JP2012076940A - SiC TOOL MATERIAL FOR FIRING - Google Patents

SiC TOOL MATERIAL FOR FIRING Download PDF

Info

Publication number
JP2012076940A
JP2012076940A JP2010221410A JP2010221410A JP2012076940A JP 2012076940 A JP2012076940 A JP 2012076940A JP 2010221410 A JP2010221410 A JP 2010221410A JP 2010221410 A JP2010221410 A JP 2010221410A JP 2012076940 A JP2012076940 A JP 2012076940A
Authority
JP
Japan
Prior art keywords
sic
oxide film
sio
crystal
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010221410A
Other languages
Japanese (ja)
Other versions
JP5465143B2 (en
Inventor
Kazuhide Kawai
和秀 河合
Kazunori Yamada
和典 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010221410A priority Critical patent/JP5465143B2/en
Publication of JP2012076940A publication Critical patent/JP2012076940A/en
Application granted granted Critical
Publication of JP5465143B2 publication Critical patent/JP5465143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an SiC tool material for firing, which is excellent in thermal shock resistance and is equipped with a coating film that is excellent in adhesion to an SiC substrate and is capable of imparting a higher antioxidative effect.SOLUTION: The SiC tool material for firing comprises the porous SiC substrate and the oxide film formed on an SiC crystal surface of the substrate. Here, the oxide film has a composition comprising ≥65 to ≤90 wt.% SiOand the balance being AlOand YO, wherein the weight composition ratio of AlOto YOis from 20:80 to 60:40.

Description

本発明は、積層セラミックスコンデンサ(multiple-layerceramic capacitor;以下、MLCCという)やフェライト等のセラミック電子部品の焼成や熱処理工程において使用される道具材であって、多孔質SiC基材を用いたSiC焼成用道具材に関する。   The present invention is a tool material used in firing and heat treatment processes of ceramic electronic components such as multilayer ceramic capacitors (hereinafter referred to as MLCC) and ferrite, and SiC firing using a porous SiC substrate. It relates to tool materials.

電子部品用セラミックスの焼成や熱処理は、一般に、1000〜1400℃の温度範囲で行われる。このため、その焼成用道具材としては、Al23−SiO2質、Al23−SiO2−MgO質、MgO−Al23−ZrO2質、SiC質等の耐熱性に優れたセラミックスが用いられている。これらの中でも、特に、SiC質セラミックスは、耐熱強度及び耐クリープ性に優れており、好適な材料である。 The firing and heat treatment of the ceramic for electronic parts is generally performed in a temperature range of 1000 to 1400 ° C. For this reason, it is excellent in heat resistance such as Al 2 O 3 —SiO 2 quality, Al 2 O 3 —SiO 2 —MgO quality, MgO—Al 2 O 3 —ZrO 2 quality, SiC quality, etc. Ceramics are used. Among these, SiC ceramics are particularly suitable materials because of their excellent heat resistance and creep resistance.

一方、代表的なセラミック電子部品であるMLCCの焼成においては、電極材を酸化させることなく、その主成分である酸化物のチタン酸バリウムを焼成する必要がある。
したがって、炉内雰囲気中の酸素分圧は重要な要素であるが、SiC質セラミックスの焼成用道具材を用いた場合、SiCの酸化反応により、炉内の酸素分圧が変動することがある。
On the other hand, in firing MLCC, which is a typical ceramic electronic component, it is necessary to fire barium titanate, which is the main component, without oxidizing the electrode material.
Therefore, the oxygen partial pressure in the furnace atmosphere is an important factor, but when a SiC ceramic firing tool material is used, the oxygen partial pressure in the furnace may fluctuate due to the oxidation reaction of SiC.

このため、セラミック電子部品の焼成時に、道具材のSiCの酸化に伴うセラミック電子部品の特性が劣化することを防ぐ目的で、道具材を構成するSiC質構造体(基材)の表面又は内部のSiC結晶表面に酸化物等による酸化防止被膜を形成することが、従来から知られている。
例えば、特許文献1に、SiC焼結多孔体の開気孔の内面を前記多孔体に対して0.1〜0.6重量%のアルカリ土類金属、Al23、SiO2等を含むガラス被膜で覆うことが記載されている。
また、特許文献2には、多孔質SiC基材を酸素濃度2%以上の酸素雰囲気下、1400〜1500℃で焼成してSiC結晶表面にSiO2層を形成する方法が記載されている。
For this reason, at the time of firing the ceramic electronic component, in order to prevent the characteristics of the ceramic electronic component from being deteriorated due to the oxidation of SiC of the tool material, the surface or the inside of the SiC structure (base material) constituting the tool material It is conventionally known to form an anti-oxidation film made of oxide or the like on the surface of SiC crystal.
For example, Patent Document 1 discloses a glass containing 0.1 to 0.6% by weight of an alkaline earth metal, Al 2 O 3 , SiO 2 or the like on the inner surface of an open pore of a SiC sintered porous body with respect to the porous body. Covering with a coating is described.
Patent Document 2 describes a method in which a porous SiC substrate is baked at 1400 to 1500 ° C. in an oxygen atmosphere having an oxygen concentration of 2% or more to form a SiO 2 layer on the SiC crystal surface.

