JP2012074390A - Method for producing positive electrode active material - Google Patents

Method for producing positive electrode active material Download PDF

Info

Publication number
JP2012074390A
JP2012074390A JP2011255418A JP2011255418A JP2012074390A JP 2012074390 A JP2012074390 A JP 2012074390A JP 2011255418 A JP2011255418 A JP 2011255418A JP 2011255418 A JP2011255418 A JP 2011255418A JP 2012074390 A JP2012074390 A JP 2012074390A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011255418A
Other languages
Japanese (ja)
Other versions
JP2012074390A5 (en
JP5464717B2 (en
Inventor
Takao Noda
孝男 野田
Akihiko Shirakawa
彰彦 白川
Joseph Gaze
ジョセフ ガゼ
Yoshiaki Yamauchi
慶昭 山内
Fumiyoshi Ono
文善 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2011255418A priority Critical patent/JP5464717B2/en
Publication of JP2012074390A publication Critical patent/JP2012074390A/en
Publication of JP2012074390A5 publication Critical patent/JP2012074390A5/ja
Application granted granted Critical
Publication of JP5464717B2 publication Critical patent/JP5464717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a positive electrode active material for a lithium ion secondary battery, excellent in filling properties, high in initial capacity and less in decrease of capacity (high in capacity retention rate) in repeating charging and discharging.SOLUTION: A method for manufacturing a positive electrode active material for a lithium ion secondary battery, the material mainly consisting of a Li-Mn composite oxide having a spinel structure, includes a step of adding an oxide, an element convertible into an oxide or a compound containing the element, which fuse at a temperature of 550 to 900°C, or an oxide, an element convertible into an oxide or a compound containing the element, which form solid solution with lithium or manganese or react and fuse with lithium or manganese, to a crushed material of a Li-Mn composite oxide having the spinel structure, and mixing to be granulated.

Description

本発明は、リチウムイオン二次電池用正極活物質、その製造方法及びその正極活物質を用いたリチウムイオン二次電池に関する。   The present invention relates to a positive electrode active material for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery using the positive electrode active material.

リチウムイオン二次電池用正極活物質としては、安全性に優れ、かつ資源も豊富なリチウムマンガン複合酸化物(以下Li−Mn系複合酸化物という。)が注目されている。しかしながら、Li−Mn系複合酸化物は、リチウムコバルト複合酸化物(Li−Co系複酸化物と略する。)と比較して活物質当たりの容量が低く、二次粒子内に多くの空隙を含むので、二次粒子が軽く、吸油量が大きいために大きさが制限される電池内に仕込める活物質質量が少なくなってしまう。その結果、単位電池あたりの電気容量が小さいという問題がある。   As a positive electrode active material for a lithium ion secondary battery, a lithium manganese composite oxide (hereinafter referred to as a Li-Mn composite oxide) that is excellent in safety and has abundant resources has attracted attention. However, the Li—Mn composite oxide has a lower capacity per active material than a lithium cobalt composite oxide (abbreviated as Li—Co composite oxide), and has many voids in the secondary particles. Accordingly, the mass of the active material charged in the battery whose size is limited because the secondary particles are light and the oil absorption is large is reduced. As a result, there is a problem that the electric capacity per unit battery is small.

その改善策として、近年、マンガン化合物とリチウム化合物との混合物を500kg/cm2以上の圧力で加圧成形後、加熱処理し解砕を行うことにより、タップ密度(一定の条件で容器を振動させて得られる粉末の見掛け密度)が1.7g/ml以上のLi−Mn複合酸化物を得ようとする提案がある(米国特許第5807646号:特許文献1,特開平9−86933号:特許文献2)。しかしながら、開示されている具体的なタップ密度は、高々1.9g/mlに過ぎず満足のいくレベルではなかった。 In recent years, tap density (vibrating the container under certain conditions) has been improved by pressing and molding a mixture of a manganese compound and a lithium compound at a pressure of 500 kg / cm 2 or higher, followed by heat treatment and crushing. Have been proposed to obtain a Li—Mn composite oxide having an apparent density of 1.7 g / ml or more (US Pat. No. 5,807,646: Patent Document 1, JP-A-9-86933: Patent Document). 2). However, the specific tap density disclosed is only 1.9 g / ml at most, which is not a satisfactory level.

また、前記公報には、Li−Mn系複合酸化物の1次粒子が凝集した二次粒子の平均粒子径が開示されているが、二次粒子は1次粒子間の相互作用を利用して充填性を向上させても、電極材料の調合工程の際に塗料化(電極ペースト化)する段階でその凝集がなくなり、本質的な改善策になっていない。   Further, the above publication discloses the average particle diameter of secondary particles in which primary particles of Li—Mn-based composite oxide are aggregated, but secondary particles use the interaction between primary particles. Even if the filling property is improved, the aggregation does not occur at the stage of forming a paint (electrode paste) during the preparation process of the electrode material, which is not an essential improvement measure.

また、スピネル構造を有するLi−Mn系複合酸化物の製造方法としては、マンガン化合物とリチウム化合物の混合物を高温(例えば250℃から850℃の温度下)で焼成して製造する方法(特開平9−86933号公報:特許文献2)や、マンガン化合物とリチウム化合物にさらにマンガンと置換し得る硼素元素の酸化物を混合し、高温で焼成してMnをBで一部置換したLi−Mn−B系酸化物の正極活物質を製造する方法(特開平4−237970号公報:特許文献3)が開示されている。   In addition, as a method for producing a Li-Mn composite oxide having a spinel structure, a method of producing a mixture of a manganese compound and a lithium compound by firing at a high temperature (for example, at a temperature of 250 ° C. to 850 ° C.) -86933 gazette: Patent Document 2) or Li-Mn-B in which a manganese compound and a lithium compound are further mixed with an oxide of a boron element that can be substituted with manganese, fired at high temperature, and Mn is partially substituted with B A method for producing a positive electrode active material of a system oxide (Japanese Patent Laid-Open No. 4-237970: Patent Document 3) is disclosed.

しかしながら、これらの原料を大気中または酸素ガスフロー中、高温で焼成した場合には、解砕後の二次粒子は、平均空隙率が大きく(15%以上)、タップ密度が低く(1.9g/ml以下)、このため電極に仕込める正極活物質の質量を多くして高容量化を図ることはできない。   However, when these raw materials are fired at high temperature in the atmosphere or in an oxygen gas flow, the secondary particles after pulverization have a high average porosity (15% or more) and a low tap density (1.9 g). For this reason, the mass of the positive electrode active material charged into the electrode cannot be increased to increase the capacity.

また、特開平4−14752号公報(特許文献4)には、スピネル型リチウムマンガン酸化物に酸化チタンを配合、焼結したマンガン系酸化物の正極活物質への使用が開示されているが、酸化チタンは950℃〜1000℃以上でないとリチウムとマンガンと反応して融液を生成せず、さらには酸化チタンを10質量%も添加しないとタップ密度は1.60g/mlしか得られないとの問題があった。   JP-A-4-14752 (Patent Document 4) discloses the use of a manganese-based oxide obtained by blending and sintering titanium oxide in a spinel type lithium manganese oxide for a positive electrode active material. If titanium oxide is not 950 ° C. to 1000 ° C. or higher, lithium and manganese will not react to form a melt, and if titanium oxide is not added in an amount of 10% by mass, the tap density is only 1.60 g / ml. There was a problem.

米国特許第5807646号US Pat. No. 5,807,646 特開平9−86933号公報JP-A-9-86933 特開平4−237970号公報JP-A-4-237970 特開平4−14752号公報JP-A-4-14752

本発明の課題は、充填性に優れ、初期容量が高く、充放電を繰り返した時の容量の低下が少ない(容量維持率が高い)リチウムイオン二次電池用正極活物質、その製造方法及びその正極活物質を用いたリチウムイオン二次電池を提供することにある。   An object of the present invention is to provide a positive electrode active material for a lithium ion secondary battery that has excellent filling properties, a high initial capacity, and a small decrease in capacity when charging and discharging are repeated (a high capacity retention rate), a method for producing the same, and a method for producing the same An object of the present invention is to provide a lithium ion secondary battery using a positive electrode active material.

本発明者らは、鋭意検討した結果、スピネル構造を有するLi−Mn系複合酸化物の焼成品を解砕後、これらの粉砕粒子に焼結促進助剤を添加し、造粒及び焼成することにより粒子の緻密化を図ることに成功して前記課題を解決した。
すなわち、本発明は、以下のリチウムイオン二次電池用正極活物質、その製造方法、その正極活物質を含む電極用ペースト及びリチウムイオン二次電池用正極、及びリチウムイオン二次電池を提供する。
As a result of intensive studies, the present inventors have crushed a fired product of Li-Mn composite oxide having a spinel structure, and then added a sintering accelerator to these pulverized particles, and granulated and fired. As a result, the above-mentioned problems were solved by succeeding in densifying the particles.
That is, the present invention provides the following positive electrode active material for a lithium ion secondary battery, a production method thereof, an electrode paste containing the positive electrode active material, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

