, and 25 are arranged, if necessary, recesses, grooves, holes, and protrusions are provided on both surfaces of each layer, and after all the layers are welded, These concave portions, grooves, hole portions, and convex portions are connected to each other, and the intended function is exhibited.
Therefore, microwave heating elements 21, 22, 23, 24, and 25, which will be described later, are formed in a shape that matches the shape.

マイクロ波板状発熱体21,22,23,24,25は、バルブボディ樹脂成型体11,12,13,14,15,16の相互間に挟まれ、マイクロ波を照射されることによってマイクロ波板状発熱体21,22,23,24,25が発熱し、バルブボディ樹脂成型体11,12,13,14,15,16を溶着するもので、全体が均一の厚みの板状であり、被溶着物であるバルブボディ樹脂成型体11,12,13,14,15,16の接合面の間に挟んだ状態で、押圧力を加え、マイクロ波を照射して加熱するものである。マイクロ波板状発熱体21,22,23,24,25は厚すぎると、バルブボディ樹脂成型体11,12,13,14,15,16間に空隙を生じる恐れ、バリが発生する恐れがあるので、導電性の板状合成樹脂からなるマイクロ波板状発熱体21,22,23,24,25は厚さが2mm以下、好ましくは1mm以下とすることが好ましい。勿論、全体が均一の厚みでなくても、その接合面積及び機械的強度等を考慮し、厚みの変化を持たせることもできる。   The microwave plate-shaped heating elements 21, 22, 23, 24, and 25 are sandwiched between valve body resin molded bodies 11, 12, 13, 14, 15, and 16, and are irradiated with microwaves to generate microwaves. The plate-shaped heating elements 21, 22, 23, 24, and 25 generate heat, and the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are welded. In a state of being sandwiched between the joint surfaces of the valve body resin molded bodies 11, 12, 13, 14, 15, and 16, which are the objects to be welded, a pressing force is applied, and microwaves are irradiated and heated. If the microwave plate-like heating elements 21, 22, 23, 24, and 25 are too thick, there is a risk that voids will be generated between the valve body resin molded bodies 11, 12, 13, 14, 15, and 16, and burrs may be generated. Therefore, it is preferable that the microwave plate-like heating elements 21, 22, 23, 24, and 25 made of conductive plate-like synthetic resin have a thickness of 2 mm or less, preferably 1 mm or less. Of course, even if the entire thickness is not uniform, the thickness can be changed in consideration of the bonding area, mechanical strength, and the like.

特に、マイクロ波板状発熱体21,22,23,24,25の厚さが2mm以下、好ましくは1mm以下とは、マイクロ波板状発熱体21,22,23,24,25を挟み込んだ際のバルブボディ樹脂成型体11,12,13,14,15,16相互間の隙間が2mm以下、好ましくは1mm以下となるので、できるだけ薄いマイクロ波板状発熱体21,22,23,24,25を使用するのが好適である。そしてマイクロ波板状発熱体21,22,23,24,25の発熱によってマイクロ波板状発熱体21,22,23,24,25に接するバルブボディ樹脂成型体11,12,13,14,15,16の接合面内の接触面及びその接触面近傍が溶融または軟化するとともにバルブボディ樹脂成型体11,12,13,14,15,16に加えられた押圧力によってバルブボディ樹脂成型体11,12,13,14,15,16相互間の隙間が減少する。発明者等の実験においては、溶着の実施により、0.01mm以下または0.005mm以下の接合誤差が生ずる程度であり、所定の押圧力を確保すれば、精度のよい接合を行うことができた。
なお、このときの溶着する際の押圧力は、バルブボディ樹脂成型体11,12,13,14,15,16相互間に挟まれたマイクロ波板状発熱体21,22,23,24,25の体積を少なくする方向に押圧力を加えるものである。ここで、2mmを超えるとマイクロ発熱体を合成樹脂成型体間に配置したときの間隙が大きく、押圧を加えて溶着した後に合成樹脂成型体間に間隙が残りやすい。
In particular, the thickness of the microwave plate-like heating elements 21, 22, 23, 24, 25 is 2 mm or less, preferably 1 mm or less when the microwave plate-like heating elements 21, 22, 23, 24, 25 are sandwiched. Since the gap between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 is 2 mm or less, preferably 1 mm or less, the microwave plate-like heating elements 21, 22, 23, 24, 25 are as thin as possible. Is preferably used. Then, valve body resin molded bodies 11, 12, 13, 14, 15 that come into contact with the microwave plate-shaped heating elements 21, 22, 23, 24, 25 by the heat generated by the microwave plate-shaped heating elements 21, 22, 23, 24, 25 are used. , 16 in the joint surface and in the vicinity of the contact surface are melted or softened, and the valve body resin molded body 11, 16 is pressed by the pressure applied to the valve body resin molded body 11, 12, 13, 14, 15, 16 The gap between 12, 13, 14, 15, 16 is reduced. In the experiments conducted by the inventors, the welding error was such that a welding error of 0.01 mm or less or 0.005 mm or less occurred, and if a predetermined pressing force was ensured, it was possible to perform highly accurate joining. .
The pressing force at the time of welding at this time is the microwave plate-like heating elements 21, 22, 23, 24, 25 sandwiched between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 The pressing force is applied in the direction of decreasing the volume of the. Here, if it exceeds 2 mm, the gap when the micro-heating element is arranged between the synthetic resin moldings is large, and the gap tends to remain between the synthetic resin moldings after being pressed and welded.

また、本実施の形態で使用するマイクロ波板状発熱体21,22,23,24,25は、例えば、図3(a)〜(d)に示されているように、マイクロ波板状発熱体20(21,22,23,24,25)として、その平面の角は面取りとしてのR(アール)が形成されている。この面取りにより、照射するマイクロ波エネルギの集中が生じないので、スパークの発生、バルブボディ樹脂成型体11,12,13,14,15,16の焼け等が防止される。面取りは大きいほうが好ましく、溶着する製品の幅とマイクロ波板状発熱体の幅から設定される。また、面取りはR形状以外にもにスパークの発生が生じないのであれば平面の角度が90度以上の斜めの直線状に面取りすることも有り得る。そして全体の平面形状は図1(a)のマイクロ波板状発熱体21,22,23,24,25として示されているように、バルブボディ樹脂成型体11,12,13,14,15,16の接合面に沿った形状であり、その幅は図4(a)または図4(b)に示したようにバルブボディ樹脂成型体11,12,13,14,15,16の接合面の幅より狭い幅に設定されている。このようにマイクロ波板状発熱体21,22,23,24,25の幅をバルブボディ樹脂成型体11,12,13,14,15,16の接合面の幅より小さくすることで溶着時に接合面から溶融した樹脂がはみ出すことを防止している。   Moreover, the microwave plate-shaped heating elements 21, 22, 23, 24, and 25 used in the present embodiment are, for example, as shown in FIGS. As the body 20 (21, 22, 23, 24, 25), R (R) as a chamfer is formed at the corner of the plane. By this chamfering, concentration of microwave energy to be irradiated does not occur, so that generation of sparks and burning of the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are prevented. The chamfer is preferably larger, and is set based on the width of the product to be welded and the width of the microwave plate heating element. In addition to chamfering, chamfering may be chamfered into an oblique straight line having a plane angle of 90 degrees or more as long as no spark occurs in addition to the R shape. Then, as shown in FIG. 1 (a) as microwave plate-like heating elements 21, 22, 23, 24, 25, the overall planar shape is a valve body resin molded body 11, 12, 13, 14, 15, 16, and the width of the joint surface of the valve body resin molded body 11, 12, 13, 14, 15, 16 as shown in FIG. 4 (a) or 4 (b). The width is set narrower than the width. In this manner, the width of the microwave plate-like heating elements 21, 22, 23, 24, 25 is made smaller than the width of the joint surface of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 at the time of welding. The molten resin is prevented from protruding from the surface.

勿論、本発明の実施の形態のマイクロ波発熱体21,22,23,24,25の大きさや形状は、合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16の形状や構造などによって決定されるが、バルブボディ樹脂成型体11,12,13,14,15,16の形状や構造が複雑化する程、溶着部の溶着面も複雑な形状となり、より高精度な溶着が必要とされることになる。このような場合には、図4(b)〜(d)に示されるように、マイクロ波発熱体20(21,22,23,24,25)に貫通孔としての穿設孔20aを設けたり、特定方向に貫通孔が長い長円穿設形状20bを設けたり、または、マイクロ波発熱体21,22,23,24,25自体を網状に貫通孔を形成したメッシュ形状20cで形成することができる。網状に貫通孔を形成したメッシュ形状20cは、図4(d)においては、長方形の開口としているが、円形または三角形、平行四辺形等の開口とすることができる。   Of course, the size and shape of the microwave heating elements 21, 22, 23, 24, 25 according to the embodiment of the present invention are the same as the valve body resin molded bodies 11, 12, 13, 14, 15, 16 as synthetic resin molded bodies. However, the more complicated the shape and structure of the valve body resin molded body 11, 12, 13, 14, 15, 16 is, the more complicated the weld surface of the welded portion is. Accurate welding is required. In such a case, as shown in FIGS. 4B to 4D, the microwave heating element 20 (21, 22, 23, 24, 25) is provided with a drilling hole 20a as a through hole. The oval perforation shape 20b having a long through hole in a specific direction may be provided, or the microwave heating elements 21, 22, 23, 24, 25 themselves may be formed in a mesh shape 20c in which the through holes are formed in a net shape. it can. The mesh shape 20c in which the through holes are formed in a net shape is a rectangular opening in FIG. 4D, but may be a circular, triangular, parallelogram or the like opening.