さらに、特許文献3には、非酸化物セラミックス基体表面に、SiC又はTiO2を含むAl23層を形成し、かつ、前記基体と酸化物層との界面に、所定量のAl23とY23とSiO2との反応によって得られる層を形成することにより、整合性のある界面となり、強度特性及び耐酸化性、耐食性が向上することが記載されている。 Further, in Patent Document 3, an Al 2 O 3 layer containing SiC or TiO 2 is formed on the surface of a non-oxide ceramic substrate, and a predetermined amount of Al 2 O is formed at the interface between the substrate and the oxide layer. It is described that by forming a layer obtained by the reaction of 3 with Y 2 O 3 and SiO 2 , a consistent interface is formed, and strength characteristics, oxidation resistance, and corrosion resistance are improved.

特開昭64−76986号公報JP-A 64-76986 特開2006−117472号公報JP 2006-117472 A 特開平8−67583号公報JP-A-8-67583

ところで、MLCCを焼成する雰囲気は、通常、酸素分圧が1×10-9atm程度であり、これは、水蒸気を導入して、水の解離によって生じる酸素によって制御している。このような雰囲気下においては、酸化防止被膜で覆われたSiCの酸化速度は、該酸化防止被膜を通過する水分子の量に左右される。 By the way, the atmosphere for firing MLCC is usually an oxygen partial pressure of about 1 × 10 −9 atm, which is controlled by oxygen generated by dissociating water by introducing water vapor. Under such an atmosphere, the oxidation rate of SiC covered with the antioxidant coating depends on the amount of water molecules passing through the antioxidant coating.

上記特許文献1,2に記載されているようなガラス被膜やSiO2層は、SiC結晶の表面を均一に覆うことはできるものの、水分子が通過しやすい。しかも、これらの被膜は、SiC質基材との熱膨張係数の差が大きく、また、密着性に劣ることから、繰り返しの熱履歴によって、割れやSiC質基材表面からの剥離を生じやすく、十分な酸化防止効果が得られなかった。 Although the glass coating and the SiO 2 layer described in Patent Documents 1 and 2 can uniformly cover the surface of the SiC crystal, water molecules easily pass through. Moreover, these coatings have a large difference in thermal expansion coefficient with the SiC base material, and are poor in adhesion, so that repeated thermal history tends to cause cracks and peeling from the surface of the SiC base material. A sufficient antioxidant effect could not be obtained.

また、上記特許文献3に記載されているような混合酸化物は、これにより形成される層自体は、水分子等のガスの透過抑制効果に優れているものの、SiCとの濡れ性に劣るため、SiC質基材を構成するSiC結晶表面すべてを覆うことは困難である。さらに、前記混合酸化物による層は、前記ガラス被膜と同様に、割れや剥離を生じやすく、十分な酸化防止効果を得られるとは言えないものであった。   Moreover, although the mixed oxide as described in the above-mentioned Patent Document 3 is excellent in the permeation suppressing effect of gas such as water molecules, the layer itself formed is inferior in wettability with SiC. It is difficult to cover the entire surface of the SiC crystal constituting the SiC substrate. Further, the layer made of the mixed oxide, like the glass film, is easily cracked and peeled off, and it cannot be said that a sufficient antioxidant effect can be obtained.

したがって、SiC質基材に対して、より高い酸化防止効果を付与するためには、SiCとの密着性に優れた膜でSiC結晶表面全体を覆う必要がある。
また、近年、セラミック電子部品の焼成においては、ローラーハースキルン等による高速焼成のニーズが高く、このため、焼成用道具材の耐熱衝撃性の向上も求められている。
Therefore, in order to give a higher antioxidant effect to the SiC substrate, it is necessary to cover the entire SiC crystal surface with a film having excellent adhesion to SiC.
In recent years, there is a high need for high-speed firing by roller hearth kiln or the like in firing of ceramic electronic components, and therefore, improvement of thermal shock resistance of firing tool materials is also required.

本発明は、上記技術的課題を解決するためになされたものであり、SiC基材に対する密着性に優れ、より高い酸化防止効果を付与することができる被膜を備え、かつ、優れた耐熱衝撃性を有するSiC焼成用道具材を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and has a coating film that has excellent adhesion to a SiC substrate and can impart a higher antioxidant effect, and has excellent thermal shock resistance. It aims at providing the tool material for SiC baking which has this.

本発明に係るSiC焼成用道具材は、多孔質SiC基材と、前記基材のSiC結晶表面に形成される酸化物膜とからなり、前記酸化物膜の組成は、SiO2が65重量%以上90重量%以下、残部がAl23及びY23であり、かつ、前記Al23及びY23の重量組成比が20:80〜60:40であることを特徴とする。
上記のような組成からなる酸化物膜により、被膜のSiC基材に対する密着性が向上し、かつ、酸化防止効果が向上するとともに、耐熱衝撃性にも優れたSiC焼成用道具材を得ることができる。
The SiC firing tool material according to the present invention comprises a porous SiC substrate and an oxide film formed on the SiC crystal surface of the substrate, and the composition of the oxide film is 65% by weight of SiO 2. 90 wt% or less, the balance being Al 2 O 3 and Y 2 O 3 , and the weight composition ratio of the Al 2 O 3 and Y 2 O 3 being 20:80 to 60:40 To do.
With the oxide film having the above composition, it is possible to improve the adhesion of the coating to the SiC substrate, improve the antioxidant effect, and obtain an SiC baking tool material excellent in thermal shock resistance. it can.

