JP2012072921A - Intermediate temperature heat source system concurrently utilizing free cooling operation - Google Patents

Intermediate temperature heat source system concurrently utilizing free cooling operation Download PDF

Info

Publication number
JP2012072921A
JP2012072921A JP2010216071A JP2010216071A JP2012072921A JP 2012072921 A JP2012072921 A JP 2012072921A JP 2010216071 A JP2010216071 A JP 2010216071A JP 2010216071 A JP2010216071 A JP 2010216071A JP 2012072921 A JP2012072921 A JP 2012072921A
Authority
JP
Japan
Prior art keywords
cooling
chilled water
temperature
outlet
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010216071A
Other languages
Japanese (ja)
Other versions
JP5501179B2 (en
Inventor
Taneya Yamashita
植也 山下
Shigeru Mizushima
茂 水島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2010216071A priority Critical patent/JP5501179B2/en
Publication of JP2012072921A publication Critical patent/JP2012072921A/en
Application granted granted Critical
Publication of JP5501179B2 publication Critical patent/JP5501179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Abstract

PROBLEM TO BE SOLVED: To provide an intermediate temperature heat source system concurrently utilizing a free cooling operation that can smoothly conduct switching among an individual operation of a refrigerator, a combined operation of the refrigerator and the free cooling operation, and an individual free cooling operation.SOLUTION: Switching among the individual operation of the refrigerator 37, combined operation of the refrigerator 37 and free cooling operation, and individual free cooling operation is smoothly performed by activating or stopping a first cooling water pump 43 provided in a first cooling water circuit 30, a second cooling water pump 63 provided in a second cooling water circuit 31, a first cooling water pump 70 provided in a first cooling water circuit 32, a second cooling water pump 73 provided in a second cooling water circuit 33, and a third cooling water pump 78 provided in a third cooling water circuit 34.

Description

本発明は、データセンターの冷房や工場内の生産機器冷却用の熱源設備として、冷水を製造するフリークーリング併用中温熱源システムに関するものである。   The present invention relates to an intermediate temperature heat source system combined with free cooling for producing cold water as a heat source facility for cooling a data center or cooling production equipment in a factory.

一般に冷房や機器冷却用の熱源設備には、冷凍機を用いている。冷凍機では、圧縮機、凝縮器、膨張弁、蒸発器、及び前記圧縮機の順で冷媒を循環させる。気相の冷媒を圧縮機で昇圧すると温度が高くなり、圧力とエンタルピが増えた冷媒は、過熱蒸気状態になって凝縮器へと送出される。   In general, a refrigerator is used as a heat source facility for cooling or equipment cooling. In the refrigerator, the refrigerant is circulated in the order of the compressor, the condenser, the expansion valve, the evaporator, and the compressor. When the pressure of the gas-phase refrigerant is increased by the compressor, the temperature is increased, and the refrigerant having increased pressure and enthalpy enters a superheated vapor state and is sent to the condenser.

凝縮器では、冷却塔から送給される冷却水と気相の冷媒との間で熱交換が行われ、一定の圧力のもとで冷媒が冷される。冷媒は、冷却水に熱を捨てることによってエンタルピが減少するため、湿り蒸気の状態となり、冷されるほど凝縮し続け、最終的には液相を呈する。   In the condenser, heat exchange is performed between the cooling water fed from the cooling tower and the gas-phase refrigerant, and the refrigerant is cooled under a constant pressure. Since the enthalpy is reduced by discarding heat to the cooling water, the refrigerant becomes a wet steam state, continues to condense as it cools, and finally exhibits a liquid phase.

液相となった冷媒は蒸発器へと向うが、膨張弁を通過する際に急激に圧力が降下する。このとき、外部との熱の出入りがないので、エンタルピは変化しない。   The refrigerant in the liquid phase goes to the evaporator, but the pressure rapidly drops when passing through the expansion valve. At this time, enthalpy does not change because there is no heat in and out of the outside.

蒸発器では、
熱量とを合計したものである。
In the evaporator
The total amount of heat.

冷却塔の一例としては、底部に多数の散水孔が穿設した貯留槽の下方に、垂直に延びる多数の板材を平行に配置して、隣り合う板材の間に通路を形成し、更に、前記通路に大気を連続的に流通させるためのファンを設けたものがある。   As an example of a cooling tower, a plurality of vertically extending plate members are arranged in parallel below a storage tank having a plurality of sprinkling holes drilled at the bottom, and a passage is formed between adjacent plate members. There is a fan provided with a fan for continuously circulating air in the passage.

この冷却塔では、貯留槽に冷却水を供給すると、散水孔から板材に向けて冷却水が分配され、この状態でファンを駆動すると、板材を伝って流下する冷却水と通路を流通する大気との間で熱交換が行われ、大気が冷却水から熱を奪い、伝熱面積が充分大きければ、理論上冷却水の温度は外気の湿球温度まで下がる。   In this cooling tower, when the cooling water is supplied to the storage tank, the cooling water is distributed from the water spray holes toward the plate material. When the fan is driven in this state, the cooling water flowing down the plate material and the air flowing through the passage If the air takes heat from the cooling water and the heat transfer area is sufficiently large, the temperature of the cooling water theoretically falls to the wet bulb temperature of the outside air.

冷却塔から冷凍機の凝縮器に送給される冷却水の温度は、大気湿球温度に対応して変動するので、特に、冬期には低くなる。そこで、冷却塔において大気と熱交換した後の冷却水の温度が、冷凍機の凝縮器において冷媒と熱交換した後の冷水の温度と同等になる時期には、冷凍機を運転せずに、冷却塔で冷やされた冷却水を冷水として前記ファンコイルユニットなどの負荷に送給する手法(フリークーリング)がある。   Since the temperature of the cooling water supplied from the cooling tower to the condenser of the refrigerator fluctuates corresponding to the atmospheric wet bulb temperature, it is particularly low in winter. Therefore, when the temperature of the cooling water after heat exchange with the atmosphere in the cooling tower becomes equal to the temperature of the cold water after heat exchange with the refrigerant in the condenser of the refrigerator, without operating the refrigerator, There is a method (free cooling) in which cooling water cooled in a cooling tower is supplied as cold water to a load such as the fan coil unit.

図6は、フリークーリングを適用した従来の空調システムの一例を示すもので、1は、冷水入口である往管2及び冷水出口である還管3を備えた冷水コイル、4aは、冷凍機4の蒸発器、4bは、冷凍機4の凝縮器、5は、冷却塔である(例えば、特許文献1参照)。   FIG. 6 shows an example of a conventional air-conditioning system to which free cooling is applied. Reference numeral 1 denotes a cold water coil including an outgoing pipe 2 serving as a cold water inlet and a return pipe 3 serving as a cold water outlet, and 4a denotes a refrigerator 4. The evaporator 4b is a condenser of the refrigerator 4, and 5 is a cooling tower (see, for example, Patent Document 1).

冷水コイル1の往管2の上流端には、蒸発器4aの冷水出口が冷水往管6を介して接続され、また、冷水コイル1の還管3の下流端には、蒸発器4aの冷水入口が冷水戻し管7を介して接続されている。前記冷水往管6には、冷水循環用のポンプ8と弁V1とが冷水流通方向上流側から下流側に向けて順に介装され、前記冷水戻し管7には、弁V2が介装されている。   The cold water outlet of the evaporator 4a is connected to the upstream end of the outgoing pipe 2 of the cold water coil 1 via the cold water outgoing pipe 6, and the cold water of the evaporator 4a is connected to the downstream end of the return pipe 3 of the cold water coil 1. The inlet is connected via a cold water return pipe 7. A chilled water circulation pump 8 and a valve V1 are provided in the chilled water outgoing pipe 6 in order from the upstream side to the downstream side in the chilled water flow direction, and a valve V2 is provided in the chilled water return pipe 7. Yes.

冷却塔5の冷却水入口には、凝縮器4bの冷却水出口が冷却水往管9を介して接続され、また、冷却塔5の冷却水出口には、凝縮器4bの冷却水入口が冷却水戻し管10を介して接続されている。前記冷却水往管9には、弁V3が介装され、前記冷却水戻し管10には、冷却水循環用のポンプ11と弁V4とが冷却水流通方向上流側から下流側に向けて順に介装されている。   A cooling water outlet of the condenser 4 b is connected to the cooling water inlet of the cooling tower 5 via a cooling water forward pipe 9, and a cooling water inlet of the condenser 4 b is cooled to the cooling water outlet of the cooling tower 5. The water return pipe 10 is connected. The cooling water forward pipe 9 is provided with a valve V3, and the cooling water return pipe 10 is provided with a cooling water circulation pump 11 and a valve V4 in order from the upstream side to the downstream side in the cooling water flow direction. It is disguised.

更に、冷却水戻し管10のポンプ11と弁V4との間の個所を、接続管12により前記往管2の上流端に接続し、冷却水往管9の弁V3よりも冷却水流通方向下流側の個所を、接続管13により前記還管3の下流端に接続している。前記接続管12には、弁V5が介装され、前記接続管13には、弁V6が介装されている。   Further, the portion of the cooling water return pipe 10 between the pump 11 and the valve V4 is connected to the upstream end of the forward pipe 2 by a connecting pipe 12, and the cooling water forward pipe 9 is downstream of the valve V3 in the cooling water flow direction. The side portion is connected to the downstream end of the return pipe 3 by a connecting pipe 13. The connecting pipe 12 is provided with a valve V5, and the connecting pipe 13 is provided with a valve V6.

以下、図6に示す空調システムの作動を、大気温度が高い夏期と、大気温度が低い冬期とに分けて説明する。   Hereinafter, the operation of the air conditioning system shown in FIG. 6 will be described by dividing it into a summer period when the atmospheric temperature is high and a winter period when the atmospheric temperature is low.

大気温度が高い夏期には、弁V1〜V4を開放し且つ弁V5、V6を閉止した状態で、冷凍機4、冷水循環用のポンプ8、及び冷却水循環用のポンプ11を運転する。冷凍機4の蒸発器4a側では、蒸発器4a、冷水往管6、往管2、冷水コイル1、還管3、冷却戻し管7、及び前記蒸発器4aの順で冷水が循環し、冷凍機4の凝縮器4b側では、凝縮器4b、冷却水往管9、冷却塔5、冷却水戻し管10、及び前記凝縮器4bの順で冷却水が循環する。   In summer, when the atmospheric temperature is high, the refrigerator 4, the cold water circulation pump 8, and the cooling water circulation pump 11 are operated with the valves V1 to V4 opened and the valves V5 and V6 closed. On the evaporator 4a side of the refrigerator 4, cold water circulates in the order of the evaporator 4a, the cold water outgoing pipe 6, the outgoing pipe 2, the cold water coil 1, the return pipe 3, the cooling return pipe 7, and the evaporator 4a. On the condenser 4b side of the machine 4, the cooling water circulates in the order of the condenser 4b, the cooling water forward pipe 9, the cooling tower 5, the cooling water return pipe 10, and the condenser 4b.

冷水コイル1においては、処理対象空気(冷水コイル1が設置されている部屋の空気)と冷水との間で熱交換が行われ、冷水が処理対象空気から熱を奪い、蒸発器4aにおいては、冷水と冷媒との間で熱交換が行われ、前記処理対象空気から冷水が奪った熱が冷媒に与えられる。また、凝縮器4bにおいては、冷媒と冷却水との間で熱交換が行われ、前記冷水から冷媒に与えられた熱が冷却水に捨てられ、冷却塔5においては、冷却水と大気との間で熱交換が行われ、処理対象空気、冷水、冷媒、及び冷却水の順で移行してきた熱が、大気中に放出される。   In the cold water coil 1, heat exchange is performed between the air to be treated (the air in the room where the cold water coil 1 is installed) and the cold water, the cold water takes heat from the air to be treated, and in the evaporator 4a, Heat exchange is performed between the cold water and the refrigerant, and the heat taken by the cold water from the processing target air is given to the refrigerant. Further, in the condenser 4b, heat exchange is performed between the refrigerant and the cooling water, and the heat given from the cold water to the refrigerant is thrown away into the cooling water. In the cooling tower 5, the cooling water and the atmosphere are exchanged. Heat is exchanged between them, and heat that has been transferred in the order of air to be treated, cold water, refrigerant, and cooling water is released into the atmosphere.

大気温度が低い冬期には、弁V1〜V4を閉止し且つ弁V5、V6を開放した状態で、冷水循環用のポンプ8及び冷凍機4を運転せずに、冷却水循環用のポンプ11だけを運転すると、冷却塔5、冷却水戻し管10の弁V4よりも冷却水流通方向上流側の部分、接続管12、往管2、冷水コイル1、還管3、接続管13、冷却水往管9の弁V3よりも冷却水流通方向下流側の部分、及び冷却塔5の順で、冷却水が冷水として循環する、フリークーリングが行われる。   In winter, when the atmospheric temperature is low, the valves V1 to V4 are closed and the valves V5 and V6 are opened, and the cooling water circulation pump 8 and the refrigerator 4 are not operated, and only the cooling water circulation pump 11 is operated. When operated, the cooling tower 5, the portion upstream of the valve V 4 of the cooling water return pipe 10 in the cooling water flow direction, the connecting pipe 12, the outgoing pipe 2, the cold water coil 1, the return pipe 3, the connecting pipe 13, and the cooling water outgoing pipe The free cooling in which the cooling water circulates as the cooling water is performed in the order of the cooling water flow direction downstream portion from the valve V3 and the cooling tower 5 in this order.

冷水コイル1においては、前記処理対象空気と冷却水との間で熱交換が行われ、冷却水が処理対象空気から熱を奪い、冷却塔5においては、冷却水と大気との間で熱交換が行われ、処理対象空気、及び冷却水の順で移行してきた熱が、大気中に放出される。   In the cold water coil 1, heat exchange is performed between the processing target air and the cooling water, the cooling water takes heat from the processing target air, and in the cooling tower 5, heat exchange is performed between the cooling water and the atmosphere. The heat that has been transferred in the order of the processing object air and the cooling water is released into the atmosphere.

なお、特許文献1には、発熱源であるサーバやルータの通信機器が多数設置されている通信機器室内の上部空間の空気を、上述したような冷水コイルによって40℃程度の高温度域から25℃程度の中温度域に冷却し、この中温度域の空気を別途に設けたパッケージエアコンの直膨コイルによって15℃程度の低温域にまで冷却することが開示されている。   In Patent Document 1, air in an upper space in a communication device room in which a large number of communication devices such as servers and routers that are heat sources are installed is removed from a high temperature range of about 40 ° C. by a cold water coil as described above. It is disclosed that the air is cooled to a middle temperature range of about 15 ° C., and the air in the middle temperature range is cooled to a low temperature range of about 15 ° C. by a directly expanded coil of a packaged air conditioner.

図7は、フリークーリングを適用した従来の空調システムの他の例を示すもので、14は、冷水コイルなどの冷却負荷、15aは、冷凍機15の蒸発器、15bは、冷凍機15の凝縮器、16は、冷却塔である(例えば、特許文献2参照)。   FIG. 7 shows another example of a conventional air conditioning system to which free cooling is applied. 14 is a cooling load such as a cold water coil, 15a is an evaporator of the refrigerator 15, and 15b is a condenser of the refrigerator 15. The vessel 16 is a cooling tower (see, for example, Patent Document 2).

冷却負荷14の冷水入口には、蒸発器15aの冷水出口が配管17を介して接続され、また、冷却負荷14の冷水出口には、蒸発器15aの冷水入口が配管18を介して接続されている。配管18には、二方弁19と冷水循環用のポンプ20とが冷水流通方向上流側から下流側に向けて順に介装されている。   A chilled water inlet of the evaporator 15 a is connected to the chilled water inlet of the cooling load 14 via a pipe 17, and a chilled water inlet of the evaporator 15 a is connected to the chilled water outlet of the cooling load 14 via a pipe 18. Yes. A two-way valve 19 and a cold water circulation pump 20 are interposed in the pipe 18 in order from the upstream side toward the downstream side in the cold water circulation direction.

冷却塔16の冷却水入口には、凝縮器15bの冷却水出口が配管21を介して接続され、また、冷却塔16の冷却水出口には、凝縮器15bの冷却水入口が配管22を介して接続されている。配管22には、三方弁23と冷却水循環用のポンプ24とが冷却水流通方向上流側から下流側に向けて順に介装されている。   A cooling water outlet of the condenser 15 b is connected to the cooling water inlet of the cooling tower 16 via a pipe 21, and a cooling water inlet of the condenser 15 b is connected to the cooling water outlet of the cooling tower 16 via a pipe 22. Connected. A three-way valve 23 and a cooling water circulation pump 24 are interposed in the pipe 22 in order from the upstream side to the downstream side in the cooling water flow direction.

更に、図7に示す空調システムには、凝縮器15bへ送り込まれる冷却水の過冷を抑制するためのバイパス配管25と、フリークーリングを行うためのバイパス配管26,27とが付帯している。   Furthermore, the air conditioning system shown in FIG. 7 is accompanied by a bypass pipe 25 for suppressing overcooling of the cooling water sent to the condenser 15b and bypass pipes 26 and 27 for performing free cooling.

バイパス配管25の上流端は、凝縮器15bから冷却塔16へ冷却水を送る配管21に接続され、バイパス配管25の下流端は、冷却塔16から凝縮器15bへ冷却水を送る配管22に介装した三方弁23に接続されている。   The upstream end of the bypass pipe 25 is connected to a pipe 21 that sends cooling water from the condenser 15b to the cooling tower 16, and the downstream end of the bypass pipe 25 is connected to a pipe 22 that sends cooling water from the cooling tower 16 to the condenser 15b. It is connected to the mounted three-way valve 23.

バイパス配管26の上流端は、冷却負荷14から蒸発器15aへ冷水を送る配管18の、二方弁19が介装されている位置よりも上流個所に接続され、バイパス配管26の下流端は、凝縮器15bから冷却塔16へ冷却水を送る配管21の、前記バイパス配管25が接続されているところよりも下流個所に接続され、バイパス配管26の中間部分には、二方弁28が介装されている。   The upstream end of the bypass pipe 26 is connected to a location upstream of the position where the two-way valve 19 is interposed in the pipe 18 that sends the cold water from the cooling load 14 to the evaporator 15a. The pipe 21 for sending the cooling water from the condenser 15b to the cooling tower 16 is connected to a location downstream of the place where the bypass pipe 25 is connected, and a two-way valve 28 is interposed in the middle portion of the bypass pipe 26. Has been.

バイパス配管27の上流端は、冷却塔16から凝縮器15bへ冷却水を送る配管22の、前記三方弁23が介装されている位置よりも上流個所に接続され、バイパス配管27の下流端は、冷却負荷14から蒸発器15aへ冷水を送る配管18の、二方弁19が介装されている位置とポンプ20が介装されている位置との間に接続され、バイパス配管27の中間部分には、二方弁29が介装されている。   The upstream end of the bypass pipe 27 is connected to an upstream portion of the pipe 22 that sends the cooling water from the cooling tower 16 to the condenser 15b than the position where the three-way valve 23 is interposed, and the downstream end of the bypass pipe 27 is An intermediate portion of the bypass pipe 27 is connected between the position where the two-way valve 19 is interposed and the position where the pump 20 is interposed in the pipe 18 for sending the cold water from the cooling load 14 to the evaporator 15a. A two-way valve 29 is interposed between the two.

以下、図7に示す空調システムの作動を、大気温度が高い夏期と、大気温度が低い冬期と、その間の中間期とに分けて説明する。   Hereinafter, the operation of the air conditioning system shown in FIG. 7 will be described by dividing it into a summer period when the atmospheric temperature is high, a winter period when the atmospheric temperature is low, and an intermediate period therebetween.

大気温度が高い夏期には、二方弁19を開放し且つ二方弁28,29を閉止した状態で、冷凍機15、冷水循環用のポンプ20、及び冷却水循環用のポンプ24を運転する。冷凍機15の蒸発器15a側では、蒸発器15a、配管17、冷却負荷14、配管18、及び前記蒸発器15aの順で冷水が循環し、冷凍機15の凝縮器15b側では、凝縮器15b、配管21、冷却塔16、配管22、及び前記凝縮器15bの順で冷却水が循環する。   In the summer, when the atmospheric temperature is high, the refrigerator 15, the cold water circulation pump 20, and the cooling water circulation pump 24 are operated with the two-way valve 19 opened and the two-way valves 28 and 29 closed. On the evaporator 15a side of the refrigerator 15, cold water circulates in the order of the evaporator 15a, the piping 17, the cooling load 14, the piping 18, and the evaporator 15a, and on the condenser 15b side of the refrigerator 15, the condenser 15b. The cooling water circulates in the order of the pipe 21, the cooling tower 16, the pipe 22, and the condenser 15b.

冷却水の一部は、凝縮器15b、配管21、バイパス配管25を経由し、三方弁23で冷却塔16から送出される冷却水と合流する。そして、凝縮器15b入口の冷却水温度が一定になるように、三方弁23の流量比を調整すると、凝縮器15bを流れる冷却水は、一定流量、一定温度に保たれ、冷凍機15が安定した状態で運転される。   A part of the cooling water merges with the cooling water sent from the cooling tower 16 by the three-way valve 23 via the condenser 15b, the pipe 21, and the bypass pipe 25. When the flow rate ratio of the three-way valve 23 is adjusted so that the cooling water temperature at the inlet of the condenser 15b is constant, the cooling water flowing through the condenser 15b is maintained at a constant flow rate and a constant temperature, and the refrigerator 15 is stable. It is driven in the state.

冷却負荷14においては、処理対象空気(冷却負荷14が設置されている部屋の空気)と冷水との間で熱交換が行われ、冷水が処理対象空気から熱を奪い、蒸発器15aにおいては、冷水と冷媒との間で熱交換が行われ、前記処理対象空気から冷水が奪った熱が冷媒に与えられる。また、凝縮器15bにおいては、冷媒と冷却水との間で熱交換が行われ、前記冷水から冷媒に与えられた熱が冷却水に捨てられ、冷却塔16においては、冷却水と大気との間で熱交換が行われ、処理対象空気、冷水、冷媒、及び冷却水の順で移行してきた熱が、大気中に放出される。   In the cooling load 14, heat exchange is performed between the air to be processed (air in the room where the cooling load 14 is installed) and cold water, and the cold water takes heat from the air to be processed. In the evaporator 15a, Heat exchange is performed between the cold water and the refrigerant, and the heat taken by the cold water from the processing target air is given to the refrigerant. Further, in the condenser 15b, heat exchange is performed between the refrigerant and the cooling water, and heat given to the refrigerant from the cold water is thrown away into the cooling water, and in the cooling tower 16, the cooling water and the atmosphere are exchanged. Heat is exchanged between them, and heat that has been transferred in the order of air to be treated, cold water, refrigerant, and cooling water is released into the atmosphere.