殊に、マイクロ波発熱体20(21,22,23,24,25)の図3(d)のメッシュ形状20cは、全体に孔の行及び列を複数とし、そのマトリックスで接合するものである。接合面積が広い場合に使用すると好適である。
特に、図3(b)及び(c)のマイクロ波発熱体20(21,22,23,24,25)の穿設孔20a、長円穿設形状20bは、その空間にマイクロ波エネルギを使用しないので、周囲の温度上昇が高い効率的な制御となり、マイクロ波発熱体20(21,22,23,24,25)の溶着作業速度を早めることができる。
In particular, the mesh shape 20c of FIG. 3 (d) of the microwave heating element 20 (21, 22, 23, 24, 25) has a plurality of hole rows and columns as a whole and is joined by a matrix thereof. . It is suitable for use when the bonding area is large.
In particular, the drilling hole 20a and the oval drilling shape 20b of the microwave heating element 20 (21, 22, 23, 24, 25) of FIGS. 3B and 3C use microwave energy in the space. Therefore, the ambient temperature rise is highly efficient and the welding operation speed of the microwave heating element 20 (21, 22, 23, 24, 25) can be increased.

また、このようにマイクロ波板状発熱体21,22,23,24,25に穿設孔20a、長円穿設形状20bを設けたり、メッシュ形状20cとすることによって、予め接合面に形成される図示しない微小な突起等の位置決め突部に、穿設孔20a、長円穿設形状20b、メッシュ形状20cの目を挿入することによって、接合面の所定の位置にマイクロ波板状発熱体21,22,23,24,25を正確に位置決めしながら溶着することが可能となる。特に、マイクロ波板状発熱体21,22,23,24,25として特定の複雑形状のシートを挟む場合等に好適である。なお、微小な位置決め突部は、マイクロ波板状発熱体21,22,23,24,25の厚みの2/3〜1/3程度の高さが、溶着に影響を与え難く、かつ、取り付け作業性を良くしている。   In addition, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are provided with the perforated holes 20a and the oval perforated shape 20b as described above, or the mesh shape 20c. The microwave plate-like heating element 21 is placed at a predetermined position on the joint surface by inserting the perforation hole 20a, the oval perforation shape 20b, and the mesh shape 20c into a positioning projection such as a minute projection (not shown). , 22, 23, 24, 25 can be welded while accurately positioning. In particular, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are suitable when sandwiching a sheet having a specific complicated shape. The minute positioning protrusions have a height of about 2/3 to 1/3 of the thickness of the microwave plate-like heating elements 21, 22, 23, 24, 25, and are difficult to affect the welding. Workability is improved.

また、このような穿設孔20a、長円穿設形状20b、メッシュ形状20cの貫通孔を利用し、バルブボディ樹脂成型体11,12,13,14,15,16に形成した図示しない微小な突起を挿入させて、バルブボディ樹脂成型体11,12,13,14,15,16とマイクロ波板状発熱体21,22,23,24,25の平面形状の位置合わせを行い、その後に溶着させることによって、精度が高い組み付け溶着を行うことができる。   Further, by using the through-holes of the perforated hole 20a, the oval perforated shape 20b, and the mesh shape 20c, a minute (not shown) formed in the valve body resin molded body 11, 12, 13, 14, 15, 16 is formed. The protrusions are inserted to align the planar shape of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the microwave plate-like heating elements 21, 22, 23, 24, 25, and then welded. As a result, assembly welding with high accuracy can be performed.

このようなマイクロ波板状発熱体21,22,23,24,25に設けた穿設孔20a、長円穿設形状20b、メッシュ形状20c等の貫通孔等は、対応するバルブボディ樹脂成型体11,12,13,14,15,16の接合面、即ち、各層の溶着部の表面に貫通孔等に対応する突起を設けることによって、接合面にマイクロ波板状発熱体21,22,23,24,25を正確に位置決めする精度の向上や、マイクロ波板状発熱体21,22,23,24,25のセットに要する時間を短縮させることができる。   The through holes such as the perforation holes 20a, the oval perforation shape 20b, and the mesh shape 20c provided in the microwave plate-like heating elements 21, 22, 23, 24, and 25 correspond to the corresponding valve body resin moldings. 11, 12, 13, 14, 15, 16, that is, by providing projections corresponding to through holes or the like on the surface of the welded portion of each layer, microwave plate-like heating elements 21, 22, 23 are provided on the joint surface. 24, 25 can be accurately positioned, and the time required for setting the microwave plate-like heating elements 21, 22, 23, 24, 25 can be shortened.

この際マイクロ波板状発熱体21,22,23,24,25が導電体である金属粉末を混練した熱可塑性樹脂フィルムである場合、バルブボディ樹脂成型体11,12,13,14,15,16に由来する樹脂と、マイクロ波板状発熱体21,22,23,24,25を形成している樹脂が、互いに同一材料であると、十分に溶融・混合されることによって、溶着後の接着強度を向上させることが可能となり、そのような機械的強度の向上は溶着により得た各種部材自体の強度を向上させることになり、バルブボディ樹脂成型体11,12,13,14,15,16が一体化でき、本発明の実施の形態にかかる樹脂製バルブボディ100としての信頼性を高めることになる。ここで参考までに記載するが、図3に示したマイクロ波板状発熱体20の形状は本発明の実施の形態に使用するマイクロ波板状発熱体21,22,23,24,25の一部分に適用するものとして説明のために記載したものであり、この形状のままで使用するものではない。したがって、本発明の実施の形態である樹脂製バルブボディ以外の合成樹脂成型体相互間を溶着する場合は図3に示したマイクロ波板状発熱体20が使用できる。   In this case, when the microwave plate-like heating elements 21, 22, 23, 24, 25 are thermoplastic resin films kneaded with metal powder as a conductor, the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the resin forming the microwave plate-like heating elements 21, 22, 23, 24, 25 are the same material as each other, and are sufficiently melted and mixed, It becomes possible to improve the adhesive strength, and the improvement of such mechanical strength will improve the strength of various members obtained by welding, and the valve body resin molded bodies 11, 12, 13, 14, 15, 16 can be integrated, and the reliability of the resin valve body 100 according to the embodiment of the present invention is enhanced. Although described here for reference, the shape of the microwave plate-like heating element 20 shown in FIG. 3 is a part of the microwave plate-like heating elements 21, 22, 23, 24, 25 used in the embodiment of the present invention. It is described for the sake of explanation as applied to the above, and is not used in this shape. Therefore, when welding synthetic resin moldings other than the resin valve body according to the embodiment of the present invention, the microwave plate heating element 20 shown in FIG. 3 can be used.

マイクロ波発熱体21,22,23,24,25は、基本的には熱可塑性樹脂と金属粉末からなる。熱可塑性材料としては、公知の熱可塑性材料、例えば、エンジニアリング・プラスチック、スーパー・エンジニアリング・プラスチックを用いることができる。具体的には、ポリアミド(ナイロン、芳香族ポリアミド等)、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ガラス繊維強化ポリエチレンテレフタレート、環状ポリオレフィン等がある。そして、スーパーエンプラとしては、ポリフェニレンスルフィド(PPS)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアレート、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、熱硬化性ポリイミド、ポリアミドイミド等がある。   The microwave heating elements 21, 22, 23, 24, and 25 are basically made of a thermoplastic resin and metal powder. As the thermoplastic material, known thermoplastic materials such as engineering plastics and super engineering plastics can be used. Specific examples include polyamide (nylon, aromatic polyamide, etc.), polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), glass fiber reinforced polyethylene terephthalate, and cyclic polyolefin. Super engineering plastics include polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, amorphous polyarate, liquid crystal polymer, polyetheretherketone (PEEK), thermosetting polyimide, and polyamideimide. Etc.