[1]スピネル構造を有するLi−Mn系複合酸化物粒子を主体とするリチウムイオン二次電池用正極活物質において、下記式
空隙率(%)=(A/B)×100 (1)
(Aは二次粒子1個の断面に含まれるポアの総断面積であり、Bは二次粒子1個の断面積である。)で示される前記粒子の空隙率の平均値が15%以下であることを特徴とするリチウムイオン二次電池用正極活物質。
[2]前記平均空隙率の値が10%以下であり、かつ一次粒子の平均粒子径が0.2〜3μmである前記[1]に記載のリチウムイオン二次電池用正極活物質。
[3]正極活物質のタップ密度が、1.9g/ml以上である前記[1]に記載のリチウムイオン二次電池用正極活物質。
[4]正極活物質のタップ密度が、2.2g/ml以上である前記[3]に記載のリチウムイオン二次電池用正極活物質。
[5]正極活物質の結晶子サイズが、400〜960オングストロームである前記[1]に記載のリチウムイオン二次電池用正極活物質。
[6]正極活物質の格子定数が、8.240オングストローム以下である前記[1]に記載のリチウムイオン二次電池用正極活物質。
[7]正極活物質が、スピネル構造を有するLi−Mn系複合酸化物を主体とし、その酸化物が550℃〜900℃の温度で溶融する酸化物または酸化物になり得る元素または元素を含む化合物、またはリチウムまたはマンガンと固溶するか反応して溶融する酸化物または酸化物になり得る元素または元素を含む化合物からなり、造粒及び焼結されている活物質である前記[1]に記載のリチウムイオン二次電池用正極活物質。
[8]550℃〜900℃の温度で溶融する酸化物または酸化物になり得る元素または元素を含む化合物、またはリチウムまたはマンガンと固溶するか反応して溶融する酸化物または酸化物になり得る元素または元素を含む化合物が、Bi、B、W、Mo、Pbからなる群より選ばれる少なくとも1種の元素または元素を含む化合物、またはB23とLiFを組み合わせた化合物またはMnF2とLiFを組み合わせた化合物である前記[7]に記載のリチウムイオン二次電池用正極活物質。
[9]スピネル構造を有するLi−Mn系複合酸化物を主体とするリチウムイオン二次電池用正極活物質の製造方法において、スピネル構造を有するLi−Mn系複合酸化物の粉砕物に、550℃〜900℃の温度で溶融する酸化物または酸化物になり得る元素または元素を含む化合物、またはリチウムまたはマンガンと固溶するか反応して溶融する酸化物または酸化物になり得る元素または元素を含む化合物を添加し混合して造粒する工程を有することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
[10]造粒工程以外に、前記造粒物を焼結する工程を有する前記[9]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[11]造粒工程以外に、前記造粒物を焼結収縮開始温度から少なくとも100℃以上高い温度まで少なくとも100℃/minの速度で昇温してその温度に1分〜10分間保持した後、少なくとも100℃/minの速度で焼結開始温度まで降温して焼結させる工程を有する前記[9]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[12]ロータリーキルンを用いて焼結させる前記[11]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[13]前記焼結工程が、Li−Mn系複合酸化物粒子の表面でBi、B、W、Mo、Pbからなる群より選ばれる少なくとも1種の元素または元素を含む化合物、またはB23とLiFを組み合わせた化合物またはMnF2とLiFを組み合わせた化合物を溶融し焼結して行われる前記[10]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[14]スピネル構造を有するLi−Mn系複合酸化物の粉砕物の平均粒子径が、5μm以下である前記[9]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[15]スピネル構造を有するLi−Mn系複合酸化物の粉砕物の平均粒子径が、3μm以下である前記[9]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[16]前記造粒工程が、噴霧造粒方法、撹拌造粒方法、圧縮造粒方法または流動造粒方法で行われる前記[9]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[17]前記造粒工程において、造粒助剤として、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合物、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリデン、ハイドロキシプロピルセルロース、メチルセルロース、コーンスターチ、ゼラチン、リグニンからなる群より選ばれる少なくとも1種の有機化合物を使用する前記[9]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[18]大気中または酸素を含有するガスフロー雰囲気中、300℃〜550℃の温度下で脱脂工程を有する前記[17]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[19]前記[9]乃至[18]のいずれかの項に記載の方法で得られたリチウムイオン二次電池用正極活物質。
[20]前記[1]乃至[8]のいずれかの項に記載のリチウムイオン二次電池用正極活物質を含む電極用ペースト。
[21]前記[1]乃至[8]のいずれかの項または前記[19]に記載のリチウムイオン二次電池用正極活物質を含むリチウムイオン二次電池用正極。
[22]前記[21]に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
[23]リチウムイオン二次電池が、コイン型電池、巻回型電池、円筒型、角型電池または積層型電池である前記[22]に記載のリチウムイオン二次電池。
[1] In a positive electrode active material for a lithium ion secondary battery mainly composed of Li-Mn composite oxide particles having a spinel structure, the following formula
Porosity (%) = (A / B) × 100 (1)
(A is the total cross-sectional area of the pores included in the cross section of one secondary particle, and B is the cross-sectional area of one secondary particle.) The average value of the porosity of the particles shown in FIG. A positive electrode active material for a lithium ion secondary battery.
[2] The positive electrode active material for a lithium ion secondary battery according to [1], wherein the average porosity is 10% or less, and the average particle diameter of primary particles is 0.2 to 3 μm.
[3] The positive electrode active material for a lithium ion secondary battery according to [1], wherein the positive electrode active material has a tap density of 1.9 g / ml or more.
[4] The positive electrode active material for a lithium ion secondary battery according to [3], wherein the positive electrode active material has a tap density of 2.2 g / ml or more.
[5] The positive electrode active material for a lithium ion secondary battery according to the above [1], wherein the crystallite size of the positive electrode active material is 400 to 960 Å.
[6] The positive electrode active material for a lithium ion secondary battery according to [1], wherein the positive electrode active material has a lattice constant of 8.240 angstroms or less.
[7] The positive electrode active material is mainly composed of a Li-Mn composite oxide having a spinel structure, and the oxide contains an element or an element that can be an oxide or oxide that melts at a temperature of 550 ° C to 900 ° C. In the above [1], which is a compound, or an active material that is granulated and sintered, consisting of a compound, or an element that can be dissolved or reacted with lithium or manganese, or an oxide that can be melted by reaction or an oxide The positive electrode active material for lithium ion secondary batteries as described.
[8] An element or a compound containing an element that can be an oxide or oxide that melts at a temperature of 550 ° C. to 900 ° C., or an oxide or oxide that melts or reacts with lithium or manganese. An element or a compound containing an element is at least one element selected from the group consisting of Bi, B, W, Mo, and Pb, or a compound that combines B 2 O 3 and LiF, or MnF 2 and LiF The positive electrode active material for a lithium ion secondary battery according to [7], which is a compound in which
[9] In a method for producing a positive electrode active material for a lithium ion secondary battery mainly composed of a Li-Mn composite oxide having a spinel structure, the pulverized product of the Li-Mn composite oxide having a spinel structure is 550 ° C. Contains an element or compound that can be an oxide or oxide that melts at a temperature of ˜900 ° C., or an element or element that can be dissolved or reacts with lithium or manganese to become an oxide or oxide that melts The manufacturing method of the positive electrode active material for lithium ion secondary batteries characterized by having the process of adding a compound, mixing, and granulating.
[10] The method for producing a positive electrode active material for a lithium ion secondary battery according to [9], which includes a step of sintering the granulated product in addition to the granulating step.
[11] In addition to the granulation step, the granulated product is heated at a rate of at least 100 ° C./min from the sintering shrinkage start temperature to a temperature higher by at least 100 ° C. and held at that temperature for 1 to 10 minutes. The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], comprising a step of lowering the temperature to the sintering start temperature at a rate of at least 100 ° C./min and sintering.
[12] The method for producing a positive electrode active material for a lithium ion secondary battery according to [11], wherein sintering is performed using a rotary kiln.
[13] The sintering step includes at least one element selected from the group consisting of Bi, B, W, Mo, and Pb on the surface of the Li—Mn composite oxide particles, or a compound containing the element, or B 2 O [3 ] The method for producing a positive electrode active material for a lithium ion secondary battery according to [10], wherein the method is performed by melting and sintering a compound combining 3 and LiF or a compound combining MnF 2 and LiF.
[14] The method for producing a positive electrode active material for a lithium ion secondary battery according to [9], wherein the average particle size of the pulverized product of the Li-Mn composite oxide having a spinel structure is 5 μm or less.
[15] The method for producing a positive electrode active material for a lithium ion secondary battery according to [9], wherein the average particle size of the pulverized product of the Li—Mn composite oxide having a spinel structure is 3 μm or less.
[16] The method for producing a positive electrode active material for a lithium ion secondary battery according to [9], wherein the granulation step is performed by a spray granulation method, a stirring granulation method, a compression granulation method or a fluidized granulation method. .
[17] In the granulation step, an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [9], wherein at least one organic compound selected from the group consisting of lignin is used.
[18] The method for producing a positive electrode active material for a lithium ion secondary battery according to the above [17], which has a degreasing step at a temperature of 300 ° C. to 550 ° C. in a gas flow atmosphere containing air or oxygen.
[19] A positive electrode active material for a lithium ion secondary battery obtained by the method according to any one of [9] to [18].
[20] An electrode paste containing the positive electrode active material for a lithium ion secondary battery according to any one of [1] to [8].
[21] A positive electrode for a lithium ion secondary battery comprising the positive electrode active material for a lithium ion secondary battery according to any one of [1] to [8] or [19].
[22] A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to [21].
[23] The lithium ion secondary battery according to [22], wherein the lithium ion secondary battery is a coin battery, a wound battery, a cylindrical battery, a prismatic battery, or a stacked battery.

本発明により造粒・焼成・整粒された正極活物質の一例(実施例14)の走査電子顕微鏡写真(×15,000倍)である。It is a scanning electron micrograph (x15,000 times) of an example (Example 14) of the positive electrode active material granulated, fired, and sized according to the present invention. 本発明により造粒・焼成・整粒された正極活物質の一例(実施例14)の粒径分布である。It is a particle size distribution of an example (Example 14) of the positive electrode active material granulated, fired, and sized according to the present invention.

以下、本発明を具体的に説明する。
本発明は、二次粒子の空隙率を従来品に比べ大きく減少させ15%以下とした、スピネル構造を有するLi−Mn系複合酸化物正極活物質に関する。また、本発明は、二次粒子の平均空隙率が10%以下であり、従来品と比べそのサイクル特性の特に優れたスピネル構造を有するLi−Mn系複合酸化物に関する。
Hereinafter, the present invention will be specifically described.
The present invention relates to a Li—Mn based composite oxide positive electrode active material having a spinel structure in which the porosity of secondary particles is greatly reduced to 15% or less compared to conventional products. In addition, the present invention relates to a Li—Mn composite oxide having a spinel structure in which the average porosity of secondary particles is 10% or less and the cycle characteristics are particularly excellent compared to conventional products.

すなわち、本発明におけるスピネル構造を有するリチウム−マンガン(Li−Mn)系複合酸化物の正極活物質は、化学式LiMn24、Li1+xMn2-x4(式中xは0<x<0.2の範囲である。)または前記Mnを、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウムからなる群より選ばれる少なくとも1種の元素(化学式ではMと略する)で置換した化学式Li1+xMn2-x-yy4(式中xは0<x<0.2の範囲であり、yは0<y<0.4である。)で示される化合物を総称するものである。 That is, the positive electrode active material of a lithium-manganese (Li-Mn) based composite oxide having a spinel structure in the present invention has chemical formulas LiMn 2 O 4 , Li 1 + x Mn 2−x O 4 (where x is 0 < x <0.2) or a chemical formula in which Mn is substituted with at least one element selected from the group consisting of chromium, cobalt, aluminum, nickel, iron, and magnesium (abbreviated as M in the chemical formula). li 1 + x Mn 2-xy M y O 4 ( wherein x is in the range of 0 <x <0.2, y is 0 <y <0.4.) a general term of a compound represented by It is.

本発明においては、リチウムイオン二次電池用正極活物質は、前記スピネル構造を有するLi−Mn系複合酸化物を主体とするものであって、二次粒子1個の空隙率が下記式(1)
空隙率(%)=(A/B)×100 (1)
(Aは二次粒子1個の断面に含まれるポアの総断面積であり、Bは二次粒子1個の断面積である。)で算出され、その平均空隙率が15%以下であるものが使用される。
In the present invention, the positive electrode active material for a lithium ion secondary battery is mainly composed of the Li-Mn composite oxide having the spinel structure, and the porosity of one secondary particle is represented by the following formula (1 )
Porosity (%) = (A / B) × 100 (1)
(A is the total cross-sectional area of pores included in the cross section of one secondary particle, and B is the cross-sectional area of one secondary particle), and the average porosity is 15% or less Is used.

また、前記Li−Mn系複合酸化物としては、好ましくは前記正極活物質の平均空隙率は10%以下であって、一次粒子の平均粒子径が0.2〜3μmであるものが使用される。
すなわち、正極活物質としてタップ密度が1.9g/mlを超えるためには、二次粒子の平均空隙率が15%以下であることが必要である。二次粒子の平均空隙率は好ましくは13%以下であり、さらに好ましくは10%以下である。
Further, as the Li—Mn based composite oxide, those having an average porosity of 10% or less and an average primary particle diameter of 0.2 to 3 μm are preferably used. .
That is, in order for the tap density to exceed 1.9 g / ml as the positive electrode active material, the average porosity of secondary particles needs to be 15% or less. The average porosity of the secondary particles is preferably 13% or less, more preferably 10% or less.

一般的に複合酸化物の製造方法において、焼結温度を高くかつ焼結時間を長くして焼結収縮させて二次粒子の平均空隙率をできるだけ低減しようとすると、一次粒子は焼結収縮に伴い粒成長して大きくなってしまい、この材料を電池正極活物質に使用すると容量維持率が低下する。その結果、電池組立後の電池特性が悪化してしまう。   In general, in the composite oxide manufacturing method, if the sintering temperature is increased and the sintering time is increased to cause the shrinkage of the secondary particles to reduce the average porosity of the secondary particles as much as possible, the primary particles cause the sintering shrinkage. Accompanying this, the grains grow and become large, and when this material is used as a battery positive electrode active material, the capacity retention rate decreases. As a result, battery characteristics after battery assembly are deteriorated.