大気温度が低い冬期には、二方弁19を閉止し且つ二方弁28,29を開放した状態で、冷却水循環用のポンプ24及び冷凍機15を運転せずに、冷水循環用のポンプ20だけを運転すると、冷却塔16、配管22、バイパス配管27、配管18の二方弁19よりも冷水流通方向の下流側の部分、蒸発器15a、配管17、冷却負荷14、配管18の二方弁19よりも冷水流通方向の上流側の部分、バイパス配管26、配管21、及び冷却塔16の順で、冷却水が冷水として循環する、フリークーリングが行われる。   In winter, when the atmospheric temperature is low, the cooling water circulation pump 20 and the cooling machine 15 are not operated with the two-way valve 19 closed and the two-way valves 28 and 29 opened. Only the cooling tower 16, the piping 22, the bypass piping 27, the downstream portion of the piping 18 in the direction of the chilled water flow, the evaporator 15 a, the piping 17, the cooling load 14, and the piping 18. Free cooling in which cooling water circulates as cold water is performed in the order of the upstream side of the valve 19 in the direction of cold water flow, the bypass pipe 26, the pipe 21, and the cooling tower 16.

冷却負荷14においては、前記処理対象空気と冷却水との間で熱交換が行われ、冷却水が処理対象空気から熱を奪い、冷却塔16においては、冷却水と大気との間で熱交換が行われ、処理対象空気、及び冷却水の順で移行してきた熱が、大気中に放出される。   In the cooling load 14, heat exchange is performed between the processing target air and the cooling water, and the cooling water takes heat from the processing target air. In the cooling tower 16, heat exchange is performed between the cooling water and the atmosphere. The heat that has been transferred in the order of the processing object air and the cooling water is released into the atmosphere.

中間期には、二方弁19,28,29を開くことにより、冷却塔16、蒸発器15a、及び冷却負荷14を直列につなげて、冷凍機15、冷水循環用のポンプ20、及び冷却水循環用のポンプ24を運転するとともに、前記二方弁19,28,29の開度を調整する。   In the intermediate period, by opening the two-way valves 19, 28, 29, the cooling tower 16, the evaporator 15a, and the cooling load 14 are connected in series, and the refrigerator 15, the cooling water pump 20, and the cooling water circulation are connected. And the opening degree of the two-way valves 19, 28, 29 is adjusted.

冷凍機15の蒸発器15a側では、蒸発器15a、配管17、冷却負荷14、配管18の二方弁19よりも冷水流通方向の上流側の部分、バイパス配管26、冷却塔16、配管22の冷却水流通方向上流部分、バイパス配管27、配管18の二方弁19よりも冷水流通方向の下流側の部分、及び前記蒸発器15aの順で、冷却水の一部が冷水と混合して循環するフリークーリングが行われ、冷凍機15の凝縮器15b側では、凝縮器15b、配管21、冷却塔16、配管22、及び前記凝縮器15bの順で冷却水が循環し、冷凍機15による冷水の冷凍にフリークーリングが併用されることになる。フリークーリングに用いられる冷却水の量は、二方弁19,28,29の開度調整による流量制御で増減される。   On the evaporator 15 a side of the refrigerator 15, the evaporator 15 a, the piping 17, the cooling load 14, the upstream portion of the piping 18 in the cold water flow direction with respect to the two-way valve 19, the bypass piping 26, the cooling tower 16, and the piping 22 A part of the cooling water mixes and circulates in the order of the upstream part in the cooling water flow direction, the bypass pipe 27, the downstream part of the pipe 18 in the cold water flow direction from the two-way valve 19 and the evaporator 15a in this order. The cooling water is circulated in the order of the condenser 15b, the piping 21, the cooling tower 16, the piping 22, and the condenser 15b on the condenser 15b side of the refrigerator 15, and the cooling water by the refrigerator 15 is cooled. Free cooling will be used in combination with freezing. The amount of cooling water used for free cooling is increased or decreased by flow control by adjusting the opening of the two-way valves 19, 28, and 29.

特開2002−168479号公報JP 2002-168479 A 特開平3−271675号公報JP-A-3-271675

図6に示す空調システムでは、弁V1〜V6自体が流路抵抗となるため、この流路抵抗を冷水循環用のポンプ8や冷却水循環用のポンプ11の容量に見込んでおく必要があり、これらポンプ8,11の容量が大きくなる。   In the air conditioning system shown in FIG. 6, since the valves V1 to V6 themselves serve as channel resistances, it is necessary to allow for the channel resistances in the capacity of the chilled water circulation pump 8 and the cooling water circulation pump 11. The capacity of the pumps 8 and 11 is increased.

また、弁V1〜V6を開閉することによって、冷水コイル1が冷凍機4の蒸発器4aと冷水の授受をする状態、もしくは、冷水コイル1が冷却塔5と冷却水の授受を行う状態のいずれかに設定するので、この設定を切り替えるにあたっては、冷却塔5と冷却水の授受を行う前に冷凍機4を一旦停止させる必要がある。よって、特許文献1に開示されているものでは、冷凍機4が停止している間の通信機器室内の空気の冷却を、パッケージエアコンに肩代わりさせると、一時的ではあるがパッケージエアコンの仕事量が増加する。   Further, by opening and closing the valves V1 to V6, either the state where the cold water coil 1 exchanges cold water with the evaporator 4a of the refrigerator 4 or the state where the cold water coil 1 exchanges cooling water with the cooling tower 5 Therefore, before switching the setting, it is necessary to temporarily stop the refrigerator 4 before exchanging the cooling water with the cooling tower 5. Therefore, in what is disclosed in Patent Document 1, if the cooling of the air in the communication device room while the refrigerator 4 is stopped is replaced by the packaged air conditioner, the work of the packaged air conditioner is temporarily but not the same. To increase.

フリークーリングを行うときの冷却塔5出口の冷却水温度は、冷水コイル1が前記処理対象空気と冷水との熱交換として冷水コイル伝熱面積を決めている関係で、冷凍機4を運転しているときの蒸発器4a出口の冷水温度と等しくなければならないが、大気の湿球温度が高くて、冷却塔5出口の冷却水温度が冷凍機4の運転時の蒸発器4a出口の冷水温度にまで下がらない場合、特許文献1に開示されているものでは、冷却水温度が下がらない分に応じた仕事量を、前記処理対象空気の冷水コイル1の下流に備える直膨コイルを蒸発器とするパッケージエアコンに負担させることになる。   The cooling water temperature at the outlet of the cooling tower 5 when performing free cooling is such that the cooling water coil 1 operates the refrigerator 4 because the cooling water coil 1 determines the heat transfer area of the cooling water coil as heat exchange between the processing target air and the cooling water. It must be equal to the chilled water temperature at the outlet of the evaporator 4a at the time of heating, but the atmospheric wet bulb temperature is high, and the cooling water temperature at the outlet of the cooling tower 5 becomes the chilled water temperature at the outlet of the evaporator 4a when the refrigerator 4 is operating. In the case disclosed in Patent Document 1, when the cooling water temperature does not decrease, the direct expansion coil provided with the work amount corresponding to the amount that the cooling water temperature does not decrease downstream of the cold water coil 1 of the processing target air is used as the evaporator. Package air conditioners will be burdened.

一般に、パッケージエアコンは大型の水冷冷凍機よりも効率が悪く、特許文献1に開示されているものでは上述したように、冷凍機の仕事量の全部、または一部をパッケージエアコンに負担させることになるため、省エネルギー効果は低い。   In general, a packaged air conditioner is less efficient than a large water-cooled refrigerator, and as disclosed in Patent Document 1, as described above, the packaged air conditioner bears all or part of the work load of the refrigerator. Therefore, the energy saving effect is low.

図7に示す空調システムでも、図6に示す空調システムと同様に、二方弁19,28,29自体が流路抵抗となるため、この流路抵抗を冷水循環用のポンプ20や冷却水循環用のポンプ24の容量に見込んでおく必要があり、これらポンプ20,24の容量が大きくなる。特に、図7に示す空調システムでは、年間通じて期間の長い中間期においては、ずっと二方弁19,28,29の開度を調整しており、つまり全開ではないので、流路抵抗の増大が顕著である。   In the air conditioning system shown in FIG. 7 as well, the two-way valves 19, 28, and 29 themselves have a flow path resistance as in the air conditioning system shown in FIG. 6, and this flow path resistance is used for the cooling water circulation pump 20 and the cooling water circulation. It is necessary to allow for the capacity of the pump 24, and the capacity of the pumps 20 and 24 is increased. In particular, in the air conditioning system shown in FIG. 7, the opening of the two-way valves 19, 28, and 29 is adjusted all the time during an intermediate period that is long throughout the year, that is, the channel resistance is not fully opened. Is remarkable.

冷凍機15による空調にフリークーリングを併用する際には、前述したように、冷却塔16、蒸発器15a、及び冷却負荷14を直列につなげ、ポンプ20により冷却水の一部を冷水として循環させるので、蒸発器15aを通る冷却水の量を独立して制御できない。従って、冷却負荷14で処理対象空気から熱を奪った冷水の温度が上昇した場合には、蒸発器15a入口の冷水温度も上昇して冷凍機15の出口設定水温が実現できる許容温度範囲を超え、該冷凍機15の出口冷水温度を設定温度まで冷凍するよう運転できなくなる。   When using free cooling together with air conditioning by the refrigerator 15, as described above, the cooling tower 16, the evaporator 15 a, and the cooling load 14 are connected in series, and a part of the cooling water is circulated as cold water by the pump 20. Therefore, the amount of cooling water passing through the evaporator 15a cannot be controlled independently. Therefore, when the temperature of the chilled water deprived of heat from the processing target air by the cooling load 14 rises, the chilled water temperature at the evaporator 15a inlet also rises and exceeds the allowable temperature range in which the set water temperature at the outlet of the refrigerator 15 can be realized. Therefore, the operation cannot be performed so as to freeze the outlet cold water temperature of the refrigerator 15 to the set temperature.

そこで、ポンプ20を変流量制御するという手立てを採ることが考えられるが、蒸発器15aの下限流量、つまり冷凍機15の冷水流路凍結による故障防止などのために設定された下限流量が、冷凍機15の蒸発器15a側において冷却負荷14が組み込まれている冷水系統の最小流量となるので、冷却負荷14が処理対象空気から奪う熱(負荷)が小さい場合は、この負荷に対して前記冷水系統を流通する冷水の量を過剰にせざるを得ず、搬送流量が過大となり、省エネルギ効果は低い。   Therefore, it is conceivable to take a measure to control the variable flow rate of the pump 20, but the lower limit flow rate of the evaporator 15 a, that is, the lower limit flow rate set for preventing failure due to freezing of the chilled water flow path of the refrigerator 15, etc. Since the minimum flow rate of the chilled water system in which the cooling load 14 is incorporated on the evaporator 15a side of the machine 15 is small, when the heat (load) taken by the cooling load 14 from the air to be treated is small, the chilled water with respect to this load The amount of cold water that circulates in the system must be excessive, the transport flow rate becomes excessive, and the energy saving effect is low.

冷凍機15の蒸発器15a側の冷水系統を流通する冷水の量は、バイパス配管26,27に介装した二方弁28,29の開度調整によって制御するが、中間期に二方弁28,29の開度調整を行うと、前記冷却水系統の流動抵抗線が変化して冷却塔16へ送給される冷却水の量が増減し、冷却塔16出口の冷却水温度が変化するため、これに応じてポンプ20の冷却水(冷水)送出量を制御しなければならず、当該ポンプ20を安定して運転できない。   The amount of chilled water flowing through the chilled water system on the evaporator 15a side of the refrigerator 15 is controlled by adjusting the opening degree of the two-way valves 28 and 29 interposed in the bypass pipes 26 and 27. , 29, the flow resistance line of the cooling water system changes, the amount of cooling water supplied to the cooling tower 16 increases and decreases, and the cooling water temperature at the outlet of the cooling tower 16 changes. Accordingly, the amount of cooling water (cold water) delivered from the pump 20 must be controlled accordingly, and the pump 20 cannot be operated stably.

本発明は上述した実情に鑑みてなしたもので、冷凍機の単独運転、冷凍機とフリークーリングとの併用運転、及びフリークーリングの単独運転を滞りなく切り替えでき、また、冷凍機とフリークーリングとの併用運転を安定して実行できるフリークーリング併用中温熱源システムを提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and can switch between a single operation of a freezer, a combined operation of a freezer and a free cooling, and a single operation of a free cooling without delay, and a freezer and a free cooling. The purpose is to provide a free-cooling combined medium temperature source system that can stably perform the combined operation.

上記目的を達成するため、請求項1に記載のフリークーリング併用中温熱源システムは、
複数の冷却塔と複数の冷凍機の凝縮器との間で冷却水を行き来させる第一の冷却水回路、
該第一の冷却水回路に接続され且つフリークーリング用熱交換器の一次側流路と第一の冷却水回路との間で冷却水を行き来させる第二の冷却水回路、
冷却負荷に対して冷水を循環させる第一の冷水回路、
該第一の冷水回路に接続され且つ前記フリークーリング用熱交換器の二次側流路と第一の冷水回路との間で冷水を行き来させる第二の冷水回路、
並びに該第二の冷水回路の冷水流通方向下流に位置するように第一の冷水回路に接続され且つ前記冷凍機の蒸発器と第一の冷水回路との間で冷水を行き来させる第三の冷水回路を備え、
第一の冷却水回路は、
上流端が前記冷却塔の冷却水出口に接続され且つ下流端を前記冷凍機の凝縮器冷却水入口に接続した凝縮器入口管路と、該凝縮器入口管路に介装した第一の冷却水ポンプと、上流端が前記冷凍機の凝縮器冷却水出口に接続され且つ下流端を前記冷却塔の冷却水入口に接続した凝縮器出口管路とを有し、
第二の冷却水回路は、
上流端が前記第一の冷却水管路の凝縮器入口管路における第一の冷却水ポンプ介装部よりも上流側の個所に接続され且つ下流端を前記フリークーリング用熱交換器の一次側流路の冷却水入口に接続した熱交換器一次側入口管路と、該熱交換器一次側入口管路に介装した第二の冷却水ポンプと、上流端が前記フリークーリング用熱交換器の一次側流路の冷却水出口に接続され且つ下流端を前記第一の冷却水回路の凝縮器出口管路に接続した熱交換器一次側出口管路とを有し、
第一の冷水回路は、
上流端が冷却負荷の冷水出口に接続された冷却負荷出口管路と、該冷却負荷出口管路の下流端に冷水入口が接続された第一の冷水ポンプと、該第一の冷水ポンプの冷水出口に上流端が接続され且つ下流端を前記冷却負荷の冷水入口に接続した冷却負荷入口管路とを有し、
第二の冷水回路は、
上流端が前記第一の冷水回路の冷却負荷出口管路に接続され且つ下流端を前記フリークーリング用熱交換器の二次側流路の冷水入口に接続した熱交換器二次側入口管路と、該熱交換器二次側入口管路に介装した第二の冷水ポンプと、上流端が前記フリークーリング用熱交換器の二次側流路の冷水出口に接続され且つ下流端を前記第一の冷水回路の冷却負荷出口管路における熱交換器二次側入口管路接続点よりも下流側の個所に接続した熱交換器二次側出口管路とを有し、
第三の冷水回路は、
上流端が前記第一の冷水回路の冷却負荷出口管路における熱交換器二次側出口管路接続点よりも下流側の個所に接続され且つ下流端を前記冷凍機の蒸発器冷水入口に接続した蒸発器入口管路と、該蒸発器入口管路に介装した冷凍機と同じ台数の第三の冷水ポンプと、上流端が前記冷凍機の蒸発器冷水出口に接続され且つ下流端を前記第一の冷水回路の冷却負荷出口管路における蒸発器入口管路接続点よりも下流側の個所に接続した蒸発器出口管路とを有し、
第一の冷水回路を循環する冷水の一部又は全部を、第二の冷水回路の熱交換器二次側入口管路へ分岐させてフリークーリング用熱交換器を通過させた後、熱交換器二次側出口管路から再び第一の冷水回路へ合流させるように流すのを、第二の冷水ポンプの搬送動力で行うように構成されている。
In order to achieve the above object, the intermediate temperature source system with free cooling according to claim 1,
A first cooling water circuit for passing cooling water back and forth between the cooling towers and the condensers of the refrigerators;
A second cooling water circuit that is connected to the first cooling water circuit and causes the cooling water to flow back and forth between the primary flow path of the free cooling heat exchanger and the first cooling water circuit;
A first chilled water circuit for circulating chilled water against a cooling load;
A second chilled water circuit connected to the first chilled water circuit and causing chilled water to flow back and forth between the secondary flow path of the free cooling heat exchanger and the first chilled water circuit;
And a third chilled water connected to the first chilled water circuit so as to be located downstream of the second chilled water circuit in the direction of the chilled water flow, and for transferring the chilled water between the evaporator of the refrigerator and the first chilled water circuit. With a circuit,
The first cooling water circuit
A condenser inlet pipe having an upstream end connected to a cooling water outlet of the cooling tower and a downstream end connected to a condenser cooling water inlet of the refrigerator; and a first cooling interposed in the condenser inlet pipe A water pump, and a condenser outlet pipe having an upstream end connected to a condenser cooling water outlet of the refrigerator and a downstream end connected to a cooling water inlet of the cooling tower,
The second cooling water circuit
An upstream end is connected to a location upstream of the first cooling water pump interposition part in the condenser inlet pipe of the first cooling water pipe, and a downstream end is a primary side flow of the free cooling heat exchanger. A heat exchanger primary side inlet pipe connected to the cooling water inlet of the passage, a second cooling water pump interposed in the heat exchanger primary side inlet pipe, and an upstream end of the heat exchanger for free cooling. A heat exchanger primary outlet pipe connected to the cooling water outlet of the primary flow path and having a downstream end connected to the condenser outlet pipe of the first cooling water circuit;
The first chilled water circuit
A cooling load outlet pipe having an upstream end connected to a chilled water outlet of the cooling load, a first chilled water pump having a chilled water inlet connected to a downstream end of the cooling load outlet pipe, and chilled water of the first chilled water pump A cooling load inlet pipe having an upstream end connected to the outlet and a downstream end connected to the cold water inlet of the cooling load;
The second chilled water circuit is
Heat exchanger secondary inlet conduit with an upstream end connected to a cooling load outlet conduit of the first chilled water circuit and a downstream end connected to a chilled water inlet of a secondary flow passage of the free cooling heat exchanger A second chilled water pump interposed in the heat exchanger secondary side inlet pipe, an upstream end connected to a chilled water outlet of the secondary side flow path of the free cooling heat exchanger, and a downstream end of the second chilled water pump A heat exchanger secondary outlet pipe connected to a location downstream of the heat exchanger secondary inlet pipe connecting point in the cooling load outlet pipe of the first chilled water circuit;
The third chilled water circuit
The upstream end is connected to a location downstream of the heat exchanger secondary outlet pipe connection point in the cooling load outlet pipe of the first cold water circuit, and the downstream end is connected to the evaporator cold water inlet of the refrigerator An evaporator inlet pipe, a third chilled water pump of the same number as the refrigerator interposed in the evaporator inlet pipe, an upstream end connected to the evaporator chilled water outlet of the refrigerator, and a downstream end An evaporator outlet pipeline connected to a location downstream of the evaporator inlet pipeline connection point in the cooling load outlet pipeline of the first chilled water circuit;
After a part or all of the chilled water circulating in the first chilled water circuit is branched to the heat exchanger secondary inlet pipe of the second chilled water circuit and passed through the free cooling heat exchanger, the heat exchanger The second chilled water pump is configured to perform the flow so as to be merged again from the secondary outlet pipe to the first chilled water circuit.

請求項2に記載のフリークリーニング併用中温熱源システムは、
第一の冷水回路の冷却負荷入口管路に介装される冷却負荷入口冷水温度を検出する負荷入口温度センサと、第一の冷水回路における熱交換器二次側入口管路接続点と冷却負荷との間に介装される冷却負荷出口冷水温度を検出する負荷出口温度センサと、第一の冷水回路に介装される冷水流量計と、第一の冷水回路の熱交換器二次側出口管路接続点下流側の第二の冷水回路下流温度を検出する第二の冷水回路下流温度センサと、外気湿球温度センサとコントローラとを備え、
該コントローラは、
負荷入口温度センサの検出温度と負荷出口温度センサの検出温度との温度差及び冷水流量計の検出冷水流量から負荷熱量を演算して、算出した負荷熱量に見合う冷凍機の運転台数を決定し、
算出した負荷熱量と計測した外気湿球温度計測値とから、第一の冷却水ポンプと第二の冷却水ポンプとを両方動作させた場合の、凝縮器入口管路を流れる冷却塔出口冷却水予測温度を演算して求め、
冷却塔出口冷却水予測温度と冷却負荷出口冷水温度とから、フリークーリングが可能か否かを判定し、
フリークーリングが可能と判定した場合は、
第二の冷却水ポンプを起動して最低回転数で動作させ、第二の冷水回路下流温度の設定値を冷却負荷出口冷水温度と同値に設定したのち、第二の冷水回路下流温度センサの計測値との偏差に応じた第二の冷却水ポンプの変流量制御を開始し、
第二の冷水ポンプを起動して最低回転数で動作させてから、第一の冷水ポンプの送出する冷水流量に追随する冷水量を搬送できるよう第二の冷水ポンプの変流量制御を行い、
算出した負荷熱量及び冷却塔出口冷却水予測温度とから、冷凍機とフリークーリング用熱交換器との併用運転か、フリークーリング用熱交換器の単独運転かを選択し、
冷凍機とフリークーリング用熱交換器との併用運転が選択された時には、
第二の冷水回路下流温度の設定値を、冷却負荷出口冷水温度を基準とした値から、冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値を最低値として、段階的に下げていくように設定し、
フリークーリング用熱交換器の単独運転が選択された時には、
第二の冷水回路下流温度の設定値を、冷凍機の冷水出口設定温度に設定するように構成されている。
The intermediate temperature heat source system combined with free cleaning according to claim 2,
A load inlet temperature sensor for detecting a cooling load inlet chilled water temperature interposed in a cooling load inlet pipe of the first chilled water circuit, a heat exchanger secondary inlet pipe connection point and a cooling load in the first chilled water circuit A load outlet temperature sensor for detecting a cooling water outlet cooling water temperature interposed between the first cooling water circuit, a cooling water flow meter interposed in the first cooling water circuit, and a heat exchanger secondary outlet of the first cooling water circuit A second chilled water circuit downstream temperature sensor for detecting the downstream temperature of the second chilled water circuit downstream of the pipe connection point, an outdoor wet bulb temperature sensor, and a controller;
The controller
Calculate the load heat amount from the temperature difference between the detected temperature of the load inlet temperature sensor and the detected temperature of the load outlet temperature sensor and the detected chilled water flow rate of the chilled water flow meter, and determine the number of refrigerators operating to match the calculated load heat amount,
Cooling tower outlet cooling water flowing through the condenser inlet pipe when both the first cooling water pump and the second cooling water pump are operated from the calculated load heat quantity and the measured outside wet bulb temperature measurement value Calculate the predicted temperature,
Determine whether free cooling is possible from the cooling tower outlet cooling water predicted temperature and the cooling load outlet cooling water temperature,
If it is determined that free cooling is possible,
Start the second cooling water pump and operate it at the minimum number of revolutions, set the second chilled water circuit downstream temperature setting to the same value as the cooling load outlet chilled water temperature, and then measure the second chilled water circuit downstream temperature sensor Start the variable flow rate control of the second cooling water pump according to the deviation from the value,
After the second chilled water pump is started and operated at the minimum number of revolutions, the variable flow rate control of the second chilled water pump is performed so that the amount of chilled water that follows the chilled water flow rate delivered by the first chilled water pump can be conveyed,
From the calculated load heat amount and the predicted cooling water at the cooling tower outlet, select whether to use the refrigerator and free cooling heat exchanger in combination, or to operate the free cooling heat exchanger alone.
When the combined operation of the refrigerator and the free-cooling heat exchanger is selected,
Set the second chilled water circuit downstream temperature from the value based on the chilled load outlet chilled water temperature to the free cooling secondary heat exchanger secondary outlet steady value during operation with the refrigerator, step by step. Set it to go down,
When single operation of the free-cooling heat exchanger is selected,
The set value of the second cold water circuit downstream temperature is set to the cold water outlet set temperature of the refrigerator.