本発明の実施の形態にかかる樹脂製バルブボディ100で、どのような熱可塑性材料を使用するかは、バルブボディ樹脂成型体11,12,13,14,15,16との相溶性を考慮して決定される。
例えば、バルブボディ樹脂成型体11,12,13,14,15,16の材料がポリエチレンであれば、マイクロ波発熱体21,22,23,24,25に使用する樹脂もポリエチレンとし、バルブボディ樹脂成型体11,12,13,14,15,16の材料がPPS樹脂であれば、マイクロ波発熱体21,22,23,24,25に使用する樹脂材料も同様にPPS樹脂を使用する等、バルブボディ樹脂成型体11,12,13,14,15,16を構成する樹脂と同じ樹脂を用いて成形して得たマイクロ波発熱体21,22,23,24,25を使用することが、バルブボディ樹脂成型体11,12,13,14,15,16とマイクロ波発熱体21,22,23,24,25との樹脂の相溶性を最適なものとするのが好ましい。なお、バルブボディ樹脂成型体11,12,13,14,15,16の材料とマイクロ波板状発熱体21,22,23,24,25に使用する樹脂材料が異なっていても溶着性に影響を与えない限り使用可能である。
通常、本実施の形態のマイクロ波発熱体21,22,23,24,25を構成する材料としは、ウレタン樹脂、アクリル樹脂、PPS樹脂、ポリアミド樹脂等をマイクロ波発熱体21,22,23,24,25に使用される樹脂として選択される。
In the resin valve body 100 according to the embodiment of the present invention, what kind of thermoplastic material is used is determined by considering compatibility with the valve body resin moldings 11, 12, 13, 14, 15, and 16. Determined.
For example, if the material of the molded valve body resin 11, 12, 13, 14, 15, 16 is polyethylene, the resin used for the microwave heating elements 21, 22, 23, 24, 25 is also polyethylene, and the valve body resin If the material of the molded bodies 11, 12, 13, 14, 15, 16 is PPS resin, the resin material used for the microwave heating elements 21, 22, 23, 24, 25 is also PPS resin, etc. It is possible to use the microwave heating elements 21, 22, 23, 24, 25 obtained by molding using the same resin as that constituting the valve body resin molded body 11, 12, 13, 14, 15, 16; It is preferable to optimize the compatibility of the resin between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the microwave heating elements 21, 22, 23, 24, 25. In addition, even if the material of the valve body resin molded body 11, 12, 13, 14, 15, 16 and the resin material used for the microwave plate heating elements 21, 22, 23, 24, 25 are different, the weldability is affected. Can be used as long as
Usually, as the material constituting the microwave heating elements 21, 22, 23, 24, and 25 of the present embodiment, urethane resin, acrylic resin, PPS resin, polyamide resin, and the like are used as the microwave heating elements 21, 22, 23, The resin used for 24 and 25 is selected.

本実施の形態のマイクロ波発熱体21,22,23,24,25に使用される金属粉末となる金属としては、図7に示したように銅、酸化鉄、アルミニウム等の金属を選択し使用することができる。更に、金属粉末として金属を酸化してなる粉末も使用することができる。これらの金属粉末はレーザ回折・散乱法によって測定した中位径、即ち、粉体の粒径分布において、ある粒子径より大きい個数または質量が全粉体の50%をしめるときの粒子径が1〜100μmであり、更には、中位径が3μm〜30μmのものを好ましく使用することができる。
当然ながら、ふるい分け試験で測定した粒子径の値が1μm〜100μmの範囲内とすることもできる。
As the metal powder to be used for the microwave heating elements 21, 22, 23, 24, and 25 of the present embodiment, a metal such as copper, iron oxide, and aluminum is selected and used as shown in FIG. can do. Furthermore, a powder obtained by oxidizing a metal can also be used as the metal powder. These metal powders have a median diameter measured by the laser diffraction / scattering method, that is, the particle diameter when the number or mass larger than a certain particle diameter accounts for 50% of the total powder in the particle size distribution of the powder. The median diameter is preferably 3 μm to 30 μm.
Of course, the value of the particle diameter measured by the screening test can be in the range of 1 μm to 100 μm.

なお、ここで、「ふるい分け試験」とは、JIS−Z−8801によって規定された目開きをもつ標準ふるいを用いて、測定対象となる粉末をふるい分けることによって粒度分布を測定する試験方法をいうものである。標準ふるいなどを用いて行う粒径,粒径分布を測定する方法のことである。粒径と、粒径分布の表現は、使用したふるいの目開き(μm )とふるい上残量(オーバサイズ)またはふるい下通過量(アンダーサイズ)の全体に対する比率で表される。   Here, the “sieving test” refers to a test method for measuring the particle size distribution by sieving the powder to be measured using a standard sieve having openings defined by JIS-Z-8801. Is. It is a method of measuring particle size and particle size distribution using a standard sieve. The expression of the particle size and the particle size distribution is expressed as a ratio of the used sieve opening (μm) and the remaining amount on the sieve (oversize) or the total amount passing under the sieve (undersize).

本実施の形態のマイクロ波発熱体21,22,23,24,25は、熱可塑性樹脂フィルム上にコートした金属薄膜や金属箔としても、金属粉末を使用した場合と同じ金属を採用することができる。また、これらの金属薄膜や金属箔としては、熱可塑性樹脂フィルム上に担持され得る程度の薄さでよく、通常、金属薄膜や金属箔として使用される範囲内の厚さを有する熱可塑性樹脂フィルムで、約0.01mm以下の蒸着、スパッタリングされた金属薄膜や金属箔が形成されていればよい。
また、熱可塑性樹脂フィルム上に担持させることなく、金属箔単独にて金属薄膜に代えて、板状のマイクロ波発熱体とすることもできる。特に、このときには合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16が、熱可塑性樹脂である必要がある。
何れにせよ、本発明の実施の形態にかかる樹脂製バルブボディ100においては、マイクロ波によって誘電加熱自在なマイクロ波板状発熱体21,22,23,24,25が、導電体である金属粉末を混練した熱可塑性樹脂フィルム若しくは金属薄膜を有する熱可塑性樹脂フィルムとして形成したもの、または金属箔であればよい。
The microwave heating elements 21, 22, 23, 24, and 25 of the present embodiment may employ the same metal as when metal powder is used as a metal thin film or metal foil coated on a thermoplastic resin film. it can. These metal thin films and metal foils may be thin enough to be supported on a thermoplastic resin film, and usually have a thickness within a range used as a metal thin film or metal foil. Therefore, it is sufficient that a vapor-deposited and sputtered metal thin film or metal foil of about 0.01 mm or less is formed.
Moreover, it can replace with a metal thin film only by metal foil, and can be set as a plate-shaped microwave heat generating body, without making it support on a thermoplastic resin film. In particular, at this time, the valve body resin molded body 11, 12, 13, 14, 15, 16 as the synthetic resin molded body needs to be a thermoplastic resin.
In any case, in the resin valve body 100 according to the embodiment of the present invention, the microwave plate-like heating elements 21, 22, 23, 24, 25 that can be dielectrically heated by microwaves are metal powders that are conductors. What is necessary is just what was formed as a thermoplastic resin film which knead | mixed or as a thermoplastic resin film which has a metal thin film, or metal foil.

本実施の形態のマイクロ波発熱体21,22,23,24,25によって溶着されるバルブボディ樹脂成型体11,12,13,14,15,16としては、基本的には熱可塑性樹脂からなる成形体であれば良い。熱可塑性樹脂としては、公知の熱可塑性樹脂を使用することが可能であるが、どのような熱可塑性樹脂を使用するかは、熱可塑性樹脂成形体の用途や形状等、従来の考え方によって決定される。
実際には、合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16を構成する材料としては、ポリエチレン樹脂やポリプロピレン樹脂等のポリオレフィン樹脂、PPS樹脂、ポリアミド樹脂等をバルブボディ樹脂成型体11,12,13,14,15,16に使用される樹脂として選択される。本実施の形態のマイクロ波発熱体21,22,23,24,25はその発熱温度を高温とすることができるので、PPS等の高融点の樹脂にも対応することが可能である。
また、バルブボディ樹脂成型体11,12,13,14,15,16は、熱可塑性樹脂に対して、公知の樹脂用添加剤を配合されたものでよい。着色材、可塑剤、酸化防止剤、充填材等を含有させることができる。
The valve body resin moldings 11, 12, 13, 14, 15, and 16 welded by the microwave heating elements 21, 22, 23, 24, and 25 of the present embodiment are basically made of a thermoplastic resin. Any molded body may be used. As the thermoplastic resin, a known thermoplastic resin can be used, but what kind of thermoplastic resin is used is determined by the conventional concept such as the use and shape of the thermoplastic resin molded body. The
Actually, as a material constituting the valve body resin molded body 11, 12, 13, 14, 15, 16 as a synthetic resin molded body, polyolefin resin such as polyethylene resin or polypropylene resin, PPS resin, polyamide resin or the like is used. It is selected as the resin used for the valve body resin moldings 11, 12, 13, 14, 15 and 16. Since the microwave heating elements 21, 22, 23, 24, and 25 of the present embodiment can be heated to a high temperature, they can be applied to high melting point resins such as PPS.
Moreover, the valve body resin moldings 11, 12, 13, 14, 15, and 16 may be obtained by blending a known resin additive with a thermoplastic resin. Coloring agents, plasticizers, antioxidants, fillers, and the like can be included.