本発明者らは、粒成長を抑制して焼結収縮させる方法を鋭意研究した結果、熱機械試験機(Thermo-mechanical analysis)で測定した焼結収縮開始温度よりも少なくとも100℃以上高い温度まで少なくとも100℃/minの速度で昇温した後、1分〜10分の時間保持後、該焼結収縮開始温度まで少なくとも100℃/minの速度で降温することにより粒成長を抑制して焼結収縮できることを見出した。   As a result of diligent research on a method for suppressing grain growth and sintering shrinkage, the present inventors have achieved a temperature at least 100 ° C. higher than the sintering shrinkage initiation temperature measured by a thermo-mechanical analysis. After raising the temperature at a rate of at least 100 ° C./min, holding for 1 minute to 10 minutes, and then lowering the temperature to the sintering shrinkage start temperature at a rate of at least 100 ° C./min to suppress grain growth and sinter It was found that it can shrink.

ここで、焼結収縮開始温度とは、熱機械試験機で求めた収縮開始温度をいう。前記保持温度としては、焼結収縮開始温度よりも少なくとも100℃以上高い温度であることが必要である。保持温度を焼結開始温度よりも100℃未満に高くした程度では、焼結収縮速度が遅いため焼結時間が長く必要となり、その結果粒成長して一次粒子径が0.5μmよりも大きくなってしまう。   Here, the sintering shrinkage start temperature refers to the shrinkage start temperature obtained with a thermomechanical tester. The holding temperature needs to be at least 100 ° C. higher than the sintering shrinkage start temperature. When the holding temperature is made lower than 100 ° C. below the sintering start temperature, the sintering shrinkage rate is slow, so that a longer sintering time is required. As a result, the grains grow and the primary particle diameter becomes larger than 0.5 μm. End up.

また、前記焼結工程において該焼結収縮開始温度よりも少なくとも100℃以上の高い温度において、一次粒子径が0.2μm以上、かつ0.5μm以下であって、かつ優れた電池特性が得られる保持時間は、少なくとも1分以上、10分以内である。保持時間が1分未満では熱伝達時間が短すぎて一次粒子径が0.2μm未満と小さく、結晶化も不十分となり、初期容量が小さくなる。保持時間が10分を越えると、焼結収縮後も粒成長が進行するので、一次粒子が大きくなり容量維持率が低下する。   Further, in the sintering step, the primary particle diameter is 0.2 μm or more and 0.5 μm or less at a temperature at least 100 ° C. higher than the sintering shrinkage start temperature, and excellent battery characteristics are obtained. The holding time is at least 1 minute and within 10 minutes. If the holding time is less than 1 minute, the heat transfer time is too short, the primary particle size is as small as less than 0.2 μm, crystallization is insufficient, and the initial capacity is reduced. When the holding time exceeds 10 minutes, grain growth proceeds even after sintering shrinkage, so that the primary particles become large and the capacity retention rate decreases.

本発明においては、好ましくは保持時間は2分から8分、さらに好ましくは2分から5分とする。
焼結開始温度から保持温度までの温度領域において昇温速度と降温速度を少なくとも100℃/分と限定したのは、粒成長が進行する温度領域での保持時間をできるだけ短くすることにより焼結収縮のみを進行させて粒成長を抑制するためである。
また、正極活物質のタップ密度が2.2g/mlを越えるためには、二次粒子の平均空隙率が10%以下であることが必要であり、好ましくは7%以下、さらに好ましくは5%以下である。
In the present invention, the holding time is preferably 2 to 8 minutes, more preferably 2 to 5 minutes.
In the temperature range from the sintering start temperature to the holding temperature, the rate of temperature increase and the rate of temperature decrease was limited to at least 100 ° C./minute because the holding time in the temperature range where grain growth proceeds is made as short as possible. This is because the grain growth is suppressed only by proceeding.
Further, in order for the tap density of the positive electrode active material to exceed 2.2 g / ml, the average porosity of the secondary particles needs to be 10% or less, preferably 7% or less, more preferably 5%. It is as follows.

本発明における前記正極活物質の結晶子サイズは、400〜960オングストロームが好ましい。結晶子サイズが400オングストローム未満の場合では、結晶性が不十分のために電池における初期容量が低く、容量維持率が低くなる。一方、結晶子サイズが960オングストロームを超える場合には、容量維持率の低下が激しくなる。さらに具体的に好ましい結晶子サイズは500〜920オングストロームであり、さらに望ましくは700〜920オングストロームである。   The crystallite size of the positive electrode active material in the present invention is preferably 400 to 960 Å. When the crystallite size is less than 400 angstroms, the initial capacity of the battery is low because of insufficient crystallinity, and the capacity retention rate is low. On the other hand, when the crystallite size exceeds 960 angstroms, the capacity retention rate is drastically reduced. More specifically, the preferred crystallite size is 500 to 920 angstroms, and more desirably 700 to 920 angstroms.

また、本発明のスピネル構造を有するLi−Mn系複合酸化物の正極活物質は、その格子定数が8.240オングストローム以下であることが好ましい。格子定数が8.240オングストロームを超えると電池の容量維持率の低下が激しくなる。従って、格子定数の好ましい範囲は、8.235オングストローム以下であり、さらに好ましくは8.233オングストローム以下である。   In addition, the positive electrode active material of the Li—Mn composite oxide having a spinel structure of the present invention preferably has a lattice constant of 8.240 angstroms or less. When the lattice constant exceeds 8.240 angstroms, the capacity retention rate of the battery is drastically reduced. Therefore, the preferable range of the lattice constant is 8.235 angstroms or less, and more preferably 8.233 angstroms or less.

スピネル構造を有するLi−Mn系複合酸化物を主体とする本発明の正極活物質は、スピネル構造を有するLi−Mn系複合酸化物の焼成品を解砕後、得られる粉砕粒子(これは1次粒子の集合した二次粒子であり、好ましくは平均粒子径が0.5μm以下である。)に焼結促進助剤(造粒促進剤)を添加混合して造粒焼成した緻密な造粒粒子が使用される。ここで、緻密な造粒粒子とは、その酸化物の1次粒子間に空隙がないか、または少ないことを意味する。本発明の正極活物質は前記の緻密な造粒粒子であり、後記する焼結促進助剤を使用して形成される。   The positive electrode active material of the present invention mainly composed of a Li-Mn composite oxide having a spinel structure is obtained by crushing a fired product of a Li-Mn composite oxide having a spinel structure and then obtaining pulverized particles (this is 1 Dense particles obtained by adding and mixing a sintering acceleration aid (granulation accelerator) to secondary particles in which secondary particles are aggregated, preferably having an average particle size of 0.5 μm or less. Particles are used. Here, the dense granulated particles mean that there are no or few voids between the primary particles of the oxide. The positive electrode active material of the present invention is the above-mentioned dense granulated particles, and is formed using a sintering acceleration aid described later.

以下、本発明の正極活物質の製造方法について説明する。
スピネル構造を有するLi−Mn系複合酸化物の製造方法は、マンガン化合物とリチウム化合物の混合物、またはさらにマンガンと置換し得る異種元素を含む化合物を添加した混合物を大気中または酸素ガスフロー中において、300〜850℃の温度で少なくとも1時間以上焼成すればよい。
Hereinafter, the manufacturing method of the positive electrode active material of this invention is demonstrated.
In a method for producing a Li-Mn composite oxide having a spinel structure, a mixture of a manganese compound and a lithium compound, or a mixture to which a compound containing a different element that can be substituted with manganese is further added in the atmosphere or in an oxygen gas flow. The baking may be performed at a temperature of 300 to 850 ° C. for at least 1 hour.

スピネル構造を有するLi−Mn系複合酸化物の結晶性については特に制限はなく、未反応のリチウム化合物とマンガン酸化物が残留していてもかまわない。結晶性の高いスピネル構造を有するLi−Mn系複合酸化物を使用する場合、格子定数について特に制約はないが、格子定数が8.240オングストローム以下となる正極活物質に使用すると、容量維持率の低下が抑えられる。   There is no restriction | limiting in particular about the crystallinity of Li-Mn type complex oxide which has a spinel structure, The unreacted lithium compound and manganese oxide may remain | survive. When using a Li—Mn composite oxide having a spinel structure with high crystallinity, there is no particular limitation on the lattice constant, but when used for a positive electrode active material having a lattice constant of 8.240 angstroms or less, the capacity retention rate is reduced. Reduction is suppressed.

スピネル構造を有するLi−Mn系複合酸化物の原料は、特に制限を受けないが、好ましくは公知のマンガン化合物、例えば二酸化マンガン、三二酸化マンガン、四三酸化マンガン、水和マンガン酸化物、炭酸マンガン、硝酸マンガンなどが使用でき、またリチウム化合物としては水酸化リチウム、炭酸リチウム、硝酸リチウムなどが使用できる。
また望ましくは、前記マンガン化合物としては、正極活物質に適応させた時の電池特性が優れているリチウム化合物と低温で反応しやすい炭酸マンガンが好ましい。
The raw material of the Li-Mn composite oxide having a spinel structure is not particularly limited, but is preferably a known manganese compound such as manganese dioxide, manganese sesquioxide, manganese trioxide, hydrated manganese oxide, manganese carbonate. Manganese nitrate can be used, and lithium hydroxide, lithium carbonate, lithium nitrate and the like can be used as the lithium compound.
Desirably, the manganese compound is preferably manganese carbonate that easily reacts at a low temperature with a lithium compound having excellent battery characteristics when applied to a positive electrode active material.

マンガン置換型のLi1+xMn2-x-yy4で示されるLi−Mn−M(異種元素)系複合酸化物の製造には、前記マンガン化合物と前記リチウム化合物の原料と共にクロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウムからなる群より選ばれる少なくとも1種の元素が使用される。そして、この異種元素Mを含む化合物としては、加熱反応によって前記酸化物を形成し得る化合物なら何でもよく、前記加熱反応の際にリチウム化合物やマンガン化合物と共に添加すればよい。 The preparation of manganese substituted for Li 1 + x Mn Li-Mn -M ( different element) indicated by the 2-xy M y O 4 based complex oxide, chromium together with the raw material of the manganese compound and the lithium compound, a cobalt At least one element selected from the group consisting of aluminum, nickel, iron and magnesium is used. The compound containing the different element M may be any compound that can form the oxide by a heating reaction, and may be added together with a lithium compound or a manganese compound in the heating reaction.

前記のスピネル構造を有するLi−Mn系複合酸化物の二次粒子の解砕・粉砕方法については特に制限はなく公知の解砕機や粉砕機が使用できる。例えば、媒体撹拌式粉砕機、ボールミル、ペイントシェーカー、ジェットミル、ローラーミルなどが挙げられる。解砕・粉砕方式は乾式でもよいし、湿式でもよい。湿式の際に使用できる溶媒についても特に制限はなく、例えば水、アルコールなどが使用される。   The method for crushing and crushing secondary particles of the Li—Mn composite oxide having the spinel structure is not particularly limited, and known crushers and crushers can be used. Examples thereof include a medium agitating pulverizer, a ball mill, a paint shaker, a jet mill, and a roller mill. The crushing and pulverizing method may be dry or wet. There is no restriction | limiting in particular also about the solvent which can be used in the case of wet, For example, water, alcohol, etc. are used.

