JP2012082117A - 不定形耐火混練物の製造方法及び耐火物施工体 - Google Patents

不定形耐火混練物の製造方法及び耐火物施工体 Download PDF

Info

Publication number
JP2012082117A
JP2012082117A JP2010231446A JP2010231446A JP2012082117A JP 2012082117 A JP2012082117 A JP 2012082117A JP 2010231446 A JP2010231446 A JP 2010231446A JP 2010231446 A JP2010231446 A JP 2010231446A JP 2012082117 A JP2012082117 A JP 2012082117A
Authority
JP
Japan
Prior art keywords
ultrafine powder
refractory
powder
mass
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010231446A
Other languages
English (en)
Inventor
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010231446A priority Critical patent/JP2012082117A/ja
Publication of JP2012082117A publication Critical patent/JP2012082117A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

【課題】耐火性粉粒体の凝集を防いで均一に混練することができ、強度発現や流動性等の特性に優れた不定形耐火混練物を得ることができる方法を提供し、また、得られた不定形耐火混練物を硬化させた耐火物施工体を提供する。
【解決手段】平均粒径10μm以下の超微粒粉末を含む耐火性粉粒体と分散剤とを混練して不定形耐火混練物を製造する方法であって、超微粒粉末の少なくとも一部と分散剤とを水に加えて、超微粒粉末/(超微粒粉末+水)の質量百分率が5質量%以上85質量%以下の超微粉分散液を得て、この超微粉分散液と耐火性粉粒体の残部とを混練する不定形耐火混練物の製造方法であり、また、得られた不定形耐火混練物を所定の型枠内に流し込んで硬化させた耐火物施工体である。
【選択図】なし

Description

この発明は、不定形耐火混練物の製造方法、及び、耐火物施工体に関し、詳しくは、耐火性粉粒体の凝集を防いで均一に混練された不定形耐火物の混練物を得ることができる不定形耐火混練物の製造方法、及び、得られた不定形耐火混練物からなる耐火物施工体に関する。
鉄鋼製造をはじめとする高温物質を取り扱う分野において耐火物は不可欠であり、耐火物の高耐用化は、各種分野での生産を安定させ、また、コストを削減するためにも必要である。とりわけ、型枠内に流し込んで硬化させたり、耐火が必要な施工対象物に吹き付けて使用される不定形耐火物は、定形耐火物に比べて汎用性が高いことから広く利用されており、不定形耐火物の耐用性や施工性等を向上させることは極めて重要である。
不定形耐火物は、アルミナやマグネシア等の耐火性粉粒体を水と共に混練して、先ず混練物の状態として得るのが一般的である。この耐火性粉粒体には数mmを超えるものから1μm未満の超微粉まであり、例えば、耐火性粉粒体の代表例である焼結アルミナ等では、粒径1mm以上の粗粒、粒径75μm以上の中粒、粒径75μm未満の微粒等のような様々な粒径の耐火物原料が市販されている。通常、篩分けが可能な最小の篩目は45μmであり、これより更に粒径が小さいものとしては、例えば、平均粒径10μmの仮焼アルミナ等のような超微粒粉末が市販されている。そして、骨材にする目的や、不定形耐火混練物の流動性を高めるなどの目的に応じて、これらの耐火物原料の配合割合を決めて耐火性粉粒体とする。
ところで、不定形耐火混練物を得るにあたり、耐火性粉粒体を構成する粒子の一つ一つがばらばらになった一次粒子として分散しているのが理想である。ところが、耐火性粉粒体のなかには微粒や超微粒粉末のように粒径が非常に小さいものが含まれることから、これらは水と混ざり難く、凝集して二次粒子を形成し易い。いったん二次粒子を形成すると一次粒子への解砕は容易ではない。そこで、粒子同士を反発させて凝集を防ぐようにする分散剤(解膠剤又は減水剤とも称される)を耐火性粉粒体に混ぜて、二次粒子が形成され難くすることもできるが、分散剤の添加量が多くなると不定形耐火混練物の硬化性が低下するなどの問題が生じるため、分散剤の量をむやみに増やすことができない。そのため、二次粒子の形成を完全に防ぐのは難しく、実際に不定形耐火混練物を得る際には、解砕できない分を見込んで微粒や超微粒粉末を多めに配合しているのが実情である。
このような状況において、例えば、粒径45μm以下の粉末に粒径10μm以下の超微粒粉末を加えた第1の耐火性粉粒体とこれらより粒径の粗い粉末からなる第2の耐火性粉粒体とに分けて、先ず、第1の耐火性粉粒体をミキサー等でせん断力を加えながら混和して二次粒子をほぐし、これを第2の耐火性粉粒体に加えて混和することで、粒径45μm未満の一次粒子によって形成される二次粒子の存在割合を減らす方法が提案されている(特許文献1参照)。また、平均粒径10μm以下の超微粒粉末、分散剤、及び水を混練してスラリー化し、これを耐火性粉粒体の残部に加えて混練することで、微粉の分散性を高める方法が提案されている(特許文献2参照)。しかしながら、耐火性粉粒体が凝集せずに均一に分散して混練される理想的な不定形耐火混練物を得るには、まだ改良の余地がある。
特開2008−156143号公報 特開平8−239276号公報
上述した従来技術の方法について本発明者等が詳細に検討したところ、例えば、提案されている前者の方法(特許文献1)を用いると、実際には、第1の耐火性粉粒体における粒径45μm以下の粉末の存在によって粒径10μm以下の超微粒粉末の解砕が進み難く、また、粒径10μm以下の超微粒粉末が粒径45μm以下の粉末にまぶりついて、これらが二次粒子を形成してしまうことが分った。一方、後者の方法(特許文献2)では、15部前後の超微粒粉末と0.03〜0.1部の分散剤に対して外掛けで約5〜6wt%の混練水を加えてスラリーを得ているが(特許文献2の表1参照)、この方法では分散剤の量が多くなり過ぎて経済性にそぐわないばかりか、耐火物の硬化不良が生じるおそれがある。
そこで、本発明者等は、耐火性粉粒体の凝集を防ぎ、特に平均粒径10μm以下の超微粒粉末の凝集を防いで、均一に混練して不定形耐火混練物を得る手段について鋭意検討した結果、予め超微粒粉末の少なくとも一部と分散剤とを水に加えて分散させて超微粉分散液を用意し、これを耐火性粉粒体の残部に加えて混練することで、上記課題を解決できることを見出し、本発明を完成させた。
したがって、本発明の目的は、耐火性粉粒体の凝集を防いで均一に混練することができ、強度発現や流動性等の特性に優れた不定形耐火混練物を得ることができる方法を提供することにある。
また、本発明の別の目的は、上記で得られた不定形耐火混練物を硬化させることで、経済的で、硬化トラブルがなく、しかも、緻密で高強度であり、高耐食性の耐火物施工体を提供することにある。
すなわち、本発明は、平均粒径10μm以下の超微粒粉末を含む耐火性粉粒体と分散剤とを混練して不定形耐火混練物を製造する方法であって、超微粒粉末の少なくとも一部と分散剤とを水に加えて、超微粒粉末/(超微粒粉末+水)の質量百分率が5質量%以上85質量%以下の超微粉分散液を得て、この超微粉分散液と耐火性粉粒体の残部とを混練することを特徴とする不定形耐火混練物の製造方法である。
また、本発明は、上記方法によって得られた不定形耐火混練物を所定の型枠内に流し込んで硬化させた耐火物施工体である。