請求項3に記載のフリークーリング併用中温熱源システムは、
冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値について、
該フリークーリング用熱交換器二次側出口定常値と負荷入口温度との温度差を、第一の冷水回路での変流量制御における負荷入口温度と負荷出口温度との標準温度差で除した冷凍機受け持ち割合を、
冬期の夏期ピーク期に対する冷房負荷割合である冷凍機のベース運転台数比率に、冷凍機部分負荷最低運転比率を乗じた冷凍機最低能力割合よりも大きく設定するよう構成されている。
The free cooling combined use medium temperature heat source system according to claim 3,
About the steady-state value of the secondary side outlet at the heat exchanger for free cooling during operation with the refrigerator
Refrigeration obtained by dividing the temperature difference between the steady state value at the secondary side outlet of the heat exchanger for free cooling and the load inlet temperature by the standard temperature difference between the load inlet temperature and the load outlet temperature in the variable flow rate control in the first chilled water circuit The proportion of machine ownership
The unit is configured to be set to be larger than the minimum refrigerator capacity ratio obtained by multiplying the base operation unit ratio of the refrigerator, which is the cooling load ratio with respect to the summer peak season in winter, by the minimum refrigerator partial load operation ratio.

請求項4に記載のフリークーリング併用中温熱源システムは、
熱交換器二次側入口管路の冷水温度を検出するフリークーリング入口温度センサと、熱交換器二次側出口管路の冷水温度を検出するフリークーリング出口温度センサとを備え、
フリークーリング入口温度センサは、第二の冷水回路の熱交換器二次側入口管路における第二の冷水ポンプとフリークーリング用熱交換器の二次側流路との間に介装され、
フリークーリング出口温度センサは、第二の冷水回路の熱交換器二次側出口管路に介装され、
前記コントローラは、
冷却塔出口冷却水予測温度と冷却負荷出口冷水温度とから、フリークーリングが可能と判断した際には、
起動した第二の冷水ポンプが最低回転数で動作したのち、第一の冷水ポンプの送出する冷水流量に追随する冷水量を搬送できるよう第二の冷水ポンプの変流量制御を行うにあたり、
第二の冷水回路下流温度センサ測定値と冷却負荷出口冷水温度測定値との第二の冷水回路入口出口温度差測定値を、フリークーリング入口温度センサの計測値とフリークーリング出口温度の計測値との差であるフリークーリング二次側冷水温度差の設定値としてカスケード制御として与え、フリークーリング二次側冷水温度差の測定値が設定値より小さい場合に回転を絞り、フリークーリング二次側冷水温度差の測定値が設定値より大きい場合には回転を増加させるよう、偏差に応じて第二の冷水ポンプの回転数制御を行うように構成されている。
The free cooling combined use medium temperature heat source system according to claim 4,
A free cooling inlet temperature sensor for detecting the chilled water temperature of the heat exchanger secondary side inlet pipe, and a free cooling outlet temperature sensor for detecting the chilled water temperature of the heat exchanger secondary side outlet pipe,
The free cooling inlet temperature sensor is interposed between the second chilled water pump in the heat exchanger secondary inlet line of the second chilled water circuit and the secondary flow path of the free cooling heat exchanger,
The free cooling outlet temperature sensor is interposed in the heat exchanger secondary outlet pipe of the second chilled water circuit,
The controller is
When it is determined that free cooling is possible from the cooling tower outlet cooling water predicted temperature and the cooling load outlet cooling water temperature,
After the activated second chilled water pump operates at the minimum number of rotations, the variable flow rate control of the second chilled water pump is performed so that the amount of chilled water that follows the chilled water flow rate delivered by the first chilled water pump can be conveyed.
The second chilled water circuit inlet / outlet temperature difference measurement value between the second chilled water circuit downstream temperature sensor measured value and the cooling load outlet chilled water temperature measured value is the measured value of the free cooling inlet temperature sensor and the measured value of the free cooling outlet temperature. Is given as cascade control as the set value of the free cooling secondary chilled water temperature difference, which is the difference between the free cooling secondary side chilled water temperature, and when the measured value of the free cooling secondary chilled water temperature difference is smaller than the set value, the rotation is throttled and the free cooling secondary chilled water temperature When the measured value of the difference is larger than the set value, the rotation speed of the second chilled water pump is controlled according to the deviation so as to increase the rotation.

請求項5に記載のフリークーリング併用中温熱源システムは、
冷凍機の凝縮器側の冷媒ガス圧力を検出する圧力センサと、圧力調整器とを備え、
決定した冷凍機台数における負荷熱量に応じた冷却水流量を確保するため、
圧力調整器は、圧力センサの検出値が一定値を保つように第一の冷却水ポンプの回転数を制御するように構成されている。
The free cooling combined use medium temperature heat source system according to claim 5,
A pressure sensor for detecting the refrigerant gas pressure on the condenser side of the refrigerator, and a pressure regulator;
In order to secure the cooling water flow rate according to the amount of load heat in the determined number of refrigerators,
The pressure regulator is configured to control the rotation speed of the first cooling water pump so that the detection value of the pressure sensor maintains a constant value.

請求項6に記載のフリークーリング併用中温熱源システムは、
第一の冷却水回路に、
上流端が前記熱交換器出口管路の接続点と凝縮器冷却水出口との間に接続され且つ下流端が熱交換器一次側入口管路接続点と凝縮器入口管路における第一の冷却水ポンプ介装点との間に接続されバイパス弁を介装する冷却水バイパス管路と、第一の冷却水ポンプ出口に介装された冷凍機入口冷却水温度センサと、バイパス開閉調節計とを有し、
冷凍機入口冷却水温度が、冷凍機凍結防止の下限値より低い場合はバイパス弁を開いて冷却水温度を制御するように構成されている。
The free cooling combined use medium temperature heat source system according to claim 6,
In the first cooling water circuit,
The upstream end is connected between the connection point of the heat exchanger outlet line and the condenser cooling water outlet, and the downstream end is the first cooling in the heat exchanger primary side inlet line connection point and the condenser inlet line. A cooling water bypass pipe line connected between the water pump insertion point and a bypass valve; a refrigerator inlet cooling water temperature sensor interposed at the first cooling water pump outlet; and a bypass opening / closing controller. Have
When the refrigerator inlet cooling water temperature is lower than the lower limit value of the refrigerator freezing prevention, the bypass valve is opened to control the cooling water temperature.

請求項7に記載のフリークーリング併用中温熱源システムは、
冬期の冷房負荷割合である冷凍機のベース運転台数比率、冷凍機の定格冷却水量に対する冷却水下限流量比率、及び冷却塔散水分配による冷却塔の定格冷却水量に対する冷却水下限流量比率とから、複数の冷却塔の望ましい合計容量は、複数の冷凍機合計容量から定格で選定される容量に比して、
望ましい冷却塔容量/定格選定冷却塔容量= (冷凍機ベース運転台数比率×冷凍機の冷却水下限流量比率)/冷却塔冷却水下限流量比率
であるように構成されている。
The free cooling combined use medium temperature heat source system according to claim 7,
From the base operating unit ratio of the refrigerator, which is the cooling load ratio in winter, the cooling water lower limit flow rate ratio relative to the rated cooling water amount of the refrigerator, and the cooling water lower limit flow rate ratio relative to the cooling tower rated cooling water amount due to cooling tower sprinkling distribution The desired total capacity of the cooling tower is compared to the capacity selected by rating from the total capacity of multiple refrigerators,
Desirable cooling tower capacity / rated selection cooling tower capacity = (refrigerant base operation number ratio × refrigerator cooling water lower limit flow rate ratio) / cooling tower cooling water lower limit flow rate ratio.

請求項8に記載のフリークーリング併用中温熱源システムは、
冷凍機の冷却水下限流量比率=50%、冷却塔冷却水下限流量比率=20%であり、
複数の冷却塔の望ましい合計容量は、
望ましい冷却塔容量/定格選定冷却塔容量=125%以上175%以下であるよう構成されている。
The free cooling combined use medium temperature heat source system according to claim 8,
Cooling water lower limit flow rate ratio of the refrigerator = 50%, cooling tower cooling water lower limit flow rate ratio = 20%,
The desired total capacity of multiple cooling towers is
Desirable cooling tower capacity / rated rated cooling tower capacity = 125% or more and 175% or less.

請求項9に記載のフリークーリング併用中温熱源システムは、
第一の冷水ポンプの流量と第三の冷水ポンプの合計流量とを比較すると、等しいか又は第三の冷水ポンプ合計流量が大きいように、冷凍機ベース運転台数と等しいかそれより多い台数の第三の冷水ポンプを、演算された負荷熱量により台数を切替え且つ変流量制御するように構成されている。
The free cooling combined use medium temperature heat source system according to claim 9,
Comparing the flow rate of the first chilled water pump and the total flow rate of the third chilled water pump, the number of units equal to or greater than the number of refrigerator-based operations is equal, so that the third chilled water pump total flow rate is greater. The three chilled water pumps are configured to switch the number and control the variable flow rate according to the calculated load heat amount.

本発明のフリークーリング併用中温熱源システムによれば、下記のような優れた作用効果を奏し得る。   According to the free cooling combined use medium temperature heat source system of the present invention, the following excellent effects can be obtained.

(1)請求項1に記載のフリークーリング併用中温熱源システムでは、冷却負荷が要求する冷熱量を高温度差で搬送しかつ冷熱量に応じて変流量制御される第一の冷水ポンプで循環搬送する第一の冷水回路と、第一の冷水回路から第三の冷水ポンプの搬送動力で冷水を取り出し、冷凍機によって冷水を冷凍したのち第一の冷水回路に戻す第三の冷水回路と、第三の冷水回路の上流側に、第二の冷水ポンプの搬送動力で冷水を取り出し、フリークーリング用熱交換器によって冷水を冷却したのち第一の冷水回路に戻す第二の冷水回路とを設けたことにより、フリークーリングでの冷却を冷凍機の冷凍の予冷に使えるため、フリークーリング出口冷水温度は、冷却負荷入口温度よりも高くてよいため、外気湿球温度が高い時でも、フリークーリング冷却が利用でき、中間期としてフリークーリング利用期間が長く取れ、その間の冷凍機負荷を軽減できるので大幅に省エネルギとなる。   (1) In the intermediate temperature heat source system combined with free cooling according to claim 1, the amount of cold required by the cooling load is conveyed by a high temperature difference and circulated by a first cold water pump that is controlled in variable flow according to the amount of cold. A first chilled water circuit to be transported, a third chilled water circuit to take out the chilled water from the first chilled water circuit with the transport power of the third chilled water pump, return the first chilled water circuit to the first chilled water circuit after freezing the chilled water by a refrigerator; Provided on the upstream side of the third chilled water circuit is a second chilled water circuit that takes out the chilled water with the transport power of the second chilled water pump, cools the chilled water with a free cooling heat exchanger, and then returns it to the first chilled water circuit. Therefore, the free cooling cooling can be used for pre-cooling of the freezer, so the free cooling outlet chilled water temperature may be higher than the cooling load inlet temperature. Cooling is available, the free cooling period of use take long as the interim period, a significant energy savings because it reduces the meantime of the refrigerator load.

(2)さらに、第一の冷水回路から第二の冷水回路へ冷水を取り出してフリークーリング用熱交換器によって冷却された冷水を再び第一の冷水回路に戻すのに、第二の冷水ポンプの搬送動力だけで行うので、流路抵抗となる切替弁や、ましてや流量調整弁が不要であり、第一、第二の冷水ポンプの容量が無駄に大きくならない。同様に、第一の冷水回路から第三の冷水回路へ冷水を取り出して冷凍機によって冷凍された冷水を再び第一の冷水回路に戻すのに、第三の冷水ポンプの搬送動力だけで行うので、流路抵抗となる切替弁や、ましてや流量調整弁が不要であり、第一、第三の冷水ポンプの容量が無駄に大きくならない。   (2) Further, in order to take out the chilled water from the first chilled water circuit to the second chilled water circuit and return the chilled water cooled by the free cooling heat exchanger to the first chilled water circuit again, Since only the conveyance power is used, there is no need for a switching valve that serves as a flow path resistance or even a flow rate adjustment valve, and the capacity of the first and second cold water pumps is not increased unnecessarily. Similarly, since the chilled water taken out from the first chilled water circuit to the third chilled water circuit and returned to the first chilled water circuit is returned to the first chilled water circuit, only the conveyance power of the third chilled water pump is used. Further, the switching valve serving as the flow path resistance and, moreover, the flow rate adjusting valve is unnecessary, and the capacity of the first and third cold water pumps is not increased unnecessarily.

(3)冷水が流通する第一の冷水回路、第二の冷水回路、第三の冷水回路とが各々独立して冷水ポンプを有し、各々の回路を流れる冷水量が各々他の回路の水量に影響されずに独立して制御可能なので、スムーズな運転切替ができ、安定した冷水供給が可能である。   (3) The first chilled water circuit in which the chilled water flows, the second chilled water circuit, and the third chilled water circuit each independently have a chilled water pump, and the amount of chilled water flowing through each circuit is the amount of water in each other circuit. Therefore, the operation can be switched smoothly and a stable cold water supply is possible.

(4)請求項2に記載のフリークーリング併用熱源システムでは、外気湿球温度と冷却塔冷却水出口予測温度とによりフリークーリングが可能であると判定した際に、冷凍機とフリークーリングとの併用運転か、フリークーリング単独運転かを判断し、冷凍機とフリークーリングとの併用運転時には、第二の冷却水ポンプの流量制御点である第二の冷水回路下流温度の設定値を段階的に下げて偏差を段階的に大きくすることで、第二の冷却水ポンプの冷却水吐出量を段階的に増加させることとなり、冷却塔出口冷却水温度の急激な変化を抑え、冷凍機凝縮器での冷却水への廃熱熱交換を安定させながら、第二の冷却水ポンプを第二の冷水回路下流温度設定値と計測値との偏差に応じて変流量制御することでフリークーリング用熱交換器への冷却塔による冷却水冷熱を有効に利用できる。   (4) In the free cooling combined heat source system according to claim 2, when it is determined that free cooling is possible based on the outside air wet bulb temperature and the predicted cooling tower cooling water outlet temperature, the combined use of the refrigerator and free cooling Judge whether the operation is independent or free cooling, and when using both the refrigerator and free cooling, the set value of the downstream temperature of the second cooling water circuit, which is the flow control point of the second cooling water pump, is lowered step by step. By increasing the deviation step by step, the cooling water discharge amount of the second cooling water pump will be increased step by step, suppressing a sudden change in the cooling tower outlet cooling water temperature, A heat exchanger for free cooling by controlling the variable flow rate according to the deviation between the set value of the downstream temperature of the second cooling water circuit and the measured value while stabilizing the heat exchange of waste heat to the cooling water. Cold to It can be effectively utilized the cooling water-cooled heat generated by the tower.

(5)さらに、請求項2では、冷凍機とフリークーリングとの併用運転時には、第二の冷水回路下流温度の設定値を、冷却負荷出口冷水温度を基準とした値から、冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値を最低値として、段階的に下げていくように設定するので、第二の冷却水ポンプが起動した後に、冷却負荷側で負荷変動があっても冷凍機の運転停止の発停動作を頻繁にすることなく安定運転ができる。   (5) Further, in claim 2, during the combined operation of the refrigerator and free cooling, the set value of the second cold water circuit downstream temperature is determined from the value based on the cooling load outlet cold water temperature, during the combined operation of the refrigerator. Since the steady state value at the secondary outlet of the free cooling heat exchanger is set to the lowest value and gradually decreased, there is load fluctuation on the cooling load side after the second cooling water pump is started. However, stable operation can be achieved without frequent start / stop operations of the refrigerator.

(6)冷却水が流通する第一の冷却水回路と、第二の冷却水回路とが、冷却塔を共用しているものの、搬送する冷却水ポンプを独立して有し、且つ冷却塔出口冷却水温度をコントローラが予測制御するので、第一の冷却水ポンプ及び第二の冷却水ポンプが安定して運転できる。   (6) Although the 1st cooling water circuit through which cooling water distribute | circulates and the 2nd cooling water circuit share a cooling tower, it has a cooling water pump to convey independently, and is a cooling tower exit Since the controller predictively controls the coolant temperature, the first coolant pump and the second coolant pump can be stably operated.

(7)請求項2では、フリークーリングの単独運転時には、第二の冷水回路下流温度の設定値を、冷凍機の冷水出口設定温度に設定することで、フリークーリング単独でも冷凍機による冷水冷凍と同じ送給温度で安定して冷水の冷却が可能である。 また、冷凍機との併用運転からのフリークーリングの単独運転への移行時には、第二の冷水回路下流温度の設定値を、冷凍機の冷水出口設定温度に瞬時に変更設定することで、冷凍機の停止を掛けながらフリークーリング用熱交換器からの熱の取り出し量の確保がスムーズに移行できる。   (7) In claim 2, when the free cooling is operated alone, the set value of the second downstream temperature of the cold water circuit is set to the set temperature of the cold water outlet of the freezer, so that the freezing can be performed with the freezing by the freezer. Cooling water can be cooled stably at the same feeding temperature. Also, at the time of transition from combined operation with a freezer to independent operation of free cooling, the set value of the second chilled water circuit downstream temperature is instantly changed and set to the chilled water outlet set temperature of the freezer. Securing the amount of heat extracted from the free-cooling heat exchanger can be smoothly shifted while stopping.

(8)請求項3に記載のフリークーリング併用中温熱源システムでは、冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値を、変流量制御である第一の冷水回路のほぼ一定の負荷出口負荷入口の温度差の中の、フリークーリング用熱交換器の受け持ち最大割合(=1−冷凍機群の最低受け持ち可能割合)の閾値として捉え、冷凍機群の最低受け持ち可能割合を、併用運転時の冷凍機が部分負荷運転として頑張れる最低能力を考慮した冷凍機部分負荷最低運転比率よりも大きくして、ベース運転冷凍機の無駄な発停動作を排除することができ、第一の冷水回路の安定した冷水温度差循環、ひいては安定した冷凍能力を発揮できる。   (8) In the free cooling combined use medium temperature heat source system according to claim 3, the steady state value of the free cooling heat exchanger secondary side outlet during the combined use of the refrigerator is approximately equal to that of the first cold water circuit which is variable flow control. This is taken as a threshold value of the maximum ratio of the free cooling heat exchangers (= 1-minimum allowable ratio of refrigeration units) in the temperature difference at the constant load outlet load inlet. It is possible to eliminate the useless start / stop operation of the base operation refrigerator, by making it larger than the minimum operation ratio of the refrigerator partial load considering the minimum capacity that the refrigerator during combined operation can work as partial load operation. The chilled water circuit has a stable chilled water temperature difference circulation and thus a stable refrigeration capacity.

(9)請求項4に記載のフリークーリング併用中温熱源システムでは、第一の冷水ポンプの変流量制御が例えば還り温度制御や吐出圧力制御、もしくは末端圧制御であっても、冷却負荷が冬でも比較的多量に安定してある場合は、あまり急激に第一の冷水ポンプ流量が変化しない。そのため、第二の冷水ポンプについて、第二の冷水回路下流温度センサ測定値と冷却負荷出口冷水温度測定値との第二の冷水回路入口出口温度差測定値が、フリークーリング用熱交換器の受け持ち冷熱量に即していることを利用して、フリークーリング入口温度センサの計測値とフリークーリング出口温度の計測値との差であるフリークーリング二次側冷水温度差の設定値としてカスケード的に与えることで、第一の冷水ポンプの流量に、第二の冷水ポンプの流量を追随させることができる。そして、第二の冷水ポンプの流量が過多となり、第二の冷水回路内の循環が生じた場合フリークーリング入口温度が低下して来るので、フリークーリング二次側冷水温度差が小さくなり、第二の冷水ポンプの流量を絞ることになって、第二の冷水ポンプの流量最適化の自律制御ができる。また、フリークーリング用熱交換器という、負荷出口冷水温度と近い温度場の冷却水往き温度で供給される冷熱源から、最大限の熱を取り出すように動作ができる。   (9) In the intermediate temperature heat source system combined with free cooling according to claim 4, even if the variable flow rate control of the first chilled water pump is, for example, return temperature control, discharge pressure control, or terminal pressure control, the cooling load is winter. However, if it is stable in a relatively large amount, the first chilled water pump flow rate does not change so rapidly. Therefore, for the second chilled water pump, the second chilled water circuit inlet / outlet temperature difference measurement value between the second chilled water circuit downstream temperature sensor measured value and the cooling load outlet chilled water temperature measured value is the responsibility of the free cooling heat exchanger. Using the fact that it is appropriate for the amount of heat, cascade is given as the set value of the free cooling secondary side cold water temperature difference, which is the difference between the measured value of the free cooling inlet temperature sensor and the measured value of the free cooling outlet temperature. Thus, the flow rate of the second cold water pump can be made to follow the flow rate of the first cold water pump. And when the flow rate of the second chilled water pump becomes excessive and circulation in the second chilled water circuit occurs, the free cooling inlet temperature decreases, so the free cooling secondary side chilled water temperature difference becomes smaller, By restricting the flow rate of the chilled water pump, autonomous control for optimizing the flow rate of the second chilled water pump can be performed. Moreover, it can operate | move so that a maximum heat may be taken out from the cold heat source supplied with the cooling water going temperature of the temperature field near the load exit cold water temperature called the heat exchanger for free cooling.

(10)請求項5に記載のフリークーリング併用中温熱源システムでは、圧力センサの検出値に基づき、冷凍機の凝縮器側の冷媒ガス圧力が一定値に保たれるように、第一の冷却水ポンプの冷却水吐出量を圧力調整器が制御すると、冷却水温で第一の冷却水ポンプの冷却水吐出量を制御する場合に比べて、冷媒ガス圧力という変化が即時的であり、且つ圧力センサも制御の時定数が小さいので、冷凍機での凝縮器温度変化をいち早く計測できて凝縮温度を一定に保てる。そして、短い時間で見ると圧縮機の仕事量の変化が微小であるため、凝縮器側の冷媒ガス圧力を一定値に保つと、冷凍機蒸発器側の冷媒ガスも一定値に保たれることとなり、冷却水、冷水双方に、制御系の時定数の大きさが起因する温度変動が生じ難く、制御の応答性がよくて、冷凍機を安定して運転できる。   (10) In the intermediate temperature heat source system combined with free cooling according to claim 5, the first cooling is performed so that the refrigerant gas pressure on the condenser side of the refrigerator is maintained at a constant value based on the detected value of the pressure sensor. When the pressure regulator controls the cooling water discharge amount of the water pump, the change of the refrigerant gas pressure is more immediate than when the cooling water discharge amount of the first cooling water pump is controlled by the cooling water temperature. Since the sensor also has a small control time constant, the condenser temperature change in the refrigerator can be measured quickly and the condensation temperature can be kept constant. And since the change in the work amount of the compressor is very small in a short time, if the refrigerant gas pressure on the condenser side is kept at a constant value, the refrigerant gas on the refrigerator evaporator side is also kept at a constant value. Thus, both the cooling water and the cold water are unlikely to undergo temperature fluctuations due to the magnitude of the time constant of the control system, the control responsiveness is good, and the refrigerator can be operated stably.

(11)請求項6に記載のフリークーリング併用中温熱源システムでは、バイパス弁を介装する第一の冷却水バイパス管路と、第一の冷却水ポンプ出口に介装された冷凍機入口冷却水温度センサと、バイパス開閉調節計とを有し、冷凍機入口冷却水温度が冷凍機凍結防止の下限値より低い場合は、バイパス弁を開いて冷却水温度を制御することで、冬期など外気による冷却水の冷えすぎによる冷凍機凝縮器の凍結を防止し、無駄な冷凍機停止を回避して、安定した冷凍機運転を実現する。   (11) In the intermediate temperature heat source system combined with free cooling according to the sixth aspect, the first cooling water bypass pipe interposing the bypass valve, and the refrigerator inlet cooling interposed in the first cooling water pump outlet When there is a water temperature sensor and a bypass open / close controller, and the refrigerator inlet cooling water temperature is lower than the lower limit of the refrigerator freezing prevention, open the bypass valve to control the cooling water temperature, so that it This prevents the refrigerator condenser from freezing due to overcooling of the cooling water, avoids unnecessary stoppage of the refrigerator, and realizes stable refrigerator operation.

(12)請求項7及び請求項8に記載のフリークーリング併用中温熱源システムでは、冷却塔容量を最適な伝熱面積としたため、いたずらに伝熱面積を大きくしたことで冷却塔の散水分布から能力が出ないにも拘らずイニシャルコストを増加させるような愚を犯さず、必要な冷却水量を必要充分に外気と熱交換して冷却できるシステムを構築できる。   (12) In the intermediate temperature heat source system combined with free cooling according to claim 7 and claim 8, since the cooling tower capacity is set to an optimum heat transfer area, the heat transfer area is unnecessarily large, and thus the water spray distribution of the cooling tower is increased. It is possible to construct a system that can cool the required amount of cooling water by exchanging the required amount of cooling water with the outside air without increasing the initial cost despite the lack of capacity.

(13)請求項9に記載のフリークーリング併用中温熱源システムでは、第一の冷水ポンプの流量と第三の冷水ポンプの合計流量とを比較すると、等しいか又は第三の冷水ポンプ合計流量が大きいように、冷凍機ベース運転台数と等しいかそれより多い台数の第三の冷水ポンプを、演算された負荷熱量により台数を切替え且つ変流量制御するように構成されているので、第一の冷水回路を流れる流量より第三の冷水回路を流れる冷水流量が常に多い、冷熱源の冷水量リッチの状態となり、冷却負荷が要求する供給冷水温度までの冷凍が確保される。   (13) In the free cooling combined use medium temperature source system according to claim 9, when the flow rate of the first chilled water pump and the total flow rate of the third chilled water pump are compared, they are equal or the total flow rate of the third chilled water pump is Since the number of the third chilled water pumps equal to or larger than the number of refrigerator-based operations is set to be switched according to the calculated load heat amount and the variable flow rate is controlled, the first chilled water The amount of chilled water flowing through the third chilled water circuit is always greater than the amount of flow through the circuit, and the amount of chilled water in the cold heat source is rich, and refrigeration to the supply chilled water temperature required by the cooling load is ensured.

本発明のフリークーリング併用中温熱源システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the free cooling combined use intermediate temperature heat source system of this invention. 本発明のフリークーリング併用中温熱源システムのコントローラのブロック図である。It is a block diagram of the controller of the intermediate temperature heat source system with free cooling of this invention. 図2におけるフリークーリング可否判断部のフローチャートである。3 is a flowchart of a free cooling availability determination unit in FIG. 2. 図2におけるフリークーリング運転方法判断部のフローチャートである。It is a flowchart of the free cooling driving | running method determination part in FIG. 図2における冷水温度演算部の温度変化線図である。It is a temperature change diagram of the cold water temperature calculating part in FIG. フリークーリングを適用した従来の空調システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional air conditioning system to which free cooling is applied. フリークーリングを適用した従来の空調システムの他の例を示す概念図である。It is a conceptual diagram which shows the other example of the conventional air conditioning system to which free cooling is applied.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明のフリークーリング併用中温熱源システムは、多数のサーバなどからの機器発熱はあるが、人が居ることが稀で、除湿が要求されないデータセンターの空調や、あるいは、工場の生産機器冷却用の熱源設備として利用するものである。   The intermediate heat source system combined with free cooling of the present invention generates heat from a large number of servers, etc., but it is rare for people to be present and is used for air conditioning of data centers that do not require dehumidification or for cooling production equipment in factories. It is used as a heat source facility.

「中温熱源」の意味は、多数の人が居て除湿が要求されるオフィスでは、例えば、空調機への冷水送給温度を7℃、空調機からの冷水送出温度を12℃という低温域に設定しているのに対して、データセンターなどのように、機器発熱はあるものの人が居ることが稀な場所や、生産機器冷却用の熱源設備を対象とした本発明では、例えば、空調機への冷水送給温度を13℃、空調機からの冷水送出温度を20℃という中温域に設定することに由来している。   The meaning of “medium temperature heat source” means that in an office where there are many people and dehumidification is required, for example, the cold water supply temperature to the air conditioner is 7 ° C., and the cold water delivery temperature from the air conditioner is 12 ° C. However, in the present invention intended for a heat source facility for cooling production equipment, such as a data center, etc. This is because the cold water supply temperature to the machine is set to 13 ° C. and the cold water delivery temperature from the air conditioner is set to an intermediate temperature range of 20 ° C.

図1〜図5は本発明のフリークーリング併用中温熱源システムの一例であり、このシステムは、第一の冷却水回路30、第二の冷却水回路31、第一の冷水回路32、第二の冷水回路33、第三の冷水回路34、並びにコントローラ86を備えている。   FIGS. 1-5 is an example of the intermediate temperature heat source system combined with the free cooling of this invention, This system is the 1st cooling water circuit 30, the 2nd cooling water circuit 31, the 1st cooling water circuit 32, the 2nd Chilled water circuit 33, third chilled water circuit 34, and controller 86.

第一の冷却水回路30は、複数の冷却塔35からなる冷却塔群36と複数の冷凍機37の各凝縮器37bとの間で冷却水を行き来させる役割を担っている。冷却塔群36を構成する冷却塔35は五基あり、これらは全て同一の容量である。各冷却塔35上部には、先述した冷却塔(段落0007、0008参照)の貯留槽に相当する冷却水散水手段38と、大気を連続的に流通させるためのファン39とが設けられ、また、各冷却塔35底部の冷却水出口は、一つの出側集合管40に接続されている。   The first cooling water circuit 30 plays a role of moving cooling water back and forth between the cooling tower group 36 including the plurality of cooling towers 35 and the condensers 37 b of the plurality of refrigerators 37. There are five cooling towers 35 constituting the cooling tower group 36, and they all have the same capacity. At the top of each cooling tower 35, a cooling water sprinkling means 38 corresponding to the storage tank of the cooling tower (see paragraphs 0007 and 0008) described above and a fan 39 for continuously circulating the atmosphere are provided. The cooling water outlet at the bottom of each cooling tower 35 is connected to one outlet collecting pipe 40.

第一の冷却水回路30は、上流端が前記冷却塔群36の出側集合管40に接続され且つ下流端を前記凝縮器37bの冷却水入口に接続した凝縮器入口管路41と、該凝縮器入口管路41に介装した入側分配管42,第一の冷却水ポンプ43、及び出側集合管44と、上流端が前記凝縮器37bの冷却水出口に接続され且つ下流端を前記冷却塔35のそれぞれの冷却水散水手段38に接続した凝縮器出口管路45と、上流端が前記凝縮器出口管路45に接続され且つ下流端を前記凝縮器入口管路41における出側集合管40と入側分配管42との間の個所に接続した冷却水バイパス管46と、該冷却水バイパス管46に介装したバイパス弁である流量調整弁47とを有する。   The first cooling water circuit 30 includes a condenser inlet pipe 41 having an upstream end connected to the outlet collecting pipe 40 of the cooling tower group 36 and a downstream end connected to the cooling water inlet of the condenser 37b, The inlet side distribution pipe 42, the first cooling water pump 43, and the outlet side collecting pipe 44 interposed in the condenser inlet pipe 41 and the upstream end thereof are connected to the cooling water outlet of the condenser 37b and the downstream end thereof is connected. A condenser outlet pipe 45 connected to each cooling water sprinkling means 38 of the cooling tower 35, an upstream end connected to the condenser outlet pipe 45 and a downstream end connected to the outlet side of the condenser inlet pipe 41 A cooling water bypass pipe 46 connected to a location between the collecting pipe 40 and the inlet side distribution pipe 42 and a flow rate adjusting valve 47 that is a bypass valve interposed in the cooling water bypass pipe 46 are provided.

第一の冷却水ポンプ43は二基あり、各第一の冷却水ポンプ43の冷却水入口は、一つの入側分配管42に接続され、各第一の冷却水ポンプ43の冷却水出口は、一つの出側集合管44に接続されている。これら第一の冷却水ポンプ43は、インバータにより変流量制御されるようになっている。   There are two first cooling water pumps 43, the cooling water inlets of the first cooling water pumps 43 are connected to one inlet side distribution pipe 42, and the cooling water outlets of the first cooling water pumps 43 are Are connected to one outlet collecting pipe 44. These first cooling water pumps 43 are subjected to variable flow rate control by an inverter.

また、冷凍機37は五基あり、冷却塔群36を構成している冷却塔35も五基であるので、凝縮器入口管路41の下流端、凝縮器出口管路45の上流端、及び下流端のそれぞれは、五つに分岐している。   Since there are five refrigerators 37 and five cooling towers 35 constituting the cooling tower group 36, the downstream end of the condenser inlet pipe 41, the upstream end of the condenser outlet pipe 45, and Each of the downstream ends is branched into five.

冷却塔群36には、冷却塔ファン温度調整器48が付帯しており、凝縮器入口管路41の出側集合管40至近個所には、冷却塔出口冷却水温度センサ49が介装してある。冷却塔ファン温度調整器48は、冷却塔出口冷却水温度センサ49が検出した冷却塔出口冷却水温度TR0の値に基づき、冷却塔35のファン39に回転数信号51を送信してファン39の回転数を制御し、冷却塔ファン温度調整器48に設定された冷却塔群36の冷却水出口温度設定値(例えば、10℃)とし、冬期の外気による冷却水過冷却を回避して冷却水下限温度を確保するようになっている。   A cooling tower fan temperature regulator 48 is attached to the cooling tower group 36, and a cooling tower outlet cooling water temperature sensor 49 is interposed in the vicinity of the outlet side collecting pipe 40 of the condenser inlet pipe 41. is there. The cooling tower fan temperature regulator 48 transmits a rotation speed signal 51 to the fan 39 of the cooling tower 35 based on the value of the cooling tower outlet cooling water temperature TR0 detected by the cooling tower outlet cooling water temperature sensor 49 to The number of revolutions is controlled, and the cooling water outlet temperature setting value (for example, 10 ° C.) of the cooling tower group 36 set in the cooling tower fan temperature regulator 48 is set to avoid the cooling water supercooling due to the outside air in winter. The minimum temperature is secured.

冷凍機37には、圧力調整器52が付帯し、各冷凍機37には、凝縮器37b側の冷媒ガス圧力を検出する圧力センサ53が設けられている。圧力調整器52は、各冷凍機37に設けた圧力センサ53が発信する冷媒ガス圧力信号54のうちの最も値が大きなものが、予め定めておいた値となるように、第一の冷却水ポンプ43に流量調整信号55を送信して第一の冷却水ポンプ43の冷却水吐出量を制御し、冷凍機37の凝縮器37b側の冷媒圧力を一定値に保つようになっている。冷凍機37の凝縮器37b側の冷媒ガス圧力を一定値に保つと、短時間で見た場合蒸発器37a側の冷媒ガス圧力も一定値に保たれる。   The refrigerator 37 is accompanied by a pressure regulator 52, and each refrigerator 37 is provided with a pressure sensor 53 for detecting the refrigerant gas pressure on the condenser 37b side. The pressure regulator 52 is configured so that the largest value among the refrigerant gas pressure signals 54 transmitted from the pressure sensors 53 provided in the respective refrigerators 37 becomes a predetermined value so that the first cooling water is supplied. A flow rate adjustment signal 55 is transmitted to the pump 43 to control the cooling water discharge amount of the first cooling water pump 43 so that the refrigerant pressure on the condenser 37b side of the refrigerator 37 is maintained at a constant value. When the refrigerant gas pressure on the condenser 37b side of the refrigerator 37 is kept at a constant value, the refrigerant gas pressure on the evaporator 37a side is also kept at a constant value when viewed in a short time.

冷却水バイパス管路46には、冷却水バイパス管用温度調整器56が付帯しており、凝縮器入口管路41の出側集合管44の下流側には、冷凍機入口冷却水温度センサ57が介装してある。冷却水バイパス管用温度調整器56は、冷凍機入口冷却水温度センサ57が検出した冷凍機入口冷却水温度TR1に基づき、予め冷却水バイパス管用温度調整器56に設定されている冷凍機凍結防止の冷却水下限温度との偏差により、バイパス弁である流量調整弁47に流量調整信号59を送信して流量調整弁47の開度を制御し、冷凍機37の凝縮器37bから送出される冷却水の一部を第一の冷却水ポンプ43の上流側へ導くようになっており、第一の冷却水ポンプ43から冷凍機37の凝縮器37bに送給される冷却水の温度が冷凍機凝縮器側の許容下限値を下回らないようにしている。   A cooling water bypass pipe temperature controller 56 is attached to the cooling water bypass pipe 46, and a refrigerator inlet cooling water temperature sensor 57 is provided downstream of the outlet side collecting pipe 44 of the condenser inlet pipe 41. It is intervening. The cooling water bypass pipe temperature regulator 56 is used to prevent freezing of the refrigerator that is set in advance in the cooling water bypass pipe temperature regulator 56 based on the refrigerator inlet cooling water temperature TR1 detected by the refrigerator inlet cooling water temperature sensor 57. Depending on the deviation from the cooling water lower limit temperature, a flow rate adjustment signal 59 is transmitted to the flow rate adjustment valve 47 which is a bypass valve to control the opening degree of the flow rate adjustment valve 47, and the cooling water sent from the condenser 37b of the refrigerator 37 Is led to the upstream side of the first cooling water pump 43, and the temperature of the cooling water supplied from the first cooling water pump 43 to the condenser 37 b of the refrigerator 37 is reduced by the refrigerator condensation. So that it does not fall below the allowable lower limit on the container side.

第二の冷却水回路31は、前記第一の冷却水回路30に接続され且つフリークーリング用熱交換器60の一次側流路60aと第一の冷却水回路30との間で冷却水を行き来させる役割を担っている。   The second cooling water circuit 31 is connected to the first cooling water circuit 30 and transfers cooling water between the primary flow path 60 a of the free cooling heat exchanger 60 and the first cooling water circuit 30. I have a role to let you.

第二の冷却水回路31は、上流端が前記第一の冷却水回路30の凝縮器入口管路41における入側分配管42よりも上流側の個所に接続され且つ下流端を前記フリークーリング用熱交換器60の一次側流路60aの冷却水入口に接続した熱交換器一次側入口管路61と、該熱交換器一次側入口管路管路61に介装した入側分配管62、第二の冷却水ポンプ63、及び出側集合管64と、上流端が前記フリークーリング用熱交換器60の一次側流路60aの冷却水出口に接続され且つ下流端を前記第一の冷却水回路30の凝縮器出口管路45に接続した熱交換器一次側出口管路65とを有する。   The second cooling water circuit 31 has an upstream end connected to a location upstream of the inlet side distribution pipe 42 in the condenser inlet pipe 41 of the first cooling water circuit 30 and a downstream end used for the free cooling. A heat exchanger primary side inlet pipe 61 connected to the cooling water inlet of the primary side flow path 60a of the heat exchanger 60, and an inlet side distribution pipe 62 interposed in the heat exchanger primary side inlet pipe line 61; The second cooling water pump 63, the outlet side collecting pipe 64, the upstream end is connected to the cooling water outlet of the primary flow path 60a of the free cooling heat exchanger 60, and the downstream end is the first cooling water. A heat exchanger primary outlet conduit 65 connected to the condenser outlet conduit 45 of the circuit 30.

第一の冷水回路32は、空調機66(冷却負荷)に対して冷水を循環させる役割を担っている。ここで、冷却負荷は例えば空調機66としたが、設備冷却水との水−水熱交換器であってもよく、冷却負荷は、図2ではまとめた形で表現しているが複数の熱交換器からなっている。空調機66の負荷熱量は、後述のように、例えば冬期でも定格である夏期ピーク時との熱量比率50〜70%、もしくは60%を有するものである。   The first cold water circuit 32 plays a role of circulating cold water to the air conditioner 66 (cooling load). Here, the cooling load is, for example, the air conditioner 66, but it may be a water-water heat exchanger with facility cooling water, and the cooling load is expressed in a collective form in FIG. It consists of an exchanger. As will be described later, the load heat amount of the air conditioner 66 has a heat amount ratio of 50 to 70% or 60% with respect to the summer peak, which is rated even in winter, for example.

第一の冷水回路32は、上流端が空調機66の冷水出口に接続された冷却負荷出口管路67と、下流端が前記空調機66の冷水入口に接続された冷却負荷入口管路68と、冷却負荷出口管路67の下流端と冷却負荷入口管路68の上流端との間に介装した入側分配管69、第一の冷水ポンプ70、出側集合管71とを有する。   The first cold water circuit 32 includes a cooling load outlet pipe 67 whose upstream end is connected to the cold water outlet of the air conditioner 66, and a cooling load inlet pipe 68 whose downstream end is connected to the cold water inlet of the air conditioner 66. And an inlet side distribution pipe 69, a first cold water pump 70, and an outlet side collecting pipe 71 interposed between the downstream end of the cooling load outlet pipe 67 and the upstream end of the cooling load inlet pipe 68.

第一の冷水ポンプ70は三基あり、各第一の冷水ポンプ70の冷水入口は、一つの入側分配管69に接続され、各第一の冷水ポンプ70の冷水出口は、一つの出側集合管71に接続されている。これら第一の冷水ポンプ70は、空調機66の負荷処理熱量に応じた回転数となるようにインバータによって変流量制御されるようになっている。具体的には、制御例の一例として、後述するように冷凍機により空調機入口温度を一定に確保していることから、空調機出口温度センサ83の計測値、つまり還り温度による第一の冷水ポンプ70の変流量制御を行うことで、一定の温度差が確保され、空調機66の負荷処理熱量が減った場合には、第一の冷水ポンプ70が吐出する冷水量が少なくなり、空調機66の負荷処理熱量が増えた場合には、第一の冷水ポンプ70が吐出する冷水量が多くなる。この他にも、第一の冷水回路にて空調機66に二方弁を備えている場合では、制御例として第一の冷水ポンプ70の吐出圧制御による第一の冷水回路の変流量制御を採用する場合があり、この場合も同様となる。   There are three first cold water pumps 70, the cold water inlets of the first cold water pumps 70 are connected to one inlet distribution pipe 69, and the cold water outlets of the first cold water pumps 70 are one outlet side. It is connected to the collecting pipe 71. These first chilled water pumps 70 are subjected to variable flow rate control by an inverter so as to have a rotational speed corresponding to the load processing heat quantity of the air conditioner 66. Specifically, as an example of control, since the air conditioner inlet temperature is kept constant by a refrigerator as described later, the measured value of the air conditioner outlet temperature sensor 83, that is, the first cold water based on the return temperature By performing the variable flow rate control of the pump 70, when a certain temperature difference is secured and the load processing heat amount of the air conditioner 66 is reduced, the amount of cold water discharged by the first cold water pump 70 is reduced, and the air conditioner When the load processing heat amount 66 increases, the amount of cold water discharged from the first cold water pump 70 increases. In addition, in the case where the air conditioner 66 is provided with a two-way valve in the first chilled water circuit, variable flow rate control of the first chilled water circuit by discharge pressure control of the first chilled water pump 70 is performed as a control example. The same applies in this case.

第二の冷水回路33は、前記第一の冷水回路32に接続され且つフリークーリング用熱交換器60の二次側流路60bと第一の冷水回路32との間で冷水を行き来させる役割を担っている。   The second chilled water circuit 33 is connected to the first chilled water circuit 32 and plays a role of transferring chilled water between the secondary-side flow path 60b of the free cooling heat exchanger 60 and the first chilled water circuit 32. I'm in charge.

第二の冷水回路33は、上流端が前記第一の冷水回路32の冷却負荷出口管路67に接続され且つ下流端を前記フリークーリング用熱交換器60の二次側流路60bの冷水入口に接続した熱交換器二次側入口管路72と、上流端が前記フリークーリング用熱交換器60の二次側流路60bの冷水出口に接続され且つ下流端を前記冷却負荷出口管路67における熱交換器二次側入口管路72接続点よりも下流側の個所に接続した熱交換器二次側出口管路75と、熱交換器二次側入口管路72に介装した第二の冷水ポンプ73とを有する。   The second chilled water circuit 33 has an upstream end connected to the cooling load outlet pipe 67 of the first chilled water circuit 32 and a downstream end connected to the chilled water inlet of the secondary channel 60b of the free cooling heat exchanger 60. A heat exchanger secondary side inlet line 72 connected to the heat exchanger, and an upstream end thereof is connected to a cold water outlet of the secondary side flow path 60b of the free cooling heat exchanger 60 and a downstream end thereof is connected to the cooling load outlet line 67. The heat exchanger secondary side outlet pipe 75 connected to the downstream side of the connection point of the heat exchanger secondary side inlet pipe 72 and the second part interposed in the heat exchanger secondary side inlet pipe 72. And a cold water pump 73.

第三の冷水回路34は、上述した第二の冷水回路33の冷水流通方向下流に位置するように第一の冷水回路32に接続され且つ前記冷凍機37の蒸発器37aと第一の冷水回路32との間で冷水を行き来させる役割を担っている。     The third chilled water circuit 34 is connected to the first chilled water circuit 32 so as to be located downstream of the second chilled water circuit 33 in the chilled water flow direction, and the evaporator 37a of the refrigerator 37 and the first chilled water circuit. It plays the role of moving cold water to and from 32.

第三の冷水回路34は、上流端が前記第一の冷水回路32の冷却負荷出口管路67における熱交換器二次側出口管路75接続点よりも下流側の個所に接続され且つ下流端を前記蒸発器37aの冷水入口に接続した蒸発器入口管路77と、該蒸発器入口管路77に介装した第三の冷水ポンプ78と、上流端が前記蒸発器37aの冷水出口に接続され且つ下流端を前記第一の冷水回路32の冷却負荷出口管路67における蒸発器入口管路77接続点よりも下流側の個所に接続した蒸発器出口管路79とを有する。   The third chilled water circuit 34 has an upstream end connected to a location downstream of the connection point of the heat exchanger secondary outlet pipeline 75 in the cooling load outlet pipeline 67 of the first chilled water circuit 32 and a downstream end. Connected to the cold water inlet of the evaporator 37a, a third cold water pump 78 interposed in the evaporator inlet pipe 77, and an upstream end connected to the cold water outlet of the evaporator 37a. And an evaporator outlet pipe 79 having a downstream end connected to a location downstream of the connection point of the evaporator inlet pipe 77 in the cooling load outlet pipe 67 of the first chilled water circuit 32.

冷凍機37は五基あるので、蒸発器入口管路77の下流端、蒸発器出口管路79の上流端のそれぞれは、五つに分岐している。第三の冷水ポンプ78は、蒸発器入口管路77の分岐部分に組み込まれており、各冷凍機37の蒸発器37aに対して冷水を送給するようになっている。   Since there are five refrigerators 37, each of the downstream end of the evaporator inlet pipe 77 and the upstream end of the evaporator outlet pipe 79 is branched into five. The third cold water pump 78 is incorporated in a branching portion of the evaporator inlet pipe 77 and supplies cold water to the evaporator 37 a of each refrigerator 37.

ここで冷却塔35の選定について述べる。データセンターの冷房負荷は、機器発熱が大部分を占めるため、年間を通じて高く、変動が少ない。例えば、一般的に夏期の最大冷房負荷に対して冬期の冷房負荷は、60%以上ある。この場合、冷凍機37の運転台数も全台数の60%でよく、年中ベース運転させなければならない冷凍機台数(容量)は、夏期定格の60%となり、
つまり、冷凍機のベース運転台数比率=冬期ベース運転冷凍機容量/夏期ピーク時の定格運転冷凍機容量=60%となる。
冷凍機37の凝縮器37bに冷却水を送給する第一の冷却水ポンプ43は変流量制御を行っており、1対1で対応する冷凍機の凝縮器の性能上、冷却水の下限流量値は50%である。
Here, selection of the cooling tower 35 will be described. The data center cooling load is high throughout the year and fluctuates because most of the equipment heat is generated. For example, in general, the cooling load in winter is 60% or more with respect to the maximum cooling load in summer. In this case, the number of operating refrigerators 37 may be 60% of the total number, and the number of refrigerators (capacity) that must be operated based on the year-round is 60% of the summer rating.
That is, the ratio of the base operation number of refrigerators = the winter base operation refrigerator capacity / the rated operation refrigerator capacity at summer peak = 60%.
The first cooling water pump 43 that supplies the cooling water to the condenser 37b of the refrigerator 37 performs variable flow rate control, and the lower limit flow rate of the cooling water in terms of the performance of the condenser of the corresponding refrigerator on a one-to-one basis. The value is 50%.

冷却塔群36は、冷却塔35の容量が大きい(冷却塔35の台数が多い)ほど、空気と冷却水との伝熱面積が増加するとともに、ファン39の風量に対する冷却水の量が少なくなるため、熱交換がし易くなる。その結果、冷却塔出口冷却水温度TR0を低温化でき、冷凍機37の効率が向上することになる。   In the cooling tower group 36, as the capacity of the cooling tower 35 is larger (the number of the cooling towers 35 is larger), the heat transfer area between the air and the cooling water increases and the amount of the cooling water with respect to the air volume of the fan 39 decreases. Therefore, heat exchange is facilitated. As a result, the cooling tower outlet cooling water temperature TR0 can be lowered, and the efficiency of the refrigerator 37 is improved.

また、冷却塔35の冷却水散水手段38による冷却水の分配性能は、該冷却水散水手段38へ送給される冷却水の量が減少するのに伴って悪化し、冷却水が行き渡らない個所が出てくる。実証試験では、冷却水散水手段38へ送給する冷却水の冷却塔散水分配下限流量(冷却塔限界水量)は、定格の20%であった。   Further, the distribution performance of the cooling water by the cooling water sprinkling means 38 of the cooling tower 35 deteriorates as the amount of cooling water supplied to the cooling water sprinkling means 38 decreases, and the cooling water does not reach the place. Comes out. In the verification test, the cooling tower sprinkling water distribution lower limit flow rate (cooling tower limit water amount) supplied to the cooling water sprinkling means 38 was 20% of the rating.

従って、冬期の冷房負荷割合である冷凍機のベース運転台数比率、冷凍機の定格冷却水量に対する冷却水下限流量比率、及び冷却塔散水分配による冷却塔の定格冷却水量に対する冷却水下限流量比率とから、複数の冷却塔の望ましい合計容量は、複数の冷凍機合計容量から定格で選定される容量に比して、
望ましい冷却塔容量/定格選定冷却塔容量=(冷凍機ベース運転台数比率×冷凍機の冷却水下限流量比率)/冷却塔冷却水下限流量比率である。
今回の場合、冷凍機37の運転台数が全台数の60%、第一の冷却水ポンプ43の下限流量値が50%の場合、前記冷却塔限界水量以上を確保できる冷却塔35の容量は、
(60%×50%)÷20%=150%となる。
つまり、冷却塔35には、冷凍機37の定格負荷に基づく一般的な容量の選定が100RT(冷凍トン)である場合、1.5倍に相当する150RTの容量を具備させる。又、冷凍機のベース運転台数比率が70%ならば1.75倍、50%ならば1.25倍となるのは、自明である。
Therefore, based on the ratio of the number of operating units of the refrigerator, which is the cooling load ratio in winter, the cooling water lower limit flow rate ratio relative to the rated cooling water amount of the refrigerator, and the cooling water lower limit flow rate ratio relative to the rated cooling water amount of the cooling tower by cooling tower sprinkling distribution The desired total capacity of multiple cooling towers is compared to the capacity selected by rating from the total capacity of multiple refrigerators.
Desirable cooling tower capacity / rated selection cooling tower capacity = (refrigerating machine base operation number ratio × cooling water lower limit flow rate ratio) / cooling tower cooling water lower limit flow rate ratio.
In this case, when the number of operating refrigerators 37 is 60% of the total number and the lower limit flow rate value of the first cooling water pump 43 is 50%, the capacity of the cooling tower 35 that can secure the cooling tower limit water amount or more is
(60% × 50%) ÷ 20% = 150%.
That is, when the general capacity selection based on the rated load of the refrigerator 37 is 100 RT (freezing tons), the cooling tower 35 is provided with a capacity of 150 RT corresponding to 1.5 times. Further, it is obvious that the base operation unit ratio of the refrigerator is 1.75 times if the ratio is 70% and 1.25 times if the ratio is 50%.

前述した第一の冷水回路32の冷却負荷入口管路68には、空調機入口温度センサ80、及び冷水流量センサ81が冷水流通方向上流側から下流側へ向けて順に介装されている。空調機入口温度センサ80は、空調機入口冷水温度T1を検出し、冷水流量センサ81は、冷水流量F1を検出するようになっている。   In the cooling load inlet pipe 68 of the first chilled water circuit 32, an air conditioner inlet temperature sensor 80 and a chilled water flow rate sensor 81 are sequentially inserted from the upstream side to the downstream side in the chilled water flow direction. The air conditioner inlet temperature sensor 80 detects the air conditioner inlet cold water temperature T1, and the cold water flow rate sensor 81 detects the cold water flow rate F1.

第一の冷水回路32における蒸発器入口管路77接続点と熱交換器二次側出口管路75接続点との間には、第二の冷水回路下流温度センサ82が介装されている。この第二の冷水回路下流温度センサ82は、第一の冷水回路中の第二の冷水回路下流温度T2を検出するようになっている。   A second chilled water circuit downstream temperature sensor 82 is interposed between the connection point of the evaporator inlet pipe 77 and the connection point of the heat exchanger secondary outlet pipe 75 in the first chilled water circuit 32. The second cold water circuit downstream temperature sensor 82 detects the second cold water circuit downstream temperature T2 in the first cold water circuit.

第一の冷水回路32における熱交換器二次側入口管路72接続点と空調機66との間には、空調機出口温度センサ83が介装されている。この空調機出口温度センサ83は、空調機出口冷水温度T3を検出するようになっている。   An air conditioner outlet temperature sensor 83 is interposed between the connection point of the heat exchanger secondary side inlet pipe line 72 and the air conditioner 66 in the first cold water circuit 32. The air conditioner outlet temperature sensor 83 detects the air conditioner outlet cold water temperature T3.

更に、第二の冷却水ポンプ63には、フリークーリング一次側流量用温度調整器84が付帯しており、該フリークーリング一次側流量用温度調整器84は、第二の冷水回路下流温度センサ82が検出した第二の冷水回路下流冷水温度T2に基づき、該第二の冷水回路下流冷水温度T2が目標値に近付くように、第二の冷却水ポンプ63のインバータに流量調整信号85を送信して第二の冷却水ポンプ63の冷却水吐出量を制御するようになっている。又、第二の冷却水ポンプ63のインバータには、予め供給電力周波数の下限値が、例えば10Hz等と設定され、低周波数電力供給することによるモータ停止〜焼損を回避するようにしている。   Further, the second cooling water pump 63 is provided with a free cooling primary flow rate temperature controller 84, and the free cooling primary flow rate temperature controller 84 is connected to the second cooling water circuit downstream temperature sensor 82. The flow rate adjustment signal 85 is transmitted to the inverter of the second cooling water pump 63 based on the second chilled water circuit downstream chilled water temperature T2 detected by the chilled water circuit so that the second chilled water circuit downstream chilled water temperature T2 approaches the target value. Thus, the cooling water discharge amount of the second cooling water pump 63 is controlled. Further, the lower limit value of the supplied power frequency is set in advance to the inverter of the second cooling water pump 63, for example, 10 Hz, etc., so as to avoid motor stop to burning due to supplying low frequency power.

前述した第二の冷水回路33の熱交換器二次側入口管路72における第二の冷水ポンプ73とフリークーリング用熱交換器60の二次側流路60bとの間には、フリークーリング入口温度センサ74が介装されている。このフリークーリング入口温度センサ74は、フリークーリング用熱交換器二次側流路入口冷水温度T4を検出するようになっている。   A free cooling inlet is provided between the second cold water pump 73 in the heat exchanger secondary inlet line 72 of the second cold water circuit 33 and the secondary flow path 60 b of the free cooling heat exchanger 60. A temperature sensor 74 is interposed. The free cooling inlet temperature sensor 74 detects a free cooling heat exchanger secondary side channel inlet cold water temperature T4.

第二の冷水回路33の熱交換器二次側出口管路75には、フリークーリング出口温度センサ76が介装されている。このフリークーリング出口温度センサ76は、フリークーリング用熱交換器二次側流路出口冷水温度T5を検出するようになっている。   A free cooling outlet temperature sensor 76 is interposed in the heat exchanger secondary outlet pipe 75 of the second cold water circuit 33. The free cooling outlet temperature sensor 76 detects the free cooling heat exchanger secondary side channel outlet cold water temperature T5.

コントローラ86は、冷凍機37、第一の冷却水ポンプ43、第二の冷却水ポンプ63、第二の冷水ポンプ73、及び第三の冷水ポンプ78を発停させ且つ制御するもので、状態入力部87、負荷熱量演算部88、冷凍機運転台数演算部89、フリークーリング可否判断部90、フリークーリング運転方法判断部91、第二の冷水回路下流冷水温度設定値演算部92、フリークーリング二次側冷水温度差設定値演算部93、及び制御出力部94を主な構成要素としている(図2参照)。   The controller 86 starts and stops and controls the refrigerator 37, the first cooling water pump 43, the second cooling water pump 63, the second cooling water pump 73, and the third cooling water pump 78. Unit 87, load heat amount calculation unit 88, number of operation units for refrigerator operation 89, free cooling availability determination unit 90, free cooling operation method determination unit 91, second chilled water circuit downstream chilled water temperature set value calculation unit 92, free cooling secondary The side cold water temperature difference set value calculation unit 93 and the control output unit 94 are main components (see FIG. 2).

状態入力部87には、外気湿球温度TW、空調機入口温度センサ80が検出した空調機入口冷水温度T1、第二の冷水回路下流温度センサ82が検出した第二の冷水回路下流温度T2、空調機出口温度センサ83が検出した空調機出口冷水温度T3、フリークーリング入口温度センサ74が検出したフリークーリング用熱交換器二次側流路入口冷水温度T4、フリークーリング出口温度センサ76が検出したフリークーリング用熱交換器二次側流路出口冷水温度T5、及び冷水流量センサ81が検出した冷水流量F1が入力されるようになっている。   The state input unit 87 includes an outdoor wet bulb temperature TW, an air conditioner inlet cold water temperature T1 detected by the air conditioner inlet temperature sensor 80, a second cold water circuit downstream temperature T2 detected by the second cold water circuit downstream temperature sensor 82, Air conditioner outlet temperature sensor 83 detected by air conditioner outlet temperature sensor 83, free cooling heat exchanger secondary side flow path inlet cold water temperature T4 detected by free cooling inlet temperature sensor 74, and free cooling outlet temperature sensor 76 detected. The free cooling heat exchanger secondary side channel outlet cold water temperature T5 and the cold water flow rate F1 detected by the cold water flow rate sensor 81 are inputted.

負荷熱量演算部88は、冷房負荷熱量(空調機66の負荷処理熱量)を、状態入力部87のデータに基づき、算出するようになっている。
冷房負荷熱量=冷水流量F1×(冷水温度T3−冷水温度T1)
The load heat amount calculation unit 88 calculates the cooling load heat amount (load processing heat amount of the air conditioner 66) based on the data of the state input unit 87.
Cooling load calorie = cold water flow rate F1 x (cold water temperature T3-cold water temperature T1)

冷凍機運転台数演算部89は、負荷熱量演算部88で得た冷房負荷熱量と、予め設定されている夏期ピークの定格冷房負荷と冷凍機設置台数とに基づき、冷凍機運転台数を算出するようになっている。
冷凍機運転台数=(計測冷房負荷熱熱量/夏期ピークの定格冷房負荷)×冷凍機設置台数
(台数は切り上げ。)
そして、冷凍機運転台数の情報は制御出力部94へ送信され、該制御出力部94によって前記情報に応じた台数の冷凍機37、及びインターロックされた同台数の第三の冷水ポンプ78が運転されるようになっている。
また、演算算出された冷凍機運転台数が変更になる際、ある決められた増台数判定時間、減台数判定時間の間、変更された台数信号が発信され続けた場合、その判定時間経過後に冷凍機台数を実際に切り替えることで、再起動に要する時間確保や冷凍機発停チャタリングを回避することができる。
The chiller operation number calculation unit 89 calculates the number of chiller operations based on the cooling load heat amount obtained by the load heat amount calculation unit 88, the preset rated cooling load of summer peak, and the number of refrigerators installed. It has become.
Number of refrigerators operating = (Measured cooling load heat calorie / summer peak rated cooling load) x Number of refrigerators installed (round up)
Then, information on the number of operating refrigerators is transmitted to the control output unit 94, and the control output unit 94 operates the number of refrigerators 37 corresponding to the information and the interlocked third chilled water pumps 78. It has come to be.
In addition, when the calculated number of operating refrigerators is changed, if the changed number signal continues to be transmitted for a certain number of unit increase determination time and unit decrease determination time, the refrigeration is performed after the determination time has elapsed. By actually switching the number of units, it is possible to avoid the time required for restarting and chattering of the refrigerator start / stop.

フリークーリング可否判断部90は、図3に示すように、外気湿球温度TW、冷却塔風量、冷却塔水量、前述の演算された冷房負荷熱量より求まる冷却塔出入口冷却水温度差、及び冷却塔特性係数U/Nに基づき、フリークーリング運転時の冷却塔出口冷却水温度TR0の予測値を演算する機能と、該冷却塔出口冷却水温度TR0の予測値及びフリークーリング用熱交換器二次側流路入口冷水温度T4を対比して、フリークーリングの単独運転、もしくは冷凍機37とフリークーリングとの併用運転の可否を判定する機能とを有している。   As shown in FIG. 3, the free cooling availability determination unit 90 includes an outdoor wet bulb temperature TW, a cooling tower air volume, a cooling tower water quantity, a cooling tower inlet / outlet cooling water temperature difference obtained from the calculated cooling load heat quantity, and a cooling tower. Based on the characteristic coefficient U / N, the function of calculating the predicted value of the cooling tower outlet cooling water temperature TR0 during free cooling operation, the predicted value of the cooling tower outlet cooling water temperature TR0, and the secondary side of the heat exchanger for free cooling It has the function of determining whether or not a free cooling single operation or a combined operation of the refrigerator 37 and free cooling is performed by comparing the flow path inlet cold water temperature T4.

ここで、
外気湿球温度TWは、前記状態入力部87に入力された計測値、
冷却塔風量は、冷却塔35のファン39の定格風量である固定入力値、
冷却塔水量は、冷凍機側水量(冷凍機が定格で運転されるときの第一の冷却水ポンプ43の定格流量)とフリークーリング側水量(第二の冷却水ポンプ63の定格流量)との和である固定入力値、
冷却塔出入口冷却水温度差は、前記負荷熱量演算部88において求めた冷房負荷熱量に冷凍機消費電力による発熱量(固定入力値)を加えた冷却熱量を、前記冷却塔水量(固定入力値)と水の比熱とで割った値、
冷却塔特性係数U/Nは、冷却塔35の設計仕様であり、前記冷却塔風量に対する前記冷却塔水量の比:Nと、移動単位数という無次元数:Uから算出した値である。
このように、冷却塔風量、冷却塔水量を最大値として固定値で扱うことで、計算を単純化して制御を合理化し、冷却塔出口冷却水温度TR0の予測値にマージンを持たせることで制御値として扱いやすくした。
here,
The outdoor wet bulb temperature TW is a measured value input to the state input unit 87,
The cooling tower air volume is a fixed input value that is the rated air volume of the fan 39 of the cooling tower 35,
The amount of cooling tower water is the amount of water on the refrigerator side (rated flow rate of the first cooling water pump 43 when the refrigerator is operated at a rating) and the amount of water on the free cooling side (rated flow rate of the second cooling water pump 63). A fixed input value that is the sum,
The cooling tower temperature difference between the cooling tower inlet and outlet is the cooling heat quantity obtained by adding the heat generation amount (fixed input value) due to the power consumption of the refrigerator to the cooling load heat quantity obtained in the load heat quantity calculation unit 88, and the cooling tower water quantity (fixed input value). Divided by the specific heat of water,
The cooling tower characteristic coefficient U / N is a design specification of the cooling tower 35, and is a value calculated from a ratio of the cooling tower water amount to the cooling tower air volume: N and a dimensionless number U of the number of moving units.
In this way, the cooling tower air volume and cooling tower water volume are treated as fixed values as maximum values, simplifying the calculation and rationalizing the control, and providing control with margins in the predicted value of the cooling tower outlet cooling water temperature TR0. Made it easier to handle as a value.

冷却塔35の性能計算に使うパラメータは、基本的には、冷却塔入口水温、冷却塔出口水温、入口空気の比エンタルピ(外気湿球温度TW)、水空気比、及び冷却塔特性係数U/Nの五つであるが、このうち、四つが与えられると、残りの一つは計算で求めることができるので、前記フリークーリング可否判断部90では、外気湿球温度TW、冷却塔風量、冷却塔水量、冷却塔出入口冷却水温度差、及び冷却塔特性係数U/Nに基づき、冷却塔出口冷却水温度TR0の予測値を演算するようになっている。   The parameters used for the performance calculation of the cooling tower 35 are basically the cooling tower inlet water temperature, the cooling tower outlet water temperature, the inlet air specific enthalpy (outside air wet bulb temperature TW), the water air ratio, and the cooling tower characteristic coefficient U / N is five, but if four of these are given, the remaining one can be obtained by calculation. Therefore, the free-cooling propriety determination unit 90 performs the outdoor air wet bulb temperature TW, cooling tower air flow, cooling Based on the tower water amount, the cooling tower inlet / outlet cooling water temperature difference, and the cooling tower characteristic coefficient U / N, the predicted value of the cooling tower outlet cooling water temperature TR0 is calculated.

また、フリークーリング可否判断部90は、冷却塔出口冷却水温度TR0の予測値がフリークーリング用熱交換器二次側流路入口冷水温度T4よりも低く、フリークーリングが可能である場合には、フリークーリング可能指令をフリークーリング運転方法判断部91へ送信し、冷却塔出口冷却水温度TR0の予測値がフリークーリング用熱交換器二次側流路入口冷水温度T4よりも高く、フリークーリングが不可能である場合には、再び、冷却塔出口冷却水温度TR0の予測値を演算し、該冷却塔出口冷却水温度TR0の予測値とフリークーリング用熱交換器二次側流路入口冷水温度T4とを比べるルーチンを継続するようになっている。   Further, the free cooling availability determination unit 90, when the predicted value of the cooling tower outlet cooling water temperature TR0 is lower than the free cooling heat exchanger secondary side channel inlet cooling water temperature T4, and free cooling is possible, A free cooling enable command is sent to the free cooling operation method determination unit 91, and the predicted value of the cooling tower outlet cooling water temperature TR0 is higher than the free cooling heat exchanger secondary side channel inlet cooling water temperature T4, and free cooling is not possible. If possible, the predicted value of the cooling tower outlet cooling water temperature TR0 is calculated again, and the predicted value of the cooling tower outlet cooling water temperature TR0 and the free cooling heat exchanger secondary side channel inlet cooling water temperature T4 are calculated. The routine to compare is continued.

フリークーリング運転方法判断部91は、図4に示すように、前記フリークーリング可否判断部90で、第二冷却塔水量をフリークーリング側水量(第二の冷却水ポンプ63の定格水量)として固定値で与え、冷却塔出入口温度差を前記負荷熱量演算部88において求めた冷房負荷熱量を、前記第二冷却塔水量と水の比熱とで割った値として得た冷却塔出口冷却水温度TR0の予測値(第二の冷却水ポンプ63の入口冷却水温度)、第二冷却塔水量である冷却水流量を固定値として、第二の冷水回路を流れる冷水流量を固定値として、フリークーリング用熱交換器二次側流路入口冷水温度T4、またはフリークーリング用熱交換器二次側流路出口冷水温度T5のどちらかを計測値として、熱通過率K、及び伝熱面積Aを固定値としてそれぞれを与え、これらに基づき、フリークーリング用熱交換器60の冷却熱量Qの予測値を演算する機能と、該冷却熱量Qの予測値と前記負荷熱量演算部88で得た冷房負荷熱量(空調機66の負荷処理熱量)とを対比し、フリークーリングの単独運転、もしくは冷凍機37とフリークーリングとの併用運転を決定する機能とを有している。   As shown in FIG. 4, the free cooling operation method determination unit 91 is a fixed value with the free cooling side water amount (the rated water amount of the second cooling water pump 63) as the free cooling side water amount in the free cooling availability determination unit 90. The cooling tower outlet cooling water temperature TR0 obtained as a value obtained by dividing the cooling load heat quantity obtained by the cooling tower inlet / outlet temperature difference by the load heat quantity calculating unit 88 by the second cooling tower water quantity and the specific heat of water is calculated. Heat exchange for free cooling, with the value (inlet cooling water temperature of the second cooling water pump 63), the cooling water flow rate that is the second cooling tower water amount as a fixed value, and the cold water flow rate through the second chilled water circuit as a fixed value Heater secondary side channel inlet chilled water temperature T4 or free cooling heat exchanger secondary side channel outlet chilled water temperature T5 as measured values, heat passing rate K and heat transfer area A as fixed values, respectively give Based on these, the function of calculating the predicted value of the cooling heat quantity Q of the free-cooling heat exchanger 60, the predicted value of the cooling heat quantity Q, and the cooling load heat quantity obtained by the load heat quantity calculation unit 88 (of the air conditioner 66). And a function of determining a single operation of free cooling or a combined operation of the refrigerator 37 and free cooling.

ここで、
冷却水流量は、第二の冷却水ポンプ63の定格流量、
冷水流量は、第二の冷水ポンプ73の定格流量、
フリークーリング用熱交換器二次側流路入口冷水温度T4は、空調機出口冷水温度T3の第一の冷水回路で空調機66の負荷が定格分ある際の設計冷水温度差から導かれる設計温度、
フリークーリング用熱交換器二次側流路出口冷水温度T5は、空調機入口冷水温度T1の第一の冷水回路で空調機66の負荷が定格分ある際の設計値としての冷水出口設定温度、
熱通過率Kは、フリークーリング用熱交換器60の設計仕様から算出した固定値、
伝熱面積Aは、フリークーリング用熱交換器60の固有値である。
here,
The cooling water flow rate is the rated flow rate of the second cooling water pump 63,
The cold water flow rate is the rated flow rate of the second cold water pump 73,
The free cooling heat exchanger secondary side channel inlet chilled water temperature T4 is derived from the design chilled water temperature difference when the load of the air conditioner 66 is rated in the first chilled water circuit of the air conditioner outlet chilled water temperature T3. ,
The free cooling heat exchanger secondary side channel outlet cold water temperature T5 is a cold water outlet set temperature as a design value when the load of the air conditioner 66 is rated in the first cold water circuit of the air conditioner inlet cold water temperature T1,
The heat transfer rate K is a fixed value calculated from the design specifications of the free cooling heat exchanger 60,
The heat transfer area A is an eigenvalue of the free cooling heat exchanger 60.

フリークーリング運転方法判断部91では、冷却塔出口冷却水温度TR0の予測値、冷却水流量、冷水流量、フリークーリング用熱交換器二次側流路入口冷水温度T4またはフリークーリング用熱交換器二次側流路出口冷水温度T5、熱通過率K、及び伝熱面積Aとに基づき、次の三つの式を用いて、フリークーリング用熱交換器60の冷却熱量Qの予測値を演算するようになっている。
Q=K・A・ΔTm=K・A{(TR1−T4)−(TR0−T5)}÷Log{(TR1−T4)−(TR0−T5)}
Q=F1・C・(TR1−TR0)
Q=F2・C・(T4−T5)
In the free cooling operation method determination unit 91, the predicted value of the cooling tower outlet cooling water temperature TR 0, the cooling water flow rate, the cold water flow rate, the free cooling heat exchanger secondary side channel inlet cold water temperature T 4 or the free cooling heat exchanger 2 Based on the secondary channel outlet cold water temperature T5, the heat transfer rate K, and the heat transfer area A, the predicted value of the cooling heat quantity Q of the free cooling heat exchanger 60 is calculated using the following three equations: It has become.
Q = K · A · ΔTm = K · A {(TR1−T4) − (TR0−T5)} ÷ Log {(TR1−T4) − (TR0−T5)}
Q = F1 ・ C ・ (TR1-TR0)
Q = F2 ・ C ・ (T4−T5)

ここで、
F1は、冷却水流量、
F2は、冷水流量、
Cは、水の比熱、
TR1は、フリークーリング用熱交換器一次側流路出口冷却水温度である。
here,
F1 is the cooling water flow rate,
F2 is the cold water flow rate,
C is the specific heat of water,
TR1 is the temperature of the free-cooling heat exchanger primary side channel outlet cooling water.

フリークーリング運転方法判断部91は、フリークーリング用熱交換器60の冷却熱量Qの予測値が前記負荷熱量演算部88で得た冷房負荷熱量(空調機66の仕事量)よりも小さく、フリークーリングと冷凍機37との併用運転が必要である場合には、冷凍機併用運転指令を第二の冷水回路下流温度設定値演算部92に送信する。また、フリークーリング用熱交換器60の冷却熱量Qの予測値が前記負荷熱量演算部88で得た冷房負荷熱量(空調機66の仕事量)よりも大きく、フリークーリングの単独運転が可能である場合には、フリークーリング単独運転指令を第二の冷水回路下流温度設定値演算部92に送信するとともに、引き続き、フリークーリング用熱交換器60の冷却熱量Qの予測値を演算し、該冷却熱量Qの予測値と冷房負荷熱量とを比べるルーチンを継続するようになっている。   The free cooling operation method determination unit 91 has a predicted value of the cooling heat quantity Q of the free cooling heat exchanger 60 that is smaller than the cooling load heat amount (work amount of the air conditioner 66) obtained by the load heat amount calculation unit 88, and free cooling. When the combined operation with the refrigerator 37 is necessary, the refrigerator combined operation command is transmitted to the second cold water circuit downstream temperature set value calculation unit 92. In addition, the predicted value of the cooling heat quantity Q of the free cooling heat exchanger 60 is larger than the cooling load heat quantity (the work amount of the air conditioner 66) obtained by the load heat quantity calculation unit 88, so that free cooling can be operated independently. In this case, the free cooling single operation command is transmitted to the second chilled water circuit downstream temperature set value calculation unit 92, and subsequently, the predicted value of the cooling heat quantity Q of the free cooling heat exchanger 60 is calculated, and the cooling heat quantity is calculated. The routine for comparing the predicted value of Q with the cooling load heat quantity is continued.

第二の冷水回路下流温度設定値演算部92は、フリークーリングと冷凍機37の併用運転を行う場合には、冷凍機入口冷水温度T2の設定値T2SP)1(図5参照)として、冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値(例えば、15℃)を選定し、フリークーリングの単独運転を行う場合には、冷凍機入口冷水温度T2の設定値T2SP)1として、冷凍機出口冷水温度の設定値(例えば、13℃)を選定するようになっている。
冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値については、フリークーリング用熱交換器二次側出口定常値と空調機入口温度との温度差を、第一の冷水回路での空調機66の負荷が定格分ある際の設計冷水温度差で除した冷凍機受け持ち割合を、冬期の夏期ピーク期に対する冷房負荷割合である冷凍機のベース運転台数比率に、冷凍機部分負荷最低運転比率を乗じた冷凍機最低能力割合よりも大きく設定するよう構成している。
The second chilled water circuit downstream temperature set value calculation unit 92 performs freezing as the set value T2 SP) 1 (see FIG. 5) of the chiller inlet chilled water temperature T2 when free cooling and the refrigerator 37 are used in combination. When the free-cooling heat exchanger secondary-side outlet steady state value (for example, 15 ° C) is selected and the free-cooling single operation is performed, the set value T2 SP of the refrigerator inlet cold water temperature T2 ) As 1 , the setting value (for example, 13 ° C.) of the refrigerator outlet cold water temperature is selected.
Regarding the steady state value of the secondary outlet of the free cooling heat exchanger during combined operation with the refrigerator, the temperature difference between the steady value of the free cooling heat exchanger secondary side outlet and the air conditioner inlet temperature is calculated using the first chilled water circuit. The ratio of the refrigerator capacity divided by the design cold water temperature difference when the load of the air conditioner 66 is rated to the rated load of the refrigerator, and the base operation unit ratio of the refrigerator, which is the cooling load ratio relative to the peak summer season of winter, It is configured to be set larger than the minimum capacity ratio of the refrigerator multiplied by the operation ratio.

フリークーリング二次側冷水温度差設定値演算部93は、前記空調機入口冷水温度T1に対する空調機出口冷水温度T3の温度差ΔT13と、フリークーリング用熱交換器二次側流路出口冷水温度T5に対するフリークーリング用熱交換器二次側流路入口冷水温度T4の温度差ΔTCPFを等しくするように第二の冷水ポンプ73の冷水流量を制御する構成を採っている。   The free cooling secondary chilled water temperature difference set value calculation unit 93 includes a temperature difference ΔT13 of the air conditioner outlet chilled water temperature T3 with respect to the air conditioner inlet chilled water temperature T1, and a free cooling heat exchanger secondary side channel outlet chilled water temperature T5. The cooling water flow rate of the second chilled water pump 73 is controlled so as to make the temperature difference ΔTCPF of the free cooling heat exchanger secondary side channel inlet chilled water temperature T4 to the same.

制御出力部94は、定期検査時を除いて、常時、冷却塔35、空調機66、及び第一の冷水ポンプ70を作動させ、冷凍機運転台数演算部89により算出した冷凍機運転台数に応じて冷凍機37、第三の冷水ポンプ78、及び第一の冷却水ポンプ43を作動させ、フリークーリング運転方法判断部91、第二の冷水回路下流温度設定値演算部92、フリークーリング二次側冷水温度差設定値演算部93における演算結果に基づき、第二の冷却水ポンプ63、第二の冷水ポンプ73を作動させるようになっている。   The control output unit 94 operates the cooling tower 35, the air conditioner 66, and the first chilled water pump 70 at all times except during the periodic inspection, and according to the number of operating refrigerators calculated by the operating unit for the number of operating refrigerators 89. The freezer 37, the third chilled water pump 78, and the first chilled water pump 43 are operated, the free cooling operation method determining unit 91, the second chilled water circuit downstream temperature set value calculating unit 92, the free cooling secondary side Based on the calculation result in the cold water temperature difference set value calculation unit 93, the second cooling water pump 63 and the second cold water pump 73 are operated.

第一の冷却水ポンプ43、第二の冷却水ポンプ63、第一の冷水ポンプ70、第二の冷水ポンプ73、及び第三の冷水ポンプ78は、いずれも、インバータによる周波数の変化に応じて流量調整が可能なものである。   The first cooling water pump 43, the second cooling water pump 63, the first cooling water pump 70, the second cooling water pump 73, and the third cooling water pump 78 are all in accordance with the frequency change by the inverter. The flow rate can be adjusted.

以下、本発明のフリークーリング併用中温熱源システムの作動を説明する。   Hereinafter, the operation of the intermediate heat source system with free cooling according to the present invention will be described.

コントローラ86の状態入力部87には、外気湿球温度TW、空調機入口温度センサ80が検出した空調機入口冷水温度T1、第二の冷水回路下流温度センサ82が検出した第二の冷水回路下流冷水温度T2、空調機出口温度センサ83が検出した空調機出口冷水温度T3、フリークーリング入口温度センサ74が検出したフリークーリング用熱交換器二次側流路入口冷水温度T4、フリークーリング出口温度センサ76が検出したフリークーリング用熱交換器二次側流路出口冷水温度T5、及び冷水流量センサ81が検出した冷水流量F1が、時々刻々と入力される(図2参照)。   The state input unit 87 of the controller 86 includes an outside air wet bulb temperature TW, an air conditioner inlet cold water temperature T1 detected by the air conditioner inlet temperature sensor 80, and a second cold water circuit downstream detected by the second cold water circuit downstream temperature sensor 82. Chilled water temperature T2, air conditioner outlet cold water temperature T3 detected by air conditioner outlet temperature sensor 83, free cooling heat exchanger secondary side channel inlet cold water temperature T4 detected by free cooling inlet temperature sensor 74, free cooling outlet temperature sensor The free cooling heat exchanger secondary side channel outlet cold water temperature T5 detected by 76 and the cold water flow rate F1 detected by the cold water flow sensor 81 are input momentarily (see FIG. 2).

また、コントローラ86の制御出力部94は、全台数の冷却塔(ファン)35、及び第一の冷水ポンプ70を常時作動させている。   Further, the control output unit 94 of the controller 86 always operates all the cooling towers (fans) 35 and the first cold water pump 70.

負荷熱量演算部88は、冷水温度T1,T3に基づき、冷房負荷熱量(空調機66の負荷処理熱量)を算出し、この冷房負荷熱量と予め把握してある冷凍機一台あたりの冷却能力とに基づき、冷凍機運転台数演算部89が算出した冷凍機運転台数の情報が制御出力部94へ送信され、該制御出力部94によって前記情報に応じた台数の冷凍機37、該冷凍機37に付帯する第三の冷水ポンプ78、及び第一の冷却水ポンプ43が運転される。   The load heat amount calculation unit 88 calculates the cooling load heat amount (the load processing heat amount of the air conditioner 66) based on the chilled water temperatures T1 and T3, the cooling load heat amount and the cooling capacity per chiller that is known in advance. , The information on the number of operating refrigerators calculated by the operating unit for operating the number of refrigerators 89 is transmitted to the control output unit 94, and the control output unit 94 supplies the number of refrigerators 37 according to the information to the refrigerator 37. The accompanying third cold water pump 78 and the first cooling water pump 43 are operated.

このとき、第一の冷却水ポンプ43は、冷凍機37の凝縮器37b側の冷媒ガス圧力が一定値に保たれるように冷却水吐出量を制御する。冷凍機37の凝縮器37b側の冷媒ガス圧力を一定値に保つと冷凍機37の蒸発器37a側の冷媒ガス圧力も一定値に保たれ、冷却水、冷水の双方に温度変動が生じ難い。また、凝縮器37b側の冷媒ガス圧力をパラメータとして第一の冷却水ポンプ43の冷却水吐出量を制御するので、制御の応答性が良く、冷凍機37を安定して運転することができる。   At this time, the first cooling water pump 43 controls the cooling water discharge amount so that the refrigerant gas pressure on the condenser 37b side of the refrigerator 37 is maintained at a constant value. If the refrigerant gas pressure on the condenser 37b side of the refrigerator 37 is maintained at a constant value, the refrigerant gas pressure on the evaporator 37a side of the refrigerator 37 is also maintained at a constant value, and temperature fluctuations are unlikely to occur in both cooling water and cold water. In addition, since the coolant discharge amount of the first coolant pump 43 is controlled using the refrigerant gas pressure on the condenser 37b side as a parameter, the control response is good and the refrigerator 37 can be operated stably.

外気湿球温度TWが低下、あるいは上昇すると、それに追従して冷却塔出口冷却水温度TR0の予測値も低下、あるいは上昇する。フリークーリング可否判断部90は、冷却塔出口冷却水温度TR0の予測値と、フリークーリング用熱交換器二次側流路入口冷水温度T4とを対比し、冷却塔出口冷却水温度TR0の予測値がフリークーリング用熱交換器二次側流路入口冷水温度T4よりも低く、フリークーリングが可能である場合には、フリークーリング可能指令をフリークーリング運転方法判断部91へ送信する(図3参照)。   When the outside air wet bulb temperature TW decreases or increases, the predicted value of the cooling tower outlet cooling water temperature TR0 also decreases or increases accordingly. The free cooling availability determination unit 90 compares the predicted value of the cooling tower outlet cooling water temperature TR0 with the free cooling heat exchanger secondary side channel inlet cold water temperature T4, and predicts the cooling tower outlet cooling water temperature TR0. Is lower than the free cooling heat exchanger secondary side channel inlet cold water temperature T4 and free cooling is possible, a free cooling enable command is transmitted to the free cooling operation method determination unit 91 (see FIG. 3). .

冷却塔出口冷却水温度TR0の予測値がフリークーリング用熱交換器二次側流路入口冷水温度T4よりも高く、フリークーリングが不可能である場合には、冷凍機37の運転が継続され、冷却塔35及び冷凍機37の凝縮器37bが組み込まれた第一の冷却水回路30を流通する冷却水と、空調機66及び冷凍機37の蒸発器37aが組み込まれた第一、第三の冷水回路32,34を流通する冷水とが、冷凍機37において冷凍サイクルの凝縮器と蒸発器とにおいてそれぞれ熱交換を行う(図1参照)。   When the predicted value of the cooling tower outlet cooling water temperature TR0 is higher than the free cooling heat exchanger secondary side flow path inlet cooling water temperature T4 and free cooling is impossible, the operation of the refrigerator 37 is continued. The cooling water flowing through the first cooling water circuit 30 in which the condenser 37b of the cooling tower 35 and the refrigerator 37 is incorporated, and the first and third air condensers 66 and the evaporator 37a of the refrigerator 37 are incorporated. The chilled water flowing through the chilled water circuits 32 and 34 performs heat exchange in the refrigerator 37 in the condenser and evaporator of the refrigeration cycle (see FIG. 1).

フリークーリング運転方法判断部91は、フリークーリング用熱交換器60の冷却熱量Qの予測値と負荷熱量演算部88で得た冷房負荷熱量(空調機66の負荷処理熱量)とを対比し、フリークーリング用熱交換器60の冷却熱量Qの予測値が前記負荷熱量演算部88で得た冷房負荷熱量(空調機66の負荷処理熱量)よりも小さく、フリークーリングと冷凍機37との併用運転が必要である場合には、冷凍機併用運転指令を第二の冷水回路下流温度設定値演算部92、フリークーリング二次側冷水温度差設定値演算部93、及び制御出力部94に送信する(図4参照)。   The free cooling operation method determination unit 91 compares the predicted value of the cooling heat amount Q of the free cooling heat exchanger 60 with the cooling load heat amount (load processing heat amount of the air conditioner 66) obtained by the load heat amount calculation unit 88, and is free. The predicted value of the cooling heat quantity Q of the cooling heat exchanger 60 is smaller than the cooling load heat quantity (load processing heat quantity of the air conditioner 66) obtained by the load heat quantity calculation unit 88, and the combined operation of the free cooling and the refrigerator 37 is performed. If necessary, the refrigerator combined operation instruction is transmitted to the second chilled water circuit downstream temperature set value calculating unit 92, the free cooling secondary chilled water temperature difference set value calculating unit 93, and the control output unit 94 (FIG. 4).

また、フリークーリング用熱交換器60の冷却熱量Qの予測値が前記冷房負荷熱量(空調機66の仕事量)よりも大きく、フリークーリングの単独運転が可能である場合には、フリークーリング単独運転指令を第二の冷水回路下流温度設定値演算部92、フリークーリング二次側冷水温度差設定値演算部93、及び制御出力部94に送信する。   Further, when the predicted value of the cooling heat quantity Q of the free cooling heat exchanger 60 is larger than the cooling load heat quantity (the work amount of the air conditioner 66) and the free cooling single operation is possible, the free cooling single operation is performed. The command is transmitted to the second chilled water circuit downstream temperature set value calculating unit 92, the free cooling secondary chilled water temperature difference set value calculating unit 93, and the control output unit 94.

第二の冷水回路下流温度設定値演算部92は、冷凍機併用運転指令をフリークーリング運転方法判断部91より受信した場合には、第二の冷水回路下流冷水温度T2の設定値T2SP)1(図5参照)として、冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値(例えば、15℃)を選定し、フリークーリングの単独運転を行う場合には、冷凍機入口冷水温度T2の設定値T2SP)1として、冷凍機出口冷水温度の設計値(例えば、13℃)を選定する。 When the second chilled water circuit downstream temperature set value calculation unit 92 receives the refrigerator combined operation command from the free cooling operation method determination unit 91, the second chilled water circuit downstream temperature set value T2 SP) 1 (Refer to FIG. 5) When a free-cooling heat exchanger secondary-side outlet steady-state value (for example, 15 ° C.) at the time of the combined operation of the refrigerator is selected and the free-cooling single operation is performed, As the set value T2 SP) 1 of the temperature T2, a design value (for example, 13 ° C.) of the refrigerator outlet cold water temperature is selected.

フリークーリング二次側冷水温度差設定値演算部93は、フリークーリング運転方法判断部91より冷凍機併用運転指令、あるいはフリークーリング単独運転指令のいずれかを受信した際に、空調機入口冷水温度T1に対する空調機出口冷水温度T3の温度差ΔT13の計測値を、フリークーリング用熱交換器二次側流路出口冷水温度T5に対するフリークーリング用熱交換器二次側流路入口冷水温度T4の温度差ΔTCPFの設定値として、カスケード制御として与え、フリークーリング二次側冷水温度差の測定値が設定値より小さい場合に回転を絞り、フリークーリング二次側冷水温度差の測定値が設定値より大きい場合には回転を増加させるよう、偏差に応じて第二の冷水ポンプの回転数制御を行うように構成を等しくするように必要な第二の冷水ポンプ73の冷水流量を制御する。   When the free cooling secondary side cold water temperature difference set value calculation unit 93 receives either the freezer operation method command or the free cooling single operation command from the free cooling operation method determination unit 91, the free air temperature inlet cold water temperature T1 The measured value of the temperature difference ΔT13 of the air conditioner outlet cold water temperature T3 with respect to the free cooling heat exchanger secondary side channel outlet cold water temperature T5 is the temperature difference of the free cooling heat exchanger secondary side channel inlet cold water temperature T4. When ΔTCPF set value is given as cascade control, when the measured value of the free cooling secondary chilled water temperature difference is smaller than the set value, the rotation is throttled, and when the measured value of the free cooling secondary chilled water temperature difference is larger than the set value In order to increase the rotation, the second chilled water pump required to equalize the configuration to control the rotation speed of the second chilled water pump according to the deviation. The flow rate of the cold water in the pump 73 is controlled.

制御出力部94は、冷凍機併用運転指令をフリークーリング運転方法判断部91より受信すると、第二の冷却水ポンプ63を先ず起動し最低回転数で運転をはじめ、冷却塔35から冷却水を第二の冷却水回路31にも導くとともに、その後、第二の冷水ポンプ73を起動し最低回転数で運転を始め、第一の冷水回路32を流通する冷水の一部を第二の冷水回路33へ迂回させる。   When the control output unit 94 receives the refrigerator combined operation instruction from the free cooling operation method determination unit 91, the control output unit 94 first starts the second cooling water pump 63 and starts operation at the minimum number of rotations. The second chilled water circuit 31 is guided to the second chilled water circuit 31, and then the second chilled water pump 73 is activated to start operation at the minimum number of revolutions. To detour.

これにより、冷却塔35及び冷凍機37の凝縮器37bが組み込まれた第一の冷却水回路30を流通する冷却水と、空調機66及び冷凍機37の蒸発器37aが組み込まれた第一の冷水回路32を流通する冷水とが、冷凍機37において冷凍サイクルの凝縮器と蒸発器とにおいてそれぞれ熱交換を行う。また、第一の冷却水回路30を介して冷却塔35に連なる第二の冷却水回路31を流通する冷却水と、前記第一の冷水回路32に連なる第二の冷水回路33を流通する冷水とが、フリークーリング用熱交換器60において熱交換を行う(図1参照)。   Thereby, the cooling water which distribute | circulates the 1st cooling water circuit 30 in which the condenser 37b of the cooling tower 35 and the refrigerator 37 was integrated, and the 1st in which the evaporator 37a of the air conditioner 66 and the refrigerator 37 was integrated. The cold water flowing through the cold water circuit 32 performs heat exchange in the refrigerator 37 in the condenser and evaporator of the refrigeration cycle. Further, the cooling water flowing through the second cooling water circuit 31 connected to the cooling tower 35 through the first cooling water circuit 30 and the cooling water flowing through the second cooling water circuit 33 connected to the first cooling water circuit 32. Heat exchange in the free-cooling heat exchanger 60 (see FIG. 1).

フリークーリング用熱交換器60における冷却水と冷水との熱交換は、冷凍機37よりも冷水流通方向上流側で行われるので、外気湿球温度TWが高いときでもフリークーリングを有効利用でき、また、フリークーリング用熱交換器60で冷された冷水を、冷凍機37の予冷に使えるため、冷凍機37の負荷を軽減することができる。   Since the heat exchange between the cooling water and the cold water in the free cooling heat exchanger 60 is performed on the upstream side in the cold water circulation direction with respect to the refrigerator 37, the free cooling can be effectively used even when the outside air wet bulb temperature TW is high. Since the cold water cooled by the free cooling heat exchanger 60 can be used for pre-cooling the refrigerator 37, the load on the refrigerator 37 can be reduced.

そして、制御出力部94は、第二の冷水回路下流温度センサ82が検出した第二の冷水回路下流冷水温度T2が、現状t=0において先ず空調機出口温度T3と等しく設定されるT2SP)0であれば、冷凍機入口冷水温度T2が、効果時間ΔtTごとに、変化温度差ΔTずつ下がって、設定変更終了時t=1においてT2SP)1(冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値)になるように、第二の冷水回路下流冷水温度T2の設定値を変更していき、第二の冷却水ポンプ63の冷却水吐出量を段階的に増加させる(図5参照)。
ここで変化温度差ΔTは、T2SP)0とT2SP)1との温度差をn分割した値である。
このように、冷凍機入口冷水温度T2を徐々に下げる理由は、冷凍機入口冷水温度T2が温度制御の安定化を図るためである。
このとき、第二の冷水回路下流冷水温度は、冷凍機入口冷水温度の下限値よりも低くならないので、冷凍機入口冷水温度が下がり過ぎて冷凍機が運転できなくなることを回避できる。
Then, the control output unit 94 first sets the second chilled water circuit downstream chilled water temperature T2 detected by the second chilled water circuit downstream temperature sensor 82 to be equal to the air conditioner outlet temperature T3 first at the current time t = 0 ). If 0 , the chiller inlet chilled water temperature T2 decreases by a change temperature difference ΔT for each effect time ΔtT, and T2 SP at the end of setting change t = 1 SP1 1 (Free cooling heat at the time of combined refrigerator operation ) The set value of the second chilled water circuit downstream chilled water temperature T2 is changed so as to become the exchanger secondary side outlet steady value, and the cooling water discharge amount of the second cooling water pump 63 is increased stepwise. (See FIG. 5).
Here, the change temperature difference ΔT is a value obtained by dividing the temperature difference between T2 SP) 0 and T2 SP) 1 by n.
Thus, the reason why the refrigerator inlet cold water temperature T2 is gradually lowered is that the refrigerator inlet cold water temperature T2 stabilizes temperature control.
At this time, since the cold water temperature downstream of the second cold water circuit does not become lower than the lower limit value of the refrigerator inlet cold water temperature, it can be avoided that the refrigerator inlet cold water temperature is excessively lowered and the refrigerator cannot be operated.

第二の冷水ポンプ73の冷水流量がCPFSP)1にまで増加すると、空調機入口冷水温度T1に対する空調機出口冷水温度T3の温度差ΔT13と、フリークーリング用熱交換器二次側流路出口冷水温度T5に対するフリークーリング用熱交換器二次側流路入口冷水温度T4の温度差ΔTCPFが等しくなる。このとき、第二の冷水ポンプ73の冷水流量と、第一の冷水ポンプ70の冷水流量が一致し、一次側であまり温度差が取れないが熱量はあるフリークーリング用熱交換器60の冷却熱量を最も大きく取ることができる。 When the chilled water flow rate of the second chilled water pump 73 increases to CP FSP) 1 , the temperature difference ΔT13 of the air conditioner outlet chilled water temperature T3 with respect to the air conditioner inlet chilled water temperature T1 and the free cooling heat exchanger secondary side channel outlet The temperature difference ΔTCPF of the free cooling heat exchanger secondary side channel inlet cold water temperature T4 with respect to the cold water temperature T5 becomes equal. At this time, the chilled water flow rate of the second chilled water pump 73 and the chilled water flow rate of the first chilled water pump 70 coincide with each other, and although there is not much temperature difference on the primary side, the cooling heat amount of the free-cooling heat exchanger 60 with a large amount of heat. Can take the largest.

制御出力部94は、フリークーリング単独運転指令をフリークーリング運転方法判断部91より受信すると、第一の冷却水ポンプ43、冷凍機37、及び第三の冷水ポンプ78の運転を中断し、冷却塔35から冷却水を第二の冷却水回路31だけに導くとともに、第一の冷水回路32を流通する冷水を第二の冷水回路33へ迂回させる。   When receiving the free cooling single operation command from the free cooling operation method determination unit 91, the control output unit 94 interrupts the operation of the first cooling water pump 43, the refrigerator 37, and the third cooling water pump 78, and the cooling tower The cooling water is guided only to the second cooling water circuit 31 from 35, and the cold water flowing through the first cooling water circuit 32 is diverted to the second cooling water circuit 33.

これにより、第一の冷却水回路30を介して冷却塔35に連なる第二の冷却水回路31を流通する冷却水と、前記第一の冷水回路32に連なる第二の冷水回路33を流通する冷水とが、フリークーリング用熱交換器60において熱交換を行う(図1参照)   Thereby, the cooling water flowing through the second cooling water circuit 31 connected to the cooling tower 35 via the first cooling water circuit 30 and the second cooling water circuit 33 connected to the first cooling water circuit 32 are distributed. Cold water exchanges heat in the free-cooling heat exchanger 60 (see FIG. 1).

そして、制御出力部94は、第二の冷水回路下流温度センサ82が検出する第二の冷水回路下流冷水温度T2の設定値を、冷凍機出口冷水温度の設計値と等しい値に設定変更することで、冷凍機出口冷水温度の設計値と等しくなるまで低下するので、冷凍機を用いずに適切な温度の冷水を冷却負荷に送給することができる。   The control output unit 94 changes the setting value of the second chilled water circuit downstream chilled water temperature T2 detected by the second chilled water circuit downstream temperature sensor 82 to a value equal to the design value of the refrigerator outlet chilled water temperature. Therefore, since it falls until it becomes equal to the design value of the refrigerator outlet cold water temperature, it is possible to supply cold water having an appropriate temperature to the cooling load without using the refrigerator.

第二の冷水ポンプ73の冷水流量がCPFSP)1にまで増加すると、前述したように、第二の冷水ポンプ73の冷水流量と、第一の冷水ポンプ70の冷水流量が一致し、フリークーリング用熱交換器60の冷却熱量を最も大きく取ることができる。 When the chilled water flow rate of the second chilled water pump 73 increases to CP FSP) 1 , as described above, the chilled water flow rate of the second chilled water pump 73 and the chilled water flow rate of the first chilled water pump 70 coincide, and free cooling The cooling heat quantity of the heat exchanger 60 can be maximized.

図1〜図5に示すフリークーリング併用中温熱源システムでは、第一の冷却水回路30に介装した第一の冷却水ポンプ43により、冷却塔35と冷凍機37の凝縮器37bとの間で冷却水を行き来させ、第二の冷却水回路31に介装した第二の冷却水ポンプ63により、フリークーリング用熱交換器60の一次側流路60aと前記第一の冷却水回路30との間で冷却水を行き来させ、第一の冷水回路32に介装した第一の冷水ポンプ70により、空調機66に対して冷水を循環させ、第二の冷水回路33に介装した第二の冷水ポンプ73により、前記フリークーリング用熱交換器60の二次側流路60bと第一の冷水回路32との間で冷水を行き来させ、第三の冷水回路34に介装した第三の冷水ポンプ78により、前記冷凍機37の蒸発器37aと第一の冷水回路32との間で冷水を行き来させる、という独特の構成を採っているので、第一、第二の冷却水ポンプ43,63、並びに第一、第二、第三の冷水ポンプ70,73,78を起動、あるいは停止させれば、冷凍機37の単独運転、冷凍機37とフリークーリングとの併用運転、及びフリークーリングの単独運転を滞りなく切り替えることができる。   In the intermediate temperature heat source system combined with free cooling shown in FIGS. 1 to 5, the first cooling water pump 43 interposed in the first cooling water circuit 30 is used between the cooling tower 35 and the condenser 37 b of the refrigerator 37. In the second cooling water pump 63 interposed in the second cooling water circuit 31, the primary flow path 60a of the free cooling heat exchanger 60 and the first cooling water circuit 30 are The first cooling water pump 70 interposed in the first cooling water circuit 32 circulates the cooling water to the air conditioner 66, and the second cooling water circuit 33 interposed in the second cooling water circuit 33. The chilled water pump 73 causes the chilled water to flow back and forth between the secondary flow path 60 b of the free cooling heat exchanger 60 and the first chilled water circuit 32, and the third chilled water circuit 34 is connected to the third chilled water circuit 34. The evaporator of the refrigerator 37 is cooled by a cold water pump 78. 7a and the first chilled water circuit 32, the chilled water is moved back and forth between the first and second chilled water circuits 32, so that the first and second cooling water pumps 43, 63 and the first, second, third If the chilled water pumps 70, 73, 78 are started or stopped, the single operation of the refrigerator 37, the combined operation of the freezer 37 and free cooling, and the single operation of free cooling can be switched without delay.

冷凍機37の単独運転、冷凍機37とフリークーリングとの併用運転、及びフリークーリングの単独運転の切り替えにバルブを用いていないので、バルブを組み込むことに起因した第一、第二の冷却水回路30,31、並びに第一、第二、第三の冷水回路32,33,34の流路抵抗の増加を懸念する必要がなく、第一、第二の冷却水ポンプ43,63、並びに第一、第二、第三の冷水ポンプ70,73,78の容量を従来に比べて小型化することができる。   Since the valve is not used for the independent operation of the refrigerator 37, the combined operation of the refrigerator 37 and free cooling, and the switching of the free cooling independent operation, the first and second cooling water circuits caused by incorporating the valve 30, 31 and the first, second, and third chilled water circuits 32, 33, and 34 need not be concerned about the increase in flow resistance, and the first and second cooling water pumps 43 and 63, and the first The capacities of the second and third cold water pumps 70, 73, and 78 can be reduced as compared with the conventional one.

冷却水が流通する第一、第二の冷却水回路30,31と、冷水が流通する第一、第二、第三の冷水回路32,33,34とを互いに接続せずに、フリークーリング用熱交換器60において冷水と冷却水とで熱交換を行い、冷水を冷やすので、第一、第二の冷却水ポンプ43,63、並びに第一、第二、第三の冷水ポンプ70,73,78を安定して運転できる。   For free cooling without connecting the first and second cooling water circuits 30 and 31 through which the cooling water flows and the first, second and third cooling water circuits 32, 33 and 34 through which the cooling water flows. Since heat is exchanged between the cold water and the cooling water in the heat exchanger 60 to cool the cold water, the first and second cooling water pumps 43 and 63 and the first, second and third cold water pumps 70 and 73, 78 can be operated stably.

フリークーリング用熱交換器60における冷却水と冷水との熱交換は、冷凍機37よりも冷水流通方向上流側で行われるので、外気湿球温度TWが高くてもフリークーリングを有効利用でき、また、フリークーリング用熱交換器60で冷された冷水を、冷凍機37の予冷に使えるため、冷凍機37の負荷を軽減することができる。   Since the heat exchange between the cooling water and the cold water in the free cooling heat exchanger 60 is performed on the upstream side in the cold water flow direction with respect to the refrigerator 37, the free cooling can be effectively used even when the outdoor wet bulb temperature TW is high. Since the cold water cooled by the free cooling heat exchanger 60 can be used for pre-cooling the refrigerator 37, the load on the refrigerator 37 can be reduced.

30 第一の冷却水回路
31 第二の冷却水回路
32 第一の冷水回路
33 第二の冷水回路
34 第三の冷水回路
35 冷却塔
37 冷凍機
37a 蒸発器
37b 凝縮器
41 凝縮器入口管路
43 第一の冷却水ポンプ
45 凝縮器出口管路
46 冷却水バイパス管路
48 冷却塔ファン温度調整器
49 冷却塔出口冷却水温度センサ49
52 圧力調整器
53 圧力センサ
56 冷却水バイパス管用温度調整器
57 冷凍機入口冷却水温度センサ57
60 フリークーリング用熱交換器
60a 一次側流路
60b 二次側流路
61 熱交換器一次側入口管路
63 第二の冷却水ポンプ
65 熱交換器一次側出口管路
66 空調機(冷却負荷)
67 冷却負荷出口管路
68 冷却負荷入口管路
70 第一の冷水ポンプ
72 熱交換器二次側入口管路
73 第二の冷水ポンプ
74 フリークーリング入口温度センサ
75 熱交換器二次側出口管路
76 フリークーリング出口温度センサ
77 蒸発器入口管路
78 第三の冷水ポンプ
79 蒸発器出口管路
80 空調機入口温度センサ
81 冷水流量センサ
82 第二の冷水回路下流温度センサ
83 空調機出口温度センサ
84 フリークーリング一次側流量用温度調整器
86 コントローラ
F1 冷水流量
T1 空調機入口冷水温度
T2 第二の冷水回路下流冷水温度
T3 空調機出口冷水温度
T4 フリークーリング用熱交換器二次側流路入口冷水温度
T5 フリークーリング用熱交換器二次側流路出口冷水温度
TR0 冷却塔出口冷却水温度
TW 外気湿球温度
DESCRIPTION OF SYMBOLS 30 1st cooling water circuit 31 2nd cooling water circuit 32 1st cooling water circuit 33 2nd cooling water circuit 34 3rd cooling water circuit 35 Cooling tower 37 Refrigerator 37a Evaporator 37b Condenser 41 Condenser inlet conduit 43 First cooling water pump 45 Condenser outlet pipe 46 Cooling water bypass pipe 48 Cooling tower fan temperature regulator 49 Cooling tower outlet cooling water temperature sensor 49
52 Pressure Regulator 53 Pressure Sensor 56 Cooling Water Bypass Pipe Temperature Regulator 57 Refrigerator Inlet Cooling Water Temperature Sensor 57
60 Heat exchanger for free cooling 60a Primary side flow path 60b Secondary side flow path 61 Heat exchanger primary side inlet pipe 63 Second cooling water pump 65 Heat exchanger primary side outlet pipe 66 Air conditioner (cooling load)
67 Cooling load outlet pipeline 68 Cooling load inlet pipeline 70 First chilled water pump 72 Heat exchanger secondary inlet pipeline 73 Second chilled water pump 74 Free cooling inlet temperature sensor 75 Heat exchanger secondary outlet pipeline 76 Free cooling outlet temperature sensor 77 Evaporator inlet line 78 Third chilled water pump 79 Evaporator outlet line 80 Air conditioner inlet temperature sensor 81 Cold water flow rate sensor 82 Second chilled water circuit downstream temperature sensor 83 Air conditioner outlet temperature sensor 84 Free cooling primary flow rate temperature controller 86 Controller F1 Cold water flow rate T1 Air conditioner inlet chilled water temperature T2 Second chilled water circuit downstream chilled water temperature T3 Air conditioner outlet chilled water temperature T4 Free cooling heat exchanger secondary side channel inlet chilled water temperature T5 Heat exchanger for free cooling Secondary side channel outlet cold water temperature TR0 Cooling tower outlet cooling water temperature TW Outside wet bulb temperature

Claims (9)

複数の冷却塔と複数の冷凍機の凝縮器との間で冷却水を行き来させる第一の冷却水回路、
該第一の冷却水回路に接続され且つフリークーリング用熱交換器の一次側流路と前記第一の冷却水回路との間で冷却水を行き来させる第二の冷却水回路、
冷却負荷に対して冷水を循環させる第一の冷水回路、
該第一の冷水回路に接続され且つ前記フリークーリング用熱交換器の二次側流路と前記第一の冷水回路との間で冷水を行き来させる第二の冷水回路、
並びに該第二の冷水回路の冷水流通方向下流に位置するように前記第一の冷水回路に接続され且つ前記冷凍機の蒸発器と前記第一の冷水回路との間で冷水を行き来させる第三の冷水回路を備え、
前記第一の冷却水回路は、
上流端が前記冷却塔の冷却水出口に接続され且つ下流端を前記冷凍機の凝縮器冷却水入口に接続した凝縮器入口管路と、該凝縮器入口管路に介装した第一の冷却水ポンプと、上流端が前記冷凍機の凝縮器冷却水出口に接続され且つ下流端を前記冷却塔の冷却水入口に接続した凝縮器出口管路とを有し、
前記第二の冷却水回路は、
上流端が前記第一の冷却水管路の凝縮器入口管路における第一の冷却水ポンプ介装部よりも上流側の個所に接続され且つ下流端を前記フリークーリング用熱交換器の一次側流路の冷却水入口に接続した熱交換器一次側入口管路と、該熱交換器一次側入口管路に介装した第二の冷却水ポンプと、上流端が前記フリークーリング用熱交換器の一次側流路の冷却水出口に接続され且つ下流端を前記第一の冷却水回路の凝縮器出口管路に接続した熱交換器一次側出口管路とを有し、
前記第一の冷水回路は、
上流端が冷却負荷の冷水出口に接続された冷却負荷出口管路と、該冷却負荷出口管路の下流端に冷水入口が接続された第一の冷水ポンプと、該第一の冷水ポンプの冷水出口に上流端が接続され且つ下流端を前記冷却負荷の冷水入口に接続した冷却負荷入口管路とを有し、
前記第二の冷水回路は、
上流端が前記第一の冷水回路の冷却負荷出口管路に接続され且つ下流端を前記フリークーリング用熱交換器の二次側流路の冷水入口に接続した熱交換器二次側入口管路と、該熱交換器二次側入口管路に介装した第二の冷水ポンプと、上流端が前記フリークーリング用熱交換器の二次側流路の冷水出口に接続され且つ下流端を前記第一の冷水回路の冷却負荷出口管路における熱交換器二次側入口管路接続点よりも下流側の個所に接続した熱交換器二次側出口管路とを有し、
前記第三の冷水回路は、
上流端が前記第一の冷水回路の冷却負荷出口管路における熱交換器二次側出口管路接続点よりも下流側の個所に接続され且つ下流端を前記冷凍機の蒸発器冷水入口に接続した蒸発器入口管路と、該蒸発器入口管路に介装した前記冷凍機と同じ台数の第三の冷水ポンプと、上流端が前記冷凍機の蒸発器冷水出口に接続され且つ下流端を前記第一の冷水回路の冷却負荷出口管路における蒸発器入口管路接続点よりも下流側の個所に接続した蒸発器出口管路とを有し、
前記第一の冷水回路を循環する冷水の一部又は全部を、前記第二の冷水回路の熱交換器二次側入口管路へ分岐させて前記フリークーリング用熱交換器を通過させた後、熱交換器二次側出口管路から再び第一の冷水回路へ合流させるように流すのを、前記第二の冷水ポンプの搬送動力で行うように構成されていることを特徴とするフリークーリング併用中温熱源システム。
A first cooling water circuit for passing cooling water back and forth between the cooling towers and the condensers of the refrigerators;
A second cooling water circuit that is connected to the first cooling water circuit and allows cooling water to flow back and forth between a primary flow path of the free cooling heat exchanger and the first cooling water circuit;
A first chilled water circuit for circulating chilled water against a cooling load;
A second chilled water circuit connected to the first chilled water circuit and allowing chilled water to pass back and forth between a secondary flow path of the free cooling heat exchanger and the first chilled water circuit;
And the third chilled water circuit connected to the first chilled water circuit so as to be located downstream of the second chilled water circuit in the direction of the chilled water flow, and for transferring chilled water between the evaporator of the refrigerator and the first chilled water circuit. With a cold water circuit
The first cooling water circuit is
A condenser inlet pipe having an upstream end connected to a cooling water outlet of the cooling tower and a downstream end connected to a condenser cooling water inlet of the refrigerator; and a first cooling interposed in the condenser inlet pipe A water pump, and a condenser outlet pipe having an upstream end connected to a condenser cooling water outlet of the refrigerator and a downstream end connected to a cooling water inlet of the cooling tower,
The second cooling water circuit is
An upstream end is connected to a location upstream of the first cooling water pump interposition part in the condenser inlet pipe of the first cooling water pipe, and a downstream end is a primary side flow of the free cooling heat exchanger. A heat exchanger primary side inlet pipe connected to the cooling water inlet of the passage, a second cooling water pump interposed in the heat exchanger primary side inlet pipe, and an upstream end of the heat exchanger for free cooling. A heat exchanger primary outlet pipe connected to the cooling water outlet of the primary flow path and having a downstream end connected to the condenser outlet pipe of the first cooling water circuit;
The first cold water circuit is
A cooling load outlet pipe having an upstream end connected to a chilled water outlet of the cooling load, a first chilled water pump having a chilled water inlet connected to a downstream end of the cooling load outlet pipe, and chilled water of the first chilled water pump A cooling load inlet pipe having an upstream end connected to the outlet and a downstream end connected to the cold water inlet of the cooling load;
The second chilled water circuit is
Heat exchanger secondary inlet conduit with an upstream end connected to a cooling load outlet conduit of the first chilled water circuit and a downstream end connected to a chilled water inlet of a secondary flow passage of the free cooling heat exchanger A second chilled water pump interposed in the heat exchanger secondary side inlet pipe, an upstream end connected to a chilled water outlet of the secondary side flow path of the free cooling heat exchanger, and a downstream end of the second chilled water pump A heat exchanger secondary outlet pipe connected to a location downstream of the heat exchanger secondary inlet pipe connecting point in the cooling load outlet pipe of the first chilled water circuit;
The third chilled water circuit is
The upstream end is connected to a location downstream of the heat exchanger secondary outlet pipe connection point in the cooling load outlet pipe of the first cold water circuit, and the downstream end is connected to the evaporator cold water inlet of the refrigerator An evaporator inlet pipe, a third chilled water pump of the same number as the refrigerator interposed in the evaporator inlet pipe, an upstream end connected to an evaporator chilled water outlet of the refrigerator, and a downstream end An evaporator outlet pipeline connected to a location downstream of the evaporator inlet pipeline connection point in the cooling load outlet pipeline of the first chilled water circuit;
After part or all of the chilled water circulating through the first chilled water circuit is branched to the heat exchanger secondary inlet pipe of the second chilled water circuit and passed through the free cooling heat exchanger, Free cooling combined use, characterized in that the flow from the secondary outlet pipe of the heat exchanger to the first chilled water circuit is performed again by the conveying power of the second chilled water pump Medium temperature heat source system.
第一の冷水回路の冷却負荷入口管路に介装される冷却負荷入口冷水温度を検出する負荷入口温度センサと、第一の冷水回路における熱交換器二次側入口管路接続点と冷却負荷との間に介装される冷却負荷出口冷水温度を検出する負荷出口温度センサと、第一の冷水回路に介装される冷水流量計と、
第一の冷水回路の熱交換器二次側出口管路接続点下流側の第二の冷水回路下流温度を検出する第二の冷水回路下流温度センサと、
外気湿球温度センサと
コントローラとを備え、
該コントローラは、
負荷入口温度センサの検出温度と負荷出口温度センサの検出温度との温度差及び冷水流量計の検出冷水流量から負荷熱量を演算して、算出した負荷熱量に見合う冷凍機の運転台数を決定し、
算出した負荷熱量と計測した外気湿球温度計測値とから、第一の冷却水ポンプと第二の冷却水ポンプとを両方動作させた場合の、凝縮器入口管路を流れる冷却塔出口冷却水予測温度を演算して求め、
冷却塔出口冷却水予測温度と冷却負荷出口冷水温度とから、フリークーリングが可能か否かを判定し、
フリークーリングが可能と判定した場合は、
第二の冷却水ポンプを起動して最低回転数で動作させ、第二の冷水回路下流温度の設定値を冷却負荷出口冷水温度と同値に設定したのち、第二の冷水回路下流温度センサの計測値との偏差に応じた第二の冷却水ポンプの変流量制御を開始し、
第二の冷水ポンプを起動して最低回転数で動作させてから、第一の冷水ポンプの送出する冷水流量に追随する冷水量を搬送できるよう第二の冷水ポンプの変流量制御を行い、
算出した負荷熱量及び冷却塔出口冷却水予測温度とから、冷凍機とフリークーリング用熱交換器との併用運転か、フリークーリング用熱交換器の単独運転かを選択し、
冷凍機とフリークーリング用熱交換器との併用運転が選択された時には、
第二の冷水回路下流温度の設定値を、冷却負荷出口冷水温度を基準とした値から、冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値を最低値として、段階的に下げていくように設定し、
フリークーリング用熱交換器の単独運転が選択された時には、
第二の冷水回路下流温度の設定値を、冷凍機の冷水出口設定温度に設定するように構成されている請求項1に記載のフリークーリング併用中温熱源システム。
A load inlet temperature sensor for detecting a cooling load inlet chilled water temperature interposed in a cooling load inlet pipe of the first chilled water circuit, a heat exchanger secondary inlet pipe connection point and a cooling load in the first chilled water circuit A load outlet temperature sensor for detecting the cooling load outlet chilled water temperature interposed between, and a chilled water flow meter interposed in the first chilled water circuit,
A second cold water circuit downstream temperature sensor for detecting a second cold water circuit downstream temperature downstream of the first cold water circuit heat exchanger secondary outlet pipe connection point;
It has an outside air wet bulb temperature sensor and a controller,
The controller
Calculate the load heat amount from the temperature difference between the detected temperature of the load inlet temperature sensor and the detected temperature of the load outlet temperature sensor and the detected chilled water flow rate of the chilled water flow meter, and determine the number of refrigerators operating to match the calculated load heat amount,
Cooling tower outlet cooling water flowing through the condenser inlet pipe when both the first cooling water pump and the second cooling water pump are operated from the calculated load heat quantity and the measured outside wet bulb temperature measurement value Calculate the predicted temperature,
Determine whether free cooling is possible from the cooling tower outlet cooling water predicted temperature and the cooling load outlet cooling water temperature,
If it is determined that free cooling is possible,
Start the second cooling water pump and operate it at the minimum number of revolutions, set the second chilled water circuit downstream temperature setting to the same value as the cooling load outlet chilled water temperature, and then measure the second chilled water circuit downstream temperature sensor Start the variable flow rate control of the second cooling water pump according to the deviation from the value,
After the second chilled water pump is started and operated at the minimum number of revolutions, the variable flow rate control of the second chilled water pump is performed so that the amount of chilled water that follows the chilled water flow rate delivered by the first chilled water pump can be conveyed,
From the calculated load heat amount and the predicted cooling water at the cooling tower outlet, select whether to use the refrigerator and free cooling heat exchanger in combination, or to operate the free cooling heat exchanger alone.
When the combined operation of the refrigerator and the free-cooling heat exchanger is selected,
Set the second chilled water circuit downstream temperature from the value based on the chilled load outlet chilled water temperature to the free cooling secondary heat exchanger secondary outlet steady value during operation with the refrigerator, step by step. Set it to go down,
When single operation of the free-cooling heat exchanger is selected,
The free-cooling combined medium temperature heat source system according to claim 1, wherein the second cold water circuit downstream temperature set value is set to a cold water outlet set temperature of the refrigerator.
冷凍機併用運転時のフリークーリング用熱交換器二次側出口定常値について、
該フリークーリング用熱交換器二次側出口定常値と負荷入口温度との温度差を、第一の冷水回路での変流量制御における負荷入口温度と負荷出口温度との標準温度差で除した冷凍機受け持ち割合を、
冬期の夏期ピーク期に対する冷房負荷割合である冷凍機のベース運転台数比率に、冷凍機部分負荷最低運転比率を乗じた冷凍機最低能力割合よりも大きく設定するよう構成されている請求項2に記載のフリークーリング併用中温熱源システム。
About the steady-state value of the secondary side outlet at the heat exchanger for free cooling during operation with the refrigerator
Refrigeration obtained by dividing the temperature difference between the steady state value at the secondary side outlet of the heat exchanger for free cooling and the load inlet temperature by the standard temperature difference between the load inlet temperature and the load outlet temperature in the variable flow rate control in the first chilled water circuit. The proportion of machine ownership
3. The apparatus according to claim 2, wherein the ratio is set to be larger than a minimum capacity ratio of a refrigerator obtained by multiplying a base operation unit ratio of a refrigerator, which is a cooling load ratio with respect to a summer peak period in winter, by a minimum partial load operation ratio of the refrigerator. Medium temperature heat source system with free cooling.
熱交換器二次側入口管路の冷水温度を検出するフリークーリング入口温度センサと、熱交換器二次側出口管路の冷水温度を検出するフリークーリング出口温度センサとを備え、
フリークーリング入口温度センサは、第二の冷水回路の熱交換器二次側入口管路における第二の冷水ポンプとフリークーリング用熱交換器の二次側流路との間に介装され、
フリークーリング出口温度センサは、第二の冷水回路の熱交換器二次側出口管路に介装され、
前記コントローラは、
冷却塔出口冷却水予測温度と冷却負荷出口冷水温度とから、フリークーリングが可能と判断した際には、
起動した第二の冷水ポンプが最低回転数で動作したのち、第一の冷水ポンプの送出する冷水流量に追随する冷水量を搬送できるよう第二の冷水ポンプの変流量制御を行うにあたり、
第二の冷水回路下流温度センサ測定値と冷却負荷出口冷水温度測定値との第二の冷水回路入口出口温度差測定値を、フリークーリング入口温度センサの計測値とフリークーリング出口温度の計測値との差であるフリークーリング二次側冷水温度差の設定値としてカスケード制御として与え、フリークーリング二次側冷水温度差の測定値が設定値より小さい場合に回転を絞り、フリークーリング二次側冷水温度差の測定値が設定値より大きい場合には回転を増加させるよう、偏差に応じて第二の冷水ポンプの回転数制御を行うように構成されている請求項2または請求項3に記載のフリークーリング併用中温熱源システム。
A free cooling inlet temperature sensor for detecting the chilled water temperature of the heat exchanger secondary side inlet pipe, and a free cooling outlet temperature sensor for detecting the chilled water temperature of the heat exchanger secondary side outlet pipe,
The free cooling inlet temperature sensor is interposed between the second chilled water pump in the heat exchanger secondary inlet line of the second chilled water circuit and the secondary flow path of the free cooling heat exchanger,
The free cooling outlet temperature sensor is interposed in the heat exchanger secondary outlet pipe of the second chilled water circuit,
The controller is
When it is determined that free cooling is possible from the cooling tower outlet cooling water predicted temperature and the cooling load outlet cooling water temperature,
After the activated second chilled water pump operates at the minimum number of rotations, the variable flow rate control of the second chilled water pump is performed so that the amount of chilled water that follows the chilled water flow rate delivered by the first chilled water pump can be conveyed.
The second chilled water circuit inlet / outlet temperature difference measurement value between the second chilled water circuit downstream temperature sensor measured value and the cooling load outlet chilled water temperature measured value is the measured value of the free cooling inlet temperature sensor and the measured value of the free cooling outlet temperature. Is given as cascade control as the set value of the free cooling secondary side chilled water temperature difference, which is the difference between the free cooling secondary side chilled water temperature, and when the measured value of the free cooling secondary side chilled water temperature difference is smaller than the set value, the rotation is throttled to The free speed according to claim 2 or 3, wherein the rotational speed of the second chilled water pump is controlled in accordance with the deviation so as to increase the rotation when the measured value of the difference is larger than the set value. Cooling medium temperature source system.
冷凍機の凝縮器側の冷媒ガス圧力を検出する圧力センサと、圧力調整器とを備え、
決定した冷凍機台数における負荷熱量に応じた冷却水流量を確保するため、
圧力調整器は、圧力センサの検出値が一定値を保つように第一の冷却水ポンプの回転数を制御するように構成されている請求項1乃至請求項4のいずれか1項に記載のフリークーリング併用中温熱源システム。
A pressure sensor for detecting the refrigerant gas pressure on the condenser side of the refrigerator, and a pressure regulator;
In order to secure the cooling water flow rate according to the amount of load heat in the determined number of refrigerators,
5. The pressure regulator according to claim 1, wherein the pressure regulator is configured to control a rotation speed of the first cooling water pump so that a detection value of the pressure sensor is maintained at a constant value. 6. Medium temperature source system with free cooling.
第一の冷却水回路に、
上流端が前記熱交換器出口管路の接続点と凝縮器冷却水出口との間に接続され且つ下流端が熱交換器一次側入口管路接続点と凝縮器入口管路における第一の冷却水ポンプ介装点との間に接続されバイパス弁を介装する冷却水バイパス管路と、第一の冷却水ポンプ出口に介装された冷凍機入口冷却水温度センサと、バイパス開閉調節計とを有し、
冷凍機入口冷却水温度が、冷凍機凍結防止の下限値より低い場合はバイパス弁を開いて冷却水温度を制御するように構成されている請求項2乃至請求項4のいずれか1項に記載のフリークーリング併用中温熱源システム。
In the first cooling water circuit,
The upstream end is connected between the connection point of the heat exchanger outlet line and the condenser cooling water outlet, and the downstream end is the first cooling in the heat exchanger primary side inlet line connection point and the condenser inlet line. A cooling water bypass pipe line connected between the water pump insertion point and a bypass valve; a refrigerator inlet cooling water temperature sensor interposed at the first cooling water pump outlet; and a bypass opening / closing controller. Have
5. The structure according to claim 2, wherein the cooling water temperature is controlled by opening a bypass valve when the refrigerator inlet cooling water temperature is lower than a lower limit value of the refrigerator freezing prevention. Medium temperature heat source system with free cooling.
冬期の冷房負荷割合である冷凍機のベース運転台数比率、冷凍機の定格冷却水量に対する冷却水下限流量比率、及び冷却塔散水分配による冷却塔の定格冷却水量に対する冷却水下限流量比率とから、
複数の冷却塔の望ましい合計容量は、複数の冷凍機合計容量から定格で選定される容量に比して、
望ましい冷却塔容量/定格選定冷却塔容量=(冷凍機ベース運転台数比率×冷凍機の冷却水下限流量比率)/冷却塔冷却水下限流量比率であるよう構成されている請求項1乃至請求項5のいずれか1項に記載のフリークーリング併用中温熱源システム。
From the base operation unit ratio of the refrigerator, which is the cooling load ratio in winter, the cooling water lower limit flow rate ratio relative to the rated cooling water amount of the refrigerator, and the cooling water lower limit flow rate ratio relative to the rated cooling water amount of the cooling tower by cooling tower sprinkling distribution,
The desired total capacity of multiple cooling towers is compared to the capacity selected by rating from the total capacity of multiple refrigerators.
6. Desirable cooling tower capacity / rated rated cooling tower capacity = (refrigerant base operation unit ratio × refrigerator cooling water lower limit flow rate ratio) / cooling tower cooling water lower limit flow rate ratio. The intermediate temperature heat source system combined with free cooling according to any one of the above.
請求項8に記載のフリークーリング併用中温熱源システムは、
冷凍機の冷却水下限流量比率=50%、冷却塔冷却水下限流量比率=20%であり、
複数の冷却塔の望ましい合計容量は、
望ましい冷却塔容量/定格選定冷却塔容量=125%以上175%以下であるよう構成されている請求項7に記載のフリークーリング併用中温熱源システム。
The free cooling combined use medium temperature heat source system according to claim 8,
Cooling water lower limit flow rate ratio of the refrigerator = 50%, cooling tower cooling water lower limit flow rate ratio = 20%,
The desired total capacity of multiple cooling towers is
The intermediate temperature heat source system combined with free cooling according to claim 7, wherein the desired cooling tower capacity / rated rated cooling tower capacity = 125% or more and 175% or less.
第一の冷水ポンプの流量と第三の冷水ポンプの合計流量とを比較すると、等しいか又は第三の冷水ポンプ合計流量が大きいように、冷凍機ベース運転台数と等しいかそれより多い台数の第三の冷水ポンプを、演算された負荷熱量により台数を切替え且つ変流量制御するように構成されている請求項1乃至請求項8のいずれか1項に記載のフリークーリング併用中温熱源システム。   Comparing the flow rate of the first chilled water pump and the total flow rate of the third chilled water pump, the number of units equal to or greater than the number of refrigerator-based operations is equal, so that the total flow rate of the third chilled water pump is equal or larger. The free cooling combined use intermediate temperature heat source system according to any one of claims 1 to 8, wherein the number of the three chilled water pumps is switched according to the calculated load heat quantity and the variable flow rate is controlled.
JP2010216071A 2010-09-27 2010-09-27 Medium temperature source system with free cooling Active JP5501179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216071A JP5501179B2 (en) 2010-09-27 2010-09-27 Medium temperature source system with free cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216071A JP5501179B2 (en) 2010-09-27 2010-09-27 Medium temperature source system with free cooling

Publications (2)

Publication Number Publication Date
JP2012072921A true JP2012072921A (en) 2012-04-12
JP5501179B2 JP5501179B2 (en) 2014-05-21

Family

ID=46169285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216071A Active JP5501179B2 (en) 2010-09-27 2010-09-27 Medium temperature source system with free cooling

Country Status (1)

Country Link
JP (1) JP5501179B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105930A (en) * 2012-11-28 2014-06-09 Sanki Eng Co Ltd Heat source system
JP2014202410A (en) * 2013-04-04 2014-10-27 清水建設株式会社 Heat source operation navigation system and method therefor
US20150276292A1 (en) * 2014-03-25 2015-10-01 Samsung Electronics Co., Ltd. Cooling apparatus and system including the same
KR20150111805A (en) * 2014-03-25 2015-10-06 삼성전자주식회사 cooling apparatus and system including the same
CN107990456A (en) * 2017-11-23 2018-05-04 宁波杭州湾新区祥源动力供应有限公司 A kind of heat-exchange unit system
CN108006861A (en) * 2017-11-13 2018-05-08 珠海格力电器股份有限公司 Air-conditioner water system and air-conditioner water system control method
CN108458623A (en) * 2017-02-17 2018-08-28 中国电力工程顾问集团华北电力设计院有限公司 Power station auxiliary water Expanding Unit Element System dry and wet combines air cooling system
WO2020035942A1 (en) * 2018-08-17 2020-02-20 三菱電機株式会社 Free cooling system
JP6759481B1 (en) * 2020-04-13 2020-09-23 東京瓦斯株式会社 Cooling system
CN112673228A (en) * 2019-07-30 2021-04-16 东芝三菱电机产业***株式会社 Cooling device and cooling method
CN113923937A (en) * 2021-09-02 2022-01-11 华信咨询设计研究院有限公司 Energy-saving cooling control method and system for data center
CN114251889A (en) * 2021-03-26 2022-03-29 襄阳达安汽车检测中心有限公司 Double-channel temperature control circulating liquid supply system and control method of laboratory equipment
CN114440419A (en) * 2021-12-31 2022-05-06 博锐尚格科技股份有限公司 Control method, device and equipment for secondary pump system of cold station and storage medium
CN114484643A (en) * 2022-01-20 2022-05-13 珠海格力电器股份有限公司 Heat exchange amount control method, cooling device and refrigeration system
CN116412605A (en) * 2023-03-17 2023-07-11 通威微电子有限公司 Cooling system and cooling method
CN117651405A (en) * 2024-01-30 2024-03-05 合肥通用机械研究院有限公司 Data center cooling system based on frequency conversion strategy and control optimization method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132651A (en) * 2002-10-11 2004-04-30 Taikisha Ltd Free cooling utilized cold/heat source facility
JP2006275323A (en) * 2005-03-28 2006-10-12 Sanki Eng Co Ltd Heat source system optimal operation control method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132651A (en) * 2002-10-11 2004-04-30 Taikisha Ltd Free cooling utilized cold/heat source facility
JP2006275323A (en) * 2005-03-28 2006-10-12 Sanki Eng Co Ltd Heat source system optimal operation control method and device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014105930A (en) * 2012-11-28 2014-06-09 Sanki Eng Co Ltd Heat source system
JP2014202410A (en) * 2013-04-04 2014-10-27 清水建設株式会社 Heat source operation navigation system and method therefor
KR102200939B1 (en) * 2014-03-25 2021-01-12 삼성전자주식회사 cooling apparatus and system including the same
US20150276292A1 (en) * 2014-03-25 2015-10-01 Samsung Electronics Co., Ltd. Cooling apparatus and system including the same
KR20150111805A (en) * 2014-03-25 2015-10-06 삼성전자주식회사 cooling apparatus and system including the same
US9920997B2 (en) * 2014-03-25 2018-03-20 Samsung Electronics Co., Ltd. Cooling apparatus and system including the same
CN108458623A (en) * 2017-02-17 2018-08-28 中国电力工程顾问集团华北电力设计院有限公司 Power station auxiliary water Expanding Unit Element System dry and wet combines air cooling system
CN108006861A (en) * 2017-11-13 2018-05-08 珠海格力电器股份有限公司 Air-conditioner water system and air-conditioner water system control method
CN107990456A (en) * 2017-11-23 2018-05-04 宁波杭州湾新区祥源动力供应有限公司 A kind of heat-exchange unit system
JPWO2020035942A1 (en) * 2018-08-17 2021-04-30 三菱電機株式会社 Free cooling system
WO2020035942A1 (en) * 2018-08-17 2020-02-20 三菱電機株式会社 Free cooling system
EP3839373A4 (en) * 2018-08-17 2021-08-18 Mitsubishi Electric Corporation Free cooling system
US11384972B2 (en) 2018-08-17 2022-07-12 Mitsubishi Electric Corporation Free cooling system
CN112673228A (en) * 2019-07-30 2021-04-16 东芝三菱电机产业***株式会社 Cooling device and cooling method
CN112673228B (en) * 2019-07-30 2022-11-11 东芝三菱电机产业***株式会社 Cooling device and cooling method
JP2021167704A (en) * 2020-04-13 2021-10-21 東京瓦斯株式会社 Cooling device
JP6759481B1 (en) * 2020-04-13 2020-09-23 東京瓦斯株式会社 Cooling system
CN114251889A (en) * 2021-03-26 2022-03-29 襄阳达安汽车检测中心有限公司 Double-channel temperature control circulating liquid supply system and control method of laboratory equipment
CN113923937A (en) * 2021-09-02 2022-01-11 华信咨询设计研究院有限公司 Energy-saving cooling control method and system for data center
CN114440419B (en) * 2021-12-31 2023-10-27 博锐尚格科技股份有限公司 Control method, device, equipment and storage medium of cold station secondary pump system
CN114440419A (en) * 2021-12-31 2022-05-06 博锐尚格科技股份有限公司 Control method, device and equipment for secondary pump system of cold station and storage medium
CN114484643A (en) * 2022-01-20 2022-05-13 珠海格力电器股份有限公司 Heat exchange amount control method, cooling device and refrigeration system
CN114484643B (en) * 2022-01-20 2023-01-03 珠海格力电器股份有限公司 Heat exchange quantity control method, cooling device and refrigerating system
CN116412605A (en) * 2023-03-17 2023-07-11 通威微电子有限公司 Cooling system and cooling method
CN116412605B (en) * 2023-03-17 2024-01-05 通威微电子有限公司 Cooling system and cooling method
CN117651405A (en) * 2024-01-30 2024-03-05 合肥通用机械研究院有限公司 Data center cooling system based on frequency conversion strategy and control optimization method
CN117651405B (en) * 2024-01-30 2024-04-09 合肥通用机械研究院有限公司 Data center cooling system based on frequency conversion strategy and control optimization method

Also Published As

Publication number Publication date
JP5501179B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5501179B2 (en) Medium temperature source system with free cooling
AU2005268223B2 (en) Refrigerating apparatus
JP5274222B2 (en) Heat source control system for air conditioning equipment
JP4690935B2 (en) Heat source system and control method thereof
CN102575860A (en) Air conditioning device
CN106152840B (en) Heat pipe system, refrigeration system and control method thereof
JP2005069554A (en) Water heat source air conditioning system
EP2751499B1 (en) Refrigeration system and refrigeration method providing heat recovery
TWI659186B (en) Liquid temperature adjusting device and temperature control system
JP6221198B2 (en) External control device
US11255582B2 (en) HVAC systems and methods with multiple-path expansion device subsystems
KR101952627B1 (en) Multi integrated freezer system and control method thereof
JP5195696B2 (en) Cold water circulation system
JP6024726B2 (en) External control device
JP6213781B2 (en) External controller control method
JP6861821B2 (en) Refrigeration cycle equipment
JP2003130428A (en) Connection type cold/hot water device
KR101145978B1 (en) Heat pump type air conditioning system using waste heat
JP4917468B2 (en) Refrigerator system
JP4568119B2 (en) Heat supply system having a plurality of heat source units and pump groups
JP7322219B1 (en) heat source system
KR101641245B1 (en) Chiller
WO2016024504A1 (en) Load distribution system
DK2496894T3 (en) COOLING SYSTEM AND PROCEDURE FOR COOLING SYSTEM OPERATION
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250