焼結収縮を促進させるという観点から、解砕・粉砕後のスピネル構造を有するLi−Mn系複合酸化物の粒度が重要である。
粒度はレーザー式粒度分布測定器で測定した時の平均粒子径が5μm以下であることが好ましい。さらに好ましくは、5μm以上の粗大粒子を含まず平均粒子径が2μm以下のものである。さらに好ましくは、3μmを越える粗大粒子を含まず平均粒子径が1.5μm以下のもの、さらには、0.5μm以下、さらに好ましくは0.3μm以下、特に好ましくは0.2μm以下のものである。
From the viewpoint of promoting sintering shrinkage, the particle size of the Li—Mn based composite oxide having a spinel structure after pulverization and pulverization is important.
The particle size is preferably 5 μm or less in average particle size as measured with a laser particle size distribution analyzer. More preferably, the average particle diameter is 2 μm or less without including coarse particles of 5 μm or more. More preferably, it does not contain coarse particles exceeding 3 μm and has an average particle size of 1.5 μm or less, more preferably 0.5 μm or less, still more preferably 0.3 μm or less, and particularly preferably 0.2 μm or less. .

解砕・粉砕したLi−Mn系複合酸化物粒子と焼結促進助剤との混合方法には特に制限はなく、例えば前記した媒体撹拌式粉砕機、ボールミル、ペイントシェーカー、混合ミキサーなどが使用できる。混合方式についても乾式、湿式どちらでもよい。Li−Mn系複合酸化物を解砕・粉砕する際に焼結促進助剤を添加して混合を同時に行ってもよい。
焼結促進助剤は、Li−Mn系複合酸化物粒子の解砕・粉砕粒子を造粒のために焼結できるものであればよく、より好ましくは、900℃以下の温度で溶融する化合物、例えば550℃〜900℃の温度で溶融可能な酸化物または酸化物になり得る前駆体、もしくはリチウムまたはマンガンと固溶するかまたは反応して溶融する酸化物または酸化物になり得る化合物であればよい。
There are no particular limitations on the method of mixing the pulverized and pulverized Li-Mn composite oxide particles and the sintering accelerating aid. For example, the above-mentioned medium agitating pulverizer, ball mill, paint shaker, mixing mixer, etc. can be used. . The mixing method may be either dry or wet. When pulverizing and pulverizing the Li—Mn-based composite oxide, a sintering promoting aid may be added and mixed at the same time.
The sintering promoting auxiliary agent only needs to be capable of sintering the pulverized / pulverized particles of Li-Mn composite oxide particles for granulation, more preferably a compound that melts at a temperature of 900 ° C. or lower, For example, a precursor capable of becoming an oxide or oxide that can be melted at a temperature of 550 ° C. to 900 ° C., or a compound that can be dissolved or reacted with lithium or manganese to become an oxide or oxide that melts by reaction. Good.

焼結促進助剤としては、例えばBi、B、W、Mo、Pbなどの元素を含む化合物が挙げられ、またこれらの化合物を任意に組み合わせて使用してもよい。また、B23とLiFを組み合わせた化合物またはMnF2とLiFを組み合わせた化合物も使用される。中でも、Bi、B、Wの元素を含む化合物は焼結収縮効果が大きいので好ましい。 Examples of the sintering acceleration aid include compounds containing elements such as Bi, B, W, Mo, and Pb, and these compounds may be used in any combination. A compound in which B 2 O 3 and LiF are combined or a compound in which MnF 2 and LiF are combined is also used. Among these, compounds containing Bi, B, and W elements are preferable because they have a large sintering shrinkage effect.

Bi化合物としては、例えば三酸化ビスマス、硝酸ビスマス、安息臭酸ビスマス、オキシ酢酸ビスマス、オキシ炭酸ビスマス、クエン酸ビスマス、水酸化ビスマスなどが挙げられる。また、B化合物としては、三二酸化硼素、炭化硼素、窒化硼素、硼酸などが挙げられる。W化合物としては、二酸化タングステン、三酸化タングステンなどが挙げられる。   Examples of the Bi compound include bismuth trioxide, bismuth nitrate, bismuth benzoate, bismuth oxyacetate, bismuth oxycarbonate, bismuth citrate, and bismuth hydroxide. Examples of the B compound include boron trioxide, boron carbide, boron nitride, and boric acid. Examples of the W compound include tungsten dioxide and tungsten trioxide.

焼結促進助剤の添加量は、添加金属元素換算でLi−Mn系複合酸化物中のMn1モルに対して、0.0001〜0.05モルの範囲内が好ましい。添加金属元素換算での添加量が、0.0001モル未満では焼結収縮効果が得られず、0.05モルを超えると活物質の初期容量が小さくなる。好ましい添加量は0.005〜0.03モルである。   The addition amount of the sintering accelerating aid is preferably in the range of 0.0001 to 0.05 mol with respect to 1 mol of Mn in the Li-Mn composite oxide in terms of added metal element. If the added amount in terms of added metal element is less than 0.0001 mol, the sintering shrinkage effect cannot be obtained, and if it exceeds 0.05 mol, the initial capacity of the active material becomes small. A preferable addition amount is 0.005 to 0.03 mol.

焼結促進助剤は、粉末状態で使用しても溶媒に溶解した液体状態で使用しても構わない。粉末状態で添加する場合、焼結促進助剤の平均粒子径は50μm以下が好ましく、さらに10μm以下が好ましく、3μm以下が一層好ましい。焼結促進助剤は造粒/焼結前に添加することが好ましいが、造粒後焼結促進助剤が溶融できる温度で造粒物に含浸させ、焼結させても構わない。   The sintering aid may be used in a powder state or in a liquid state dissolved in a solvent. When added in a powder state, the average particle size of the sintering accelerator aid is preferably 50 μm or less, more preferably 10 μm or less, and even more preferably 3 μm or less. The sintering promoting aid is preferably added before granulation / sintering, but the granulated product may be impregnated and sintered at a temperature at which the sintering promoting aid can be melted after granulation.

焼結促進助剤は、焼成後において電池に使用される正極材料中に残存されることが多く、例えば本発明における製造方法において使用される前記焼結促進助剤が正極活物質に残存していることが分析により検知される。   In many cases, the sintering accelerator aid remains in the positive electrode material used in the battery after firing. For example, the sintering accelerator assistant used in the production method of the present invention remains in the cathode active material. It is detected by analysis.

次に造粒方法について説明する。
造粒方法としては、前記焼結促進助剤を使用して噴霧造粒方法、流動造粒方法、圧縮造粒方法、撹拌造粒方法などが挙げられ、また媒体流動乾燥や媒体振動乾燥などの併用をしてもよい。
Next, the granulation method will be described.
Examples of the granulation method include spray granulation method, fluidized granulation method, compression granulation method, stirring granulation method and the like using the above-mentioned sintering acceleration aid, and also include medium fluidized drying and medium vibration drying. You may use together.

本発明においては緻密な二次粒子(造粒粒子も含む)が形成できればよく、特に造粒の形成方法に制約はない。撹拌造粒と圧縮造粒は、二次粒子の密度が高くなるため、また噴霧造粒は造粒粒子形状が真球状となるため特に好ましい。撹拌造粒器の例としては、パウレック(株)社製バーチィカルグラニュレーターや不二パウダル(株)社製スパルタンリューザーなどが挙げられ、圧縮造粒器の例としては、栗本鉄工(株)製ローラーコンパクターMRCP−200型などが挙げられる。噴霧造粒器の例としては、アシザワニロアトマイザー(株)モービルマイナー型スプレードライヤーなどが挙げられる。   In the present invention, it is sufficient that dense secondary particles (including granulated particles) can be formed, and there is no particular limitation on the granulation formation method. Agitation granulation and compression granulation are particularly preferred because the density of secondary particles is high, and spray granulation is particularly preferred because the granulated particle shape is a true sphere. Examples of the agitating granulator include a vertical granulator manufactured by Paulek Co., Ltd. and a Spartan Luther manufactured by Fuji Paudal Co., Ltd. Examples of the compression granulator include Kurimoto Tekko Co., Ltd. Examples thereof include a roller compactor MRCP-200 type. As an example of a spray granulator, Ashizawairo atomizer Co., Ltd. Mobile minor type spray dryer etc. are mentioned.

造粒する二次粒子のサイズには特に制約はない。造粒した二次粒子の平均粒子径が大きすぎる場合には、造粒直後または焼結後に軽く解砕・粉砕し分級する等して整粒し、希望する粒度にすればよい。一般的には、平均粒子径10〜20μmのサイズの二次粒子が好まれる。   There are no particular restrictions on the size of the secondary particles to be granulated. When the average particle size of the granulated secondary particles is too large, the particles may be crushed, pulverized and classified immediately after granulation or after sintering, and the particle size may be adjusted to a desired particle size. In general, secondary particles having an average particle size of 10 to 20 μm are preferred.

造粒効率を高めるためには、有機物系の造粒助剤を添加してもよい。
このような造粒助剤としては、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合体、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリデン、ハイドロキシプロピルセルロース、メチルセルロース、コーンスターチ、ゼラチン、リグニンなどが挙げられる。
In order to increase the granulation efficiency, an organic granulation aid may be added.
Examples of such granulation aids include acrylic resins, copolymers of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, and lignin. .

造粒助剤の添加方法は、粉末状態で添加するよりも、水やアルコールなどの有機溶媒に溶解して噴霧するなどの方法で添加し造粒する方が効率がよい。造粒助剤の添加量としては、スピネル構造を有するLi−Mn系複合酸化物及び焼結促進助剤100質量部に対して5質量部以下が好ましく、さらに好ましくは2質量部以下である。   The method of adding the granulation aid is more efficient than adding it in a powdered state by adding and granulating it by dissolving it in an organic solvent such as water or alcohol. The addition amount of the granulation aid is preferably 5 parts by mass or less, more preferably 2 parts by mass or less, with respect to 100 parts by mass of the Li-Mn composite oxide having a spinel structure and the sintering acceleration aid.

次に造粒した二次粒子の焼成方法について説明する。
造粒した粒子の脱脂方法は、大気中または酸素を含有するガスフロー中で300〜550℃の温度範囲で10分以上保持することにより行う。脱脂した造粒物のカーボン残留量は、0.1%以下であることが好ましい。
Next, a method for firing the granulated secondary particles will be described.
The method for degreasing the granulated particles is carried out by holding for 10 minutes or more in the temperature range of 300 to 550 ° C. in the air or in a gas flow containing oxygen. The carbon residue in the degreased granulated product is preferably 0.1% or less.

脱脂後の造粒粒子の焼成は、粒成長を抑制して焼結収縮を進行させるために、大気中または酸素を含有するガスフロー中、550℃〜900℃の温度範囲で1分間以上、焼結促進助剤がLi−Mn系複合酸化物粒子表面で溶融した状態で保持して焼結収縮させ二次粒子の緻密化をはかることができる。   Firing of the granulated particles after degreasing is performed for 1 minute or more in the temperature range of 550 ° C. to 900 ° C. in the air or in a gas flow containing oxygen in order to suppress grain growth and advance sintering shrinkage. The sintering promoting aid can be held in a molten state on the surface of the Li—Mn composite oxide particles, sintered and shrunk, and the secondary particles can be densified.