前記SiO2は結晶粒子を含み、前記結晶粒子の結晶粒径が1μm以上10μm以下であるが好ましい。
結晶粒径を上記範囲内とすることにより、SiC結晶表面の凹凸が十分に形成され、前記酸化物膜の割れや剥離の抑制効果を高めることができる。
なお、本発明でいう結晶粒径は、該酸化物膜組織の顕微鏡写真から、SiO2結晶粒子の長径aと、これと垂直な方向における径bとをそれぞれ測定し、両径の平均値(a+b)/2を求めたものである。
The SiO 2 contains crystal particles, and the crystal particle size of the crystal particles is preferably 1 μm or more and 10 μm or less.
By setting the crystal grain size within the above range, the unevenness of the SiC crystal surface is sufficiently formed, and the effect of suppressing cracking and peeling of the oxide film can be enhanced.
The crystal grain size referred to in the present invention is determined by measuring the major axis “a” of the SiO 2 crystal grain and the diameter “b” in the direction perpendicular thereto from the micrograph of the oxide film structure. a + b) / 2.

また、前記酸化物膜の厚さは1μm以上200μm以下であることが好ましい。
上記範囲内の厚さの酸化物膜によれば、SiC基材との熱膨張係数の差に起因する酸化物膜の割れや剥離を効果的に防止することができ、優れた酸化防止効果が得られる。
The oxide film preferably has a thickness of 1 μm to 200 μm.
According to the oxide film having a thickness within the above range, the oxide film can be effectively prevented from cracking or peeling due to the difference in thermal expansion coefficient from the SiC base material, and an excellent antioxidant effect can be obtained. can get.

本発明によれば、SiC焼成用道具材において、特定組成からなる酸化物膜によって、SiC基材に対する密着性を向上させ、かつ、従来よりも優れた酸化防止効果を付与することができ、さらに、耐熱衝撃性の向上を図ることができる。
したがって、本発明に係るSiC焼成用道具材は、MLCC等のセラミック電子部品の製造に好適に適用することができ、特に、ローラーハースキルン等による高速焼成にも好適であり、製造効率の向上にも寄与し得るものである。
According to the present invention, in the SiC firing tool material, the oxide film having a specific composition can improve the adhesion to the SiC base material, and can impart an antioxidant effect superior to conventional ones, The thermal shock resistance can be improved.
Therefore, the SiC firing tool material according to the present invention can be suitably applied to the production of ceramic electronic components such as MLCCs, and is particularly suitable for high-speed firing by roller hearth kiln, etc., to improve production efficiency. Can also contribute.

以下、本発明をより詳細に説明する。
本発明に係るSiC焼成用道具材は、多孔質SiC基材と、前記基材のSiC結晶表面に形成される酸化物膜とからなるものである。そして、前記酸化物膜の組成は、SiO2が65重量%以上90重量%以下、残部がAl23及びY23であり、かつ、前記Al23及びY23の重量組成比が20:80〜60:40であることを特徴としている。
SiC焼成用道具材において、多孔質SiC基材に、上記のような組成からなる酸化物膜を形成することにより、被膜のSiC基材に対する密着性が向上し、かつ、酸化防止効果を向上させることができる。さらに、耐熱衝撃性の向上も図ることができる。
Hereinafter, the present invention will be described in more detail.
The SiC firing tool material according to the present invention comprises a porous SiC base material and an oxide film formed on the SiC crystal surface of the base material. The composition of the oxide film is that SiO 2 is 65 wt% or more and 90 wt% or less, the balance is Al 2 O 3 and Y 2 O 3 , and the weight of the Al 2 O 3 and Y 2 O 3 The composition ratio is 20:80 to 60:40.
In the SiC firing tool material, by forming an oxide film having the above composition on the porous SiC base material, the adhesion of the coating to the SiC base material is improved and the antioxidant effect is improved. be able to. Furthermore, the thermal shock resistance can be improved.

本発明に係るSiC焼成用道具材おいては、SiC基材として多孔質体を用いる。
多孔質体とすることにより、SiC結晶表面の表面積が大きくなり、SiC結晶表面の一部を酸化させてSiO2として酸化物層の密着性を向上させることができ、また、凹凸を生じさせやすくなり、物理的に密着性を向上させる効果も得られる。
In the SiC baking tool material according to the present invention, a porous body is used as the SiC base material.
By making the porous body, the surface area of the SiC crystal surface is increased, and a part of the SiC crystal surface can be oxidized to improve the adhesion of the oxide layer as SiO 2 , and unevenness is easily generated. Thus, an effect of physically improving the adhesion can be obtained.

なお、前記多孔質SiC基材は、見掛け気孔率が15%以上50%以下、炭化ケイ素含有量が90重量%以上であることが好ましい。
上記範囲の見掛け気孔率及び炭化ケイ素含有量であれば、酸化物層の密着性を保持しつつ、十分な耐熱強度を有する道具材を構成することができる。
The porous SiC substrate preferably has an apparent porosity of 15% to 50% and a silicon carbide content of 90% by weight or more.
When the apparent porosity and silicon carbide content are in the above ranges, a tool material having sufficient heat resistance strength can be configured while maintaining the adhesion of the oxide layer.

上記のような多孔質SiC基材は、その製造方法は特に限定されるものではなく、公知の方法により製造することができる。例えば、炭化ケイ素粉末原料に、水、有機バインダ等を添加して混合したものを成形して多孔質成形体とし、これを1600〜2400℃で焼成することにより、多孔質焼結体として得ることができる。   The production method of the porous SiC substrate as described above is not particularly limited, and can be produced by a known method. For example, a silicon carbide powder raw material added with water, an organic binder, and the like is mixed to form a porous molded body, which is fired at 1600 to 2400 ° C. to obtain a porous sintered body. Can do.