本発明においては、平均粒径10μm以下の超微粒粉末を含んだ耐火性粉粒体を用いる。この超微粒粉末を配合すると、不定形耐火混練物の流動性を大きくすることができて型枠内に容易に充填できたり、流し込んだ際に発生する気泡が浮上して抜け易いなど、施工性を向上させることができる。また、硬化させて得た施工体の強度を高くしたり、施工体を緻密にして耐用性を向上させる効果もある。これらの効果は超微粒粉末が一次粒子の場合に強く発現するが、凝集して二次粒子になるとその効果は損なわれてしまうため、不定形耐火混練物においてこの超微粒粉末を均一に分散させて混練することが重要である。ここで、平均粒径とはメジアン径を意味し、粒度分布において質量累積値が50%となる粒径を表す。
平均粒径10μm以下の超微粒粉末は、一般に耐火物原料として使用されるものを用いることができる。その種類としては、例えば、アルミナ、シリカ、マグネシア、チタニア、ジルコニア、イットリア、SiC、B4C、C、各種セメント等からなるもののほか、アルミニウム、けい素、マグネシウム等の酸化物、炭酸化物、水和物、水酸化物、硼化物又は炭化物、更には、Al、Si等の金属からなるものを例示することができ、その他、耐火性粉粒体として添加することで施工性や施工体特性等を向上させることができる物質を含む。なかでも、入手容易性を考慮すれば、仮焼アルミナ、超微粉シリカ(シリカフラワー、揮発シリカ、マイクロシリカ等とも呼ばれる)、スピネル等が好適な超微粒粉末として挙げられる。
超微粒粉末以外の耐火性粉粒体については、超微粒粉末と同様に、一般的な耐火物原料を使用することができ、超微粒粉末で例示したような種類の耐火物原料を用いることができるが、それらは超微粒粉末より粒径が大きいものを用いるようにする。好適には、焼結あるいは電融アルミナ、焼結あるいは電融マグネシア、焼結あるいは電融スピネル、ジルコン、ジルコニア、硅石、シリカ、シャモット、粘土、ろう石、ばん土頁岩、ボーキサイト、シリマナイト、アンダリューサイト、カヤナイト、ムライト、アルミナ−ジルコニア、ドロマイト、SiC、黒鉛等の炭素等を用いることができ、また、粗粒(例えば1mm以上)、中粒(同じく75μm以上)、微粒(同じく75μm未満)等のように粒径が異なるものを選択しながら、目的とする施工体に応じた不定形耐火混練物が得られるように適宜配合するのが良い。具体的には、アルミナ−シリカ質、シリカ質、アルミナ質、アルミナ−マグネシア質、アルミナ−スピネル質、ジルコニア質、ジルコン質、セミジルコン質、マグネシア質、マグネシア−スピネル質、マグネシア−C質、アルミナ−C質、アルミナ−SiC−C質等をはじめとして、各種不定形耐火混練物が得られるように、粒径を含めて耐火性粉粒体の配合組成を決定すれば良い。
不定形耐火混練物を製造するにあたり、先ず、超微粒粉末の一部又は全部と分散剤とを水に加えて、超微粒粉末を分散させた超微粉分散液を得るようにする。その際、超微粒粉末/(超微粒粉末+水)の質量百分率(以下、分散濃度と称する)が5質量%以上85質量%以下、好ましくは10質量%以上50質量%以下の範囲になるように超微粒粉末を加えるようにする。この質量百分率が5質量%に満たないと事前に超微粉分散液を得て超微粒粉末を分散させる効果が認められず、反対に85質量%を超えると超微粒粉末が沈殿してしまう、あるいは十分に解砕できない、など、超微粒粉末を十分に分散させることができなくなる。そのため施工体の品質も、分散濃度が適切な場合と比較してやや劣る場合がある。あるいは不定形耐火物施工体が必要以上に緻密になって弾性率が上昇し、熱衝撃に弱くなる場合がある。また、乳化分散機を使用する場合、分散濃度が50質量%を超えると、分散液の見掛けの粘度や比重が大きすぎて、うまく分散機で処理しにくくなる。なお、超微粉分散液の濃度範囲内で超微粒粉末が耐火性粉粒体に含まれる場合には、その全部を超微粉分散液の形成に使用しても良いし、一部のみを使用しても良い。また濃度範囲を超える量の超微粒粉末が耐火性粉粒体に含まれる場合には、余った超微粒粉末は耐火性粉粒体の残部として扱えば良い。
超微粉分散液を形成する分散剤は、不定形耐火混練物を製造するにあたり一般的に使用されるものを用いることができる。一例を挙げると、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ウルトラポリリン酸ナトリウム、酸性ヘキサメタリン酸ナトリウム等のアルカリ金属リン酸塩をはじめ、ポリカルボン酸ナトリウム等のポリカルボン酸塩、アルキルスルホン酸塩、芳香族スルホン酸塩、ポリアクリル酸ナトリウム、スルホン酸ナトリウム等を例示することができ、これらの1種又は2種以上を用いることができる。超微粉分散液における分散剤の濃度は、超微粒粉末を均一に分散させる観点から、好ましくは0.05質量%以上0.6質量%以下であるのが良く、より好ましくは0.1質量%以上0.6質量%以下であるのが良い。なお、分散剤は粉末状のものを使用してもよく、液体状のものを使用してもよい。
一般に、分散剤は全ての種類の耐火性粉粒体に有効であるとは限らない。例えば、現在主流となっているアルミナを主成分とした不定形耐火物においては、主成分であるアルミナに対して分散能力の高い分散剤を用いて混練される。一方、アルミナ−マグネシア系の不定形耐火物では、一般に超微粒粉末として超微粉シリカが主に添加されて混練されるが、この超微粉シリカはアルミナに対して効果が高い分散剤ではうまく分散させることができず、これまで超微粉シリカは相対的に十分な分散効果が得られていなかった。そこで、予め超微粉分散液を形成するようにすることで、超微粒粉末の種類によらずに少なくともある一定の分散効果が期待でき、特に、超微粉分散液に分散される超微粒粉末が平均粒径10μm以下の超微粉シリカを含む場合に、超微粉分散液を用いる効果は十分発揮されると言える。すなわち、不定形耐火混練物の材質が、例えばアルミナ−マグネシア質、アルミナ−シリカ質、アルミナ−SiC−C質のようなシリカ超微粉を含む材料の場合には、シリカ超微粉は極力多く超微粉分散液とすることが望ましい。勿論、アルミナ超微粉も極力超微粉分散液とすることが望ましい。つまり、超微粉分散液に分散させる超微粒粉末が平均粒径10μm以下の仮焼アルミナのような場合にもその効果は十分発現する。また、例えば超微粉シリカと共に仮焼アルミナを含むようにして、2種以上を分散させてもよい。
超微粒粉末と分散剤とを水に加えて分散させる際には、人力による攪拌のほか、攪拌子を回転させる回転型撹拌装置、容器が回転あるいは振動・揺動する装置、気泡で撹拌する装置等を用いるようにしても良く、また、ノズルから吐出させた液を衝突させて、その衝突エネルギーで撹拌できるような装置を用いても良い。好適には、これらの装置を使用した後の仕上げに又は単独で、乳化分散機を用いるようにするのが良い。乳化分散機は主に食品製造や塗料・インク製造の分野等で用いられており、液体に粉粒体を分散させる装置である。乳化分散機は、例えば、カップ型や円筒型や凹凸のある円盤型をした単数又は複数の固定子と、これに対して狭いクリアランスで嵌合したり相対するカップ型や円筒型や凹凸のある円盤型をした単数又は複数の回転子とを備えてこれらの間でせん断応力を生じさせるため、より大きなせん断力を付与しながら超微粒粉末を分散・解砕することができる。また、超微粉分散液を得る際には、好ましくは、分散剤を水に溶かした後に超微粒粉末を加えるようにすると超微粒粉末が凝集するおそれを確実に排除することができる。なお、分散剤の全量を水に溶かさなくても、その一部が溶解していれば超微粒粉末の凝集を防ぐ効果があると考えられ、予め分散剤の一部を水に溶かしてから超微粒粉末を加えるようにしても良いが、好適には分散剤の全量を水に溶かして超微粒粉末を加えるようにするのが良い。
超微粉分散液と耐火性粉粒体の残部との混練には、一般的に不定形耐火物を得る際の混練に使用されるものを用いることができる。具体的には、平型ミキサー(モルタルミキサー、商品名ボルテックスミキサー、商品名ターボミキサーなど)、万能ミキサー、ポットミキサー、リボンミキサー、二軸練りミキサー、商品名ハイファンクションミキサー、商品名オムニミキサー、商品名ジクロスミキサー、商品名アイリッヒミキサー等を挙げることができるが、これらに制限されない。混練して得られた不定形耐火混練物は、例えば常法により型枠等に流し込み、必要に応じて加振して成形し、養生して硬化させることで施工体を得ることができる。また、得られた不定形耐火混練物を耐火対象物に吹き付け等を行ってもよい。得られた施工体は、必要に応じて乾燥させたり、焼結させたりしてよい。
不定形耐火混練物を得るにあたり、超微粉分散液と耐火性粉粒体の残部との混合割合は、目的とする耐火物施工体の用途やその材質等に応じて適宜決定することができるが、ひとつの指標として不定形耐火混練物の水分と、超微粉分散液の分散濃度とで決めることができる。すなわち、水分は不定形耐火混練物全体の粒度配合や分散剤の性質のほか、要求される流動性や施工体の必要具備特性等を考慮した材料設計により決められる。一般的に、不定形耐火混練物の水分量は外掛けで4〜6質量%程度であり、この範囲を一つの目安にすることができる。緻密な施工体を得るには水分量は少ない方が良いため、超微粉分散液の分散濃度は高くするのが良い。一方で、耐熱衝撃性が要求される場合には超微粉分散液の分散濃度を低くして水分量を多めにするのが良い。前述のように、超微粉分散液の濃度が高いと施工体が熱衝撃に弱くなるため、例えば溶鋼取鍋の湯当たり部に用いる耐火物施工体を形成する不定形耐火混練物を得る場合には、超微粉分散液の分散濃度は、例えば30質量%以下とし、超微粉の残部は耐火性粉粒体に合わせて混練するのがよい。また溶鋼取鍋羽口のように緻密性を要求される場合は、例えば30質量%以上とし、超微粉の残部は耐火性粉粒体に合わせて混練するのがよい。
本発明では、事前に超微粉分散液において超微粒粉末を均一に分散させていることから、不定形耐火混練物における分散剤の使用量を必要最小限に抑えることができ、好適には不定形耐火混練物における分散剤の割合は0.0025質量%以上0.05質量%以下であるのが良く、より好適には0.005質量%以上0.04質量%以下であるのが良い。これによって経済性の面で有利になるだけでなく、不定形耐火混練物の硬化不良を抑制し、耐火物施工体の強度を低下させるおそれを排除しながら、耐火性粉粒体の凝集を防いで均一に混練することができる。また、高炉樋、溶鋼取鍋、タンディッシュ、ランス等に使用される耐火物施工体を形成する不定形耐火混練物では、耐火性粉粒体における超微粒粉末の割合が1質量%以上30質量%以下であるのが良く、好ましくは3質量%以上15質量%以下、より好ましくは5質量%以上10質量%以下であるのが良い。超微粉分散液において超微粒粉末が均一に分散されるため超微粒粉末の機能を最大限発揮することができ、上記の配合割合において不定形耐火混練物の流動性を十分確保することができると共に、耐用性や強度に優れた耐火物施工体を得ることができる。特に、本発明によって得られた耐火物施工体は、超微粒粉末の凝集を防いでより緻密な構造を有することから、一般に耐火物施工体の強度が落ちると言われる中間強度(800〜1000℃での熱間強度あるいは同温度焼成後の常温強度)においても優れた特性を備える。
本発明によれば、耐火性粉粒体の凝集を防いで均一に混練することができ、強度発現や流動性等の特性に優れた不定形耐火混練物を得ることができる。特に、本発明の不定形耐火混練物の製造方法では、平均粒径10μm以下の超微粒粉末を分散剤と共に事前に分散させて超微粉分散液を得るため、この超微粒粉末がそれより大きな粒径のものにまぶり付いて二次粒子を形成するようなおそれもなく、超微粒粉末や分散剤の機能を最大限発揮させることができる。また、本発明によって得られた不定形耐火混練物は施工性が良好であり、強度や耐用性に優れた耐火物施工体を得るのに好適である。
以下、実施例に基づき本発明をより具体的に説明するが、本発明は以下の内容に制限されない。
[超微粒粉末の分散確認試験]
0.1質量%のヘキサメタりん酸ナトリウムを含んだ水溶液3000gに対し、メジアン径0.6μmの仮焼アルミナ1280gを加えた分散試験液を用意した。ここで、仮焼アルミナのメジアン径は、質量表示した粒度分布の累計曲線が50質量%となる粒径である。先ず、上記の分散試験液を回転数150rpmの回転型撹拌装置(ひねりのある十字羽、羽根外直径50mm)で5分間撹拌した後、レーザー回折式粒度分布測定装置(島津製作所製SALD−3000S、超音波分散なし)で分散試験液中の仮焼アルミナのメジアン径を調べたところ、メジアン径は2μmであった。
次に、この回転型撹拌装置で攪拌した後の分散試験液を回転子と固定子をそれぞれ3対有する回転数10000rpmの乳化分散機(大平洋機工製 MDN304)に1回通して上記と同様に仮焼アルミナのメジアン径を調べたところ、メジアン径は0.7μmであった。また、回転型撹拌装置で攪拌した後の分散試験液を乳化分散機とは別に、対向に配置した微細なノズルから噴射した液どうしを衝突させて撹拌する装置(スギノマシン製HJP25005)に1回通して上記と同様に仮焼アルミナのメジアン径を調べたところ、メジアン径は0.7μmであった。以上の結果、回転型撹拌装置で分散試験液中の超微粒粉末を一次粒子まで解砕することができ、かつその後の凝集を防ぐことができ、特に、乳化分散機を通すことで実用上十分に超微粒粉末を分散・解砕できることが確認された。
[実施例1]
表1に示したように、耐火性粉粒体として、焼結アルミナ(粒径5mm以下、同150μm以下、同45μm以下の3種類)、焼結マグネシア(粒径75〜45μm)、仮焼アルミナ(メジアン径5μm、同1μmの2種類)、超微粉シリカ(メジアン径1μm)、及び、第1種のアルミナセメント(粒径45μm以下)を用意し、また、分散剤としてヘキサメタりん酸ナトリウム(粉末)を用意して、次のようにして実施例1に係る不定形耐火混練物を製造した。
先ず、700gの水(耐火性粉粒体に対して外掛けで7質量%に相当)に対して、メジアン径5μmの仮焼アルミナとメジアン径1μmの仮焼アルミナをそれぞれ170g(耐火性粉粒体においてそれぞれ1.7質量%に相当)、及び、分散剤を3g(耐火性粉粒体に対して外掛けで0.03質量%に相当)同時に加え、これを上記分散確認試験で使用したものと同じ回転数150rpmの回転型撹拌装置で3分間撹拌して、超微粉分散液を得た。この超微粉分散液における「超微粒粉末/(超微粒粉末+水)」の質量百分率は32.6質量%である。
次に、万能混練機(ダルトン製25AM−Qr)を用いて表1の粉粒体の欄に記した耐火性粉粒体の残部を1分間空混合した上で、上記で得られた超微粉分散液を加えて更に3分間混練して、アルミナ質の不定形耐火混練物を得た。得られた不定形耐火混練物について、JIS−R2521規定のフロー試験の要領に従い、フリーフローとタップフローを計測した。また、得られた不定形耐火混練物を型枠に流し込み、1.5Gで1分間加振して成形した。その後、常温で24時間養生してから脱枠し、110℃で24時間乾燥させて、嵩比重、気孔率、及び曲げ強度を測定した。このうち、嵩比重と気孔率は40mm×40mm×40mmの試料を用いてJIS−R2205に準拠して測定した。また、曲げ強度は断面40mm×40mm、長さ160mmの試料を用いて、スパン100mmで行った。曲げ強度については、乾燥後の試料を更に1000℃で6時間焼成した後の値についても測定した。これらの結果を表1に示す。
Figure 2012082117
[実施例2]
超微粉分散液を得るにあたり、先ず、回転数150rpmの回転型撹拌機を用いて700gの水に3gの分散剤を溶解させた後、メジアン径5μmの仮焼アルミナとメジアン径1μmの仮焼アルミナをそれぞれ170g加えて、更に回転数150rpmの回転型撹拌装置で3分間撹拌するようにした以外は実施例1と同様にして、実施例2に係るアルミナ質の不定形耐火混練物を製造した。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[実施例3]
実施例2で得た超微粉分散液を、更に上記分散確認試験で使用したものと同じ乳化分散機を用いて回転数10000rpmで1回処理して、実施例3に係る超微粉分散液を調製した。この超微粉分散液を用いた以外は実施例2と同様にして、実施例3に係るアルミナ質の不定形耐火混練物を得た。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[実施例4]
超微粉分散液を得るにあたり、先ず、回転数150rpmの回転型撹拌機を用いて600gの水に2.5gの分散剤を溶解させた後、メジアン径1μmの超微粉シリカを100g加えて、更に回転数150rpmの回転型撹拌装置で3分間撹拌した。次いで、この攪拌した液を更に乳化分散機を用いて回転数10000rpmで1回処理して、実施例4の超微粉分散液を調製した。次いで、万能混練機を用いて表1の粉粒体の欄に記した耐火性粉粒体の残部を1分間空混合した上で、得られた超微粉分散液を加えて更に3分間混練して、実施例4に係るアルミナ−マグネシア質の不定形耐火混練物を得た。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[実施例5]
超微粉分散液を得るにあたり、先ず、回転数150rpmの回転型撹拌機を用いて600gの水に2.5gの分散剤を溶解させた後、メジアン径5μmの仮焼アルミナとメジアン径1μmの仮焼アルミナをそれぞれ120g、及びメジアン径1μmの超微粉シリカを100g加えて、更に回転数150rpmの回転型撹拌装置で3分間撹拌した。次いで、この攪拌した液を更に乳化分散機を用いて回転数10000rpmで1回処理して、実施例5の超微粉分散液を調製した。次いで、万能混練機を用いて表1の粉粒体の欄に記した耐火性粉粒体の残部を1分間空混合した上で、得られた超微粉分散液を加えて更に3分間混練して、実施例5に係るアルミナ−マグネシア質の不定形耐火混練物を得た。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[実施例6]
超微粉分散液を得るにあたり、先ず、回転数150rpmの回転型撹拌機を用いて600gの水に2.5gの分散剤を溶解させた後、メジアン径5μmの仮焼アルミナを300g、メジアン径1μmの仮焼アルミナを200g、及びメジアン径1μmの超微粉シリカを100g加えて、更に回転数150rpmの回転型撹拌装置で3分間撹拌して、実施例6の超微粉分散液を調製した。次いで、万能混練機を用いて表1の粉粒体の欄に記した耐火性粉粒体の残部を1分間空混合した上で、得られた超微粉分散液を加えて更に3分間混練して、実施例6に係るアルミナ−マグネシア質の不定形耐火混練物を得た。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[実施例7]
超微粉分散液を得るにあたり、先ず、回転数150rpmの回転型撹拌機を用いて600gの水に3gの分散剤を溶解させた後、メジアン径5μmの仮焼アルミナを900gおよびメジアン径1μmの仮焼アルミナを600g加えて、更に回転数150rpmの回転型撹拌装置で3分間撹拌して、実施例7の超微粉分散液を調製した。次いで、万能混練機を用いて表1の粉粒体の欄に記した耐火性粉粒体の残部を1分間空混合した上で、得られた超微粉分散液を加えて更に3分間混練して、実施例7に係るアルミナ質の不定形耐火混練物を得た。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[実施例8]
超微粉分散液を得るにあたり、先ず、回転数150rpmの回転型撹拌機を用いて600gの水に3gの分散剤を溶解させた後、メジアン径5μmの仮焼アルミナを1200gおよびメジアン径1μmの仮焼アルミナを800g加えて、更に回転数150rpmの回転型撹拌装置で3分間撹拌して、実施例8の超微粉分散液を調製した。次いで、万能混練機を用いて表1の粉粒体の欄に記した耐火性粉粒体の残部を1分間空混合した上で、得られた超微粉分散液を加えて更に3分間混練して、実施例7に係るアルミナ質の不定形耐火混練物を得た。得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表1に示す。
[比較例1〜4]
比較例1、3、4は、全ての原料を万能混練機で混練した例である。先ず、表2に示した耐火性粉粒体と分散剤とを万能混練機を用いて1分間の空混合を行った後に、水を加えて3分間混練して不定形耐火混練物を製造した。また、比較例2は、仮焼アルミナと共に焼結アルミナ(粒径45μm以下)及びアルミナセメント(粒径45μm以下)を加えて事前混練を行った例である。先ず、これらに分散剤を加えて万能混練機で1分間空混合した後、水を加えて更に3分間混練した。水を加えて混練する際には撹拌子回転数を通常の2倍とした。そして得られた混練液を表1に示す耐火性粉粒体の残部に加えて、通常回転(周速約1m/s)で3分間混練し、不定形耐火混練物を製造した。比較例1〜4で得られた不定形耐火混練物について、実施例1と同様の測定を行った。結果を表2に示す。なお、比較例2における事前混練では、10μmを越える焼結アルミナとアルミナセメントが含まれ、濃度が高いため、実施例で使用した回転型攪拌機を使用することはできなかった。
Figure 2012082117
上記実施例及び比較例の結果について、耐火性粉粒体の配合組成が同じアルミナ質不定形耐火混練物を得ている実施例1〜3と比較例1〜2を比べると、分散剤をおよそ3倍含んでいるにもかかわらず、実施例1〜3の不定形耐火混練物の方がいずれも流動性に優れて、硬化後の曲げ強度も高い結果を示した。詳しくは、実施例1〜3の不定形耐火混練物は、比較例1〜2のものに比べて高フローであり、また、低気孔率及び高強度であって、施工体とした場合に優れることが確認された。同様のことはアルミナ−マグネシア質の不定形耐火混練物を得ている実施例4〜6と比較例3を比べた場合にも言える。実施例4〜6では比較例3に比べて分散剤の添加量は1/4であるにもかかわらず、実施例4〜6の不定形耐火混練物は比較例3のものに比べて高フローであって、かつ、高嵩比重、低気孔率及び高強度を示し、施工体とした場合に優れることが確認された。特に、実施例4〜6と比較例3の結果を比較すれば、超微粉シリカを分散させた超微粉分散液の有効性が一目瞭然であり、平均粒径10μm以下の超微粒粉末の分散の程度が不定形耐火混練物の品質に大きく影響することが分る。また、実施例7〜8と比較例4でも同様のことが言える。すなわち、比較例4と比較して実施例7〜8は高フロー、高嵩比重、低気孔率、高強度だった。ただし実施例8は実施例7と比較すると、やや低嵩比重、高気孔率、低強度だった。これは超微粉分散液の濃度が80%と高かったためと考えられる。

Claims (8)

  1. 平均粒径10μm以下の超微粒粉末を含む耐火性粉粒体と分散剤とを混練して不定形耐火混練物を製造する方法であって、超微粒粉末の少なくとも一部と分散剤とを水に加えて、超微粒粉末/(超微粒粉末+水)の質量百分率が5質量%以上85質量%以下の超微粉分散液を得て、この超微粉分散液と耐火性粉粒体の残部とを混練することを特徴とする不定形耐火混練物の製造方法。
  2. 分散剤を水に溶かした後、超微粒粉末の少なくとも一部を加えて超微粉分散液を得る請求項1に記載の不定形耐火混練物の製造方法。
  3. 前記超微粉分散液における分散剤の濃度が0.05質量%以上0.6質量%以下である請求項1又は2に記載の不定形耐火混練物の製造方法。
  4. 乳化分散機を用いて超微粉分散液を得る請求項1〜3のいずれかに記載の不定形耐火混練物の製造方法。
  5. 前記耐火性粉粒体における超微粒粉末の割合が1質量%以上30質量%以下である請求項1〜4のいずれかに記載の不定形耐火混練物の製造方法。
  6. 不定形耐火混練物における分散剤の割合が0.0025質量%以上0.05質量%以下である請求項1〜5のいずれかに記載の不定形耐火混練物の製造方法。
  7. 超微粉分散液に分散される超微粒粉末が、平均粒径10μm以下の超微粉シリカを含む請求項1〜6のいずれかに記載の不定形耐火混練物の製造方法。
  8. 請求項1〜7のいずれかに記載の方法によって得られた不定形耐火混練物を所定の型枠内に流し込んで硬化させた耐火物施工体。
JP2010231446A 2010-10-14 2010-10-14 不定形耐火混練物の製造方法及び耐火物施工体 Withdrawn JP2012082117A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231446A JP2012082117A (ja) 2010-10-14 2010-10-14 不定形耐火混練物の製造方法及び耐火物施工体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231446A JP2012082117A (ja) 2010-10-14 2010-10-14 不定形耐火混練物の製造方法及び耐火物施工体

Publications (1)

Publication Number Publication Date
JP2012082117A true JP2012082117A (ja) 2012-04-26

Family

ID=46241397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231446A Withdrawn JP2012082117A (ja) 2010-10-14 2010-10-14 不定形耐火混練物の製造方法及び耐火物施工体

Country Status (1)

Country Link
JP (1) JP2012082117A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052962A (ja) * 2014-09-03 2016-04-14 新日鐵住金株式会社 溶鋼鍋湯当り部へのキャスタブルの施工方法及び溶鋼鍋敷き部のライニング構造
JP2019131446A (ja) * 2018-02-01 2019-08-08 日本製鉄株式会社 アルミナ−マグネシア質キャスタブル耐火物の耐用性評価方法
JP2019214502A (ja) * 2018-06-14 2019-12-19 日本製鉄株式会社 キャスタブル耐火物の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016052962A (ja) * 2014-09-03 2016-04-14 新日鐵住金株式会社 溶鋼鍋湯当り部へのキャスタブルの施工方法及び溶鋼鍋敷き部のライニング構造
JP2019131446A (ja) * 2018-02-01 2019-08-08 日本製鉄株式会社 アルミナ−マグネシア質キャスタブル耐火物の耐用性評価方法
JP2019214502A (ja) * 2018-06-14 2019-12-19 日本製鉄株式会社 キャスタブル耐火物の製造方法
JP7003849B2 (ja) 2018-06-14 2022-01-21 日本製鉄株式会社 キャスタブル耐火物の製造方法

Similar Documents

Publication Publication Date Title
CN104355634B (zh) 一种氧化铝质电炉盖及其制备方法
JP4527656B2 (ja) カルシウムアルミネート、アルミナセメント及び不定形耐火物
JP2008173861A (ja) 耐火物用混練機および耐火物の混練方法
JP7003849B2 (ja) キャスタブル耐火物の製造方法
JP2018184315A (ja) カーボン含有キャスタブル耐火物およびカーボン含有キャスタブル耐火物の製造方法
JP2012082117A (ja) 不定形耐火混練物の製造方法及び耐火物施工体
JP5073791B2 (ja) アルミナ−マグネシア質耐火れんが及びその製造方法
JP2005154180A (ja) アルミナセメント組成物及び不定形耐火物
JP4528224B2 (ja) 不定形耐火物の施工方法およびそれに使用するスラリー
JP4220131B2 (ja) 溶鋼取鍋用不定形耐火組成物
JP2023122433A (ja) アルミナ-シリカ質キャスタブル耐火物
JP7302543B2 (ja) 不定形耐火物
JP2022132997A (ja) キャスタブル耐火物およびキャスタブル耐火物の施工方法
JP2016206134A (ja) セメント組成物の判定方法、およびセメント組成物の処理方法
JP2008156143A (ja) 不定形耐火物材料及びその製造方法、並びに不定形耐火物材料の混練容易性評価方法
JPH08157267A (ja) 流し込み施工用不定形耐火物
JP2009096658A (ja) アルミナセメント組成物及びそれを用いた不定形耐火物
JP4575852B2 (ja) 不定形耐火物の施工方法
JPH0158156B2 (ja)
JPH03174369A (ja) 不定形耐火物
JP4450423B2 (ja) 流し込み施工用不定形耐火物
JPH0959072A (ja) 耐消化性マグネシア微粉およびその製造方法およびこれを用いた不定形耐火物
JPH08239276A (ja) キャスタブル耐火物の施工方法
CN108675803A (zh) 一种酸再生反应炉内衬浇注料及其制备方法
JPH0959017A (ja) 耐消化性マグネシア微粉末の製造方法およびマグネシア含有不定形耐火物

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140107