また、本発明では、脱脂後の造粒粒子の焼成は、粒成長を抑制して焼結収縮を進行させるために大気中または酸素を含有するガスフロー中で熱機械試験機で測定した焼結収縮開始温度よりも、少なくとも100℃高い温度まで、少なくとも100℃/minの速度で昇温して1分〜10分間保持した後、少なくとも100℃/minの速度で焼結収縮開始温度まで降温して焼結収縮させ、二次粒子の緻密化をはかる。常温と焼結収縮開始温度との間の昇温速度と降温速度については、従来通り10℃/min以下でも構わない。   Further, in the present invention, the calcination of the granulated particles after degreasing is the sintering measured by a thermomechanical tester in the atmosphere or in a gas flow containing oxygen in order to suppress the grain growth and advance the sintering shrinkage. After raising the temperature at a rate of at least 100 ° C./min to a temperature that is at least 100 ° C. higher than the shrinkage start temperature and holding for 1 to 10 minutes, the temperature is lowered to the sintering shrinkage start temperature at a rate of at least 100 ° C./min. Sintering shrinks to densify the secondary particles. About the temperature increase rate and temperature decrease rate between normal temperature and sintering shrinkage start temperature, it may be 10 degrees C / min or less as usual.

また、前述の有機物系の造粒助剤を使用しない造粒物の粒子の焼成も、大気中または酸素を含有するガスフロー雰囲気中で同様に焼結収縮させ、二次粒子の緻密化をはかることができる。
本発明の正極活物質及び本発明の製造方法から得られる正極活物質は、従来のLi−Mn系複合酸化物と同様の方法に準じてリチウムイオン二次電池用正極に加工され、電池の評価に供される。
In addition, the firing of the granulated particles without using the above-mentioned organic-based granulating aid is similarly performed by sintering and shrinking in the air or in a gas flow atmosphere containing oxygen, thereby densifying the secondary particles. be able to.
The positive electrode active material of the present invention and the positive electrode active material obtained from the production method of the present invention are processed into a positive electrode for a lithium ion secondary battery according to the same method as a conventional Li-Mn composite oxide, and evaluation of the battery To be served.

以下、本発明の前記正極活物質を非水二次電池の正極材料として使用する例について説明する。
先ず正極材料は、前記正極活物質とカーボンブラックまたは黒鉛などの導電性付与剤、及びポリフツ化ビニリデンなどのバインダー(結合材)を溶解した溶液(例えば、N−メチルピロリドンなど)を所定割合で混練して、電極ペーストとして集電体に塗布し、次いで乾燥後にロールプレスなどで加圧して製造される。集電体には、アルミニウム、ステンレス、チタン等の公知の金属製集電体が使用される。
Hereinafter, the example which uses the said positive electrode active material of this invention as a positive electrode material of a non-aqueous secondary battery is demonstrated.
First, as a positive electrode material, a solution (for example, N-methylpyrrolidone) in which a positive electrode active material, a conductivity imparting agent such as carbon black or graphite, and a binder (binding material) such as polyvinylidene fluoride are dissolved is kneaded at a predetermined ratio. The electrode paste is applied to the current collector, and then dried and pressed by a roll press or the like. As the current collector, a known metal current collector such as aluminum, stainless steel or titanium is used.

本発明の非水二次電池において使用される電解液中の電解質塩としては、フッ素を含有する公知のリチウム塩が使用できる。例えば、LiPF6、LiBF4、LiN(CF3SO22、LiAsF6、LiCF3SO3、LiC49SO3などが使用できる。非水二次電池の電解液は、前記フッ素を含有する公知のリチウム塩の少なくとも1種の電解質を非水系電解液に溶解して用いる。前記非水系電解液の非水溶媒には、化学的及び電気化学的に安定な非プロトン性のものが使用できる。 As the electrolyte salt in the electrolytic solution used in the nonaqueous secondary battery of the present invention, a known lithium salt containing fluorine can be used. For example, LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 can be used. The electrolyte solution of the non-aqueous secondary battery is used by dissolving at least one electrolyte of a known lithium salt containing fluorine in a non-aqueous electrolyte solution. As the non-aqueous solvent of the non-aqueous electrolyte solution, a chemically and electrochemically stable aprotic solvent can be used.

例えば、炭酸ジメチル、炭酸プロピレン、炭酸エチレン、炭酸メチルエチル、炭酸メチルプロピル、炭酸メチルイソプロピル、炭酸メチルブチル、炭酸ジエチル、炭酸エチルプロピル、炭酸ジイソプロピル、炭酸ジブチル、炭酸1,2−ブチレン、炭酸エチルイソプロピル、炭酸エチルブチル等の炭酸エステル類が挙げられる。また、トリエチレングリコールメチルエーテル、テトラエチレングリコールジメチルエーテル等のオリゴエーテル類、プロピオン酸メチル、蟻酸メチル等の脂肪族エステル類、ベンゾニトリル、トルニトリル等の芳香族ニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、γ−ブチロラクトン等のラクトン類、スルホラン等の硫黄化合物、N−ビニルピロリドン、N−メチルピロリドン、リン酸エステル類等も例示できる。中でも、炭酸エステル類、脂肪族エステル類、エーテル類が好ましい。   For example, dimethyl carbonate, propylene carbonate, ethylene carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, diethyl carbonate, ethyl propyl carbonate, diisopropyl carbonate, dibutyl carbonate, 1,2-butylene carbonate, ethyl isopropyl carbonate, Examples thereof include carbonates such as ethylbutyl carbonate. Also, oligoethers such as triethylene glycol methyl ether and tetraethylene glycol dimethyl ether, aliphatic esters such as methyl propionate and methyl formate, aromatic nitriles such as benzonitrile and tolunitrile, amides such as dimethylformamide, dimethyl Examples include sulfoxides such as sulfoxide, lactones such as γ-butyrolactone, sulfur compounds such as sulfolane, N-vinylpyrrolidone, N-methylpyrrolidone, and phosphate esters. Of these, carbonic acid esters, aliphatic esters, and ethers are preferable.

本発明の非水二次電池において使用される負極としては、リチウムイオンを可逆的に吸蔵放出可能な材料であれば特に制限はなく、例えば、リチウム金属、リチウム合金、炭素材料(黒鉛を含む)、金属カルコゲン等が使用できる。   The negative electrode used in the nonaqueous secondary battery of the present invention is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions. For example, lithium metal, lithium alloy, carbon material (including graphite) Metal chalcogen etc. can be used.

次に、電極特性の評価方法について説明する。
正極活物質、導電材としてキャボット製バルカンXC−72、結着剤として四フッ化エチレン樹脂を質量比で、50:34:16の割合で混合し、その混合物をトルエンで12時間膨潤する。膨潤した混合物をアルミニウムエキスバンドメタルからなる集電体上に塗り、2t/cm2で加圧成形し、トルエンを乾燥して正極とする。一方、負極としては、リチウム箔を用いる。
Next, a method for evaluating electrode characteristics will be described.
A positive electrode active material, Cabot Vulcan XC-72 as a conductive material, and tetrafluoroethylene resin as a binder are mixed in a mass ratio of 50:34:16, and the mixture is swollen with toluene for 12 hours. The swollen mixture is applied onto a current collector made of aluminum expanded metal, and pressure-molded at 2 t / cm 2 , and toluene is dried to form a positive electrode. On the other hand, lithium foil is used as the negative electrode.

電解液としては、炭酸プロピレンと炭酸ジメチルを体積比で1対2の割合で混合した混合液にLiPF6を1モル/リットルの濃度で溶解したものを用いる。セパレーターとしては、ポリプロピレン製のものを用い、負極のデンドライト生成が原因のマイクロショートを防止する目的で、補強材としてシリカ繊維ろ紙(例えば、アドバンテック東洋(株)製のQR−100)をも併用する。これら正極、負極、電解液、セパレーターと補強材を用いて、2016型コイン電池を作製し、60℃に設定した恒温槽内で500回の充電・放電サイクル試験を行う。測定条件は、定電流定電圧充電−定電流放電、充電及び放電レート1C(充電開始から2.5時間で充電休止)、走査電圧3.1V〜4.3Vである。 As an electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solution in which propylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2 is used. A separator made of polypropylene is used, and silica fiber filter paper (for example, QR-100 manufactured by Advantech Toyo Co., Ltd.) is also used as a reinforcing material for the purpose of preventing micro shorts caused by dendrite formation of the negative electrode. . Using these positive electrode, negative electrode, electrolytic solution, separator and reinforcing material, a 2016 coin battery is prepared and subjected to 500 charge / discharge cycle tests in a thermostat set at 60 ° C. The measurement conditions are constant current constant voltage charge-constant current discharge, charge and discharge rate 1C (charge suspend in 2.5 hours from the start of charge), and scanning voltage 3.1V to 4.3V.

以下、実施例および比較例を挙げて本発明を説明するが、本発明は下記の記載により何ら限定されるものではない。
なお、下記の例及び表1〜3に示す正極活物質の特性は以下の方法により測定した。
1)平均粒子径及び比表面積
レーザー式粒度測定器としてCILAS社製GRANULOMETER(HR850型)を使用して、界面活性剤(花王製デモールP)0.2%水溶液中に超音波で粉体を分散して粒度分布を測定して求めた。
2)タップ密度
(株)蔵持科学機器製作所製タップピングマシン(KRS-409型)を使用して、振幅8mmで2000回タッピング後測定した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited at all by the following description.
In addition, the characteristic of the positive electrode active material shown to the following example and Tables 1-3 was measured with the following method.
1) Average particle size and specific surface area Disperse the powder by ultrasonic wave in 0.2% aqueous solution of surfactant (Kao Demol P) using CILAS GRANULOMETER (HR850 type) as a laser particle sizer. Then, the particle size distribution was measured and determined.
2) Tap density Measured after tapping 2000 times with an amplitude of 8 mm using a tapping machine (KRS-409 type) manufactured by Kuramochi Scientific Instruments.

3)空隙率
正極活物質と熱硬化性樹脂と混合、硬化することにより正極活物質を樹脂中に埋め込み、ミクロトームで切断し、鏡面研磨して、研磨面を走査電子顕微鏡(SEM)で写真撮影した。得られたSEM写真中の二次粒子1個の断面積Bとその二次粒子断面中に含まれる全ポアの総断面積Aを画像解析装置で計測し、以下の式で二次粒子1個の空隙率C(%)を計算し、ランダムに選択した二次粒子50個の空隙率の平均値を平均空隙率とした。
C(%)=(A/B)×100
4)結晶子サイズ
以下の条件にて測定した(111)面のX線回折ピークからScherrerの式を用いて算出した。
3) Porosity The positive electrode active material and thermosetting resin are mixed and cured to embed the positive electrode active material in the resin, cut with a microtome, mirror polished, and photograph the polished surface with a scanning electron microscope (SEM) did. The cross-sectional area B of one secondary particle in the obtained SEM photograph and the total cross-sectional area A of all the pores contained in the cross-section of the secondary particle are measured with an image analyzer, and one secondary particle is expressed by the following formula. The porosity C (%) was calculated, and the average value of the porosity of 50 randomly selected secondary particles was defined as the average porosity.
C (%) = (A / B) × 100
4) Crystallite size It calculated using the Scherrer formula from the X-ray diffraction peak of the (111) plane measured under the following conditions.

すなわち、結晶子の外形が立方体で大きさの分布を持たないと仮定して、結晶子の大きさによる回折線の広がりを半値幅より算出した値を使用した。なお、単結晶シリコンを炭化タングステン製サンプルミルで粉砕後、44μm以下に篩い分けした粉末を外部標準として、装置定数更正曲線を作成した。   That is, assuming that the outer shape of the crystallite is a cube and does not have a size distribution, a value obtained by calculating the diffraction line broadening due to the crystallite size from the half width was used. In addition, after pulverizing the single crystal silicon with a sample mill made of tungsten carbide and using a powder obtained by sieving to 44 μm or less as an external standard, an apparatus constant correction curve was prepared.