前記多孔質SiC基材のSiC結晶表面に形成される酸化物膜の組成成分は、SiO2、Al23及びY23である。
前記酸化物膜は、Y23とAl23の混合物、又は、Y23とAl23とSiO2の混合物を多孔質SiC基材に含浸又は塗布した後、SiCが酸化する雰囲気下で、1400℃以上の温度で熱処理して前記混合物又はその一部を溶融させることにより、SiC結晶表面に形成することができる。
このとき、SiC結晶表面には、前記混合物の溶融物の層を通して酸素や水蒸気が供給されるとともに、SiCの酸化によって生じるSiO2が存在するため、前記溶融物は、SiC結晶表面と濡れやすい状態となり、SiC結晶表面全体を覆うことができる。
そして、前記溶融物の層を通してなされるSiC結晶表面への酸素や水蒸気の供給が継続されると、SiCの酸化は進行し、生じたSiO2は前記溶融物の中に溶け込むため、SiC結晶表面は酸化により生じた非晶質のSiO2のみで覆われることはない。この非晶質のSiO2は前記溶融物の中に溶け込んだ状態で存在するか、あるいはまた、前記溶融物の中に新たな結晶として析出する。
Composition components of the oxide film formed on the SiC crystal surface of the porous SiC base material are SiO 2 , Al 2 O 3, and Y 2 O 3 .
The oxide film is a mixture of Y 2 O 3 and Al 2 O 3, or, after impregnating or coating a mixture of Y 2 O 3 and Al 2 O 3 and SiO 2 in the porous SiC substrate, SiC oxidation In the atmosphere, the heat treatment is performed at a temperature of 1400 ° C. or higher to melt the mixture or a part of the mixture, thereby forming the SiC crystal surface.
At this time, the surface of the SiC crystal is supplied with oxygen and water vapor through the melt layer of the mixture, and SiO 2 generated by the oxidation of SiC is present, so that the melt is easily wetted with the surface of the SiC crystal. Thus, the entire surface of the SiC crystal can be covered.
Then, when the supply of oxygen or water vapor to the SiC crystal surface made through the melt layer is continued, the oxidation of SiC proceeds, and the generated SiO 2 dissolves into the melt, so that the SiC crystal surface Is not covered only with amorphous SiO 2 produced by oxidation. This amorphous SiO 2 exists in a state of being dissolved in the melt, or alternatively, precipitates as new crystals in the melt.

SiC結晶表面は、結晶方位、結晶欠陥及び不純物等の分布によって、酸化しやすさの部分差が生じ、酸化しやすい部分が選択的に酸化される。酸化により生じたSiO2は、上述したように前記溶融物の中に溶け込んでいき、その部分での酸化が継続して進行する。このため、SiC結晶表面の酸化しやすい部分は、酸化しにくい部分に比べて、SiCの浸食(減少)の度合いが大きく、結果として、SiC結晶表面に凹凸が形成される。
上述した酸化物膜形成のための熱処理の終了後、この凹凸は、アンカー効果によってSiCと酸化物膜との結合を物理的に強め、密着性を向上させる効果を奏する。
なお、本発明において、酸化物膜が形成されるSiC結晶表面とは、SiC基材中に存在するすべてのSiC結晶の表面を意味するものではなく、SiC基材の外表面及び内部の気孔連通部のSiC結晶の表面である。
The SiC crystal surface has a partial difference in easiness of oxidation due to the distribution of crystal orientation, crystal defects, impurities, and the like, and a portion that is easily oxidized is selectively oxidized. As described above, the SiO 2 produced by the oxidation dissolves into the melt, and the oxidation at that portion continues. For this reason, the portion of the SiC crystal surface that is easily oxidized has a higher degree of SiC erosion (reduction) than the portion that is difficult to oxidize, and as a result, irregularities are formed on the surface of the SiC crystal.
After the heat treatment for forming the oxide film described above is completed, the unevenness has an effect of physically strengthening the bond between SiC and the oxide film by the anchor effect and improving the adhesion.
In the present invention, the SiC crystal surface on which the oxide film is formed does not mean the surface of all SiC crystals present in the SiC base material, but the outer surface and internal pore communication of the SiC base material. It is the surface of the part SiC crystal.

前記酸化物膜の組成のうち、SiO2の含有量は65重量%以上90重量%以下とする。このSiO2の含有量は、上述したように、基材のSiCの酸化により生じるSiO2と、含浸又は塗布等を行う混合物由来のものとの合計である。
前記含有量が65重量%未満の場合は、SiCの酸化により生じるSiO2の量が不十分であり、SiC結晶表面に十分な凹凸が生じず、SiC基材と酸化物膜との密着性が十分に得られない。
一方、前記含有量が90重量%を超える場合は、酸化物膜中で、通常クリストバライトとして生成するSiO2の量が多くなり、SiO2とSiCの熱膨張係数の差から、酸化物膜に割れが生じやすくなり、酸化防止効果が低減する。
SiO2の含有量は、より好ましくは、70重量%以上85重量%以下である。
Of the composition of the oxide film, the content of SiO 2 is 65 wt% or more and 90 wt% or less. Content of SiO 2, as described above, a SiO 2 produced by the oxidation of SiC substrates, the sum of those derived from mixtures of performing impregnation or coating.
When the content is less than 65% by weight, the amount of SiO 2 generated by the oxidation of SiC is insufficient, the surface of the SiC crystal is not sufficiently uneven, and the adhesion between the SiC substrate and the oxide film is low. Not enough.
On the other hand, when the content exceeds 90% by weight, the amount of SiO 2 that is usually generated as cristobalite in the oxide film increases, and the oxide film cracks due to the difference in thermal expansion coefficient between SiO 2 and SiC. Is likely to occur, and the antioxidant effect is reduced.
The content of SiO 2 is more preferably 70% by weight or more and 85% by weight or less.

前記酸化物膜中のSiO2の含有量が上記範囲内であっても、該道具材製造時の熱処理方法、条件等によっては、SiCの酸化速度が大きく、前記混合物が溶融する前にSiC結晶表面全面に非晶質のSiO2が生成し、その上に、前記混合物の溶融物による膜が形成される場合がある。このような場合には、酸化物膜の割れや剥離が生じやすく、酸化防止効果が十分に得られないおそれがある。
したがって、前記酸化物膜中のSiO2は、結晶及び非晶質が混在したものであることが好ましい。
SiO2の結晶を含み、粒子状の形態で存在していることは、SiCの酸化により生じたSiO2が前記溶融物に溶け込んでいることを意味する。このような状態の酸化物膜は、SiC結晶表面が浸食されて、凹凸が十分に形成されており、SiC基材と酸化物膜との優れた密着性を得ることができる。
Even if the content of SiO 2 in the oxide film is within the above range, depending on the heat treatment method, conditions, and the like at the time of manufacturing the tool material, the oxidation rate of SiC is large, and before the mixture melts, the SiC crystal In some cases, amorphous SiO 2 is formed on the entire surface, and a film made of a melt of the mixture is formed thereon. In such a case, the oxide film is likely to be cracked or peeled off, and there is a possibility that the antioxidant effect cannot be sufficiently obtained.
Accordingly, the SiO 2 in the oxide film is preferably a mixture of crystal and amorphous.
The presence of SiO 2 crystals in the form of particles means that SiO 2 produced by the oxidation of SiC is dissolved in the melt. In the oxide film in such a state, the surface of the SiC crystal is eroded and the unevenness is sufficiently formed, and excellent adhesion between the SiC substrate and the oxide film can be obtained.

23とAl23とSiO2との混合物による酸化物膜においては、全体が均質に溶融する組成は温度によって異なるが、前記酸化物膜中のAl23及びY23の重量組成比は、20:80〜60:40とする。
前記重量組成比が上記範囲外の場合は、酸化物膜形成のための熱処理時に、均質な混合物としての溶融物を生じにくく、その結果、SiC結晶表面に凹凸が形成されず、SiC基材と酸化物膜の密着性を高めることが困難となる。
前記Al23及びY23の重量組成比は、より好ましくは、25:75〜50:50である。
In an oxide film made of a mixture of Y 2 O 3 , Al 2 O 3, and SiO 2 , the composition that melts uniformly as a whole varies depending on the temperature, but Al 2 O 3 and Y 2 O 3 in the oxide film are different. The weight composition ratio is set to 20:80 to 60:40.
When the weight composition ratio is out of the above range, it is difficult to form a melt as a homogeneous mixture during the heat treatment for forming the oxide film, and as a result, unevenness is not formed on the surface of the SiC crystal. It becomes difficult to improve the adhesion of the oxide film.
The weight composition ratio of the Al 2 O 3 and Y 2 O 3 is more preferably 25:75 to 50:50.

なお、酸化物膜の重量組成は、以下のような方法により求めることができる。
まず、道具材試料を粉砕して酸化熱処理し、SiC基材を完全にSiO2にする。この時に発生するCO2ガスの発生量からSiC重量を算出する。
そして、酸化熱処理後の試料について、IPS発光分光分析等の化学分析を行い、得られた分析値から上記において算出したSiCの寄与分を差し引くことにより、酸化物膜中のSiO2、Y23及びAl23の各重量組成を算出する。
The weight composition of the oxide film can be obtained by the following method.
First, the tool material sample is pulverized and subjected to an oxidation heat treatment to completely change the SiC base material to SiO 2 . The SiC weight is calculated from the amount of CO 2 gas generated at this time.
Then, the sample after the oxidation heat treatment is subjected to chemical analysis such as IPS emission spectroscopic analysis, and by subtracting the SiC contribution calculated above from the obtained analysis value, the SiO 2 and Y 2 O in the oxide film are subtracted. 3 and the weight composition of Al 2 O 3 are calculated.

また、前記SiO2の結晶は、結晶粒径が1μm以上10μm以下であることが好ましい。
前記結晶粒径が1μm未満の場合、SiC結晶表面の凹凸が小さく、SiC基材と酸化物膜の物理的な結合が弱く、前記酸化物膜が剥離しやすくなる。
一方、前記結晶粒径が10μmを超える場合、SiO2の変態による体積変化により、酸化物膜が割れやすくなる。
The SiO 2 crystal preferably has a crystal grain size of 1 μm or more and 10 μm or less.
When the crystal grain size is less than 1 μm, the unevenness of the SiC crystal surface is small, the physical bond between the SiC substrate and the oxide film is weak, and the oxide film is easily peeled off.
On the other hand, when the crystal grain size exceeds 10 μm, the oxide film is easily cracked due to the volume change due to the transformation of SiO 2 .

また、前記酸化物膜の厚さは、1μm以上200μm以下であることが好ましい。
前記厚さが1μm未満の場合は、薄すぎて、SiC基材が露出するおそれがあり、該酸化物膜による酸化防止効果が十分に得られない。
一方、前記厚さが200μmを超える場合は、厚すぎて、SiC基材との熱膨張係数の差により、該酸化物膜に割れや剥離が生じるおそれがある。
前記酸化物膜の厚さは、より好ましくは、10μm以上100μm以下である。
The thickness of the oxide film is preferably 1 μm or more and 200 μm or less.
When the thickness is less than 1 μm, the SiC base material may be exposed because it is too thin, and the antioxidant effect by the oxide film cannot be sufficiently obtained.
On the other hand, when the thickness exceeds 200 μm, it is too thick and the oxide film may be cracked or peeled off due to the difference in thermal expansion coefficient from the SiC base material.
The thickness of the oxide film is more preferably 10 μm or more and 100 μm or less.

SiCは、一般的な焼成用道具材の材料として用いられているAl23−SiO2質に比べて、熱膨張係数が小さいため、急速な温度変化による熱衝撃破壊に対する抵抗が大きいが、本発明によれば、SiC基材の耐熱衝撃性をより向上させることができる。
ここで、熱衝撃破壊に対する抵抗性を表す指標である熱衝撃破壊係数Rは、R=S(1−ν)/Eα(ここで、S:強度、ν:ポアソン比、E:弾性率、α:熱膨張係数)の式で表すことができる。この式から、耐熱衝撃性の向上には、強度Sが大きいことが好ましいと考えられる。
後述の実施例にも示すように、本発明に係るSiC焼成用道具材は、SiC基材に所定の酸化物膜が形成されていることにより、SiC焼結体のみよりも、曲げ強度も大きく、耐熱衝撃性にも優れているものである。
SiC has a low thermal expansion coefficient compared to Al 2 O 3 —SiO 2 used as a material for general firing tool materials, and thus has a high resistance to thermal shock destruction due to rapid temperature changes. According to the present invention, the thermal shock resistance of the SiC substrate can be further improved.
Here, the thermal shock fracture coefficient R, which is an index representing the resistance to thermal shock fracture, is R = S (1-ν) / Eα (where S: strength, ν: Poisson's ratio, E: elastic modulus, α : Thermal expansion coefficient). From this formula, it is considered that a high strength S is preferable for improving the thermal shock resistance.
As shown also in the examples described later, the SiC firing tool material according to the present invention has a higher bending strength than the SiC sintered body alone, because a predetermined oxide film is formed on the SiC base material. It also has excellent thermal shock resistance.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
(試験1)
SiO2、Y23及びAl23の各粉末を所定量ずつ混合し、これに水を加えてボールミルで混合粉砕し、混合スラリーを調製した。
このスラリーを250mm×250mm×厚さ1mmの見掛け気孔率約22%の多孔質SiC基材に含浸させた後、乾燥して水分を除去した。
これをガスバーナ炉中、1500℃で熱処理したものを評価用試料とした。
ただし、比較例7,8においては、アルゴン雰囲気下、1500℃で熱処理した。
また、比較例9は、SiC基材に混合スラリーを含浸させずに、ガスバーナ炉中、1500℃で熱処理し、SiC基材表面にSiO2膜を形成した試料である。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
(Test 1)
A predetermined amount of each powder of SiO 2 , Y 2 O 3 and Al 2 O 3 was mixed, water was added thereto, and the mixture was pulverized and mixed with a ball mill to prepare a mixed slurry.
The slurry was impregnated into a porous SiC substrate having an apparent porosity of about 22%, 250 mm × 250 mm × thickness 1 mm, and then dried to remove moisture.
This was heat-treated at 1500 ° C. in a gas burner furnace as an evaluation sample.
However, in Comparative Examples 7 and 8, heat treatment was performed at 1500 ° C. in an argon atmosphere.
Comparative Example 9 is a sample in which a SiC base material was heat-treated at 1500 ° C. in a gas burner furnace without impregnating the SiC base material with the mixed slurry to form a SiO 2 film on the surface of the SiC base material.

これらの各評価用試料について、以下のような各種評価を行った。これらの結果を表1にまとめて示す。
上述したような化学分析により、酸化物膜中のSiO2、Y23及びAl23の重量組成を求めた。なお、前記重量組成においては、SiO2、Y23及びAl23以外の微量成分は無視し、前記3成分の合計が100%となるように算出した。ただし、表1においては、末桁の四捨五入により、100%未満又は100%を超える表示となっている場合もある。
また、各評価用試料を、水蒸気が含まれ、かつ、酸素分圧が10-9MPaの雰囲気下、1250℃で10時間熱処理した。これを試料毎に5回行い、熱処理前後の試料の重量を測定し、熱処理1回(10時間)当たりの平均重量変化率を求め、この値により酸化防止効果の評価を行った。
Each of these evaluation samples was subjected to the following various evaluations. These results are summarized in Table 1.
By chemical analysis as described above, the weight composition of SiO 2 , Y 2 O 3 and Al 2 O 3 in the oxide film was determined. In the weight composition, the trace components other than SiO 2 , Y 2 O 3 and Al 2 O 3 were ignored, and the total of the three components was calculated to be 100%. However, in Table 1, it may be displayed as less than 100% or more than 100% by rounding off the last digit.
Each evaluation sample was heat-treated at 1250 ° C. for 10 hours in an atmosphere containing water vapor and an oxygen partial pressure of 10 −9 MPa. This was performed five times for each sample, the weight of the sample before and after the heat treatment was measured, the average weight change rate per one heat treatment (10 hours) was determined, and the antioxidant effect was evaluated based on this value.

Figure 2012076940
Figure 2012076940

表1に示した結果から、酸化物膜中のSiO2が65重量%以上90重量%以下、残部がAl23及びY23であり、かつ、前記Al23及びY23の重量組成比が20:80〜60:40である場合(実施例1〜13)、酸化による重量増加率が低減され、酸化防止効果が向上していることが認められた。 From the results shown in Table 1, SiO 2 in the oxide film is 65 wt% or more and 90 wt% or less, the balance is Al 2 O 3 and Y 2 O 3 , and the Al 2 O 3 and Y 2 O When the weight composition ratio of 3 was 20:80 to 60:40 (Examples 1 to 13), it was recognized that the rate of weight increase due to oxidation was reduced and the antioxidant effect was improved.

(試験2)
試験1と同様にして作製し、酸化物膜の重量組成を求めた表2に示す各評価用試料について、酸化物膜中のSiO2の結晶粒径、試料の曲げ強さ及び弾性率を測定した。
また、以下のようにして、酸化物膜の耐熱衝撃性評価を行った。まず、各評価用試料を10枚ずつ多段積みした。このとき、試料1枚毎に荷重としてZrO2粉250gを各試料の縁から10mmよりも内側に積載し、10mm×10mm×10mmのスペーサを4隅に配置して、その上の試料を4点で支持するようにした。このようにして多段積みした各試料を、600℃で保持した電気炉内に、常温で入炉して1時間保持した後、炉出しし、酸化物膜の割れの発生枚数により、耐熱衝撃性を評価した。
これらの評価結果をまとめて表2に示す。
なお、比較例12は、SiC基材のみで酸化物膜で覆われていない試料である。
(Test 2)
For each sample for evaluation shown in Table 2, which was prepared in the same manner as in Test 1 and the weight composition of the oxide film was determined, the crystal grain size of SiO 2 in the oxide film, the bending strength and elastic modulus of the sample were measured. did.
Moreover, the thermal shock resistance evaluation of the oxide film was performed as follows. First, 10 samples for each evaluation were stacked in multiple stages. At this time, 250 g of ZrO 2 powder is loaded as a load for each sample, and 10 mm × 10 mm × 10 mm spacers are arranged at four corners from the edge of each sample, and four samples are placed thereon. To support. Each sample stacked in this manner is placed in an electric furnace maintained at 600 ° C. and held at room temperature for 1 hour, and then removed from the furnace. Evaluated.
These evaluation results are summarized in Table 2.
In addition, the comparative example 12 is a sample which is not covered only with the SiC base material with the oxide film.

Figure 2012076940
Figure 2012076940

表2に示す結果から分かるように、SiC基材表面の酸化物膜中のSiO2の結晶粒径が1μm以上10μm以下である場合(実施例14〜16)、酸化物膜による酸化防止効果が向上し、かつ、曲げ強度が大きく、耐熱衝撃性にも優れていることが認められた。 As can be seen from the results shown in Table 2, when the crystal grain size of SiO 2 in the oxide film on the surface of the SiC substrate is 1 μm or more and 10 μm or less (Examples 14 to 16), the oxide film has an antioxidant effect. It was confirmed that the bending strength was high and the thermal shock resistance was excellent.

Claims (3)

多孔質SiC基材と、前記基材のSiC結晶表面に形成される酸化物膜とからなり、前記酸化物膜の組成は、SiO2が65重量%以上90重量%以下、残部がAl23及びY23であり、かつ、前記Al23及びY23の重量組成比が20:80〜60:40であることを特徴とするSiC焼成用道具材。 It consists of a porous SiC base material and an oxide film formed on the SiC crystal surface of the base material. The composition of the oxide film is that SiO 2 is 65 wt% or more and 90 wt% or less, and the balance is Al 2 O 3 and Y 2 O 3 , and the weight composition ratio of the Al 2 O 3 and Y 2 O 3 is 20:80 to 60:40. 前記SiO2は結晶粒子を含み、前記結晶粒子の結晶粒径が1μm以上10μm以下であることを特徴とする請求項1記載のSiC焼成用道具材。 2. The SiC firing tool material according to claim 1, wherein the SiO 2 includes crystal particles, and the crystal particle diameter of the crystal particles is 1 μm or more and 10 μm or less. 前記酸化物膜の厚さが1μm以上200μm以下であることを特徴とする請求項1又は2に記載のSiC焼成用道具材。   The SiC firing tool material according to claim 1 or 2, wherein the oxide film has a thickness of 1 µm to 200 µm.
JP2010221410A 2010-09-30 2010-09-30 Tool material for SiC firing Active JP5465143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221410A JP5465143B2 (en) 2010-09-30 2010-09-30 Tool material for SiC firing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221410A JP5465143B2 (en) 2010-09-30 2010-09-30 Tool material for SiC firing

Publications (2)

Publication Number Publication Date
JP2012076940A true JP2012076940A (en) 2012-04-19
JP5465143B2 JP5465143B2 (en) 2014-04-09

Family

ID=46237616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221410A Active JP5465143B2 (en) 2010-09-30 2010-09-30 Tool material for SiC firing

Country Status (1)

Country Link
JP (1) JP5465143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206394A (en) * 2016-05-16 2017-11-24 日本電気硝子株式会社 Refractory, method for manufacturing refractory, and apparatus and method for manufacturing glass article
CN108530084A (en) * 2018-05-31 2018-09-14 深圳市商德先进陶瓷股份有限公司 Porous ceramics and preparation method thereof, air-bearing and application
JP2019011238A (en) * 2017-06-30 2019-01-24 クアーズテック株式会社 Tool material for firing
JP2019014636A (en) * 2017-07-10 2019-01-31 三井金属鉱業株式会社 Silicon carbide sintered body substrate and electronic component sintering tool including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206556A (en) * 1994-01-17 1995-08-08 Tokai Konetsu Kogyo Co Ltd Coating material for refractory and method for application
JP2001213666A (en) * 2000-01-28 2001-08-07 Mitsui Mining & Smelting Co Ltd Material for making electronic part by sintering
JP2001322875A (en) * 2000-05-10 2001-11-20 Mitsui Mining & Smelting Co Ltd Implement for calcination of electronic parts
JP2003239087A (en) * 2001-12-19 2003-08-27 United Technol Corp <Utc> Article comprising material containing silicon
JP2004238215A (en) * 2003-02-03 2004-08-26 National Institute For Materials Science Silicon carbide sintered member having non-reactive thermally sprayed film and method of manufacturing the same
JP2006117472A (en) * 2004-10-21 2006-05-11 Toshiba Ceramics Co Ltd Silicon carbide tool material for firing and its manufacturing method
JP2008137860A (en) * 2006-12-04 2008-06-19 Covalent Materials Corp Ceramics burning tool material for electronic components
JP2009029686A (en) * 2007-03-28 2009-02-12 Kyocera Corp Corrosion-resistant member, its production method, and its treatment apparatus
JP2012513946A (en) * 2008-12-24 2012-06-21 スネクマ・プロピュルシオン・ソリド Environmental barrier for heat-resistant substrates containing silicon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206556A (en) * 1994-01-17 1995-08-08 Tokai Konetsu Kogyo Co Ltd Coating material for refractory and method for application
JP2001213666A (en) * 2000-01-28 2001-08-07 Mitsui Mining & Smelting Co Ltd Material for making electronic part by sintering
JP2001322875A (en) * 2000-05-10 2001-11-20 Mitsui Mining & Smelting Co Ltd Implement for calcination of electronic parts
JP2003239087A (en) * 2001-12-19 2003-08-27 United Technol Corp <Utc> Article comprising material containing silicon
JP2004238215A (en) * 2003-02-03 2004-08-26 National Institute For Materials Science Silicon carbide sintered member having non-reactive thermally sprayed film and method of manufacturing the same
JP2006117472A (en) * 2004-10-21 2006-05-11 Toshiba Ceramics Co Ltd Silicon carbide tool material for firing and its manufacturing method
JP2008137860A (en) * 2006-12-04 2008-06-19 Covalent Materials Corp Ceramics burning tool material for electronic components
JP2009029686A (en) * 2007-03-28 2009-02-12 Kyocera Corp Corrosion-resistant member, its production method, and its treatment apparatus
JP2012513946A (en) * 2008-12-24 2012-06-21 スネクマ・プロピュルシオン・ソリド Environmental barrier for heat-resistant substrates containing silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017206394A (en) * 2016-05-16 2017-11-24 日本電気硝子株式会社 Refractory, method for manufacturing refractory, and apparatus and method for manufacturing glass article
JP2019011238A (en) * 2017-06-30 2019-01-24 クアーズテック株式会社 Tool material for firing
JP2019014636A (en) * 2017-07-10 2019-01-31 三井金属鉱業株式会社 Silicon carbide sintered body substrate and electronic component sintering tool including the same
CN108530084A (en) * 2018-05-31 2018-09-14 深圳市商德先进陶瓷股份有限公司 Porous ceramics and preparation method thereof, air-bearing and application
CN108530084B (en) * 2018-05-31 2020-09-15 深圳市商德先进陶瓷股份有限公司 Porous ceramic, preparation method thereof, air-bearing and application

Also Published As

Publication number Publication date
JP5465143B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
TWI468364B (en) Protective coatings resistant to reactive plasma processing
CN101333113B (en) Material for baking multilayer ceramic capacitor, manufacturing method thereof and regenerating method
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
CN102086121B (en) Dielectric ceramic and laminated ceramic capacitor
CN109095921B (en) Zirconia ceramic bone implantation prosthesis and preparation method thereof
JP5465143B2 (en) Tool material for SiC firing
JP5154276B2 (en) Tools for firing electronic components
JP5774135B2 (en) Sintered materials based on doped chromium oxide
CN109336592B (en) Zirconia ceramic bone implantation prosthesis and preparation method thereof
CN109996772A (en) Magnesia carbon brick and its manufacturing method
CN110903074A (en) High-temperature oxidation-resistant coating on surface of silicon carbide substrate and preparation method thereof
TWI751709B (en) Refractory
JP4763452B2 (en) Surface-coated ceramic sintered body
WO2015056674A1 (en) Inorganic porous film and method for producing inorganic porous film
JP5005012B2 (en) Ceramic capacitor firing method and firing setter
JP4975246B2 (en) Tool material for firing silicon carbide
WO2013100071A1 (en) Tin-oxide refractory
JPH10212166A (en) Ceramic sheet, green sheet and production of ceramic sheet
JP2842174B2 (en) Brick for coke oven, method for producing the same, and furnace wall structure of coke oven
TWI383965B (en) A ceramic material for a ceramic ceramic container, a method for manufacturing the same, and a method for producing the same
JP5100726B2 (en) Setter
JP2014051424A (en) Member for heat treatment and vessel for heat treatment including the same
JP5324889B2 (en) Sputtering target and manufacturing method thereof
JP2023160735A (en) Tool material for firing
JP2731242B2 (en) High strength and high toughness ceramic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140121

R150 Certificate of patent or registration of utility model

Ref document number: 5465143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350