即ち、マイクロ波発熱体21,22,23,24,25としては、銅粉等の金属粉を含有する熱可塑性樹脂を採用する場合には、その熱可塑性樹脂としては、バルブボディ樹脂成型体11,12,13,14,15,16を構成する熱可塑性樹脂と同じ樹脂が好ましい。同じ樹脂であれば、マイクロ波発熱体21,22,23,24,25を構成する樹脂との相溶性に優れるので、溶着後の溶着強度に優れた製品とすることができる。   That is, as the microwave heating elements 21, 22, 23, 24, and 25, when a thermoplastic resin containing metal powder such as copper powder is employed, the thermoplastic resin includes the valve body resin molded body 11. , 12, 13, 14, 15, 16 are preferably the same resins as the thermoplastic resins. If it is the same resin, since it is excellent in compatibility with the resin which comprises the microwave heating elements 21, 22, 23, 24, 25, it can be set as the product excellent in the welding strength after welding.

本発明の実施の形態の合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16の積層形状は、任意の積層でよいが、例えば、図1に示すように、6層程度までの薄板であってそれを重ねて形成されるものでもよい。この場合、各層の両面には凹部や溝が設けられ、これらの層を重ねることによって、内部に流路等が形成された成形体とすることができる。   The laminated shape of the valve body resin molded body 11, 12, 13, 14, 15, 16 as the synthetic resin molded body according to the embodiment of the present invention may be an arbitrary laminated layer, for example, as shown in FIG. It may be a thin plate of up to about 6 layers and formed by overlapping them. In this case, a concave body and a groove are provided on both surfaces of each layer, and by stacking these layers, a molded body in which a flow path or the like is formed can be obtained.

本実施の形態で使用するマイクロ波発熱体21,22,23,24,25を加熱するマイクロ波発生装置としては、マイクロ波を照射することができる形態であればよく、市販の産業用マイクロ波発生装置が使用できる。また、均一にマイクロ波を照射するために、内部に載置したバルブボディ樹脂成型体11,12,13,14,15,16に対して、収容装置の壁面構造、マイクロを拡販するための構造、バルブボディ樹脂成型体11,12,13,14,15,16を載置するターンテーブルの構造、形状、回転条件等を最適化させるのが望ましい。   The microwave generator for heating the microwave heating elements 21, 22, 23, 24, and 25 used in this embodiment may be any form that can irradiate microwaves, and is a commercially available industrial microwave. A generator can be used. Further, in order to uniformly irradiate the microwave, the wall structure of the housing device and the structure for expanding the sales of the molded valve body resin 11, 12, 13, 14, 15, 16 placed inside. It is desirable to optimize the structure, shape, rotation conditions, etc. of the turntable on which the valve body resin molded bodies 11, 12, 13, 14, 15, 16 are placed.

次に、具体的な本発明の実施の形態にかかる樹脂製バルブボディの溶着について説明する。
溶着方法としては、例えば、図4に示すように、実施例を説明するための溶着部分の要部断面を示す。
合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16の各層は、例えば、PPSのような熱可塑性樹脂からなり、必要に応じて各種樹脂用添加剤が配合されている。
Next, welding of a resin valve body according to a specific embodiment of the present invention will be described.
As a welding method, for example, as shown in FIG. 4, a cross section of a main part of a welded portion for explaining the embodiment is shown.
Each layer of the valve body resin molded body 11, 12, 13, 14, 15, 16 as a synthetic resin molded body is made of, for example, a thermoplastic resin such as PPS, and various resin additives are blended as necessary. ing.

図4(a)に示すように、バルブボディ樹脂成型体11,12の幅3mmの接合面の溶着部11a、12a相互を溶着する場合には、その溶着部の中心にマイクロ波板状発熱体21を設けることになる。例えば、該溶着部11a、12aの相互の幅が3mmであれば、その中心に設置するマイクロ波板状発熱体21の幅は0.5〜2.0mm程度が好ましい。0.5mm未満であれば十分に加熱溶着することができない場合もあるし、2mmを超えるとバルブボディ樹脂成型体11,12の接合面の樹脂が溶融しすぎて、バリが発生する可能性がある。  As shown in FIG. 4A, when welding the welded portions 11a and 12a of the joint surfaces of the valve body resin molded bodies 11 and 12 having a width of 3 mm, a microwave plate-like heating element is formed at the center of the welded portion. 21 will be provided. For example, when the mutual width of the welded portions 11a and 12a is 3 mm, the width of the microwave plate-like heating element 21 installed at the center is preferably about 0.5 to 2.0 mm. If it is less than 0.5 mm, it may not be possible to sufficiently heat-weld, and if it exceeds 2 mm, the resin on the joint surface of the valve body resin molded bodies 11 and 12 may be melted excessively, and burrs may occur. is there.

同じく、図4(b)に示すように、バルブボディ樹脂成型体11,12の幅が5mm程度の厚肉部を溶着する場合には、マイクロ波発熱体21の幅は1.5〜4mm程度が好ましく、マイクロ波発熱体21の幅が狭すぎたり、広すぎたりする場合には、前者と同様の問題が生じる。   Similarly, as shown in FIG. 4 (b), when the thick portions having a width of about 5 mm of the valve body resin molded bodies 11 and 12 are welded, the width of the microwave heating element 21 is about 1.5 to 4 mm. Preferably, when the microwave heating element 21 is too narrow or too wide, the same problem as the former occurs.

本実施の形態のマイクロ波発熱体21,22,23,24,25に含有される金属粉末は30〜80重量%であり、特に、50〜70重量%とすることが好ましい。30重量%未満であれば、十分に効率よく加熱されない可能性があり、80重量%を超えると使用する樹脂量が少なくなるために、マイクロ波発熱体21,22,23,24,25とバルブボディ樹脂成型体11,12,13,14,15,16との間で樹脂を相溶させることによる強力な溶着強度を発揮することが困難になる可能性がある。
このような金属粉末含有樹脂からなるマイクロ波発熱体21,22,23,24,25は、金属粉末含有熱可塑性樹脂を押し出し成型または射出成型等によりシート状のマイクロ波発熱体21,22,23,24,25とした後、必要に応じてさらに加圧して延ばすことによって薄膜化することもできる。
The metal powder contained in the microwave heating elements 21, 22, 23, 24, and 25 of the present embodiment is 30 to 80% by weight, and particularly preferably 50 to 70% by weight. If it is less than 30% by weight, it may not be heated sufficiently efficiently. If it exceeds 80% by weight, the amount of resin to be used is reduced, so that the microwave heating elements 21, 22, 23, 24, 25 and valves There is a possibility that it is difficult to exhibit a strong welding strength by causing the resin to be dissolved between the body resin molded bodies 11, 12, 13, 14, 15, and 16.
The microwave heating elements 21, 22, 23, 24, and 25 made of such a metal powder-containing resin are sheet-like microwave heating elements 21, 22, and 23 formed by extrusion molding or injection molding of a metal powder-containing thermoplastic resin. , 24, 25, and then, if necessary, the film can be thinned by further pressing and extending.

このように、被溶着物である合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16と、バルブボディ樹脂成型体11,12,13,14,15,16の各層間にマイクロ波発熱体21,22,23,24,25を設置させて、マイクロ波発熱体21,22,23,24,25を解してバルブボディ樹脂成型体11,12,13,14,15,16の各層を積層させ、マイクロ波をこの積層してなるマイクロ波発熱体21,22,23,24,25に照射するものである。その際、バルブボディ樹脂成型体11,12,13,14,15,16の各層の間で十分に溶着することができるよう、バルブボディ樹脂成型体11,12,13,14,15,16の各層間は0.1〜5.0MPaの加圧力で加圧されることが好ましい。このような加圧された状態にてマイクロ波を0.5〜10KWの出力で照射すると、マイクロ波発熱体21,22,23,24,25が発熱されてバルブボディ樹脂成型体11,12,13,14,15,16の溶着表面が溶融を始めるから、加圧力を弱くする等の調整を行うことによって、バリの発生防止や溶着後の製品の寸法精度を良好にすることができる。   Thus, the valve body resin moldings 11, 12, 13, 14, 15, 16 as the synthetic resin moldings to be welded and the valve body resin moldings 11, 12, 13, 14, 15, 16 Microwave heating elements 21, 22, 23, 24, 25 are installed between the respective layers, and the microwave heating elements 21, 22, 23, 24, 25 are disassembled to form valve body resin molded bodies 11, 12, 13, 14. , 15, 16 are laminated, and the microwave heating elements 21, 22, 23, 24, and 25 are irradiated with microwaves. At that time, the valve body resin moldings 11, 12, 13, 14, 15, 16 are sufficiently welded between the respective layers of the valve body resin moldings 11, 12, 13, 14, 15, 16. It is preferable that each layer is pressurized with a pressure of 0.1 to 5.0 MPa. When microwaves are irradiated with an output of 0.5 to 10 kW in such a pressurized state, the microwave heating elements 21, 22, 23, 24, 25 are heated and the valve body resin molded bodies 11, 12, Since the welding surfaces of 13, 14, 15, and 16 begin to melt, adjustments such as reducing the applied pressure can prevent the generation of burrs and improve the dimensional accuracy of the product after welding.

このとき、マイクロ波発生装置の出力は、図6に示すように、急激に出力を上げ、その出力でマイクロ波発熱体21,22,23,24,25の軟化及び溶融状態に変化させ、その溶融状態を出力の調整によって制御し、マイクロ波発熱体21,22,23,24,25を均一温度とするものである。
このとき、図5に示すように、マイクロ波発熱体21,22,23,24,25の温度特性は、速やかに溶融温度に上昇し、所定の融着温度となり、通常、30秒以内に融着温度となる。但し、マイクロ波発熱体21,22,23,24,25の立ち上げの温度特性は、白抜き矢印に示すように、出力を大きくすると早期に立ち上がることになる。
マイクロ波発熱体21,22,23,24,25が融着温度となると、その接着方向に対する押圧力によってバルブボディ樹脂成型体11,12,13,14,15,16相互が密に融着される。
At this time, as shown in FIG. 6, the output of the microwave generator suddenly increases the output and changes the microwave heating elements 21, 22, 23, 24, 25 to the softened and molten state with the output, The molten state is controlled by adjusting the output, and the microwave heating elements 21, 22, 23, 24, and 25 are brought to a uniform temperature.
At this time, as shown in FIG. 5, the temperature characteristics of the microwave heating elements 21, 22, 23, 24, and 25 quickly rise to the melting temperature, reach a predetermined fusion temperature, and normally melt within 30 seconds. It becomes the wearing temperature. However, the temperature characteristics of the start-up of the microwave heating elements 21, 22, 23, 24, and 25 rise early when the output is increased, as indicated by the white arrows.
When the microwave heating elements 21, 22, 23, 24, and 25 reach the fusion temperature, the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are closely fused together by the pressing force in the bonding direction. The

このようなマイクロ波発生装置によりバルブボディ樹脂成型体11,12,13,14,15,16を加熱して溶着を行った後、バルブボディ樹脂成型体11,12,13,14,15,16をマイクロ波発生装置から取り出し放冷することによって、溶着工程を終了させる。或いは、加熱工程を2回以上行う必要がある場合には、放冷前後のいずれかにおいて、2回目以降のマイクロ波照射を行うことになる。   After the valve body resin molded bodies 11, 12, 13, 14, 15, 16 are heated and welded by such a microwave generator, the valve body resin molded bodies 11, 12, 13, 14, 15, 16 are used. Is removed from the microwave generator and allowed to cool, thereby terminating the welding process. Or when it is necessary to perform a heating process twice or more, the microwave irradiation after the 2nd time will be performed either before and after standing_to_cool.

また、図6に示すように、マイクロ波照射後、一定時間を経過(例えば、30秒)した後に、出力を上下させる等の制御を行うのが好適である。   Also, as shown in FIG. 6, it is preferable to perform control such as raising or lowering the output after a certain time has elapsed (for example, 30 seconds) after microwave irradiation.

このように構成された合成樹脂成型体の溶着方法は、図8に示されているように、成形された合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16の中から、まず、ロアー(L)バルブボディ樹脂成型体11を基にして、マイクロ波発熱体21をロアー(L)バルブボディ樹脂成型体11の最適な位置に配置し、そして、そのマイクロ波発熱体21を挟むようにミドル(4)バルブボディ樹脂成型体12を載置する。   As shown in FIG. 8, the method of welding the synthetic resin molded body configured as described above is a valve body resin molded body 11, 12, 13, 14, 15, 16 as a molded synthetic resin molded body. First, based on the lower (L) valve body resin molded body 11, the microwave heating element 21 is arranged at the optimum position of the lower (L) valve body resin molded body 11, and the microwave The middle (4) valve body resin molded body 12 is placed so as to sandwich the heating element 21.

また、ミドル(4)バルブボディ樹脂成型体12の上の最適な位置にマイクロ波発熱体22を配置し、そのマイクロ波発熱体22を挟むようにミドル(3)バルブボディ樹脂成型体13を載置する。同様に、ミドル(3)バルブボディ樹脂成型体13の上にマイクロ波発熱体23をミドル(3)バルブボディ樹脂成型体13の最適な位置に配置し、そのマイクロ波発熱体23を挟むようにミドル(2)バルブボディ樹脂成型体14を載置する。同様に、ミドル(2)バルブボディ樹脂成型体14の上にマイクロ波発熱体24をミドル(2)バルブボディ樹脂成型体14の最適な位置に配置し、そして、その上にミドル(1)バルブボディ樹脂成型体15を載置する。  Further, the microwave heating element 22 is arranged at an optimum position on the middle (4) valve body resin molded body 12, and the middle (3) valve body resin molded body 13 is placed so as to sandwich the microwave heating element 22. Put. Similarly, the microwave heating element 23 is disposed on the middle (3) valve body resin molded body 13 at an optimum position of the middle (3) valve body resin molded body 13, and the microwave heating element 23 is sandwiched therebetween. The middle (2) valve body resin molded body 14 is placed. Similarly, the microwave heating element 24 is disposed on the middle (2) valve body resin molded body 14 at an optimum position of the middle (2) valve body resin molded body 14, and the middle (1) valve is disposed thereon. The body resin molded body 15 is placed.

更に、ミドル(1)バルブボディ樹脂成型体15の上にマイクロ波発熱体25を最適な位置に配置し、その上にアッパー(U)バルブボディ樹脂成型体16を載置する。この間、この間、チェックボール、サブストレーナ、バイパスルブ等の部品をバルブボディ樹脂成型体11,12,13,14,15,16で挟み込む所定の位置に配置する。  Further, the microwave heating element 25 is placed at an optimal position on the middle (1) valve body resin molding 15, and the upper (U) valve body resin molding 16 is placed thereon. During this time, parts such as a check ball, a sub-strainer, and a bypass valve are arranged at predetermined positions so as to be sandwiched between the valve body resin molded bodies 11, 12, 13, 14, 15, and 16.

最後に、全体をボルト等で仮止めして各種組み込み部品の組付けを完了する。そして、部品の組付けを完了した樹脂製バルブボディ100に対して、バルブボディ樹脂成型体11,12,13,14,15,16の積載方向に平行な押圧力を加え、同時に、部品の組付けを完了した樹脂製バルブボディ100に対してマイクロ波を照射させて溶着する。
次に、各油圧系統等の漏れの存在を確認し、各油圧系統に漏れが存在していないとき、次の部品取り付け工程、即ち、後工程に入る。後工程では、スリーブの圧入、カラーの圧入、複数のコントロールバルブの挿入、リニアソレノイドの組付け、他のバルブの取付け等を行い、動作チェックの後に出荷される。
Finally, the whole is temporarily fixed with bolts or the like to complete the assembly of various built-in parts. Then, a pressing force parallel to the loading direction of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 is applied to the resin valve body 100 in which the assembly of the parts is completed, and at the same time, the assembly of the parts is performed. The resin valve body 100 that has been attached is irradiated with microwaves and welded.
Next, the presence of leakage in each hydraulic system is confirmed, and when there is no leakage in each hydraulic system, the next component mounting step, that is, the subsequent step is entered. In the subsequent process, sleeve press-fitting, collar press-fitting, insertion of a plurality of control valves, assembly of linear solenoids, installation of other valves, etc. are carried out and shipped after operation check.

[実施例]
本発明の実施例として、マイクロ波板状発熱体21,22,23,24,25を製造し、これを用いた樹脂製バルブボディ及びその製造方法を説明する。
オートマチックトランスミッションにおける自動変速を行う油圧や油量を制御する複数のコントロールバルブを収容する樹脂製バルブボディ100を、コントロールバルブ収容部位の中心線に沿って6個に分割して形成する。ここで、樹脂製バルブボディ100に収容するコントロールバルブ収容部位の中心線に沿って6個に分割とは、樹脂製バルブボディ100の分割できるパーティングラインを意味し、バルブボディ樹脂成型体11,12,13,14,15,16に円筒状のコントロールバルブを収容できることを意味する。ここで使用した樹脂はPPS樹脂である。
[Example]
As an embodiment of the present invention, microwave plate-like heating elements 21, 22, 23, 24, and 25 are manufactured, and a resin valve body using the same and a manufacturing method thereof will be described.
A resin valve body 100 that houses a plurality of control valves that control oil pressure and oil amount for automatic transmission in an automatic transmission is divided into six along the center line of the control valve housing part. Here, the division into six along the center line of the control valve accommodating portion accommodated in the resin valve body 100 means a parting line where the resin valve body 100 can be divided, and the valve body resin molded body 11, This means that cylindrical control valves 12, 13, 14, 15 and 16 can be accommodated. The resin used here is a PPS resin.