[測定装置及び方法]
理学電機(株)製Radタイプゴニオメータ、測定モードとして連続測定、解析ソフトには理学電機(株)RINT2000シリーズのアプリケーションソフトを使用し、結晶子の大きさの解析を行った。
測定条件は、X線(CuKα線)、出力50kV、180mA、スリット幅(3ケ所)は1/2゜、1/2゜、0.15mm、スキャン方法には2θ/θ法、スキャン速度は1゜/min、測定範囲(2θ)は17〜20゜、ステップは0.004゜である。なお、この方法で得られる結晶子サイズの精度は、±30オングストロームである。
[Measurement apparatus and method]
Rad type goniometer manufactured by Rigaku Corporation, continuous measurement as measurement mode, and RINT2000 series application software was used as analysis software, and the size of crystallites was analyzed.
The measurement conditions are X-ray (CuKα ray), output 50 kV, 180 mA, slit width (3 places) 1/2 °, 1/2 °, 0.15 mm, scan method 2θ / θ method, scan speed 1 The measurement range (2θ) is 17 to 20 °, and the step is 0.004 °. The accuracy of the crystallite size obtained by this method is ± 30 angstroms.

5)格子定数
J. B. Nelson,D. P. Rileyの方法(Proc. Phys. Soc., 57, 160(1945))で求めた。
6)比表面積
BET法で測定した。
7)造粒粒子の形状
正極活物質の造粒品をSEMで写真撮影し、画像解析して、二次粒子の円形度(円形度=4π[面積/(周囲長さ)2])と針状比(針状比=針絶対最大長/対角幅)を求めた。各サンプルについて、それぞれ二次粒子200個を計測し、その平均値を求めた。
5) Lattice constant
JB Nelson and DP Riley's method (Proc. Phys. Soc., 57 , 160 (1945)).
6) Specific surface area Measured by the BET method.
7) Shape of granulated particles Photographed granulated product of positive electrode active material with SEM, image analysis, secondary particle circularity (circularity = 4π [area / (perimeter length) 2 ]) and needle The shape ratio (needle ratio = needle absolute maximum length / diagonal width) was determined. For each sample, 200 secondary particles were measured, and the average value was obtained.

実施例1
Li/Mn原子比が0.51の組成となるように、比表面積22m2/gの炭酸マンガン(中央電気工業(株)製、C2−10)と炭酸リチウム(本庄ケミカル(株)製、3N)をボールミルで混合し、大気雰囲気中加熱速度200℃/hrで室温から650℃まで昇温してその温度に4時間保持してLi−Mn系複合酸化物を合成した。合成物中には、Li−Mn系複合酸化物以外にごく微量の三二酸化マンガンがX線解析装置(XRD)で検出された。レーザー式粒度分布測定器で測定した合成物の平均粒子径は10μmであり、比表面積は7.7m2/gであった。
Example 1
Manganese carbonate (Chuo Electric Industry Co., Ltd., C2-10) having a specific surface area of 22 m 2 / g and lithium carbonate (Honjo Chemical Co., Ltd. 3N) so that the Li / Mn atomic ratio is 0.51. ) Was mixed with a ball mill, and the temperature was raised from room temperature to 650 ° C. at a heating rate of 200 ° C./hr in an air atmosphere and kept at that temperature for 4 hours to synthesize a Li—Mn-based composite oxide. In the composite, a very small amount of manganese sesquioxide other than the Li—Mn composite oxide was detected by an X-ray analyzer (XRD). The average particle size of the synthesized product measured with a laser particle size distribution analyzer was 10 μm, and the specific surface area was 7.7 m 2 / g.

得られたスピネル構造を有するLi−Mn系複合酸化物をエタノール溶媒に分散して湿式ボールミルで粉砕して、平均粒子径を0.5μmにした。測定の結果、粉砕粉には3μm以上の大きな粒子は含まれておらず、比表面積は27.8m2/gであった。この粉砕粉に、Bi/Mnの原子比が0.0026の割合となるように平均粒子径が2μmの酸化ビスマスを添加混合して、不二パウダル(株)社製スパルタンリューザーRMO−6Hで撹拌造粒した。 The obtained Li-Mn composite oxide having a spinel structure was dispersed in an ethanol solvent and pulverized with a wet ball mill to make the average particle size 0.5 μm. As a result of the measurement, the pulverized powder did not contain large particles of 3 μm or more, and the specific surface area was 27.8 m 2 / g. To this pulverized powder, bismuth oxide having an average particle diameter of 2 μm was added and mixed so that the atomic ratio of Bi / Mn was 0.0026, and the mixture was mixed with Fuji Powder Co., Ltd. Spartan Luzer RMO-6H. Agitation granulation was performed.

Li−Mn系複合酸化物と酸化ビスマスの混合粉100質量部に対して造粒助剤としてポリビニルアルコール1.5質量部を水溶液に溶かして添加し、16分間造粒した。得られた造粒物をミキサーで軽く解砕・粉砕し、風力分級機で平均粒子径15μmに整粒した。整粒後の造粒物のタップ密度は1.65g/mlであった。   As a granulation aid, 1.5 parts by mass of polyvinyl alcohol was dissolved in an aqueous solution and added to 100 parts by mass of the mixed powder of Li-Mn composite oxide and bismuth oxide, and granulated for 16 minutes. The obtained granulated material was lightly crushed and pulverized with a mixer, and sized with an air classifier to an average particle size of 15 μm. The tap density of the granulated product after the sizing was 1.65 g / ml.

得られた造粒物を大気中500℃で2時間保持して脱脂処理(ポリビニルアルコールを分解)後、大気中200℃/hrで昇温し750℃に20時間保持して正極活物質を得た。ここで製造された正極活物質は、ICP−AES法(誘導結合プラズマ発光分析法)により前記酸化ビスマスのBi元素を仕込み組成比相当含むことが確認された。   The obtained granulated product is kept in the atmosphere at 500 ° C. for 2 hours and degreased (polyvinyl alcohol is decomposed), then heated in the atmosphere at 200 ° C./hr and kept at 750 ° C. for 20 hours to obtain a positive electrode active material. It was. The positive electrode active material produced here was confirmed to contain the Bi element of the bismuth oxide by an ICP-AES method (inductively coupled plasma emission analysis method) and to contain the composition ratio.

得られた正極活物質の平均空隙率は11.2%であった。また、正極活物質のタップ密度は1.96g/mlであり、結晶子サイズは880オングストロームであり、格子定数は8.233オングストロームであった。
上記の正極活物質を用いてコイン型電池を次のようにして作製した。正極活物質、導電材であるカーボンブラック、N−メチル−2−ピロリドンに溶解したポリフッ化ビニリデンを質量比で80:10:10の割合で混練し、アルミニウム箔上に塗布し加圧プレスして正極とした。負極としては所定厚みのリチウム箔を用いた。電解液としては、炭酸プロピレンと炭酸ジメチルを体積比で1:2の割合で混合した混合液に、LiPF6を1モル/リットルの濃度で溶解したものを用いた。これらの正極と負極、ポリプロピレン製のセパレーター、電解液及びガラスフィルターを用い、2016型のコイン型電池を作製した。
The obtained positive electrode active material had an average porosity of 11.2%. Further, the tap density of the positive electrode active material was 1.96 g / ml, the crystallite size was 880 angstroms, and the lattice constant was 8.233 angstroms.
Using the above positive electrode active material, a coin-type battery was produced as follows. A positive electrode active material, carbon black as a conductive material, and polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone are kneaded at a mass ratio of 80:10:10, applied onto an aluminum foil, and pressed. A positive electrode was obtained. A lithium foil having a predetermined thickness was used as the negative electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / liter in a mixed solution in which propylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 was used. Using these positive and negative electrodes, a polypropylene separator, an electrolytic solution and a glass filter, a 2016 type coin-type battery was produced.

上記方法で作製した電池の60℃での充放電サイクル試験を、充放電レート1C(充電開始から2.5時間で充電休止)、電圧範囲3.0〜4.2Vの条件で100サイクル充放電を繰り返した。初期の放電容量と100サイクル経過後の容量維持率(%)を、他の測定結果と共に表1に示す。   A charge / discharge cycle test at 60 ° C. of the battery produced by the above method was performed with a charge / discharge rate of 1C (charge stopped in 2.5 hours from the start of charge) and a charge / discharge cycle of 100 cycles under the conditions of a voltage range of 3.0 to 4.2V. Was repeated. Table 1 shows the initial discharge capacity and the capacity retention rate (%) after 100 cycles, together with other measurement results.

実施例2
Li−Mn系複合酸化物合成条件中のマンガン原料を電解二酸化マンガンとしたこと以外は実施例1と同様に操作を行い、二次粒子の空隙率、タップ密度、結晶子サイズ、格子定数、電極特性の評価を行った。結果を表1に示す。
Example 2
The same procedure as in Example 1 was carried out except that the manganese raw material in the Li-Mn composite oxide synthesis conditions was electrolytic manganese dioxide, the porosity of the secondary particles, the tap density, the crystallite size, the lattice constant, the electrode The characteristics were evaluated. The results are shown in Table 1.

実施例3
Li/Mn/Alの原子比が1.02:1.967:0.013の組成となるように、炭酸マンガンと炭酸リチウムと水酸化アルミニウムをボールミルで混合し、大気雰囲気中加熱速度200℃/hrで室温から650℃まで昇温し、650℃に4時間保持して、Li−Mn系複合酸化物を合成した。合成物中には、Li−Mn系複合酸化物以外にごく微量の三二酸化マンガンがXRDで検出された。レーザー式粒度分布測定器で測定した合成物の平均粒子径は10μmであった。
得られたLi−Mn系複合酸化物を平均粒子径0.5μmに粉砕し、B/Mnの原子比が0.0208となるように酸化硼素を添加し造粒した。次に、脱脂後の造粒物を750℃で0.5hr焼成したこと以外は、実施例1と同様に実施した。その結果を表1に示す。
Example 3
Manganese carbonate, lithium carbonate and aluminum hydroxide were mixed with a ball mill so that the atomic ratio of Li / Mn / Al was 1.02: 1.967: 0.013, and the heating rate in the atmosphere was 200 ° C. / The temperature was raised from room temperature to 650 ° C. with hr and held at 650 ° C. for 4 hours to synthesize a Li—Mn-based composite oxide. In the synthesized product, a very small amount of manganese sesquioxide other than the Li—Mn composite oxide was detected by XRD. The average particle size of the synthesized product measured with a laser particle size distribution analyzer was 10 μm.
The obtained Li—Mn composite oxide was pulverized to an average particle size of 0.5 μm, and boron oxide was added and granulated so that the atomic ratio of B / Mn was 0.0208. Next, the same procedure as in Example 1 was performed except that the granulated product after degreasing was fired at 750 ° C. for 0.5 hr. The results are shown in Table 1.

実施例4
B/Mnの原子比を0.009にしたこと、及び脱脂後の造粒物を760℃で0.5hr焼成したこと以外は、実施例3と同様に実施した。その結果を表1に示す。
Example 4
The same procedure as in Example 3 was performed except that the B / Mn atomic ratio was 0.009 and the degreased granulated product was calcined at 760 ° C. for 0.5 hr. The results are shown in Table 1.

実施例5
B/Mnの原子比を0.006にしたこと、及び脱脂後の造粒物を770℃で0.5hr焼成したこと以外は、実施例3と同様に実施した。その結果を表1に示す。
Example 5
The same procedure as in Example 3 was performed except that the B / Mn atomic ratio was 0.006 and the degreased granulated product was calcined at 770 ° C. for 0.5 hr. The results are shown in Table 1.

実施例6
脱脂後の造粒物を760℃で20hr焼成したこと以外は、実施例1と同様に実施した。その結果を表1に示す。
Example 6
It was carried out in the same manner as in Example 1 except that the granulated product after degreasing was fired at 760 ° C. for 20 hours. The results are shown in Table 1.

実施例7
酸化ビスマスを三酸化タングステンに変更して、W/Mnの原子比が0.0208の割合で三酸化タングステンを添加したこと、及び脱脂後の造粒物を750℃で20hr焼成したこと以外は、実施例1と同様に実施した。その結果を表1に示す。
Example 7
Except for changing the bismuth oxide to tungsten trioxide, adding tungsten trioxide at an atomic ratio of W / Mn of 0.0208, and firing the degreased granulated product at 750 ° C. for 20 hours, The same operation as in Example 1 was performed. The results are shown in Table 1.

実施例8
実施例1で合成したLi−Mn系複合酸化物を、さらに大気中加熱速度が200℃/hrで室温から750℃まで昇温し、750℃で20hr保持して結晶化した。その後は、実施例1で結晶化したLi−Mn系複合酸化物を使用したこと、酸化ビスマスを酸化硼素に変更して、B/Mnの原子比が0.0208の割合で酸化硼素を添加したこと、及び脱脂後の造粒物を750℃で0.5hr焼成したこと以外は、実施例1と同様に実施した。その結果を表1に示す。
Example 8
The Li—Mn-based composite oxide synthesized in Example 1 was further crystallized by raising the temperature from room temperature to 750 ° C. at a heating rate in the atmosphere of 200 ° C./hr and holding at 750 ° C. for 20 hours. Thereafter, the Li-Mn composite oxide crystallized in Example 1 was used, bismuth oxide was changed to boron oxide, and boron oxide was added at a B / Mn atomic ratio of 0.0208. This was carried out in the same manner as in Example 1 except that the granulated product after degreasing was calcined at 750 ° C. for 0.5 hr. The results are shown in Table 1.

実施例9
造粒前のLi−Mn系複合酸化物として平均粒子径が3.5μm、比表面積が10m2/gのものを使用したこと以外は、実施例3と同様に実施した。その結果を表1に示す。
Example 9
The same procedure as in Example 3 was performed except that the Li—Mn composite oxide before granulation had an average particle size of 3.5 μm and a specific surface area of 10 m 2 / g. The results are shown in Table 1.

実施例10
Li/Mn/Alの原子比が1.03:1.967:0.013の組成となるように、炭酸マンガンと炭酸リチウムと水酸化アルミニウムをボールミルで混合して合成したLi−Mn系複合酸化物を使用したこと以外は、実施例3と同様に実施した。その結果を表1に示す。
Example 10
Li-Mn based composite oxidation synthesized by mixing manganese carbonate, lithium carbonate and aluminum hydroxide with a ball mill so that the atomic ratio of Li / Mn / Al is 1.03: 1.967: 0.013. The same procedure as in Example 3 was performed except that the product was used. The results are shown in Table 1.

Figure 2012074390
Figure 2012074390

実施例11
脱脂後の造粒物を830℃で20hr焼成したこと以外は、実施例1と同様に実施した。その結果を表2に示す。
Example 11
It was carried out in the same manner as in Example 1 except that the granulated product after degreasing was fired at 830 ° C. for 20 hours. The results are shown in Table 2.

実施例12
Li/Mn/Alの原子比が0.99:1.967:0.013の組成となるように、炭酸マンガンと炭酸リチウムと水酸化アルミニウムをボールミルで混合して合成したLi−Mn系複合酸化物を使用したこと以外は、実施例3と同様に実施した。その結果を表2に示す。
Example 12
Li-Mn based composite oxidation synthesized by mixing manganese carbonate, lithium carbonate and aluminum hydroxide with a ball mill so that the atomic ratio of Li / Mn / Al is 0.99: 1.967: 0.013. The same procedure as in Example 3 was performed except that the product was used. The results are shown in Table 2.

実施例13
造粒後の平均粒子径を65μmに整粒したこと以外は、実施例3と同様に実施した。その結果を表2に示す。
Example 13
The same procedure as in Example 3 was performed except that the average particle size after granulation was adjusted to 65 μm. The results are shown in Table 2.

実施例14
Bi/Mnの原子比が0.0020の割合にしたこと以外は、実施例1と同様に実施した。その結果を表2に示す。ここで得られた造粒・焼成・整粒された正極活物質を走査電子顕微鏡(×15,000倍)で観察した結果、図1に示すように丸い形状の粒子であることがわかった。この粒子の粒度分布を図2に示す。
Example 14
The same operation as in Example 1 was carried out except that the Bi / Mn atomic ratio was 0.0019. The results are shown in Table 2. As a result of observing the granulated, fired and sized positive electrode active material obtained here with a scanning electron microscope (× 15,000 times), it was found that the particles were round particles as shown in FIG. The particle size distribution of the particles is shown in FIG.

比較例1
造粒前のLi−Mn系複合酸化物の平均粒子径を6.0μmとしたこと以外は、実施例1と同様に実施した。その結果を表2に示す。
Comparative Example 1
The same operation as in Example 1 was performed except that the average particle diameter of the Li—Mn composite oxide before granulation was 6.0 μm. The results are shown in Table 2.

比較例2
Li/Mnの原子比が0.51の配合組成で、平均粒子径が20μmの電解二酸化マンガンと炭酸リチウムをボールミルで混合し、大気中加熱速度100℃/hrで760℃まで昇温し、760℃で24hr保持して正極活物質を合成した。得られた正極活物質について実施例1と同様に評価した。その結果を表2に示す。
Comparative Example 2
Electrolytic manganese dioxide having an Li / Mn atomic ratio of 0.51 and an average particle size of 20 μm was mixed with lithium carbonate by a ball mill, and the temperature was raised to 760 ° C. at a heating rate of 100 ° C./hr in the atmosphere. The positive electrode active material was synthesized by maintaining at 24 ° C. for 24 hours. The obtained positive electrode active material was evaluated in the same manner as in Example 1. The results are shown in Table 2.

比較例3
焼結促進剤を添加せずに造粒したこと以外は、実施例1と同様に実施した。その結果を表2に示す。
Comparative Example 3
The same procedure as in Example 1 was performed except that granulation was performed without adding a sintering accelerator. The results are shown in Table 2.

比較例4
造粒物を750℃で20hr焼成したこと以外は、実施例3と同様に実施した。その結果を表2に示す。
Comparative Example 4
It was carried out in the same manner as in Example 3 except that the granulated material was fired at 750 ° C. for 20 hours. The results are shown in Table 2.

Figure 2012074390
Figure 2012074390

造粒粒子の形状測定結果の解析
表1〜2に示す実施例1〜14及び比較例1〜4で製造された二次粒子の円形度(円形度=4π[面積/(周囲長さ)2])と針状比(針状比=針絶対最大長/対角幅)の測定結果から実施例で製造された正極活物質は、円形度が0.7以上で、かつ針状比が1.35以下に特徴があることが分かる。
Analysis of Shape Measurement Results of Granulated Particles Circularity of the secondary particles produced in Examples 1 to 14 and Comparative Examples 1 to 4 shown in Tables 1 to 2 (circularity = 4π [area / (perimeter length) 2] ] And the acicular ratio (needle ratio = needle absolute maximum length / diagonal width), the positive electrode active material produced in the example has a circularity of 0.7 or more and an acicular ratio of 1 It can be seen that there are features below .35.

本発明の正極活物質は、従来既知の凝集力を利用する二次粒子と比べ、造粒及び焼結を行っている点で本質的に異なり、従来方法で得られる正極活物質に比較して粒子が緻密でありかつ球状であり、電極への充填性に優れ、また二次電池として高温環境の下においても初期容量及び容量維持率が高くなるという効果を奏する。   The positive electrode active material of the present invention is essentially different in that it is granulated and sintered as compared with the conventionally known secondary particles utilizing cohesive force, compared with the positive electrode active material obtained by the conventional method. The particles are dense and spherical, have excellent filling properties to the electrode, and have an effect of increasing the initial capacity and capacity retention rate even in a high temperature environment as a secondary battery.

本発明の正極活物質の製造方法によれば、高温域で融液を生成する焼結促進助剤をLi−Mn系複合酸化物に添加することで、二次粒子の緻密化を図ると共に、従来の方法では初期容量とサイクル特性が悪化してしまうような結晶子サイズに成長させても優れた電池性能が得られる。従来法の二次粒子の緻密化を図る際に一次粒子サイズが0.5μmよりも大きく粒成長してしまい初期容量とサイクル特性が悪化するという問題が、高温域で融液を生成する焼結促進助剤をLi−Mn系複合酸化物に添加する本発明の方法により解決され、高充填性でかつ優れた電池性能を有する正極活物質が得られる。   According to the method for producing a positive electrode active material of the present invention, by adding a sintering acceleration aid that generates a melt in a high temperature range to the Li-Mn composite oxide, the secondary particles are densified, In the conventional method, excellent battery performance can be obtained even when grown to a crystallite size that deteriorates initial capacity and cycle characteristics. In the conventional method, when the secondary particles are densified, the primary particle size grows larger than 0.5 μm and the initial capacity and cycle characteristics are deteriorated. This is solved by the method of the present invention in which an accelerator aid is added to the Li—Mn composite oxide, and a positive electrode active material having high filling properties and excellent battery performance is obtained.

本発明のリチウムイオン二次電池は、充填性に優れた正極活物質を使用しているために、高温での初期容量と容量維持率に優れている。   Since the lithium ion secondary battery of the present invention uses a positive electrode active material excellent in filling properties, it is excellent in initial capacity and capacity retention at a high temperature.

Claims (10)

スピネル構造を有するLi−Mn系複合酸化物を主体とするリチウムイオン二次電池用正極活物質の製造方法において、スピネル構造を有するLi−Mn系複合酸化物の粉砕物に、550℃〜900℃の温度で溶融する酸化物または酸化物になり得る元素または元素を含む化合物、またはリチウムまたはマンガンと固溶するか反応して溶融する酸化物または酸化物になり得る元素または元素を含む化合物を添加し混合して造粒する工程を有することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。   In the method for producing a positive electrode active material for a lithium ion secondary battery mainly composed of a Li-Mn composite oxide having a spinel structure, the pulverized product of the Li-Mn composite oxide having a spinel structure is 550 ° C to 900 ° C. Add an element or compound containing an element or element that can become an oxide or oxide that melts at a temperature, or a compound containing an element or element that can be dissolved or reacted with lithium or manganese to become an oxide or oxide that melts And a method for producing a positive electrode active material for a lithium ion secondary battery, comprising a step of granulating the mixture. 造粒工程以外に、前記造粒物を焼結する工程を有する請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 1 which has the process of sintering the said granulated material other than a granulation process. 造粒工程以外に、前記造粒物を焼結収縮開始温度から少なくとも100℃以上高い温度まで少なくとも100℃/minの速度で昇温してその温度に1分〜10分間保持した後、少なくとも100℃/minの速度で焼結開始温度まで降温して焼結させる工程を有する請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。   In addition to the granulation step, the granulated product is heated at a rate of at least 100 ° C./min from the sintering shrinkage start temperature to a temperature higher by at least 100 ° C. and held at that temperature for 1 minute to 10 minutes, and then at least 100 The manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 1 which has the process of falling and sintering to a sintering start temperature at the speed | rate of (degreeC / min). ロータリーキルンを用いて焼結させる請求項3に記載のリチウムイオン二次電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 3 made to sinter using a rotary kiln. 前記焼結工程が、Li−Mn系複合酸化物粒子の表面でBi、B、W、Mo、Pbからなる群より選ばれる少なくとも1種の元素または元素を含む化合物、またはB23とLiFを組み合わせた化合物またはMnF2とLiFを組み合わせた化合物を溶融し焼結して行われる請求項2に記載のリチウムイオン二次電池用正極活物質の製造方法。 In the sintering step, at least one element selected from the group consisting of Bi, B, W, Mo, and Pb on the surface of the Li—Mn composite oxide particles or a compound containing the element, or B 2 O 3 and LiF the method for producing a positive electrode active material for a lithium ion secondary battery as claimed in claim 2 which is performed by melting and sintering the combination compound or compounds that combine MnF 2 and LiF a. スピネル構造を有するLi−Mn系複合酸化物の粉砕物の平均粒子径が、5μm以下である請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。   2. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 1, wherein an average particle size of the pulverized product of the Li—Mn composite oxide having a spinel structure is 5 μm or less. スピネル構造を有するLi−Mn系複合酸化物の粉砕物の平均粒子径が、3μm以下である請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。   2. The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the average particle size of the pulverized product of the Li—Mn composite oxide having a spinel structure is 3 μm or less. 前記造粒工程が、噴霧造粒方法、撹拌造粒方法、圧縮造粒方法または流動造粒方法で行われる請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 1 with which the said granulation process is performed by the spray granulation method, the stirring granulation method, the compression granulation method, or the fluidized granulation method. 前記造粒工程において、造粒助剤として、アクリル系樹脂、イソブチレンと無水マレイン酸との共重合物、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリデン、ハイドロキシプロピルセルロース、メチルセルロース、コーンスターチ、ゼラチン、リグニンからなる群より選ばれる少なくとも1種の有機化合物を使用する請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。   In the granulation step, as a granulation aid, an acrylic resin, a copolymer of isobutylene and maleic anhydride, polyvinyl alcohol, polyethylene glycol, polyvinyl pyrrolidene, hydroxypropyl cellulose, methyl cellulose, corn starch, gelatin, lignin The method for producing a positive electrode active material for a lithium ion secondary battery according to claim 1, wherein at least one organic compound selected from the group is used. 大気中または酸素を含有するガスフロー雰囲気中、300℃〜550℃の温度下で脱脂工程を有する請求項9に記載のリチウムイオン二次電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for lithium ion secondary batteries of Claim 9 which has a degreasing process under the temperature of 300 to 550 degreeC in air | atmosphere or the gas flow atmosphere containing oxygen.
JP2011255418A 1999-07-07 2011-11-22 Method for producing positive electrode active material Expired - Fee Related JP5464717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011255418A JP5464717B2 (en) 1999-07-07 2011-11-22 Method for producing positive electrode active material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1999193314 1999-07-07
JP19331499 1999-07-07
JP2000126494 2000-04-26
JP2000126494 2000-04-26
JP2011255418A JP5464717B2 (en) 1999-07-07 2011-11-22 Method for producing positive electrode active material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001509101 Division 2000-07-07

Publications (3)

Publication Number Publication Date
JP2012074390A true JP2012074390A (en) 2012-04-12
JP2012074390A5 JP2012074390A5 (en) 2013-06-27
JP5464717B2 JP5464717B2 (en) 2014-04-09

Family

ID=26507802

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010247296A Pending JP2011049180A (en) 1999-07-07 2010-11-04 Method for producing positive electrode active material for lithium ion secondary battery
JP2011255418A Expired - Fee Related JP5464717B2 (en) 1999-07-07 2011-11-22 Method for producing positive electrode active material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010247296A Pending JP2011049180A (en) 1999-07-07 2010-11-04 Method for producing positive electrode active material for lithium ion secondary battery

Country Status (5)

Country Link
JP (2) JP2011049180A (en)
KR (1) KR100653170B1 (en)
CN (1) CN1179437C (en)
AU (1) AU5850200A (en)
WO (1) WO2001004975A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220013762A1 (en) * 2018-12-19 2022-01-13 Haldor Topsøe A/S Lithium positive electrode active material

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075365A (en) * 2000-08-31 2002-03-15 Matsushita Battery Industrial Co Ltd Positive electrode active material and lithium secondary battery
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP4605175B2 (en) * 2001-05-17 2011-01-05 三菱化学株式会社 Method for producing lithium nickel manganese composite oxide
US8658125B2 (en) * 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7217406B2 (en) 2002-02-21 2007-05-15 Tosoh Corporation Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP4740409B2 (en) 2003-06-11 2011-08-03 株式会社日立製作所 Lithium secondary battery for electric vehicle or hybrid vehicle
JP5076307B2 (en) * 2005-11-25 2012-11-21 パナソニック株式会社 Lithium ion secondary battery and method for producing lithium composite oxide
US8852811B2 (en) * 2008-09-18 2014-10-07 Toda Kogyo Corporation Process for producing lithium manganate particles and non-aqueous electrolyte secondary battery
JPWO2010150626A1 (en) 2009-06-25 2012-12-10 日本碍子株式会社 Method for producing spinel type lithium manganate and method for producing positive electrode active material for lithium secondary battery
EP2447214A2 (en) 2009-06-25 2012-05-02 NGK Insulators, Ltd. Positive electrode active material and lithium secondary battery
JP5401211B2 (en) * 2009-08-21 2014-01-29 日清エンジニアリング株式会社 Method for producing positive electrode material for secondary battery
CN103779552B (en) * 2009-09-09 2018-11-30 株式会社村田制作所 Positive active material
KR101653334B1 (en) 2009-09-09 2016-09-01 소니 주식회사 Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP5589536B2 (en) * 2009-09-09 2014-09-17 ソニー株式会社 Positive electrode active material, positive electrode, nonaqueous electrolyte battery, and method for producing positive electrode active material
US8765007B2 (en) 2010-01-15 2014-07-01 Toyota Jidosha Kabushiki Kaisha Method of evaluating positive electrode active material
JP5828622B2 (en) * 2010-08-31 2015-12-09 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide, its production method and use
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
WO2013039133A1 (en) * 2011-09-16 2013-03-21 日本碍子株式会社 Positive electrode active material precursor particles and method for manufacturing same, and method for manufacturing positive electrode active material for lithium secondary cell
JP5872279B2 (en) * 2011-12-21 2016-03-01 日揮触媒化成株式会社 Spinel-type lithium-manganese composite oxide
JP5844659B2 (en) * 2012-02-27 2016-01-20 京セラ株式会社 Electrode plate and secondary battery using the same
KR101539843B1 (en) * 2012-07-13 2015-07-27 주식회사 엘지화학 Anode Active Material of High Density and Methode for Preparation of The Same
KR101904895B1 (en) * 2012-12-12 2018-10-05 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN105122516B (en) * 2013-02-28 2017-03-29 日产自动车株式会社 Positive active material, positive electrode, positive pole and rechargeable nonaqueous electrolytic battery
JP6358077B2 (en) * 2014-01-31 2018-07-18 住友金属鉱山株式会社 Nickel-cobalt composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
WO2015129187A1 (en) * 2014-02-28 2015-09-03 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN106458635B (en) * 2014-05-27 2018-04-24 陶氏环球技术有限责任公司 Improved lithium metal oxide positive electrode and its manufacture method
JP6377983B2 (en) 2014-07-23 2018-08-22 住友化学株式会社 Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
SE539560C2 (en) 2015-03-06 2017-10-10 Innventia Ab Electrode active coating for a lithium-ion battery and method of production therefore
CN112678877B (en) * 2016-01-06 2023-05-12 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7054479B2 (en) * 2016-04-04 2022-04-14 株式会社Gsユアサ Power storage element
JP7052189B2 (en) * 2016-07-20 2022-04-12 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP6500001B2 (en) 2016-08-31 2019-04-10 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2019016428A (en) * 2017-07-03 2019-01-31 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7230515B2 (en) * 2019-01-10 2023-03-01 住友金属鉱山株式会社 Manufacturing method of positive electrode active material for lithium ion secondary battery, and formed body
CN114041226A (en) * 2020-03-27 2022-02-11 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
JP7191071B2 (en) * 2020-10-16 2022-12-16 プライムプラネットエナジー&ソリューションズ株式会社 Positive electrode active material and secondary battery comprising the positive electrode active material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986933A (en) * 1995-02-23 1997-03-31 Tosoh Corp Spinel type lithium manganese oxide, its production and use

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2835138B2 (en) * 1990-05-02 1998-12-14 東芝電池株式会社 Non-aqueous solvent secondary battery
JP3475480B2 (en) * 1994-03-31 2003-12-08 ソニー株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3036674B2 (en) * 1995-01-17 2000-04-24 日本電池株式会社 Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JPH09111310A (en) * 1995-10-20 1997-04-28 Mitsubishi Materials Corp Porous sintered metallic plate and its production
JPH10162860A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10255793A (en) * 1997-03-07 1998-09-25 Sumitomo Metal Mining Co Ltd Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery
JPH10302767A (en) * 1997-04-24 1998-11-13 Mitsubishi Cable Ind Ltd Cathode activating material of lithium secondary battery and production thereof
JPH10321227A (en) * 1997-05-23 1998-12-04 Asahi Chem Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4124522B2 (en) * 1997-10-08 2008-07-23 日揮化学株式会社 Lithium / manganese composite oxide, production method and use thereof
JPH11135119A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Active material and positive plate for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
JP3928231B2 (en) * 1997-12-15 2007-06-13 株式会社日立製作所 Lithium secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0986933A (en) * 1995-02-23 1997-03-31 Tosoh Corp Spinel type lithium manganese oxide, its production and use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220013762A1 (en) * 2018-12-19 2022-01-13 Haldor Topsøe A/S Lithium positive electrode active material

Also Published As

Publication number Publication date
CN1179437C (en) 2004-12-08
WO2001004975A1 (en) 2001-01-18
KR100653170B1 (en) 2006-12-04
KR20020012295A (en) 2002-02-15
JP2011049180A (en) 2011-03-10
CN1360739A (en) 2002-07-24
AU5850200A (en) 2001-01-30
JP5464717B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5464717B2 (en) Method for producing positive electrode active material
US7090822B2 (en) Cathode electroactive material, production method therefor and secondary cell
JP4644895B2 (en) Lithium secondary battery
KR101245418B1 (en) Titanium and dense lithium mixed oxide powder compound, method for producing said compound and compound-containing electrode
US20100196761A1 (en) Granular powder of transition metal compound as raw material for cathode active material for lithium secondary battery, and method for its production
WO2012137391A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5162388B2 (en) A method for producing a lithium-containing composite oxide suitable for a lithium ion secondary battery.
JP2014067546A (en) Positive electrode active material of lithium secondary battery, and lithium secondary battery
JP2003051311A (en) Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
JP6096101B2 (en) Method for producing positive electrode for lithium secondary battery
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP2006151707A (en) Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP5226917B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP4329434B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4543474B2 (en) Positive electrode active material, method for producing the same, and non-aqueous secondary battery using the same
JP2001015108A (en) Positive electrode active material for lithium secondary battery, its manufacture, and lithium secondary battery
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JP2001206722A (en) Lithium manganese multiple oxide, positive electrode material for lithium secondary cell, positive electrode, lithium secondary cell, and manufacturing method of lithium manganese multiple oxide
JP2004155631A (en) Lithium-manganese-based double oxide particle for non-aqueous lithium secondary battery, method for producing the same and non-aqueous lithium secondary battery
JP3687106B2 (en) Lithium transition metal composite oxide powder, method for producing the same, lithium secondary battery positive electrode and lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees