JP6861821B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6861821B2
JP6861821B2 JP2019533820A JP2019533820A JP6861821B2 JP 6861821 B2 JP6861821 B2 JP 6861821B2 JP 2019533820 A JP2019533820 A JP 2019533820A JP 2019533820 A JP2019533820 A JP 2019533820A JP 6861821 B2 JP6861821 B2 JP 6861821B2
Authority
JP
Japan
Prior art keywords
heat medium
flow path
heat
circuit
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019533820A
Other languages
Japanese (ja)
Other versions
JPWO2019026234A1 (en
Inventor
圭 岡本
圭 岡本
純 三重野
純 三重野
肇 藤本
肇 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019026234A1 publication Critical patent/JPWO2019026234A1/en
Application granted granted Critical
Publication of JP6861821B2 publication Critical patent/JP6861821B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/135Mass flow of refrigerants through the evaporator
    • F25B2700/1351Mass flow of refrigerants through the evaporator of the cooled fluid upstream or downstream of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、水またはブラインを含む熱媒体を冷凍サイクルで加熱または冷却した冷媒と熱交換させて、冷温熱を負荷側に供給する冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus in which a heat medium containing water or brine is exchanged with a refrigerant heated or cooled in a refrigeration cycle to supply cold / hot heat to a load side.

冷温熱を負荷側に供給する冷凍サイクル装置の一例として、凝縮器と、凝縮器に並列に接続された2つの蒸発器とを有する冷却器が開示されている(例えば、特許文献1参照)。特許文献1に開示された冷却器では、2つの蒸発器で冷媒と熱交換を行う熱媒体が流通する配管が、2つの蒸発器が直列に接続されるように設置されている。熱媒体は、2つの蒸発器で段階的に冷却される。この冷却器では、直列に接続される2つの蒸発器のうち、1段目の蒸発器の蒸発温度を2段目の蒸発器の蒸発温度よりも高い温度に設定することで、冷凍効率の高い運転を行っている。 As an example of a refrigeration cycle device that supplies cold / hot heat to the load side, a cooler having a condenser and two evaporators connected in parallel to the condenser is disclosed (see, for example, Patent Document 1). In the cooler disclosed in Patent Document 1, a pipe through which a heat medium that exchanges heat with the refrigerant by the two evaporators flows is installed so that the two evaporators are connected in series. The heat medium is cooled stepwise by two evaporators. In this cooler, the refrigerating efficiency is high by setting the evaporation temperature of the first stage evaporator to a temperature higher than the evaporation temperature of the second stage evaporator among the two evaporators connected in series. I'm driving.

特開2006−329601号公報Japanese Unexamined Patent Publication No. 2006-329601

特許文献1に開示された冷却器において、熱媒体が受ける圧力損失は、熱媒体が通過する直列接続される蒸発器が多くなるほど大きくなる。圧力損失は熱媒体の粘性および速度に依存する。熱媒体の粘度が高い場合、複数の蒸発器を直列に接続すると、ポンプの負荷が大きくなる。一方、複数の蒸発器を並列に設置することも考えられる。しかし、複数の蒸発器が並列に接続された構成は、複数の蒸発器が直列に接続された構成に比べて、冷凍効率が数パーセント低下してしまう。 In the cooler disclosed in Patent Document 1, the pressure loss received by the heat medium increases as the number of evaporators connected in series through which the heat medium passes increases. Pressure drop depends on the viscosity and velocity of the heat carrier. When the viscosity of the heat medium is high, connecting multiple evaporators in series increases the load on the pump. On the other hand, it is also conceivable to install a plurality of evaporators in parallel. However, in a configuration in which a plurality of evaporators are connected in parallel, the refrigerating efficiency is reduced by several percent as compared with a configuration in which a plurality of evaporators are connected in series.

本発明は、上記のような課題を解決するためになされたもので、圧力損失の影響を抑制して運転効率を向上させた冷凍サイクル装置を提供するものである。 The present invention has been made to solve the above problems, and provides a refrigeration cycle apparatus in which the influence of pressure loss is suppressed and the operation efficiency is improved.

本発明に係る冷凍サイクル装置は、圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、を有し、前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備え、前記流路切替装置は、前記複数の熱媒体熱交換器に含まれる2つの熱媒体熱交換器のうち、一方の熱媒体熱交換器の下流側と他方の熱媒体熱交換器の上流側とを接続する接続流路と、前記熱媒体回路に流入する熱媒体のうち、前記他方の熱媒体交換器に分流する熱媒体に対して該他方の熱媒体熱交換器および前記接続流路への流入を制御する、該接続流路の上流側に設けられた第1の弁と、前記熱媒体回路に流入する熱媒体のうち、前記一方の熱媒体交換器に分流する熱媒体に対して該一方の熱媒体熱交換器からの流出を制御する、前記接続流路の下流側に設けられた第2の弁と、を有し、前記接続流路は、前記熱媒体の流量を調整する流量調整器を有し、前記熱媒体回路に前記並列流路が形成されている場合に、前記熱媒体の一部が前記流量調整器を流通するものである。 The refrigeration cycle apparatus according to the present invention is provided for each of a plurality of refrigerant circuits to which a compressor, a heat source side heat exchanger and a decompression device are connected, and the plurality of refrigerant circuits, and heat exchange between the refrigerant and the heat medium. A heat medium circuit having a plurality of heat medium heat exchangers, and the heat medium circuit includes a series flow path for connecting the plurality of heat medium heat exchangers in series, and the plurality of heat medium heat exchanges. A flow path switching device for switching between a parallel flow path for connecting the devices in parallel and a flow path switching device is provided, and the flow path switching device is one of two heat medium heat exchangers included in the plurality of heat medium heat exchangers. Of the connection flow path connecting the downstream side of the heat medium heat exchanger and the upstream side of the other heat medium heat exchanger and the heat medium flowing into the heat medium circuit, the heat medium is divided into the other heat medium exchanger. A first valve provided on the upstream side of the connection flow path, which controls the inflow of the heat medium to the other heat medium heat exchanger and the connection flow path, and heat flowing into the heat medium circuit. Among the media, a second valve provided on the downstream side of the connection flow path, which controls the outflow of the heat medium shunting to the one heat medium exchanger from the one heat medium heat exchanger. has, the connecting flow path have a flow regulator for regulating the flow rate of the heat medium, when the parallel flow paths to the heat medium circuit is formed, a portion of the heating medium The flow regulator is distributed .

本発明によれば、直列流路および並列流路のうち、運転効率のよい流路を熱媒体回路に形成できるため、装置全体として運転効率を向上させることができる。 According to the present invention, of the series flow path and the parallel flow path, a flow path having high operation efficiency can be formed in the heat medium circuit, so that the operation efficiency of the entire device can be improved.

本発明の実施の形態1の冷凍サイクル装置の一構成例を示す図である。It is a figure which shows one configuration example of the refrigeration cycle apparatus of Embodiment 1 of this invention. 図1に示した制御部の一構成例を示す機能ブロック図である。It is a functional block diagram which shows one configuration example of the control part shown in FIG. 図1に示した熱媒体回路に直列流路が形成される構成を示す図である。It is a figure which shows the structure which the series flow path is formed in the heat medium circuit shown in FIG. 図1に示した熱媒体回路に並列流路が形成される構成を示す図である。It is a figure which shows the structure which the parallel flow path is formed in the heat medium circuit shown in FIG. 図1に示した熱媒体回路に片系統流路が形成される構成を示す図である。It is a figure which shows the structure which the one-system flow path is formed in the heat medium circuit shown in FIG. 図5に示した片系統流路とは別の片系統流路が形成される構成を示す図である。It is a figure which shows the structure which the one-sided system flow path different from the one-sided system flow path shown in FIG. 5 is formed. 図2に示した制御部が実行する流路選択の手順の一例を示すフローチャートである。FIG. 5 is a flowchart showing an example of a flow path selection procedure executed by the control unit shown in FIG. 本発明の実施の形態2の冷凍サイクル装置の一構成例を示す図である。It is a figure which shows one configuration example of the refrigeration cycle apparatus of Embodiment 2 of this invention.

実施の形態1.
本実施の形態1の冷凍サイクル装置の構成を説明する。図1は、本発明の実施の形態1の冷凍サイクル装置の一構成例を示す図である。図1に示すように、冷凍サイクル装置1は、冷媒回路2aおよび2bと、冷媒回路2aおよび2bを循環する冷媒と熱媒体が熱交換する熱媒体熱交換器6aおよび6bを備えた熱媒体回路30とを有する。冷凍サイクル装置1に、制御部40が設けられている。熱媒体回路30は負荷側ユニット60と接続されている。負荷側ユニット60と熱媒体回路30との間を循環する熱媒体は、水またはブラインである。
Embodiment 1.
The configuration of the refrigeration cycle apparatus of the first embodiment will be described. FIG. 1 is a diagram showing a configuration example of a refrigeration cycle device according to a first embodiment of the present invention. As shown in FIG. 1, the refrigeration cycle device 1 includes a refrigerant circuits 2a and 2b and heat medium heat exchangers 6a and 6b in which heat exchange between the refrigerant circulating in the refrigerant circuits 2a and 2b and the heat medium exchanges heat. Has 30 and. The refrigeration cycle device 1 is provided with a control unit 40. The heat medium circuit 30 is connected to the load side unit 60. The heat medium circulating between the load side unit 60 and the heat medium circuit 30 is water or brine.

冷媒回路2aおよび2bは、冷凍サイクルで生成される熱を熱媒体回路30に供給する。冷媒回路2aは、圧縮機3a、熱源側熱交換器4a、および減圧装置5aを有する。熱源側熱交換器4aには、外気を熱源側熱交換器4aに供給するファン7aが設けられている。冷媒回路2aは、熱媒体熱交換器6aと接続されている。冷媒回路2bは、圧縮機3b、熱源側熱交換器4b、および減圧装置5bを有する。熱源側熱交換器4bには、外気を熱源側熱交換器4bに供給するファン7bが設けられている。冷媒回路2bは、熱媒体熱交換器6bと接続されている。冷媒回路2aおよび2bは同様な構成のため、冷媒回路2aの構成について説明する。 The refrigerant circuits 2a and 2b supply the heat generated in the refrigeration cycle to the heat medium circuit 30. The refrigerant circuit 2a includes a compressor 3a, a heat source side heat exchanger 4a, and a decompression device 5a. The heat source side heat exchanger 4a is provided with a fan 7a that supplies outside air to the heat source side heat exchanger 4a. The refrigerant circuit 2a is connected to the heat medium heat exchanger 6a. The refrigerant circuit 2b includes a compressor 3b, a heat source side heat exchanger 4b, and a decompression device 5b. The heat source side heat exchanger 4b is provided with a fan 7b that supplies outside air to the heat source side heat exchanger 4b. The refrigerant circuit 2b is connected to the heat medium heat exchanger 6b. Since the refrigerant circuits 2a and 2b have the same configuration, the configuration of the refrigerant circuit 2a will be described.

圧縮機3aは冷媒を圧縮して吐出する。圧縮機3aは、インバータで回転数制御が行われるインバータ圧縮機であり、回転数に応じて容量を変化させる。圧縮機3aは、回転数が一定速で、別の方法で容量を変化させるタイプの圧縮機であってもよい。熱源側熱交換器4aは、冷媒が空気と熱交換するものであり、例えば、プレートフィン熱交換器からなる。熱源側熱交換器4aは、冷媒回路2aの凝縮器として機能する。減圧装置5aは、冷媒を膨張させる。減圧装置5aは、開度を調整できる電子膨張弁であってもよく、キャピラリーチューブであってもよい。 The compressor 3a compresses and discharges the refrigerant. The compressor 3a is an inverter compressor in which the rotation speed is controlled by an inverter, and the capacity is changed according to the rotation speed. The compressor 3a may be a type of compressor whose rotation speed is constant and whose capacity is changed by another method. The heat source side heat exchanger 4a exchanges heat between the refrigerant and air, and includes, for example, a plate fin heat exchanger. The heat source side heat exchanger 4a functions as a condenser of the refrigerant circuit 2a. The depressurizing device 5a expands the refrigerant. The pressure reducing device 5a may be an electronic expansion valve whose opening degree can be adjusted, or may be a capillary tube.

なお、圧縮機3aおよび3bの容量制御は、インバータによる回転数制御に限らず、他の制御を用いてもよい。例えば、機械的に圧縮機3aおよび3bのストロークボリュームを変更する容量制御を用いてもよい。また、各冷媒回路2aおよび2bに、圧縮機3aを複数台設け、圧縮機3aの運転台数を変更することで、圧縮機の容量制御を行ってもよい。これらの場合でも、インバータで回転数を制御する場合と同様に圧縮機3aおよび3bの運転制御を行うことで、各冷媒回路2aおよび2bの冷凍サイクルの運転をバランスよく実施でき、冷凍サイクルの高効率の運転を実現できる。 The capacitance control of the compressors 3a and 3b is not limited to the rotation speed control by the inverter, and other controls may be used. For example, capacitance control that mechanically changes the stroke volume of the compressors 3a and 3b may be used. Further, the capacity of the compressor may be controlled by providing a plurality of compressors 3a in each of the refrigerant circuits 2a and 2b and changing the number of compressors 3a in operation. Even in these cases, by controlling the operation of the compressors 3a and 3b in the same manner as when controlling the rotation speed with the inverter, the refrigeration cycle operation of each refrigerant circuit 2a and 2b can be performed in a well-balanced manner, and the refrigeration cycle is high. Efficient operation can be realized.

また、熱源側熱交換器4aおよび4bの構成は、プレートフィン熱交換器に限らず、例えば、コルゲートフィンなど他の形式であってもよい。熱源側熱交換器4aおよび4bにおいて、冷媒が熱交換する対象は空気に限らず、水など他の媒体であってもよい。 Further, the configuration of the heat source side heat exchangers 4a and 4b is not limited to the plate fin heat exchanger, and may be another type such as a corrugated fin. In the heat source side heat exchangers 4a and 4b, the target for heat exchange by the refrigerant is not limited to air, but may be another medium such as water.

熱媒体回路30は、熱媒体に冷媒回路2aおよび2bを循環する冷媒と熱交換させた後、熱交換後の熱媒体を負荷側ユニット60に供給する。熱媒体回路30の熱媒体の流入口側には、熱媒体が負荷側ユニット60から熱媒体回路30に戻る配管31が接続されている。また、熱媒体回路30の熱媒体の流出口側には、熱媒が熱媒体回路30から負荷側ユニット60に供給される配管32が接続されている。配管31は、熱媒体熱交換器6aを通る配管33と、熱媒体熱交換器6bを通る配管34とに分岐する。配管33および配管34は合流して配管32と接続されている。 The heat medium circuit 30 exchanges heat with the refrigerant circulating in the refrigerant circuits 2a and 2b in the heat medium, and then supplies the heat medium after the heat exchange to the load side unit 60. A pipe 31 is connected to the inflow port side of the heat medium of the heat medium circuit 30 so that the heat medium returns from the load side unit 60 to the heat medium circuit 30. Further, a pipe 32 for supplying the heat medium from the heat medium circuit 30 to the load side unit 60 is connected to the outlet side of the heat medium of the heat medium circuit 30. The pipe 31 is branched into a pipe 33 passing through the heat medium heat exchanger 6a and a pipe 34 passing through the heat medium heat exchanger 6b. The pipe 33 and the pipe 34 are merged and connected to the pipe 32.

負荷側ユニット60と、配管31と、配管32とが接続され、熱媒体が循環する負荷側流路が構成される。配管31には、負荷側ユニット60に熱媒体を循環させる動力として、熱媒体搬送装置8が設けられている。熱媒体搬送装置8はポンプである。図1では、熱媒体搬送装置8が冷凍サイクル装置1の外部に設けられている場合を示しているが、熱媒体搬送装置8は冷凍サイクル装置1内に設けられていてもよい。 The load-side unit 60, the pipe 31, and the pipe 32 are connected to form a load-side flow path through which the heat medium circulates. The pipe 31 is provided with a heat medium transfer device 8 as a power source for circulating the heat medium in the load side unit 60. The heat medium transfer device 8 is a pump. Although FIG. 1 shows a case where the heat medium transfer device 8 is provided outside the refrigeration cycle device 1, the heat medium transfer device 8 may be provided inside the refrigeration cycle device 1.

熱媒体回路30は、複数の熱媒体熱交換器6aおよび6bを有する。熱媒体熱交換器6aは、冷媒回路2aを循環する冷媒が熱媒体と熱交換するものであり、例えば、プレート式熱交換器からなる。熱媒体熱交換器6aは、冷媒回路2aの蒸発器として機能する。熱媒体熱交換器6bは、冷媒回路2bを循環する冷媒が熱媒体と熱交換するものであり、例えば、プレート式熱交換器からなる。熱媒体熱交換器6bは、冷媒回路2bの蒸発器として機能する。 The heat medium circuit 30 has a plurality of heat medium heat exchangers 6a and 6b. The heat medium heat exchanger 6a is such that the refrigerant circulating in the refrigerant circuit 2a exchanges heat with the heat medium, and is composed of, for example, a plate type heat exchanger. The heat medium heat exchanger 6a functions as an evaporator of the refrigerant circuit 2a. The heat medium heat exchanger 6b is such that the refrigerant circulating in the refrigerant circuit 2b exchanges heat with the heat medium, and is composed of, for example, a plate type heat exchanger. The heat medium heat exchanger 6b functions as an evaporator of the refrigerant circuit 2b.

なお、熱媒体熱交換器6aおよび6bの構成は、プレート式熱交換器に限らず、他の形式であってもよい。熱媒体熱交換器6aおよび6bは、例えば、シェルチューブ型または二重管式などの形式であってもよい。また、熱媒体回路30と負荷側ユニット60との間を循環する熱媒体は、水またはブラインに限らず、顕熱で熱を授受する媒体であれば他の媒体であってもよい。 The configurations of the heat medium heat exchangers 6a and 6b are not limited to the plate heat exchangers, and may be of other types. The heat medium heat exchangers 6a and 6b may be of, for example, a shell tube type or a double tube type. Further, the heat medium circulating between the heat medium circuit 30 and the load side unit 60 is not limited to water or brine, and may be any other medium as long as it is a medium that transfers heat by sensible heat.

本実施の形態1では、熱媒体熱交換器6aおよび熱媒体熱交換器6bは、冷媒と熱媒体とが対向流となる構成である。冷媒と熱媒体とが対向流となった状態で熱交換を行うため、熱交換の効率が向上する。 In the first embodiment, the heat medium heat exchanger 6a and the heat medium heat exchanger 6b have a configuration in which the refrigerant and the heat medium are countercurrent. Since heat exchange is performed in a state where the refrigerant and the heat medium are countercurrent, the efficiency of heat exchange is improved.

本実施の形態1では、熱媒体熱交換器6aおよび熱媒体熱交換器6bが単体の熱交換器の場合で説明するが、熱媒体熱交換器6aと熱媒体熱交換器6bとが一体的に形成されていてもよい。この場合、冷凍サイクル装置1において、熱媒体熱交換器が占める設置面積を小さくすることができ、省スペース化を図れる。 In the first embodiment, the case where the heat medium heat exchanger 6a and the heat medium heat exchanger 6b are single heat exchangers will be described, but the heat medium heat exchanger 6a and the heat medium heat exchanger 6b are integrated. It may be formed in. In this case, in the refrigeration cycle apparatus 1, the installation area occupied by the heat medium heat exchanger can be reduced, and space can be saved.

また、図1に示す構成では、熱源側熱交換器4aおよび4bが凝縮器として機能し、熱媒体熱交換器6aおよび6bが冷媒回路2aおよび2bの蒸発器として機能する場合を示しているが、熱源側熱交換器4aおよび4bを蒸発器としてもよい。この場合、冷媒回路2aおよび2bは温熱を熱媒体回路30に提供する。 Further, in the configuration shown in FIG. 1, the heat source side heat exchangers 4a and 4b function as condensers, and the heat medium heat exchangers 6a and 6b function as evaporators of the refrigerant circuits 2a and 2b. , The heat source side heat exchangers 4a and 4b may be used as the evaporator. In this case, the refrigerant circuits 2a and 2b provide heat to the heat medium circuit 30.

熱媒体回路30は、熱媒体熱交換器6aおよび6bが直列に接続される直列流路と、熱媒体熱交換器6aおよび6bが並列に接続される並列流路と、熱媒体熱交換器6aまたは6bに冷媒を流通する片系統流路とを、切り替える流路切替装置50を有する。流路切替装置50は、熱媒体熱交換器6bの下流側と熱媒体熱交換器6aの上流側とを接続する配管35と、熱媒体熱交換器6aおよび配管35への熱媒体の流入を制御する第1の弁9と、熱媒体熱交換器6bからの熱媒体の流出を制御する第2の弁11とを有する。本実施の形態1では、配管35に第3の弁10が設けられている。第1の弁9、第2の弁11および第3の弁10は、例えば、電磁弁である。 The heat medium circuit 30 includes a series flow path in which the heat medium heat exchangers 6a and 6b are connected in series, a parallel flow path in which the heat medium heat exchangers 6a and 6b are connected in parallel, and a heat medium heat exchanger 6a. Alternatively, it has a flow path switching device 50 for switching between the single system flow path through which the refrigerant flows in 6b. The flow path switching device 50 transfers the inflow of the heat medium into the pipe 35 connecting the downstream side of the heat medium heat exchanger 6b and the upstream side of the heat medium heat exchanger 6a, and the heat medium heat exchanger 6a and the pipe 35. It has a first valve 9 for controlling and a second valve 11 for controlling the outflow of heat medium from the heat medium heat exchanger 6b. In the first embodiment, the pipe 35 is provided with the third valve 10. The first valve 9, the second valve 11, and the third valve 10 are, for example, solenoid valves.

第1の弁9は、配管33において、配管31と熱媒体熱交換器6aとの間であって、配管35が配管33と接続される箇所よりも上流側に設けられている。第2の弁11は、配管34において、熱媒体熱交換器6bと配管32との間であって、配管35が配管34と接続される箇所よりも下流側に設けられている。配管35は、第1の弁9と熱媒体熱交換器6aとの間で配管33と接続され、第2の弁11と熱媒体熱交換器6bとの間で配管34と接続されている。第1の弁9、第2の弁11および第3の弁10は、二方弁であって、開閉により熱媒体の流通を制御する。なお、第1の弁9および第3の弁10の代わりに、三方弁が設けられてもよい。また、第2の弁11および第3の弁10の代わりに、三方弁が設けられてもよい。 The first valve 9 is provided in the pipe 33 between the pipe 31 and the heat medium heat exchanger 6a, on the upstream side of the portion where the pipe 35 is connected to the pipe 33. The second valve 11 is provided in the pipe 34 between the heat medium heat exchanger 6b and the pipe 32, on the downstream side of the portion where the pipe 35 is connected to the pipe 34. The pipe 35 is connected to the pipe 33 between the first valve 9 and the heat medium heat exchanger 6a, and is connected to the pipe 34 between the second valve 11 and the heat medium heat exchanger 6b. The first valve 9, the second valve 11, and the third valve 10 are two-way valves, and control the flow of the heat medium by opening and closing. A three-way valve may be provided instead of the first valve 9 and the third valve 10. Further, a three-way valve may be provided instead of the second valve 11 and the third valve 10.

また、図1に示すように、冷凍サイクル装置1は、熱媒体回路30に流入する熱媒体の入口圧力を測定する入口圧力センサ12と、熱媒体回路30から流出する熱媒体の出口圧力を測定する出口圧力センサ13とを有する。図1に示す構成例では、入口圧力センサ12は配管31に設けられ、出口圧力センサ13は配管32に設けられている。配管32には、配管32に流れる熱媒体の流量を測定する流量計45が設けられている。 Further, as shown in FIG. 1, the refrigeration cycle device 1 measures the inlet pressure sensor 12 for measuring the inlet pressure of the heat medium flowing into the heat medium circuit 30 and the outlet pressure of the heat medium flowing out from the heat medium circuit 30. It has an outlet pressure sensor 13. In the configuration example shown in FIG. 1, the inlet pressure sensor 12 is provided in the pipe 31, and the outlet pressure sensor 13 is provided in the pipe 32. The pipe 32 is provided with a flow meter 45 for measuring the flow rate of the heat medium flowing through the pipe 32.

図2は、図1に示した制御部の一構成例を示す機能ブロック図である。図1に示す制御部40は、例えば、マイクロコンピュータである。制御部40は、プログラムを記憶するメモリと、プログラムにしたがって処理を実行するCPU(Central Processing Unit)とを有する。図2では、メモリおよびCPUを図に示すことを省略している。 FIG. 2 is a functional block diagram showing a configuration example of the control unit shown in FIG. The control unit 40 shown in FIG. 1 is, for example, a microcomputer. The control unit 40 has a memory for storing a program and a CPU (Central Processing Unit) that executes processing according to the program. In FIG. 2, it is omitted that the memory and the CPU are shown in the figure.

制御部40は、入口圧力センサ12、出口圧力センサ13および流量計45と信号線で接続されている。制御部40は、圧縮機3aおよび3bと、ファン7aおよび7bと、減圧装置5aおよび5bと信号線で接続されている。制御部40は、流路切替装置50と信号線で接続されている。具体的には、制御部40は、第1の弁9、第2の弁11および第3の弁10と信号線で接続されている。制御部40は、熱媒体搬送装置8と信号線で接続されている。本実施の形態1では、各機器および各センサと制御部40との通信接続手段が有線の場合で説明するが、通信接続手段は無線であってもよい。 The control unit 40 is connected to the inlet pressure sensor 12, the outlet pressure sensor 13, and the flow meter 45 by a signal line. The control unit 40 is connected to the compressors 3a and 3b, the fans 7a and 7b, and the decompression devices 5a and 5b by a signal line. The control unit 40 is connected to the flow path switching device 50 by a signal line. Specifically, the control unit 40 is connected to the first valve 9, the second valve 11, and the third valve 10 by a signal line. The control unit 40 is connected to the heat medium transfer device 8 by a signal line. In the first embodiment, the case where the communication connection means between each device and each sensor and the control unit 40 is wired will be described, but the communication connection means may be wireless.

図2に示すように、制御部40は、冷凍サイクル制御手段41と、効率算出手段42と、流路決定手段43とを有する。冷凍サイクル制御手段41は、負荷側ユニット60が必要とする熱量にしたがって、圧縮機3aおよび3bの運転周波数と、ファン7aおよび7bの回転数と、減圧装置5aおよび5bの開度と、熱媒体搬送装置8の回転数とを制御する。冷凍サイクル制御手段41は、冷媒回路2aおよび2bについて、運転を停止した場合、運転を停止した冷媒回路の情報を含む運転停止情報を、効率算出手段42を介して流路決定手段43に送信する。冷凍サイクル制御手段41は、熱媒体回路30に形成された流路にしたがって冷凍サイクルを制御する。 As shown in FIG. 2, the control unit 40 includes a refrigeration cycle control means 41, an efficiency calculation means 42, and a flow path determination means 43. The refrigeration cycle control means 41 determines the operating frequencies of the compressors 3a and 3b, the rotation speeds of the fans 7a and 7b, the opening degrees of the decompression devices 5a and 5b, and the heat medium according to the amount of heat required by the load side unit 60. It controls the rotation speed of the transport device 8. When the operation of the refrigerant circuits 2a and 2b is stopped, the refrigeration cycle control means 41 transmits the operation stop information including the information of the refrigerant circuit that has stopped the operation to the flow path determining means 43 via the efficiency calculation means 42. .. The refrigeration cycle control means 41 controls the refrigeration cycle according to the flow path formed in the heat medium circuit 30.

効率算出手段42は、熱媒体回路30における圧力損失として、熱媒体回路30の入口圧力と出口圧力との圧力差を算出する。効率算出手段42は、流量計45が測定する流量を用いて圧力損失を算出してもよい。効率算出手段42は、算出した圧力損失を用いて、流路選択の判定に用いる値を算出する。流路決定手段43は、効率算出手段42が算出した値と設定値とを比較し、直列流路および並列流路から熱媒体回路30に形成する流路を選択する。また、流路決定手段43は、運転停止情報を冷凍サイクル制御手段41から効率算出手段42を介して受信すると、運転停止情報にしたがって2つの片系統流路のうち、いずれかの流路を選択する。流路決定手段43は、選択した流路にしたがって流路切替装置50を制御する。流路決定手段43は、選択した流路を冷凍サイクル制御手段41に通知する。 The efficiency calculation means 42 calculates the pressure difference between the inlet pressure and the outlet pressure of the heat medium circuit 30 as the pressure loss in the heat medium circuit 30. The efficiency calculating means 42 may calculate the pressure loss using the flow rate measured by the flow meter 45. The efficiency calculation means 42 calculates a value used for determining the flow path selection by using the calculated pressure loss. The flow path determining means 43 compares the value calculated by the efficiency calculating means 42 with the set value, and selects a flow path to be formed in the heat medium circuit 30 from the series flow path and the parallel flow path. Further, when the flow path determining means 43 receives the operation stop information from the refrigerating cycle control means 41 via the efficiency calculating means 42, the flow path determining means 43 selects one of the two single-system flow paths according to the operation stop information. To do. The flow path determining means 43 controls the flow path switching device 50 according to the selected flow path. The flow path determining means 43 notifies the refrigeration cycle control means 41 of the selected flow path.

次に、図1に示した熱媒体回路30に直列流路が形成される場合について説明する。図3は、図1に示した熱媒体回路に直列流路が形成される構成を示す図である。図3では、熱媒体が流れる方向を矢印で示す。流路決定手段43は、第1の弁9を閉状態に制御し、第3の弁10を開状態に制御し、第2の弁11を閉状態に制御する。これにより、熱媒体熱交換器6bと熱媒体熱交換器6aとが直列に接続される。このとき、配管35は、熱媒体熱交換器6aおよび6bを直列に接続する接続流路として機能する。 Next, a case where a series flow path is formed in the heat medium circuit 30 shown in FIG. 1 will be described. FIG. 3 is a diagram showing a configuration in which a series flow path is formed in the heat medium circuit shown in FIG. In FIG. 3, the direction in which the heat medium flows is indicated by an arrow. The flow path determining means 43 controls the first valve 9 in the closed state, controls the third valve 10 in the open state, and controls the second valve 11 in the closed state. As a result, the heat medium heat exchanger 6b and the heat medium heat exchanger 6a are connected in series. At this time, the pipe 35 functions as a connection flow path for connecting the heat medium heat exchangers 6a and 6b in series.

図3に示す構成では、熱媒体は、配管31から配管34に流入し、熱媒体熱交換器6bを流通して配管35に流出する。続いて、熱媒体は、配管35から配管33に流入し、熱媒体熱交換器6aを流通して配管33から配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6b、接続流路および熱媒体熱交換器6aを順に流通する直列流路が、熱媒体回路30に形成される。 In the configuration shown in FIG. 3, the heat medium flows into the pipe 34 from the pipe 31, flows through the heat medium heat exchanger 6b, and flows out to the pipe 35. Subsequently, the heat medium flows into the pipe 33 from the pipe 35, flows through the heat medium heat exchanger 6a, and flows out from the pipe 33 to the pipe 32. In this way, a series flow path through which the heat medium passes through the heat medium heat exchanger 6b, the connection flow path, and the heat medium heat exchanger 6a in this order is formed in the heat medium circuit 30.

次に、図1に示した熱媒体回路30に並列流路が形成される場合を説明する。図4は、図1に示した熱媒体回路に並列流路が形成される構成を示す図である。流路決定手段43は、第1の弁9を開状態に制御し、第3の弁10を閉状態に制御し、第2の弁11を開状態に制御する。これにより、熱媒体熱交換器6bと熱媒体熱交換器6aとが並列に接続される。 Next, a case where a parallel flow path is formed in the heat medium circuit 30 shown in FIG. 1 will be described. FIG. 4 is a diagram showing a configuration in which a parallel flow path is formed in the heat medium circuit shown in FIG. The flow path determining means 43 controls the first valve 9 in the open state, controls the third valve 10 in the closed state, and controls the second valve 11 in the open state. As a result, the heat medium heat exchanger 6b and the heat medium heat exchanger 6a are connected in parallel.

図4に示す構成では、熱媒体は、配管31から配管33および34に分流する。配管33を流れる熱媒体は、熱媒体熱交換器6aを流通する。一方、配管34を流れる熱媒体は、熱媒体熱交換器6bを流通する。配管33を流れる熱媒体と配管34を流れる熱媒体とが合流して配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6aを流れる流路と熱媒体が熱媒体熱交換器6bを流れる流路とからなる並列流路が、熱媒体回路30に形成される。 In the configuration shown in FIG. 4, the heat medium is diverted from the pipe 31 to the pipes 33 and 34. The heat medium flowing through the pipe 33 flows through the heat medium heat exchanger 6a. On the other hand, the heat medium flowing through the pipe 34 flows through the heat medium heat exchanger 6b. The heat medium flowing through the pipe 33 and the heat medium flowing through the pipe 34 merge and flow out to the pipe 32. In this way, a parallel flow path including a flow path in which the heat medium flows through the heat medium heat exchanger 6a and a flow path in which the heat medium flows through the heat medium heat exchanger 6b is formed in the heat medium circuit 30.

次に、図1に示した熱媒体回路30に片系統流路が形成される場合を説明する。図5は、図1に示した熱媒体回路に片系統流路が形成される構成を示す図である。図5は、冷媒回路2aおよび2bのうち、冷媒回路2bが運転しているが、冷媒回路2aが運転を停止している場合である。流路決定手段43は、第1の弁9および第3の弁10を閉状態に制御し、第2の弁11を開状態に制御する。図5に示す構成では、熱媒体は、配管31から配管34に流入し、熱媒体熱交換器6bを流通した後、配管34から配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6aを流通せず、熱媒体熱交換器6bを流通する片系統流路が、熱媒体回路30に形成される。 Next, a case where a single system flow path is formed in the heat medium circuit 30 shown in FIG. 1 will be described. FIG. 5 is a diagram showing a configuration in which a single system flow path is formed in the heat medium circuit shown in FIG. FIG. 5 shows a case where the refrigerant circuit 2b of the refrigerant circuits 2a and 2b is operating, but the refrigerant circuit 2a is stopped. The flow path determining means 43 controls the first valve 9 and the third valve 10 in the closed state, and controls the second valve 11 in the open state. In the configuration shown in FIG. 5, the heat medium flows from the pipe 31 into the pipe 34, flows through the heat medium heat exchanger 6b, and then flows out from the pipe 34 to the pipe 32. In this way, the heat medium circuit 30 is formed with a single-system flow path in which the heat medium does not flow through the heat medium heat exchanger 6a and flows through the heat medium heat exchanger 6b.

図6は、図5に示した片系統流路とは別の片系統流路が形成される構成を示す図である。図6は、冷媒回路2aおよび2bのうち、冷媒回路2aが運転しているが、冷媒回路2bが運転を停止している場合である。流路決定手段43は、第1の弁9を開状態に制御し、第2の弁11および第3の弁10を閉状態に制御する。図6に示す構成では、熱媒体は、配管31から配管33に流入し、熱媒体熱交換器6aを流通した後、配管33から配管32に流出する。このようにして、熱媒体が熱媒体熱交換器6bを流通せず、熱媒体熱交換器6aを流通する片系統流路が、熱媒体回路30に形成される。 FIG. 6 is a diagram showing a configuration in which a single system flow path different from the single system flow path shown in FIG. 5 is formed. FIG. 6 shows a case where the refrigerant circuit 2a is operating but the refrigerant circuit 2b is stopped among the refrigerant circuits 2a and 2b. The flow path determining means 43 controls the first valve 9 in the open state and controls the second valve 11 and the third valve 10 in the closed state. In the configuration shown in FIG. 6, the heat medium flows from the pipe 31 into the pipe 33, flows through the heat medium heat exchanger 6a, and then flows out from the pipe 33 to the pipe 32. In this way, the heat medium circuit 30 is formed with a single-system flow path through which the heat medium does not flow through the heat medium heat exchanger 6b and through the heat medium heat exchanger 6a.

次に、制御部40が熱媒体回路30に形成する流路を選択する場合について説明する。流路決定手段43は、熱媒体回路30に形成される流路毎に異なる冷凍効率と熱媒体搬送装置8の動力効率とを比較して、より運転効率のよい流路を選択する。 Next, a case where the control unit 40 selects the flow path formed in the heat medium circuit 30 will be described. The flow path determining means 43 compares the refrigerating efficiency that differs for each flow path formed in the heat medium circuit 30 with the power efficiency of the heat medium transfer device 8, and selects a flow path with higher operating efficiency.

一般的には、冷凍サイクルの成績係数(COP:Coefficient Of Performance)は、COP=(利用できる熱量[kW]/圧縮機への入力[kW])で表される。この成績係数の式を基にして、利用できる熱量と熱媒体搬送装置8の動力効率との比を成績係数として流路毎に算出する。直列流路の場合の成績係数となる直列成績係数をCOPsとし、並列流路の場合の成績係数となる並列成績係数をCOPpとする。 Generally, the coefficient of performance (COP) of the refrigeration cycle is expressed by COP = (available calorific value [kW] / input to compressor [kW]). Based on this coefficient of performance formula, the ratio of the amount of heat that can be used to the power efficiency of the heat medium transfer device 8 is calculated as the coefficient of performance for each flow path. Let COPs be the series coefficient of performance, which is the coefficient of performance in the case of the series flow path, and COPp be the parallel performance coefficient, which is the coefficient of performance in the case of the parallel flow path.

直列流路の場合に冷媒回路2aおよび2bが生成する熱量をQsとし、並列流路の場合に冷媒回路2aおよび2bが生成する熱量をQpとする。本実施の形態1では、熱量QsおよびQpは、冷媒回路2aおよび2bが一定の条件で運転している場合の値とするが、冷凍サイクル制御手段41が熱量QsおよびQpを算出してもよい。熱媒体搬送装置8の動力効率の逆数Eを、E=(圧力損失ΔP/消費電力W)と表す。圧力損失ΔPは、熱媒体回路30の前後の圧力損失である。直列流路の場合の逆数Esを、Es=(圧力損失ΔPs/消費電力Ws)とする。並列流路の場合の逆数Epを、Ep=(圧力損失ΔPp/消費電力Wp)とする。 Let Qs be the amount of heat generated by the refrigerant circuits 2a and 2b in the case of the series flow path, and let Qp be the amount of heat generated by the refrigerant circuits 2a and 2b in the case of the parallel flow path. In the first embodiment, the calorific value Qs and Qp are values when the refrigerant circuits 2a and 2b are operated under certain conditions, but the refrigeration cycle control means 41 may calculate the calorific value Qs and Qp. .. The reciprocal E of the power efficiency of the heat medium transfer device 8 is expressed as E = (pressure loss ΔP / power consumption W). The pressure loss ΔP is the pressure loss before and after the heat medium circuit 30. The reciprocal Es in the case of a series flow path is Es = (pressure loss ΔPs / power consumption Ws). The reciprocal Ep in the case of a parallel flow path is Ep = (pressure loss ΔPp / power consumption Wp).

これらの値から、COPsを、COPs=(Qs/Es)と表す。COPpを、COPp=(Qp/Ep)と表す。COPs/COPpの値をシステム改善率Uとする。システム改善率Uに対する流路選択の基準となる設定値をUrefとする。設定値Urefは、システム改善率Uが設定値Urefより大きい場合に、運転効率が並列流路よりも直列流路の方がよいと判定される値である。熱量QsおよびQpの値と、設定値Urefとを制御部40が記憶している。 From these values, COPs are expressed as COPs = (Qs / Es). COPp is expressed as COPp = (Qp / Ep). Let the value of COPs / COPp be the system improvement rate U. URef is a set value that serves as a reference for selecting a flow path for the system improvement rate U. The set value URef is a value at which it is determined that the operation efficiency of the series flow path is better than that of the parallel flow path when the system improvement rate U is larger than the set value Uref. The control unit 40 stores the values of the calorific value Qs and Qp and the set value URef.

図7は、図2に示した制御部が実行する流路選択の手順の一例を示すフローチャートである。効率算出手段42は、流路切替装置50を制御して、直列流路を熱媒体回路30に設定する(ステップST101)。効率算出手段42は、熱媒体搬送装置8の消費電力Wsの情報を冷凍サイクル制御手段41から取得する。効率算出手段42は、入口圧力センサ12が測定する入口圧力と出口圧力センサ13が測定する出口圧力との圧力差を算出する(ステップST102)。算出される圧力差を圧力損失ΔPsとする。続いて、効率算出手段42は、流路切替装置50を制御して、並列流路を熱媒体回路30に設定する(ステップST103)。効率算出手段42は、熱媒体搬送装置8の消費電力Wpの情報を冷凍サイクル制御手段41から取得する。そして、効率算出手段42は、入口圧力と出口圧力との圧力差を算出する(ステップST104)。算出される圧力差を圧力損失ΔPpとする。 FIG. 7 is a flowchart showing an example of the flow path selection procedure executed by the control unit shown in FIG. The efficiency calculation means 42 controls the flow path switching device 50 to set the series flow path in the heat medium circuit 30 (step ST101). The efficiency calculation means 42 acquires information on the power consumption Ws of the heat medium transfer device 8 from the refrigeration cycle control means 41. The efficiency calculating means 42 calculates the pressure difference between the inlet pressure measured by the inlet pressure sensor 12 and the outlet pressure measured by the outlet pressure sensor 13 (step ST102). Let the calculated pressure difference be the pressure loss ΔPs. Subsequently, the efficiency calculation means 42 controls the flow path switching device 50 to set the parallel flow path in the heat medium circuit 30 (step ST103). The efficiency calculation means 42 acquires information on the power consumption Wp of the heat medium transfer device 8 from the refrigeration cycle control means 41. Then, the efficiency calculating means 42 calculates the pressure difference between the inlet pressure and the outlet pressure (step ST104). Let the calculated pressure difference be the pressure loss ΔPp.

効率算出手段42は、直列流路に関して、熱媒体搬送装置8の消費電力Ws、熱量Qsおよび圧力損失ΔPsを用いて、成績係数COPsを算出する。また、効率算出手段42は、並列流路に関して、熱媒体搬送装置8の消費電力Wp、熱量Qpおよび圧力損失ΔPpを用いて、成績係数COPpを算出する(ステップST105)。そして、効率算出手段42は、COPsおよびCOPpを用いてシステム改善率Uを算出し、算出したシステム改善率Uを流路決定手段43に通知する。 The efficiency calculation means 42 calculates the coefficient of performance COPs for the series flow path by using the power consumption Ws, the heat quantity Qs, and the pressure loss ΔPs of the heat medium transfer device 8. Further, the efficiency calculation means 42 calculates the coefficient of performance COPp for the parallel flow path using the power consumption Wp, the heat quantity Qp, and the pressure loss ΔPp of the heat medium transfer device 8 (step ST105). Then, the efficiency calculation means 42 calculates the system improvement rate U using COPs and COPp, and notifies the flow path determination means 43 of the calculated system improvement rate U.

流路決定手段43は、効率算出手段42から受け取ったシステム改善率Uと設定値Urefとを比較する(ステップST106)。システム改善率Uが設定値Urefより大きい場合、流路決定手段43は、熱媒体回路30に形成する流路として直列流路を選択する(ステップST107)。ステップST106の判定において、システム改善率Uが設定値Uref以下である場合、流路決定手段43は、熱媒体回路30に形成する流路として並列流路を選択する(ステップST108)。その後、流路決定手段43は、流路切替装置50を制御して、ステップST106の判定で選択した流路を熱媒体回路30に形成する。 The flow path determining means 43 compares the system improvement rate U received from the efficiency calculating means 42 with the set value Uref (step ST106). When the system improvement rate U is larger than the set value URef, the flow path determining means 43 selects a series flow path as the flow path formed in the heat medium circuit 30 (step ST107). In the determination of step ST106, when the system improvement rate U is equal to or less than the set value URef, the flow path determining means 43 selects a parallel flow path as the flow path formed in the heat medium circuit 30 (step ST108). After that, the flow path determining means 43 controls the flow path switching device 50 to form the flow path selected in the determination in step ST106 in the heat medium circuit 30.

なお、図7を参照して、効率算出手段42が直列流路の場合の圧力差を並列流路の場合の圧力差よりも先に算出する場合で説明したが、これらの圧力差の算出はいずれが先であってもよい。また、図7に示した手順において、消費電力Ws=消費電力Wpとしてもよい。この場合、システム改善率Uの演算処理において、変数は圧力損失ΔPsおよびΔPpだけとなり、システム改善率U=COPs/COPp=(Qs/ΔPs)/(Qp/ΔPp)となる。効率算出手段42はシステム改善率Uをよりスムーズに算出できる。 Although the pressure difference when the efficiency calculation means 42 is in the series flow path is calculated before the pressure difference in the case of the parallel flow path is described with reference to FIG. 7, the calculation of these pressure differences is performed. Whichever comes first. Further, in the procedure shown in FIG. 7, power consumption Ws = power consumption Wp may be set. In this case, in the arithmetic processing of the system improvement rate U, the variables are only the pressure losses ΔPs and ΔPp, and the system improvement rate U = COPs / COPp = (Qs / ΔPs) / (Qp / ΔPp). The efficiency calculation means 42 can calculate the system improvement rate U more smoothly.

入口圧力センサ12および出口圧力センサ13が測定した圧力の値を用いる場合を例示したが、熱媒体回路30を熱媒体が流通する流量を用いて、流路決定手段43は、流路を切り替えてもよい。 Although the case where the pressure values measured by the inlet pressure sensor 12 and the outlet pressure sensor 13 are used is illustrated, the flow path determining means 43 switches the flow path by using the flow rate through which the heat medium flows through the heat medium circuit 30. May be good.

効率算出手段42は、直列流路および並列流路の流路毎に、熱媒体の物性値と流量計45が測定する流量とを用いて、圧力損失を算出する。圧力損失ΔPは、以下の式1から算出される。
ΔP=A(V)×ρ^3/4×μ^1/4 ・・・(1)
The efficiency calculation means 42 calculates the pressure loss for each of the series flow path and the parallel flow path by using the physical property value of the heat medium and the flow rate measured by the flow meter 45. The pressure loss ΔP is calculated from the following equation 1.
ΔP = A (V) × ρ ^ 3/4 × μ ^ 1/4 ・ ・ ・ (1)

式(1)において、ΔP[kPa]は、熱媒体熱交換器6aおよび6bを熱媒体が通過する際に発生する圧力損失である。A(V)は、熱媒体熱交換器固有の係数であり、流速Vに依存する値である。流速Vは、直列流路の場合と並列流路の場合とで異なる。ρ[kg/m]は、熱媒体の密度であり、μ[mPa・s]は、熱媒体の粘性係数である。これらの物性値を制御部40が記憶している。In the formula (1), ΔP [kPa] is the pressure loss generated when the heat medium passes through the heat medium heat exchangers 6a and 6b. A (V) is a coefficient peculiar to the heat medium heat exchanger and is a value depending on the flow velocity V. The flow velocity V differs between the case of the series flow path and the case of the parallel flow path. ρ [kg / m 3 ] is the density of the heat medium, and μ [mPa · s] is the viscosity coefficient of the heat medium. The control unit 40 stores these physical property values.

図7に示したステップST101〜ST104において、効率算出手段42は、流量計45が計測する流量と式(1)とを用いて、圧力損失ΔPsおよびΔPpを算出する。その後、図7を参照して説明したように、効率算出手段42は、システム改善率Uを算出する(ステップST105)。図7を参照して説明したように、流路決定手段43は、システム改善率Uと設定値Urefとを比較し(ステップST106)、比較結果にしたがって、熱媒体回路30に形成する流路を決定する(ステップST107またはステップST108)。この場合においても、消費電力Ws=消費電力Wpであってもよい。 In steps ST101 to ST104 shown in FIG. 7, the efficiency calculating means 42 calculates the pressure losses ΔPs and ΔPp using the flow rate measured by the flow meter 45 and the equation (1). After that, as described with reference to FIG. 7, the efficiency calculation means 42 calculates the system improvement rate U (step ST105). As described with reference to FIG. 7, the flow path determining means 43 compares the system improvement rate U with the set value URef (step ST106), and according to the comparison result, forms a flow path in the heat medium circuit 30. Determine (step ST107 or step ST108). Also in this case, the power consumption Ws = the power consumption Wp may be satisfied.

さらに、流路決定手段43は、熱媒体の動粘度を用いて流路を切り替えてもよい。この流路切替は、熱媒体回路30の前後の熱媒体の圧力と熱媒体回路30を流通する熱媒体の流量とが不明な場合に有効である。 Further, the flow path determining means 43 may switch the flow path by using the kinematic viscosity of the heat medium. This flow path switching is effective when the pressure of the heat medium before and after the heat medium circuit 30 and the flow rate of the heat medium flowing through the heat medium circuit 30 are unknown.

熱媒体搬送装置8の動力は熱媒体の動粘度に大きく依存する。一般的に、熱媒体の粘度が10[mPa・s]以下である場合、粘度はポンプの動力にほとんど影響ないが、熱媒体の粘度が100[mPa・s]以上の場合、粘度はポンプの動力に重大な影響を及ぼす。粘度に関する流路の選択基準となる閾値として、例えば、30[mPa・s]が制御部40に格納されている。この場合、流路決定手段43は、使用される熱媒体の粘度が閾値以上である場合、並列流路を選択し、熱媒体の粘度が閾値未満である場合、直列流路を選択する。また、使用される熱媒体の粘度の値は、作業者によって制御部40に入力されてもよい。これにより、制御部40は、流路毎の圧力損失の運転効率に対する影響を比較し、運転効率のよい流路を選択する。 The power of the heat medium transfer device 8 largely depends on the kinematic viscosity of the heat medium. Generally, when the viscosity of the heat medium is 10 [mPa · s] or less, the viscosity has almost no effect on the power of the pump, but when the viscosity of the heat medium is 100 [mPa · s] or more, the viscosity of the pump is high. It has a significant effect on power. For example, 30 [mPa · s] is stored in the control unit 40 as a threshold value that serves as a criterion for selecting a flow path regarding viscosity. In this case, the flow path determining means 43 selects a parallel flow path when the viscosity of the heat medium used is equal to or higher than the threshold value, and selects a series flow path when the viscosity of the heat medium is less than the threshold value. Further, the value of the viscosity of the heat medium used may be input to the control unit 40 by the operator. As a result, the control unit 40 compares the influence of the pressure loss on each flow path on the operation efficiency, and selects a flow path with good operation efficiency.

次に、熱媒体回路30に直列流路または並列流路が形成されている場合に、制御部40が流路切替装置50を制御して片系統流路に切り替えるか否かを判定する場合を説明する。流路決定手段43は、冷媒回路2aおよび2bのうち、冷凍サイクルが停止している冷媒回路があるか否かを判定する。冷媒回路2aおよび2bのうち、いずれか一方の冷媒回路の冷凍サイクルが停止している場合、流路決定手段43は、停止している冷凍サイクルの冷媒回路に接続される熱媒体熱交換器に熱媒体が流入しないように流路切替装置50を制御する。 Next, when a series flow path or a parallel flow path is formed in the heat medium circuit 30, the control unit 40 controls the flow path switching device 50 to determine whether or not to switch to the one-system flow path. explain. The flow path determining means 43 determines whether or not there is a refrigerant circuit in the refrigerant circuits 2a and 2b in which the refrigeration cycle is stopped. When the refrigerating cycle of one of the refrigerant circuits 2a and 2b is stopped, the flow path determining means 43 is connected to the heat medium heat exchanger connected to the refrigerant circuit of the stopped refrigerating cycle. The flow path switching device 50 is controlled so that the heat medium does not flow in.

ここでは、一例として、冷媒回路2aの冷凍サイクルが停止している場合を説明する。流路決定手段43は、冷媒回路2aに接続される熱媒体熱交換器6aに熱媒体が流入しないように、流路切替装置50を制御する。具体的には、流路決定手段43は、第1の弁9が閉状態になり、第3の弁10が閉状態になり、第2の弁11が開状態になるように、流路切替装置50を制御する。これにより、熱媒体が熱媒体熱交換器6bを流通する片系統流路が熱媒体回路30に形成される。 Here, as an example, a case where the refrigerating cycle of the refrigerant circuit 2a is stopped will be described. The flow path determining means 43 controls the flow path switching device 50 so that the heat medium does not flow into the heat medium heat exchanger 6a connected to the refrigerant circuit 2a. Specifically, the flow path determining means 43 switches the flow path so that the first valve 9 is in the closed state, the third valve 10 is in the closed state, and the second valve 11 is in the open state. Control device 50. As a result, a single-system flow path through which the heat medium passes through the heat medium heat exchanger 6b is formed in the heat medium circuit 30.

従来、複数の冷媒回路を有する冷凍サイクル装置は、熱負荷が小さくなると、一部の冷媒回路の圧縮機の運転を停止するが、圧縮機を停止した冷媒回路の蒸発器への熱媒体の流通を継続するため、不要な圧力損失が発生する。これに対して、本実施の形態1では、上述したように、複数の冷媒回路のうち、運転していない冷媒回路に接続される熱媒体熱交換器に熱媒体が流れないようにしている。そのため、不要な圧力損失の増加を防ぎ、装置の運転を高効率化することができる。 Conventionally, in a refrigeration cycle device having a plurality of refrigerant circuits, when the heat load becomes small, the operation of the compressor of some of the refrigerant circuits is stopped, but the distribution of the heat medium to the evaporator of the refrigerant circuit in which the compressor is stopped is stopped. In order to continue, unnecessary pressure loss occurs. On the other hand, in the first embodiment, as described above, the heat medium is prevented from flowing to the heat medium heat exchanger connected to the non-operating refrigerant circuit among the plurality of refrigerant circuits. Therefore, it is possible to prevent an increase in unnecessary pressure loss and improve the efficiency of operation of the device.

なお、熱媒体熱交換器6aに熱媒体が流れない場合、冷凍サイクル制御手段41は、熱媒体熱交換器6aと接続される冷媒回路2aの圧縮機3aの運転を停止する場合で説明したが、圧縮機3aを停止せずに運転周波数を小さくしてもよい。消費電力の低減の観点からは圧縮機3aを停止させることが望ましいが、冷凍サイクル制御手段41は、能力を落として圧縮機3aの運転を継続させる。この場合、能力が低下した圧縮機3aの冷媒回路2aにおける冷媒の凍結が抑制され、圧縮機3aが通常運転の能力まで復帰したときに発生する、冷媒回路2aおよび2b間の温度ムラが抑制される。 Although the refrigeration cycle control means 41 has been described in the case of stopping the operation of the compressor 3a of the refrigerant circuit 2a connected to the heat medium heat exchanger 6a when the heat medium does not flow through the heat medium heat exchanger 6a. , The operating frequency may be reduced without stopping the compressor 3a. From the viewpoint of reducing power consumption, it is desirable to stop the compressor 3a, but the refrigeration cycle control means 41 reduces the capacity and continues the operation of the compressor 3a. In this case, freezing of the refrigerant in the refrigerant circuit 2a of the compressor 3a whose capacity has decreased is suppressed, and temperature unevenness between the refrigerant circuits 2a and 2b that occurs when the compressor 3a returns to the normal operation capacity is suppressed. To.

また、直列流路が形成されている場合、冷凍サイクル制御手段41は、熱媒体熱交換器6bに接続された冷媒回路2bの圧縮機3bの回転数を、熱媒体熱交換器6aに接続された冷媒回路2aの圧縮機3aの回転数よりも高い値に設定してもよい。または、冷凍サイクル制御手段41は、圧縮機3bの代わりに、減圧装置5bの開度を減圧装置5aの開度よりも大きくしてもよい。この場合、上流側の冷媒回路2bの冷媒の循環量を多くすることで、冷凍サイクル装置1の運転の高効率化を図ることができる。 When the series flow path is formed, the refrigeration cycle control means 41 connects the rotation speed of the compressor 3b of the refrigerant circuit 2b connected to the heat medium heat exchanger 6b to the heat medium heat exchanger 6a. The value may be set higher than the rotation speed of the compressor 3a of the refrigerant circuit 2a. Alternatively, the refrigeration cycle control means 41 may make the opening degree of the decompression device 5b larger than the opening degree of the decompression device 5a instead of the compressor 3b. In this case, by increasing the circulation amount of the refrigerant in the refrigerant circuit 2b on the upstream side, it is possible to improve the efficiency of the operation of the refrigeration cycle device 1.

また、直列流路が形成されている場合、並列流路が形成されている場合と比べて、冷凍サイクル制御手段41は、熱媒体の流量が少なくなるように熱媒体搬送装置8を制御してもよい。この場合、熱媒体の流速が遅くなり、熱媒体は熱媒体熱交換器6bおよび熱媒体熱交換器6aの順に各熱交換器で十分に冷媒と熱交換を行う。その結果、熱媒体回路30に流入する熱媒体の温度と、熱媒体回路30から流出する熱媒体の温度との差が大きくなる。例えば、冷凍サイクル装置1の立ち上げ時のように熱負荷が大きいとき、または熱媒体の温度差を大きくとる必要性があるとき、この制御は、有効である。 Further, when the series flow path is formed, the refrigeration cycle control means 41 controls the heat medium transfer device 8 so that the flow rate of the heat medium is smaller than that when the parallel flow path is formed. May be good. In this case, the flow velocity of the heat medium becomes slow, and the heat medium sufficiently exchanges heat with the refrigerant in each heat exchanger in the order of the heat medium heat exchanger 6b and the heat medium heat exchanger 6a. As a result, the difference between the temperature of the heat medium flowing into the heat medium circuit 30 and the temperature of the heat medium flowing out of the heat medium circuit 30 becomes large. For example, this control is effective when the heat load is large, such as when the refrigeration cycle device 1 is started up, or when it is necessary to take a large temperature difference in the heat medium.

また、制御部40は、負荷に応じて流路を切り替えてもよい。冷凍サイクル装置1の立ち上げ時のように、熱負荷が大きいとき、熱媒体回路30に流入する熱媒体の温度と、熱媒体回路30から流出する熱媒体の温度との温度差を大きくする必要がある。そこで、熱負荷が大きいとき、流路決定手段43は、直列流路を選択する。その後、冷凍サイクル装置1が安定的に動作する通常運転では、熱媒体搬送装置8の低消費電力化を図るために、流路決定手段43は、並列流路または片系統流路を選択する。このようにして、冷凍サイクル装置1の運転効率の向上を図ることができる。 Further, the control unit 40 may switch the flow path according to the load. When the heat load is large, such as when the refrigeration cycle device 1 is started up, it is necessary to increase the temperature difference between the temperature of the heat medium flowing into the heat medium circuit 30 and the temperature of the heat medium flowing out of the heat medium circuit 30. There is. Therefore, when the heat load is large, the flow path determining means 43 selects a series flow path. After that, in the normal operation in which the refrigeration cycle device 1 operates stably, the flow path determining means 43 selects a parallel flow path or a single system flow path in order to reduce the power consumption of the heat medium transfer device 8. In this way, the operating efficiency of the refrigeration cycle device 1 can be improved.

また、第1の弁9、第2の弁11および第3の弁10は、作業者が手動で操作するボールバルブであってもよい。図7に示した手順を、作業者が行って熱媒体回路30に流路を設定してもよい。また、熱媒体の粘度に応じて、作業者が熱媒体回路30に流路を設定してもよい。例えば、熱媒体を粘度の高いブラインから粘度の低いブラインに変更する場合、作業者が流路切替装置50を操作して、熱媒体回路30に形成されている並列流路を直列流路に切り替えればよい。一方、熱媒体を粘度の低いブラインから粘度の高いブラインに変更する場合、作業者が流路切替装置50を操作して、熱媒体回路30に形成されている直列流路を並列流路に切り替えてもよい。 Further, the first valve 9, the second valve 11 and the third valve 10 may be ball valves manually operated by the operator. The procedure shown in FIG. 7 may be performed by an operator to set a flow path in the heat medium circuit 30. Further, the operator may set a flow path in the heat medium circuit 30 according to the viscosity of the heat medium. For example, when changing the heat medium from a brine having a high viscosity to a brine having a low viscosity, the operator can operate the flow path switching device 50 to switch the parallel flow path formed in the heat medium circuit 30 to a series flow path. Just do it. On the other hand, when changing the heat medium from low-viscosity brine to high-viscosity brine, the operator operates the flow path switching device 50 to switch the series flow path formed in the heat medium circuit 30 to the parallel flow path. You may.

さらに、本実施の形態1では、冷凍サイクル装置1に設けられる冷媒回路の数が2つの場合で説明したが、冷媒回路の数は2つに限定されない。冷凍サイクル装置1に冷媒回路が3つ以上設けられていてもよい。この場合でも、複数の熱媒体熱交換器が直列接続と並列接続とを切り替えられるように構成されることで、冷凍サイクル装置1の運転の高効率化を図ることができる。 Further, in the first embodiment, the case where the number of the refrigerant circuits provided in the refrigeration cycle device 1 is two has been described, but the number of the refrigerant circuits is not limited to two. The refrigeration cycle device 1 may be provided with three or more refrigerant circuits. Even in this case, the operation efficiency of the refrigeration cycle apparatus 1 can be improved by configuring the plurality of heat medium heat exchangers to switch between series connection and parallel connection.

本実施の形態1の冷凍サイクル装置1によれば、流路切替装置50は、熱媒体回路30において、複数の熱媒体熱交換器6aおよび6bを直列に接続する直列流路と、複数の熱媒体熱交換器6aおよび6bを並列に接続する並列流路と、を切り替えるものである。 According to the refrigeration cycle device 1 of the first embodiment, the flow path switching device 50 includes a series flow path connecting a plurality of heat medium heat exchangers 6a and 6b in series in the heat medium circuit 30, and a plurality of heats. It switches between a parallel flow path that connects the medium heat exchangers 6a and 6b in parallel.

本実施の形態1によれば、直列流路および並列流路のうち、運転効率のよい流路を形成することができる。その結果、装置全体として運転効率を向上させることができる。 According to the first embodiment, it is possible to form a flow path having high operating efficiency among the series flow path and the parallel flow path. As a result, the operating efficiency of the device as a whole can be improved.

ブラインクーラで使用されるブラインの粘度は、約4.0〜100.0[mPa・s]であり、水(0.8[mPa・s])と比べて、バラつきが大きい。また、使用されるブラインの流量および粘度は使用される環境などによって異なる。例えば、冬季に熱媒体が凍結することを防止する必要がある地域では、熱媒体に粘度の高いブラインが使用される。この場合、複数の蒸発器の直列接続による圧力損失が運転効率に及ぼす影響が大きいため、複数の蒸発器が並列に接続される構成が適している。 The viscosity of the brine used in the brine cooler is about 4.0 to 100.0 [mPa · s], which is much more variable than water (0.8 [mPa · s]). In addition, the flow rate and viscosity of the brine used will vary depending on the environment in which it is used. For example, in areas where it is necessary to prevent the heat medium from freezing in winter, viscous brine is used as the heat medium. In this case, since the pressure loss due to the series connection of a plurality of evaporators has a large influence on the operating efficiency, a configuration in which the plurality of evaporators are connected in parallel is suitable.

一方、熱媒体に粘度の低いブラインが使用される場合、複数の蒸発器の直列接続による圧力損失が運転効率に及ぼす影響が小さいこともある。このような場合であっても、従来、ブラインが熱媒体に使用される冷凍サイクル装置では、粘度のバラツキの大きさを考慮して、複数の蒸発器が並列に接続された構成が採用されている。これに対して、本実施の形態1では、流路決定手段43が熱媒体の粘度に応じて、より運転効率のよい流路を決定している。そのため、冷凍サイクル装置1の運転効率が向上する。 On the other hand, when low-viscosity brine is used as the heat medium, the pressure loss due to the series connection of a plurality of evaporators may have a small effect on the operating efficiency. Even in such a case, conventionally, in a refrigeration cycle device in which brine is used as a heat medium, a configuration in which a plurality of evaporators are connected in parallel is adopted in consideration of the size of viscosity variation. There is. On the other hand, in the first embodiment, the flow path determining means 43 determines the flow path with higher operating efficiency according to the viscosity of the heat medium. Therefore, the operating efficiency of the refrigeration cycle device 1 is improved.

また、使用されるブラインの粘度が高いものから低いものに変更されることがある。この場合、複数の蒸発器が並列に接続された構成では、冷凍効率が低下した状態で冷凍サイクル装置が運転されることになる。本実施の形態1の冷凍サイクル装置1は、直列流路と並列流路とが切り替えられる構成である。冷凍サイクル装置1の設置後でも、熱媒体の粘度に応じて、直列流路および並列流路のうち、いずれかの流路が熱媒体回路30に形成される。その結果、複数の蒸発器の接続構成を最適化することができる。 Also, the viscosity of the brine used may be changed from high to low. In this case, in a configuration in which a plurality of evaporators are connected in parallel, the refrigeration cycle device is operated with the refrigeration efficiency lowered. The refrigeration cycle device 1 of the first embodiment has a configuration in which a series flow path and a parallel flow path can be switched. Even after the refrigeration cycle device 1 is installed, one of the series flow path and the parallel flow path is formed in the heat medium circuit 30 according to the viscosity of the heat medium. As a result, the connection configuration of a plurality of evaporators can be optimized.

実施の形態2.
図8は、本発明の実施の形態2の冷凍サイクル装置の一構成例を示す図である。本実施の形態2では、実施の形態1と同様な構成については同一の符号を付し、その詳細な説明を省略する。図8に示すように、本実施の形態2の冷凍サイクル装置1aでは、図1に示した構成と比較すると、第3の弁10の位置に流量調整器20が設けられている。
Embodiment 2.
FIG. 8 is a diagram showing a configuration example of the refrigeration cycle device according to the second embodiment of the present invention. In the second embodiment, the same reference numerals are given to the same configurations as those in the first embodiment, and detailed description thereof will be omitted. As shown in FIG. 8, in the refrigeration cycle apparatus 1a of the second embodiment, the flow rate regulator 20 is provided at the position of the third valve 10 as compared with the configuration shown in FIG.

流量調整器20は、配管35に流れる熱媒体の流量を調整する。流量調整器20は、開度を調整できる電動弁と、開度を調整できない縮径部とを有する。流量調整器20が設けられた接続流路は、熱媒体熱交換器6aが設けられた流路および熱媒体熱交換器6bが設けられた流路よりも、流路抵抗が大きい。そのため、熱媒体回路30に直列流路が形成されたとき、熱媒体の流速が遅くなる。 The flow rate regulator 20 adjusts the flow rate of the heat medium flowing through the pipe 35. The flow rate regulator 20 has an electric valve whose opening degree can be adjusted and a diameter-reduced portion whose opening degree cannot be adjusted. The connection flow path provided with the flow rate regulator 20 has a higher flow path resistance than the flow path provided with the heat medium heat exchanger 6a and the flow path provided with the heat medium heat exchanger 6b. Therefore, when a series flow path is formed in the heat medium circuit 30, the flow velocity of the heat medium becomes slow.

熱媒体回路30において、熱媒体の流速が遅くなることで、冷媒と熱媒体との熱交換がより確実にされるため、熱媒体の温度変化の幅を大きくとることができる。また、流量調整器20が設けられた接続流路の流路抵抗が大きいため、並列流路が形成された場合であっても、接続流路には、熱媒体が流れにくくなる。流量調整器20の縮径部または配管35自体によって、熱媒体が流れにくくなる。 In the heat medium circuit 30, the slow flow velocity of the heat medium makes the heat exchange between the refrigerant and the heat medium more reliable, so that the range of temperature change of the heat medium can be widened. Further, since the flow path resistance of the connection flow path provided with the flow rate regulator 20 is large, it becomes difficult for the heat medium to flow in the connection flow path even when the parallel flow path is formed. The reduced diameter portion of the flow rate regulator 20 or the pipe 35 itself makes it difficult for the heat medium to flow.

また、並列流路が形成されている場合、流量調整器20が設けられた接続流路に熱媒体の一部が流れる。このような構成では、接続流路において、熱媒体の凍結が抑制される。さらに、並列流路が形成されている場合、流量調整器20が設けられた接続流路に熱媒体の一部が流れるので、流路切替装置50が並列流路から直列流路に切り替えたときなどに、熱媒体回路30から流出する熱媒体の温度にムラが発生することを抑制できる。 Further, when a parallel flow path is formed, a part of the heat medium flows through the connection flow path provided with the flow rate regulator 20. In such a configuration, freezing of the heat medium is suppressed in the connection flow path. Further, when the parallel flow path is formed, a part of the heat medium flows through the connection flow path provided with the flow rate regulator 20, so that when the flow path switching device 50 switches from the parallel flow path to the series flow path. For example, it is possible to suppress the occurrence of unevenness in the temperature of the heat medium flowing out from the heat medium circuit 30.

なお、実施の形態1では配管35に第3の弁10が設けられ場合を説明し、実施の形態2では配管35に流量調整器20が設けられた場合を説明したが、配管35に弁および流量調整器が設けられていなくてもよい。配管35に弁および流量調整器が設けられていない場合、装置の低コスト化を図ることができる。 In the first embodiment, the case where the third valve 10 is provided in the pipe 35 is described, and in the second embodiment, the case where the flow rate regulator 20 is provided in the pipe 35 is described. The flow rate regulator may not be provided. When the pipe 35 is not provided with the valve and the flow rate regulator, the cost of the device can be reduced.

例えば、図8において、配管35に流量調整器20が設けられていない場合、配管34を流通する熱媒体は、流通方向を大きく変えて配管35に入り、再び、流通方向が熱媒体熱交換器6bと平行になるように、熱媒体が配管33を流通する。直列流路が形成された場合、配管35に流量調整器20が設けられていなくも、熱媒体が配管35を経由することで、熱媒体回路30全体における熱媒体の流速が遅くなる。熱媒体回路30において、熱媒体の流速が遅くなることで、冷媒と熱媒体との熱交換がより確実に行われる。なお、並列流路の場合、配管35に熱媒体が流れても熱媒体の流速が遅いので、配管35を流れる熱媒体の流量が少なく、熱交換効率に対する影響が抑制される。 For example, in FIG. 8, when the flow rate regulator 20 is not provided in the pipe 35, the heat medium flowing through the pipe 34 changes the distribution direction significantly and enters the pipe 35, and the distribution direction is again the heat medium heat exchanger. The heat medium circulates in the pipe 33 so as to be parallel to 6b. When the series flow path is formed, even if the flow rate regulator 20 is not provided in the pipe 35, the flow velocity of the heat medium in the entire heat medium circuit 30 becomes slow because the heat medium passes through the pipe 35. In the heat medium circuit 30, the flow velocity of the heat medium becomes slower, so that heat exchange between the refrigerant and the heat medium is performed more reliably. In the case of the parallel flow path, even if the heat medium flows through the pipe 35, the flow rate of the heat medium is slow, so that the flow rate of the heat medium flowing through the pipe 35 is small and the influence on the heat exchange efficiency is suppressed.

1、1a 冷凍サイクル装置、2a、2b 冷媒回路、3a、3b 圧縮機、4a、4b 熱源側熱交換器、5a、5b 減圧装置、6a、6b 熱媒体熱交換器、7a、7b ファン、8 熱媒体搬送装置、9 第1の弁、10 第3の弁、11 第2の弁、12 入口圧力センサ、13 出口圧力センサ、20 流量調整器、30 熱媒体回路、31〜35 配管、40 制御部、41 冷凍サイクル制御手段、42 効率算出手段、43 流路決定手段、45 流量計、50 流路切替装置、60 負荷側ユニット。 1,1a refrigeration cycle device, 2a, 2b refrigerant circuit, 3a, 3b compressor, 4a, 4b heat source side heat exchanger, 5a, 5b decompression device, 6a, 6b heat medium heat exchanger, 7a, 7b fan, 8 heat Medium transfer device, 9 1st valve, 10 3rd valve, 11 2nd valve, 12 inlet pressure sensor, 13 outlet pressure sensor, 20 flow regulator, 30 heat medium circuit, 31-35 piping, 40 control unit , 41 Refrigeration cycle control means, 42 Efficiency calculation means, 43 Flow path determination means, 45 Flow meter, 50 Flow path switching device, 60 Load side unit.

Claims (11)

圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、
前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、を有し、
前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備え、
前記流路切替装置は、
前記複数の熱媒体熱交換器に含まれる2つの熱媒体熱交換器のうち、一方の熱媒体熱交換器の下流側と他方の熱媒体熱交換器の上流側とを接続する接続流路と、
前記熱媒体回路に流入する熱媒体のうち、前記他方の熱媒体交換器に分流する熱媒体に対して該他方の熱媒体熱交換器および前記接続流路への流入を制御する、該接続流路の上流側に設けられた第1の弁と、
前記熱媒体回路に流入する熱媒体のうち、前記一方の熱媒体交換器に分流する熱媒体に対して該一方の熱媒体熱交換器からの流出を制御する、前記接続流路の下流側に設けられた第2の弁と、を有し、
前記接続流路は、前記熱媒体の流量を調整する流量調整器を有
前記熱媒体回路に前記並列流路が形成されている場合に、前記熱媒体の一部が前記流量調整器を流通する、
冷凍サイクル装置。
Multiple refrigerant circuits to which a compressor, heat source side heat exchanger and decompression device are connected,
It has a heat medium circuit provided for each of the plurality of refrigerant circuits and having a plurality of heat medium heat exchangers for heat exchange between the refrigerant and the heat medium.
The heat medium circuit includes a flow path switching device that switches between a series flow path that connects the plurality of heat medium heat exchangers in series and a parallel flow path that connects the plurality of heat medium heat exchangers in parallel. ,
The flow path switching device is
Of the two heat medium heat exchangers included in the plurality of heat medium heat exchangers, a connection flow path connecting the downstream side of one heat medium heat exchanger and the upstream side of the other heat medium heat exchanger. ,
Among the heat media flowing into the heat medium circuit, the connection flow that controls the inflow of the heat medium that splits into the other heat medium exchanger into the other heat medium heat exchanger and the connection flow path. The first valve installed on the upstream side of the road and
Of the heat media flowing into the heat medium circuit, the heat medium diverging into the one heat medium exchanger is controlled to flow out from the one heat medium heat exchanger on the downstream side of the connection flow path. It has a second valve provided and
The connecting channel may have a flow regulator for regulating the flow rate of the heat medium,
When the parallel flow path is formed in the heat medium circuit, a part of the heat medium flows through the flow rate regulator.
Refrigeration cycle equipment.
前記流路切替装置を制御する制御部をさらに有し、
前記制御部は、
前記複数の冷媒回路の一部の冷媒回路に接続される熱媒体熱交換器への前記熱媒体の流通を停止するとき、前記流路切替装置を制御して、該一部の冷媒回路を除く他の冷媒回路に接続される熱媒体熱交換器に前記熱媒体を流す片系統流路を前記熱媒体回路に形成させる、請求項1に記載の冷凍サイクル装置。
Further having a control unit for controlling the flow path switching device
The control unit
When the flow of the heat medium to the heat medium heat exchanger connected to a part of the refrigerant circuits of the plurality of refrigerant circuits is stopped, the flow path switching device is controlled to remove the part of the refrigerant circuits. The refrigerating cycle apparatus according to claim 1, wherein the heat medium circuit is formed with a single-system flow path through which the heat medium flows through a heat medium heat exchanger connected to another refrigerant circuit.
前記制御部は、
前記熱媒体回路に前記片系統流路が形成されている場合、前記一部の冷媒回路の前記圧縮機の運転を停止する、または該圧縮機の運転周波数を下げる、請求項2に記載の冷凍サイクル装置。
The control unit
The refrigeration according to claim 2, wherein when the one-system flow path is formed in the heat medium circuit, the operation of the compressor of the partial refrigerant circuit is stopped or the operation frequency of the compressor is lowered. Cycle device.
前記圧縮機を制御する制御部をさらに有し、
前記制御部は、
前記熱媒体回路に前記直列流路が形成されている場合、上流側の前記熱媒体熱交換器に接続される前記冷媒回路の圧縮機の回転数を、下流側の前記熱媒体熱交換器に接続される前記冷媒回路の圧縮機の回転数よりも高くする、請求項1〜のいずれか1項に記載の冷凍サイクル装置。
Further having a control unit for controlling the compressor,
The control unit
When the series flow path is formed in the heat medium circuit, the number of revolutions of the compressor of the refrigerant circuit connected to the heat medium heat exchanger on the upstream side is transmitted to the heat medium heat exchanger on the downstream side. The refrigerating cycle apparatus according to any one of claims 1 to 3 , wherein the number of revolutions of the compressor of the connected refrigerant circuit is higher than that of the compressor.
前記減圧装置を制御する制御部をさらに有し、
前記制御部は、
前記熱媒体回路に前記直列流路が形成されている場合、上流側の前記熱媒体熱交換器に接続される前記冷媒回路の減圧装置の開度を、下流側の前記熱媒体熱交換器に接続される前記冷媒回路の減圧装置の開度よりも大きくする、請求項1〜のいずれか1項に記載の冷凍サイクル装置。
Further having a control unit for controlling the decompression device,
The control unit
When the series flow path is formed in the heat medium circuit, the opening degree of the decompression device of the refrigerant circuit connected to the heat medium heat exchanger on the upstream side is set to the heat medium heat exchanger on the downstream side. The refrigeration cycle device according to any one of claims 1 to 3 , wherein the opening degree is larger than the opening degree of the decompression device of the refrigerant circuit to be connected.
前記熱媒体回路と負荷側との間に前記熱媒体を循環させる熱媒体搬送装置と、
前記熱媒体搬送装置を制御する制御部と、をさらに有し、
前記制御部は、
前記直列流路が形成されている場合の前記熱媒体の流量が、前記並列流路が形成されている場合の前記熱媒体の流量よりも少なくなるように、前記熱媒体搬送装置を制御する、請求項1〜のいずれか1項に記載の冷凍サイクル装置。
A heat medium transfer device that circulates the heat medium between the heat medium circuit and the load side,
Further having a control unit for controlling the heat medium transfer device,
The control unit
The heat medium transfer device is controlled so that the flow rate of the heat medium when the series flow path is formed is smaller than the flow rate of the heat medium when the parallel flow path is formed. The refrigeration cycle apparatus according to any one of claims 1 to 5.
圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、
前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、
前記熱媒体回路に流入する前記熱媒体の入口圧力を測定する入口圧力センサと、
前記熱媒体回路から流出する前記熱媒体の出口圧力を測定する出口圧力センサと、
制御部と、を有し、
前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備え、
前記制御部は、
前記直列流路の場合における前記複数の冷媒回路が生成する熱量の前記入口圧力と前記出口圧力との圧力差に対する比である直列成績係数と、前記並列流路の場合における前記複数の冷媒回路が生成する熱量の前記入口圧力と前記出口圧力との圧力差に対する比である並列成績係数とを算出し、前記直列成績係数の前記並列成績係数に対する比である改善率を算出する効率算出手段と、
前記改善率と設定値とを比較し、該改善率が該設定値より大きい場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成し、該改善率が該設定値以下である場合、前記流路切替装置を制御して前記熱媒体回路に前記並列流路を形成する流路決定手段と、
を有する、
冷凍サイクル装置。
Multiple refrigerant circuits to which a compressor, heat source side heat exchanger and decompression device are connected,
A heat medium circuit provided for each of the plurality of refrigerant circuits and having a plurality of heat medium heat exchangers for heat exchange between the refrigerant and the heat medium.
An inlet pressure sensor that measures the inlet pressure of the heat medium flowing into the heat medium circuit, and an inlet pressure sensor.
An outlet pressure sensor that measures the outlet pressure of the heat medium flowing out of the heat medium circuit, and an outlet pressure sensor.
Has a control unit,
The heat medium circuit includes a flow path switching device that switches between a series flow path that connects the plurality of heat medium heat exchangers in series and a parallel flow path that connects the plurality of heat medium heat exchangers in parallel. ,
The control unit
The series coefficient of performance, which is the ratio of the amount of heat generated by the plurality of refrigerant circuits to the pressure difference between the inlet pressure and the outlet pressure in the case of the series flow path, and the plurality of refrigerant circuits in the case of the parallel flow path. An efficiency calculation means for calculating the parallel coefficient of performance, which is the ratio of the amount of heat to be generated to the pressure difference between the inlet pressure and the outlet pressure, and calculating the improvement rate, which is the ratio of the series coefficient of performance to the parallel coefficient of performance.
The improvement rate is compared with the set value, and if the improvement rate is larger than the set value, the flow path switching device is controlled to form the series flow path in the heat medium circuit, and the improvement rate is the setting. When it is less than or equal to the value, the flow path determining means for controlling the flow path switching device to form the parallel flow path in the heat medium circuit, and the flow path determining means.
Have,
Refrigeration cycle equipment.
圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、
前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、
前記熱媒体回路から流出する前記熱媒体の流量を測定する流量計と、
制御部と、を有し、
前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備え、
前記制御部は、
前記直列流路の場合における前記複数の冷媒回路が生成する熱量の前記流量計の流量に基づく圧力損失に対する比である直列成績係数と、前記並列流路の場合における前記複数の冷媒回路が生成する熱量の前記流量計の流量に基づく圧力損失に対する比である並列成績係数とを算出し、前記直列成績係数の前記並列成績係数に対する比である改善率を算出する効率算出手段と、
前記改善率と設定値とを比較し、該改善率が該設定値より大きい場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成し、該改善率が該設定値以下である場合、前記流路切替装置を制御して前記熱媒体回路に前記並列流路を形成する流路決定手段と、
を有する、
冷凍サイクル装置。
Multiple refrigerant circuits to which a compressor, heat source side heat exchanger and decompression device are connected,
A heat medium circuit provided for each of the plurality of refrigerant circuits and having a plurality of heat medium heat exchangers for heat exchange between the refrigerant and the heat medium.
A flow meter that measures the flow rate of the heat medium flowing out of the heat medium circuit, and
Has a control unit,
The heat medium circuit includes a flow path switching device that switches between a series flow path that connects the plurality of heat medium heat exchangers in series and a parallel flow path that connects the plurality of heat medium heat exchangers in parallel. ,
The control unit
The series coefficient of performance, which is the ratio of the amount of heat generated by the plurality of refrigerant circuits in the case of the series flow path to the pressure loss based on the flow rate of the flow meter, and the plurality of refrigerant circuits in the case of the parallel flow path are generated. An efficiency calculation means for calculating a parallel coefficient of performance, which is a ratio of heat quantity to a pressure loss based on the flow rate of the flow meter, and calculating an improvement rate, which is a ratio of the series coefficient of performance to the parallel coefficient of performance.
The improvement rate is compared with the set value, and if the improvement rate is larger than the set value, the flow path switching device is controlled to form the series flow path in the heat medium circuit, and the improvement rate is the setting. When it is less than or equal to the value, the flow path determining means for controlling the flow path switching device to form the parallel flow path in the heat medium circuit, and the flow path determining means.
Have,
Refrigeration cycle equipment.
圧縮機、熱源側熱交換器および減圧装置が接続された複数の冷媒回路と、
前記複数の冷媒回路毎に設けられており、冷媒と熱媒体とが熱交換する複数の熱媒体熱交換器を有する熱媒体回路と、
制御部と、を有し、
前記熱媒体回路は、前記複数の熱媒体熱交換器を直列に接続する直列流路と、前記複数の熱媒体熱交換器を並列に接続する並列流路と、を切り替える流路切替装置を備え、
前記制御部は、
前記熱媒体の粘度と閾値とを比較し、該粘度が該閾値以上である場合、前記流路切替装置を制御して前記熱媒体回路に前記並列流路を形成し、該粘度が該閾値未満である場合、前記流路切替装置を制御して前記熱媒体回路に前記直列流路を形成する流路決定手段を有する、
冷凍サイクル装置。
Multiple refrigerant circuits to which a compressor, heat source side heat exchanger and decompression device are connected,
A heat medium circuit provided for each of the plurality of refrigerant circuits and having a plurality of heat medium heat exchangers for heat exchange between the refrigerant and the heat medium.
Has a control unit,
The heat medium circuit includes a flow path switching device that switches between a series flow path that connects the plurality of heat medium heat exchangers in series and a parallel flow path that connects the plurality of heat medium heat exchangers in parallel. ,
The control unit
The viscosity of the heat medium is compared with the threshold value, and when the viscosity is equal to or higher than the threshold value, the flow path switching device is controlled to form the parallel flow path in the heat medium circuit, and the viscosity is less than the threshold value. In the case of, the flow path determining means for controlling the flow path switching device to form the series flow path in the heat medium circuit is provided.
Refrigeration cycle equipment.
前記複数の熱媒体熱交換器は、前記冷媒と前記熱媒体とが対向流となる構成である、請求項1〜のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 9 , wherein the plurality of heat medium heat exchangers have a configuration in which the refrigerant and the heat medium are countercurrent. 前記複数の熱媒体熱交換器が一体的に形成されている、請求項1〜10のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 10 , wherein the plurality of heat medium heat exchangers are integrally formed.
JP2019533820A 2017-08-03 2017-08-03 Refrigeration cycle equipment Active JP6861821B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028239 WO2019026234A1 (en) 2017-08-03 2017-08-03 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2019026234A1 JPWO2019026234A1 (en) 2020-02-27
JP6861821B2 true JP6861821B2 (en) 2021-04-21

Family

ID=65232385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019533820A Active JP6861821B2 (en) 2017-08-03 2017-08-03 Refrigeration cycle equipment

Country Status (3)

Country Link
JP (1) JP6861821B2 (en)
GB (1) GB2578533B (en)
WO (1) WO2019026234A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354580B2 (en) * 2019-05-14 2023-10-03 株式会社デンソー cooling water circuit
JP7209892B2 (en) * 2020-02-17 2023-01-20 三菱電機株式会社 refrigeration cycle equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931412B2 (en) * 2011-11-22 2016-06-08 三菱重工業株式会社 Heat pump system
GB2542310B (en) * 2014-06-19 2020-04-01 Mitsubishi Electric Corp Refrigeration cycle apparatus and refrigeration cycle system
JP6380265B2 (en) * 2014-07-23 2018-08-29 株式会社デンソー Refrigeration cycle equipment
JP2016065701A (en) * 2014-09-26 2016-04-28 東芝キヤリア株式会社 Heat pump type heater and method of operating the same
US11686517B2 (en) * 2014-11-14 2023-06-27 Carrier Corporation On board chiller capacity calculation
EP3228951B1 (en) * 2014-12-05 2021-01-27 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6388559B2 (en) * 2015-06-03 2018-09-12 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
GB201918816D0 (en) 2020-02-05
GB2578533A (en) 2020-05-13
WO2019026234A1 (en) 2019-02-07
JPWO2019026234A1 (en) 2020-02-27
GB2578533B (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US11506430B2 (en) Air conditioning system with capacity control and controlled hot water generation
US10935260B2 (en) Heat pump with dehumidification
US9316421B2 (en) Air-conditioning apparatus including unit for increasing heating capacity
JP5501179B2 (en) Medium temperature source system with free cooling
JP6644154B2 (en) Air conditioner
JP6707192B2 (en) Chilling unit and water circulation temperature control system
JPWO2012111063A1 (en) Refrigeration cycle apparatus and refrigeration cycle control method
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
WO2020174530A1 (en) Refrigerant control system and cooling system
JP5404761B2 (en) Refrigeration equipment
US6276158B1 (en) Heat exchange equipment
JP6861821B2 (en) Refrigeration cycle equipment
JP5202073B2 (en) Refrigeration air conditioner
US11255582B2 (en) HVAC systems and methods with multiple-path expansion device subsystems
US20230332850A1 (en) Fluid control for a variable flow fluid circuit in an hvacr system
JP5496161B2 (en) Refrigeration cycle system
JP3418891B2 (en) Refrigeration equipment
JP5627564B2 (en) Refrigeration cycle system
JP2011012844A (en) Refrigerating cycle device
KR101766466B1 (en) Non-frost high performance air source heatpump system
JP2010181088A (en) Heat pump device
JPWO2018055739A1 (en) Air conditioner
JP4929519B2 (en) Chilling refrigeration system
JP6835116B2 (en) Refrigeration equipment
JP2022074630A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250