金属粉としては、レーザ回折・散乱法によって測定した中位径(粉体の粒径分布において、ある粒子径より大きい個数または質量が全粉体の50%をしめるときの粒子径)が10μmの銅粉を採用し、PPS樹脂に70重量%となるように混合し、マイクロ波発熱体21,22,23,24,25を0.1mmの薄いPPS樹脂シートとした。PPS樹脂からなるバルブボディ樹脂成型体11,12,13,14,15,16は、6層を形成する樹脂部品とし、それらを積層させ、内部に流路等が形成されるように各層の片面または両面を合わせている。   The metal powder has a median diameter measured by a laser diffraction / scattering method (particle diameter when the number or mass larger than a certain particle diameter represents 50% of the total powder in the particle size distribution of the powder) is 10 μm. Copper powder was used and mixed with the PPS resin so as to be 70% by weight, and the microwave heating elements 21, 22, 23, 24, and 25 were made into thin PPS resin sheets of 0.1 mm. Valve body resin moldings 11, 12, 13, 14, 15, and 16 made of PPS resin are resin parts that form six layers, and are laminated on one side of each layer so that a flow path or the like is formed inside. Or both sides are matched.

合成樹脂成型体としてのバルブボディ樹脂成型体11,12,13,14,15,16の層の構成は、図1に示すとおりである。これらの6層のバルブボディ樹脂成型体11,12,13,14,15,16を積層させる際に生じる各層の計5か所の間にマイクロ波発熱体21,22,23,24,25を配置した。これらの5枚のマイクロ波発熱体21,22,23,24,25と6層のバルブボディ樹脂成型体11,12,13,14,15,16を積層させ、更にこの積層させた樹脂製バルブボディ100に対して、マイクロ波により加熱されないセラミックの治具により固定し、この積層させてなるバルブボディ樹脂成型体11,12,13,14,15,16及びマイクロ波発熱体21,22,23,24,25を0.1〜5.0MPa程度の圧力で加圧し、その状態でマイクロ波を照射し、溶着を行った。   The structure of the layers of the valve body resin moldings 11, 12, 13, 14, 15, 16 as synthetic resin moldings is as shown in FIG. Microwave heating elements 21, 22, 23, 24, and 25 are placed between a total of five locations in each layer that are generated when these six layers of valve body resin molded bodies 11, 12, 13, 14, 15, and 16 are laminated. Arranged. These five microwave heating elements 21, 22, 23, 24, 25 and six layers of valve body resin molded bodies 11, 12, 13, 14, 15, 16 are laminated, and this laminated resin valve is further laminated. The body 100 is fixed by a ceramic jig that is not heated by microwaves, and the laminated valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the microwave heating elements 21, 22, 23 are stacked. , 24, 25 were pressurized at a pressure of about 0.1 to 5.0 MPa, and microwaves were irradiated in this state to perform welding.

即ち、図1(b)として示すように、マイクロ波発熱体21,22,23,24,25は、加熱により樹脂が溶解するから、各層のバルブボディ樹脂成型体11,12,13,14,15,16が互いに沈み込むから、加える荷重を調整することによって、寸法精度を上げることができ、かつ、溶着によるバリの発生を防止することができる。
その溶着後の各層を拡大した状態を図2に示す。この図2においては、6層を形成するバルブボディ樹脂成型体11,12を断面として見たもので、それらの間にはマイクロ波発熱体21が挟まれている。
That is, as shown in FIG. 1 (b), the microwave heating elements 21, 22, 23, 24, and 25 dissolve the resin by heating. Therefore, the valve body resin molded bodies 11, 12, 13, 14, Since 15 and 16 sink into each other, the dimensional accuracy can be increased by adjusting the applied load, and the occurrence of burrs due to welding can be prevented.
FIG. 2 shows an enlarged state of each layer after the welding. In FIG. 2, the valve body resin moldings 11 and 12 forming six layers are viewed as a cross section, and a microwave heating element 21 is sandwiched between them.

ここで、マイクロ波発熱体21,22,23,24,25は、各層を積層させることによって形成される作動油の流路等にはみ出すことがないように、各層が溶着される樹脂面に正確に設置されていることが必要である。前述したように、各層が溶着される樹脂面の幅が3mmの場合、発熱体の幅を1mmとするようにし、必要に応じて、マイクロ波発熱体21,22,23,24,25の樹脂が直接溶着できるよう、マイクロ波発熱体21,22,23,24,25をその条件に応じた形状または貫通孔を穿設する。   Here, the microwave heating elements 21, 22, 23, 24, and 25 are accurately placed on the resin surface on which the layers are welded so that the microwave heating elements 21, 22, 23, 24, and 25 do not protrude into the hydraulic fluid flow path formed by laminating the layers. It is necessary to be installed in. As described above, when the width of the resin surface to which each layer is welded is 3 mm, the width of the heating element is set to 1 mm, and if necessary, the resin of the microwave heating elements 21, 22, 23, 24, 25 The microwave heating elements 21, 22, 23, 24, and 25 are provided with a shape or a through hole according to the conditions so that they can be directly welded.

このように、被溶着物を構成するバルブボディ樹脂成型体11,12,13,14,15,16と、バルブボディ樹脂成型体11,12,13,14,15,16の各層間にマイクロ波板状発熱体21,22,23,24,25を設置させて、マイクロ波板状発熱体21,22,23,24,25を介してバルブボディ樹脂成型体11,12,13,14,15,16の各層を積層させ、マイクロ波をこの積層してなるマイクロ波板状発熱体21,22,23,24,25に照射するものである。その際、バルブボディ樹脂成型体11,12,13,14,15,16の各層の間で十分に溶着することができるよう、バルブボディ樹脂成型体11,12,13,14,15,16の各層間は0.1〜5.0MPaの加圧力で加圧されることが必要である。このような加圧された状態にてマイクロ波を0.5〜10KWの出力で照射すると、マイクロ波板状発熱体21,22,23,24,25が発熱されてバルブボディ樹脂成型体11,12,13,14,15,16の接合面の溶着表面が溶融を始めるから、加圧力を弱くする等の調整を行うことによって、バリの発生防止や溶着後の製品の寸法精度を良好にすることができる。   In this way, microwaves are formed between the valve body resin molded bodies 11, 12, 13, 14, 15, 16 and the valve body resin molded bodies 11, 12, 13, 14, 15, 16 constituting the welded material. The plate-shaped heating elements 21, 22, 23, 24, 25 are installed, and the valve body resin molded bodies 11, 12, 13, 14, 15 are provided via the microwave plate-shaped heating elements 21, 22, 23, 24, 25. , 16 are laminated, and microwaves are applied to the laminated microwave plate-like heating elements 21, 22, 23, 24, 25. At that time, the valve body resin moldings 11, 12, 13, 14, 15, 16 are sufficiently welded between the respective layers of the valve body resin moldings 11, 12, 13, 14, 15, 16. Each layer needs to be pressurized with a pressure of 0.1 to 5.0 MPa. When microwaves are irradiated with an output of 0.5 to 10 kW in such a pressurized state, the microwave plate-like heating elements 21, 22, 23, 24, and 25 are heated and the valve body resin moldings 11, Since the welding surface of the joining surface of 12, 13, 14, 15, 16 begins to melt, by adjusting the pressure, etc., to reduce the occurrence of burrs and improve the dimensional accuracy of the product after welding. be able to.

また、マイクロ波を照射してマイクロ波発熱体21,22,23,24,25を加熱する際、マイクロ波発熱体21,22,23,24,25の発熱温度を、マイクロ波の照射エネルギを制御することで、高精度に制御することが可能であり、安定した溶着が可能であり、樹脂製バルブボディ100をより容易に製造することが可能である。そして、マイクロ波発熱体21,22,23,24,25の形状を任意の形状に設定することによって、緻密で、均一な溶着が可能となる。特に、バルブボディ樹脂成型体11,12,13,14,15,16の溶着面の一部分を加熱することができ、溶着工程によるバリの発生を防止することができる。   When the microwave heating elements 21, 22, 23, 24, and 25 are heated by irradiating microwaves, the heat generation temperature of the microwave heating elements 21, 22, 23, 24, and 25 is determined by the microwave irradiation energy. By controlling, it is possible to control with high precision, stable welding is possible, and the resin valve body 100 can be more easily manufactured. And by setting the shape of the microwave heating elements 21, 22, 23, 24, 25 to an arbitrary shape, dense and uniform welding becomes possible. In particular, a part of the welding surface of the valve body resin molded body 11, 12, 13, 14, 15, 16 can be heated, and the occurrence of burrs due to the welding process can be prevented.

更に、マイクロ波板状発熱体21,22,23,24,25が、バルブボディ樹脂成型体11,12,13,14,15,16の接合面の形状に則して形成されているから、 バルブボディ樹脂成型体11,12,13,14,15,16に対してマイクロ波発熱体21,22,23,24,25をセットする時間が極めて短時間で済み作業性がよい。
また、バルブボディ樹脂成型体11,12,13,14,15,16の溶着面には、特許文献1のように、マイクロ波発熱体21,22,23,24,25を収納するための溝を形成する必要はない。
そして、バルブボディ樹脂成型体11,12,13,14,15,16の溶着面が複雑な形状であっても、その形状に適合した複雑な形状のマイクロ波発熱体21,22,23,24,25を得ることができるので、いかなる複雑な形状に対しても溶着が可能である。
Furthermore, since the microwave plate-like heating elements 21, 22, 23, 24, 25 are formed in accordance with the shape of the joint surface of the valve body resin molded bodies 11, 12, 13, 14, 15, 16, The time required for setting the microwave heating elements 21, 22, 23, 24, and 25 to the valve body resin molded bodies 11, 12, 13, 14, 15, and 16 is extremely short, and the workability is good.
Further, a groove for accommodating the microwave heating elements 21, 22, 23, 24, 25 is provided on the welding surface of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 as disclosed in Patent Document 1. There is no need to form.
Even if the welding surfaces of the valve body resin molded bodies 11, 12, 13, 14, 15, 16 have a complicated shape, the microwave heating elements 21, 22, 23, 24 having a complicated shape suitable for the shape. , 25 can be obtained, so that it can be welded to any complicated shape.

加えて、マイクロ波発熱体21,22,23,24,25は金属粉末を含有させることによって発熱させるので、一度加熱した後の再加熱が可能である。また、被溶着物のバルブボディ樹脂成型体11,12,13,14,15,16を複数層一度に溶着させる際には、金属粉末と熱可塑性樹脂のそれぞれの含有比率を調整することによって、各溶着部の加熱の程度を均一にする等の調整が可能となる。   In addition, since the microwave heating elements 21, 22, 23, 24, and 25 generate heat by containing metal powder, they can be reheated after being heated once. Further, when a plurality of layers of the welded valve body resin molded body 11, 12, 13, 14, 15, 16 are welded at a time, by adjusting the content ratio of the metal powder and the thermoplastic resin, Adjustments such as making the degree of heating of each welded portion uniform are possible.

以上説明してきたように、本発明のマイクロ波発熱体及びこのマイクロ波発熱体に押圧力を加えながら行う溶着方法は、樹脂製バルブボディの製作に例示されるような複数の合成樹脂成型体の溶着に、特に、3以上の合成樹脂成型体を同時に溶着するのに有効である。そして、図3(a)〜図3(d)に示したようにマイクロ波発熱体の基本形状は角が面取りされてマイクロ波の角部への集中が起き難い形状となっていてスパーク等による不具合の発生を抑制している。さらに本発明のマイクロ波発熱体の平面内部には孔やメッシュ形状の切り欠きを設けることで、これらの切り欠きを使用して合成樹脂成型体の接合面の溶着部位にマイクロ波発熱体を正確に配置することが可能となる。更に、これら切り欠き部を通してマイクロ波発熱体に接して対面する合成樹脂成型体相互の樹脂が溶融接着し接合強度を上げることも期待できる。また本発明のマイクロ波発熱体は図3(a)〜図3(d)に示したような長方形等の規定の形状を用いて溶着させることができるが、合成樹脂成型体の接合面の形状に沿った特定の形状に形成して使うことができる。このように接合面の形状に沿った特定形状にすることで合成樹脂成型体の接合面にマイクロ波発熱体を短時間で設置することが可能となる。更に、合成樹脂成型体相互をより確実な接合が得られる。   As described above, the microwave heating element of the present invention and the welding method performed while applying a pressing force to the microwave heating element are performed by using a plurality of synthetic resin moldings as exemplified in the production of a resin valve body. It is particularly effective for welding three or more synthetic resin moldings at the same time. As shown in FIGS. 3 (a) to 3 (d), the basic shape of the microwave heating element is chamfered so that the microwave is not easily concentrated on the corner. The occurrence of defects is suppressed. Furthermore, the microwave heating element of the present invention is provided with a hole or mesh-shaped notch inside the plane so that the microwave heating element can be accurately attached to the welded portion of the joint surface of the synthetic resin molding using these notches. It becomes possible to arrange in. Furthermore, it can be expected that the resin of the synthetic resin moldings facing each other in contact with the microwave heating element through these notches is melted and bonded to increase the bonding strength. Further, the microwave heating element of the present invention can be welded using a prescribed shape such as a rectangle as shown in FIGS. 3A to 3D, but the shape of the joint surface of the synthetic resin molding is not limited. It can be used by forming a specific shape along. Thus, it becomes possible to install a microwave heat generating body in the joint surface of a synthetic resin molding in a short time by setting it as the specific shape along the shape of a joint surface. Furthermore, more reliable joining of the synthetic resin moldings can be obtained.

このような本発明の実施の形態にかかるマイクロ波発熱体による溶着方法の適用にはオートマッチックトランスミッション用樹脂製バルブボディ以外にも、例えば、自動車用としてCVT、HV等用のバルブボディや溶着を複数回繰り返して製品化していたインテークマニホールド、リザーバタンク等が例示される。また、自動車用以外では、油圧制御が必要な装置用の樹脂製バルブボディ、燃料電池のセパレータ等の多層の樹脂部品を固定してなるものにも適用可能である。勿論、これらに限定されるものではなく、2つ以上の熱可塑性樹脂からなる部材を一体化させてなる部材等の製造に使用することも可能である。   In addition to the resin valve body for auto-matching transmission, for example, a valve body for CVT, HV, etc. for automobiles and welding can be applied to the welding method using the microwave heating element according to the embodiment of the present invention. An intake manifold, a reservoir tank, and the like that have been manufactured by repeating a plurality of times are exemplified. In addition to those for automobiles, the present invention can also be applied to a structure in which multilayer resin parts such as a resin valve body for a device requiring hydraulic control and a separator of a fuel cell are fixed. Of course, it is not limited to these, It can also be used for manufacture of the member etc. which integrated the member which consists of two or more thermoplastic resins.

A リニアソレノイドバルブ
A1 電磁制御部
A2 バルブ部
11,12,13,14,15,16 バルブボディ樹脂成型体
20、21,22,23,24,25 マイクロ波発熱体
100 樹脂製バルブボディ
A Linear solenoid valve A1 Electromagnetic control unit A2 Valve unit 11, 12, 13, 14, 15, 16 Valve body resin molded body 20, 21, 22, 23, 24, 25 Microwave heating element 100 Resin valve body

Claims (7)

導電体粉末を混練して、2mm以下の厚みとし、複数の合成樹脂成型体相互間に配置され、マイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムとし、前記合成樹脂成型体相互間に押圧力を加えて溶着することを特徴とするマイクロ波発熱体。   Conductor powder is kneaded to a thickness of 2 mm or less, disposed between a plurality of synthetic resin moldings, a thermoplastic resin film that can be dielectrically heated by microwaves, and a pressing force is applied between the synthetic resin moldings. In addition, a microwave heating element characterized by being welded. 金属薄膜をコーティングして、2mm以下の厚みとし、複数の合成樹脂成型体相互間に配置され、マイクロ波によって誘電加熱自在な熱可塑性樹脂フィルムとし、前記合成樹脂成型体相互間に押圧力を加えて溶着することを特徴とするマイクロ波発熱体。   A thin metal film is coated to a thickness of 2 mm or less, placed between a plurality of synthetic resin moldings, made into a thermoplastic resin film that can be dielectrically heated by microwaves, and a pressing force is applied between the synthetic resin moldings. A microwave heating element characterized by being welded. 金属箔を0.5mm以下の厚みとし、複数の合成樹脂成型体相互間に配置され、マイクロ波によって誘電加熱自在とし、前記合成樹脂成型体相互間に押圧力を加えて溶着することを特徴とするマイクロ波発熱体。   The metal foil has a thickness of 0.5 mm or less, is disposed between a plurality of synthetic resin moldings, can be freely heated by microwaves, and is welded by applying a pressing force between the synthetic resin moldings. A microwave heating element. 前記マイクロ波発熱体は、前記合成樹脂成型体相互の接合面の形状に沿って形成されていることを特徴とする請求項1乃至請求項3の何れか1つに記載のマイクロ波発熱体。   The microwave heating element according to any one of claims 1 to 3, wherein the microwave heating element is formed along a shape of a joint surface between the synthetic resin moldings. 前記マイクロ波発熱体は、全角が面取り処理されていることを特徴とする請求項1乃至請求項4の何れか1つに記載のマイクロ波発熱体。   The microwave heating element according to any one of claims 1 to 4, wherein the microwave heating element is chamfered at all angles. 前記マイクロ波発熱体は、位置決めする貫通孔が穿設されていることを特徴とする請求項1乃至請求項5の何れか1つに記載のマイクロ波発熱体。   The microwave heating element according to any one of claims 1 to 5, wherein the microwave heating element has a through hole for positioning. 導電体粉末を混練して、若しくは金属薄膜をコーティングしてなる2mm以下の厚みの熱可塑性樹脂フィルムとし、または金属箔を0.5mm以下の厚みとし、それを合成樹脂成型体相互間に配置し、前記熱可塑性樹脂フィルムを挟持する方向に押圧力を加えると共に、マイクロ波によって前記熱可塑性樹脂フィルムを誘電加熱して前記前記合成樹脂成型体相互間を溶着することを特徴とするマイクロ波発熱体による溶着方法。   Conductor powder is kneaded or coated with a metal thin film to make a thermoplastic resin film with a thickness of 2 mm or less, or metal foil with a thickness of 0.5 mm or less, and placed between synthetic resin moldings. A microwave heating element characterized in that a pressing force is applied in a direction in which the thermoplastic resin film is sandwiched, and the thermoplastic resin film is dielectrically heated by a microwave to weld the synthetic resin moldings together. Welding method by.
JP2010230812A 2010-10-13 2010-10-13 Microwave heating element and welding method using the same Expired - Fee Related JP5586410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010230812A JP5586410B2 (en) 2010-10-13 2010-10-13 Microwave heating element and welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010230812A JP5586410B2 (en) 2010-10-13 2010-10-13 Microwave heating element and welding method using the same

Publications (2)

Publication Number Publication Date
JP2012084438A true JP2012084438A (en) 2012-04-26
JP5586410B2 JP5586410B2 (en) 2014-09-10

Family

ID=46243088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010230812A Expired - Fee Related JP5586410B2 (en) 2010-10-13 2010-10-13 Microwave heating element and welding method using the same

Country Status (1)

Country Link
JP (1) JP5586410B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110287A (en) * 2013-12-06 2015-06-18 アイシン化工株式会社 Microwave dielectric heating joint body
US9374853B2 (en) 2013-02-08 2016-06-21 Letourneau University Method for joining two dissimilar materials and a microwave system for accomplishing the same
EP3038811A1 (en) * 2013-08-30 2016-07-06 Henkel AG & Co. KGaA Method for welding of plastics using welding promoters
CN106881871A (en) * 2017-03-31 2017-06-23 北京微纳宏创科技有限公司 Controllable locating surface welding method between thermoplastic macromolecule material body
JP2018168351A (en) * 2017-03-29 2018-11-01 三洋化成工業株式会社 Resin composition for microwave heating and welding

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180330A (en) * 1989-12-09 1991-08-06 Sakae Riken Kogyo Kk Manufacture of air spoiler
JPH03248832A (en) * 1990-02-28 1991-11-06 Fuji Heavy Ind Ltd Joining method of fiber-reinforced composite
JPH0431031A (en) * 1990-05-29 1992-02-03 Mitsubishi Heavy Ind Ltd Joining method of plastic
JPH04232028A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Method of fusing thermoplastic resin material by radio-frequency heating
JPH09124953A (en) * 1995-11-06 1997-05-13 Sekisui Chem Co Ltd Resin composition for microwave fusion
JPH09239844A (en) * 1996-03-13 1997-09-16 Mitsuboshi:Kk Bonding of polymeric material and adhesive composition
JPH11179854A (en) * 1997-10-15 1999-07-06 Okura Ind Co Ltd Radiofrequency fusible laminated body
JP2000168737A (en) * 1998-12-11 2000-06-20 Toppan Printing Co Ltd Hermetical sealing of paper container, and forming device using the same method
JP2000229328A (en) * 1999-02-12 2000-08-22 Honda Motor Co Ltd Production of laminated resin product and laminated resin product
JP2000233450A (en) * 1999-02-17 2000-08-29 Honda Motor Co Ltd Method for welding resin members
JP2004244446A (en) * 2003-02-10 2004-09-02 Polyplastics Co Method of joining thermoplastic resin materials
JP2009066924A (en) * 2007-09-13 2009-04-02 Inax Corp Composite material, and its manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180330A (en) * 1989-12-09 1991-08-06 Sakae Riken Kogyo Kk Manufacture of air spoiler
JPH03248832A (en) * 1990-02-28 1991-11-06 Fuji Heavy Ind Ltd Joining method of fiber-reinforced composite
JPH0431031A (en) * 1990-05-29 1992-02-03 Mitsubishi Heavy Ind Ltd Joining method of plastic
JPH04232028A (en) * 1990-12-28 1992-08-20 Nippon Steel Corp Method of fusing thermoplastic resin material by radio-frequency heating
JPH09124953A (en) * 1995-11-06 1997-05-13 Sekisui Chem Co Ltd Resin composition for microwave fusion
JPH09239844A (en) * 1996-03-13 1997-09-16 Mitsuboshi:Kk Bonding of polymeric material and adhesive composition
JPH11179854A (en) * 1997-10-15 1999-07-06 Okura Ind Co Ltd Radiofrequency fusible laminated body
JP2000168737A (en) * 1998-12-11 2000-06-20 Toppan Printing Co Ltd Hermetical sealing of paper container, and forming device using the same method
JP2000229328A (en) * 1999-02-12 2000-08-22 Honda Motor Co Ltd Production of laminated resin product and laminated resin product
JP2000233450A (en) * 1999-02-17 2000-08-29 Honda Motor Co Ltd Method for welding resin members
JP2004244446A (en) * 2003-02-10 2004-09-02 Polyplastics Co Method of joining thermoplastic resin materials
JP2009066924A (en) * 2007-09-13 2009-04-02 Inax Corp Composite material, and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9374853B2 (en) 2013-02-08 2016-06-21 Letourneau University Method for joining two dissimilar materials and a microwave system for accomplishing the same
EP3038811A1 (en) * 2013-08-30 2016-07-06 Henkel AG & Co. KGaA Method for welding of plastics using welding promoters
JP2015110287A (en) * 2013-12-06 2015-06-18 アイシン化工株式会社 Microwave dielectric heating joint body
JP2018168351A (en) * 2017-03-29 2018-11-01 三洋化成工業株式会社 Resin composition for microwave heating and welding
CN106881871A (en) * 2017-03-31 2017-06-23 北京微纳宏创科技有限公司 Controllable locating surface welding method between thermoplastic macromolecule material body
CN106881871B (en) * 2017-03-31 2023-06-09 北京微纳宏创科技有限公司 Welding method for controllable locating surfaces between thermoplastic polymer material bodies

Also Published As

Publication number Publication date
JP5586410B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5586410B2 (en) Microwave heating element and welding method using the same
JP5615124B2 (en) Resin valve body and manufacturing method thereof
US9586362B2 (en) Thermoplastic welding apparatus and method
EP1486314B1 (en) Laser-welded assembly and method for producing it
US9500416B2 (en) Thermal management device and method for making the same
CN105917145A (en) Method for producing an electronic module having an interlockingly connected housing part element
KR20170116249A (en) Welding method and weld
WO2013125664A1 (en) Laser joining method
JP5709731B2 (en) Microwave resin welded body and welding method using the same
US20180103133A1 (en) Connector and method of manufacturing the same
JP4724527B2 (en) Manufacturing method of resin molded product using laser welding method
US8568943B2 (en) Method of preparing a fuel cell unitized electrode assembly by ultrasonic welding
JP5988902B2 (en) Microwave dielectric welded body and welding method using microwave dielectric welded body
KR20190090853A (en) Method of Making Weldable Metal-Polymer Multilayer Composites
JP2004050513A (en) Method for joining resin films
JP2005262531A (en) Thermoplastic resin joining method and fuel cell obtained using it
JP2015160334A (en) Method of joining resin member and method of manufacturing well chip for inspection
JP2010092733A (en) Membrane-electrode assembly, and method and apparatus for manufacturing the same
JP7380252B2 (en) Method for manufacturing laminate
EP3488999B1 (en) Joining method for thermoplastic elements
JP6153505B2 (en) Microwave dielectric heating element and welding method using the same
JP4342006B2 (en) Method for producing hollow fiber membrane element and method for producing hollow fiber membrane module
JP6501702B2 (en) Microwave dielectric heating weldment and welding method thereby
JP5958972B2 (en) Microwave dielectric heating assembly
US11084227B2 (en) Thermo-fusion additive fabrication method, production method for thermo-fusion additive fabrication object, and structure partially including thermo-fusion additive fabrication object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees