JP2012071470A - Fireproof cellulosic honeycomb structure - Google Patents

Fireproof cellulosic honeycomb structure Download PDF

Info

Publication number
JP2012071470A
JP2012071470A JP2010217264A JP2010217264A JP2012071470A JP 2012071470 A JP2012071470 A JP 2012071470A JP 2010217264 A JP2010217264 A JP 2010217264A JP 2010217264 A JP2010217264 A JP 2010217264A JP 2012071470 A JP2012071470 A JP 2012071470A
Authority
JP
Japan
Prior art keywords
cellulose
honeycomb structure
boron compound
aqueous solution
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010217264A
Other languages
Japanese (ja)
Other versions
JP4959832B2 (en
Inventor
Kaneo Shimazaki
兼男 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyorin Holdings Inc
Original Assignee
Kyorin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyorin Co Ltd filed Critical Kyorin Co Ltd
Priority to JP2010217264A priority Critical patent/JP4959832B2/en
Publication of JP2012071470A publication Critical patent/JP2012071470A/en
Application granted granted Critical
Publication of JP4959832B2 publication Critical patent/JP4959832B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high performance and very simple fireproof cellulosic honeycomb structure with less environmental load by subjecting cellulose to fireproofing processing with a boron compound by a synergy effect of dehydration carbonization action and heat melting properties to the cellulose of a boron compound and low thermal conductivity of a honeycomb structure.SOLUTION: The fireproof cellulosic honeycomb structure is a cellulose laminated material 1 having a hollow structure is characterized in that aqueous solution of pH of about 7 constituted by dissolving the boron compound 5 of a concentration of 15 to 50 wt.% is warmed to 60 to 80°C, the cellulose laminated material 1 is impregnated with the boron compound 5 by submerging the cellulose laminated material into the aqueous solution for impregnating the boron compound 5 with the mixing ratio of boric acid and borax of about 4:6.

Description

本発明は、中空構造を有するセルロース積層材に、高濃度のホウ素化合物を含浸処理させることで高い不燃性能を付与された耐火セルロース系ハニカム構造体に関する。   The present invention relates to a refractory cellulose-based honeycomb structure in which high incombustibility is imparted by impregnating a cellulose laminate material having a hollow structure with a high concentration boron compound.

従来の木製防火戸(防火扉も法令上含まれる)に使用される不燃材は、建築基準法第2条第9号及びISO834に規定された、図6(a)の耐火加熱曲線における耐火性能を示す遮炎性能試験で、20分間片面を加熱(加熱面の温度781℃)して、非加熱面に10秒を超えて継続する火炎の噴出及び発火がないこと、また火炎が通る亀裂等の損傷及び隙間が生じないことなどの判定基準を満たす必要がある。   The non-combustible material used in conventional wooden fire doors (fire doors are also included in the law) is fire resistance performance in the fire-resistant heating curve of Fig. 6 (a) defined in Article 2, Item 9 and ISO 834 of the Building Standards Act. In a flame-proof performance test showing that one side is heated for 20 minutes (heating surface temperature 781 ° C.), the non-heated surface is free of flame ejection and ignition that continues for more than 10 seconds, and the cracks through which the flame passes, etc. It is necessary to satisfy criteria such as the absence of damage and gaps.

その判定基準を満たすため、従来の木製防火戸40の構造は図6(b)に示すように、扉の両面に使用されている表面化粧材34、建築廃材や廃材パレットを接着剤で熱圧縮したパーティクルボードの芯材30、積層材や集成材からなる框材31、火炎などの熱から芯材を守る耐火シート32、及び150℃を超えると膨張して隙間を塞ぐ加熱発泡材33から構成されている。   In order to satisfy the criteria, the structure of the conventional wooden fire door 40 is as shown in FIG. 6B. The surface decorative material 34 used on both sides of the door, the building waste material and the waste material pallet are heat-compressed with an adhesive. Particle board core 30, firewood 31 made of laminated material or laminated material, fireproof sheet 32 that protects the core from heat such as flame, and heated foam material 33 that expands and closes the gap when it exceeds 150 ° C. Has been.

特に木製防火戸は、加熱面の温度に対して非加熱面の温度が10分の1以下に低減するという特徴があり、そのため居住用建物の内装に使用される木製のドアや間仕切りパネル等の建材の難燃化に関し、使用する内装用建材には火災に際して高い難燃性能或いは不燃性能の要求が年々強まっている。   In particular, wooden fire doors are characterized in that the temperature of the non-heated surface is reduced to 1/10 or less of the temperature of the heated surface. Therefore, such as wooden doors and partition panels used in the interior of residential buildings. With respect to the flame resistance of building materials, the demand for high flame retardant performance or non-flammability performance is increasing year after year for the interior building materials used.

内装用建材の不燃材料として、現在石膏ボード等の無機材料が一般に用いられるが、重くて割れ易いという欠点がある。一方、木材などの植物繊維からなるセルロースを原料として製造された積層段ボールやペーパーハニカム等の中空構造を有するセルロース積層材の内装用建材は、成形が自由で環境負荷が少なく安全、安価、軽量という利点がある一方で、燃え易いという欠点がありその使用には制限があった。   Currently, inorganic materials such as gypsum board are generally used as non-combustible materials for interior building materials, but they are disadvantageous in that they are heavy and easily broken. On the other hand, building materials for interiors made of cellulose laminated materials having a hollow structure such as laminated cardboard and paper honeycomb made from cellulose made of plant fibers such as wood are free to form, have low environmental impact, are safe, inexpensive and lightweight. While it has advantages, it has the disadvantage of being flammable and its use is limited.

そのため、内装用建材として植物繊維のセルロースを加工した板紙、或いは板紙から形成されたペーパーハニカムをアスベスト処理した不燃紙や不燃ハニカム材が長年使用されてきたが、周知の通りアスベストを含む製品は、発癌性物質としてその使用が禁止されている。   Therefore, non-combustible paper and non-combustible honeycomb material that has been used asbestos-treated paperboard made of vegetable fiber cellulose, or paper honeycomb formed from paperboard as an interior building material, but as is well known, products containing asbestos, Its use is prohibited as a carcinogenic substance.

アスベストの使用禁止により、その代替として無機化合物の水酸化アルミニウムや水酸化マグネシウム等の水和物を、紙に添加加工した無機質紙を加工した不燃ハニカムが考案され開示されている(例えば、特許文献1を参照)。   Due to the ban on the use of asbestos, non-combustible honeycombs have been devised and disclosed as a result of processing inorganic paper in which hydrates of inorganic compounds such as aluminum hydroxide and magnesium hydroxide are added to paper as an alternative (for example, patent documents) 1).

また、木材用の難燃剤及び処理方法について、ホウ素化合物の水溶液で処理した木材の着火性、表面燃焼性及び耐火性に関する研究が紹介されている(例えば、非特許文献1を参照)。   In addition, research on ignitability, surface flammability, and fire resistance of wood treated with an aqueous solution of a boron compound has been introduced regarding flame retardants and treatment methods for wood (see, for example, Non-Patent Document 1).

特開平8−103979号公報Japanese Patent Laid-Open No. 8-103979

「ホウ酸処理木材の表面燃焼性及び耐火性」、林産試験場報第13巻2号8〜14頁“Surface flammability and fire resistance of boric acid-treated wood”, Forest Products Laboratory Vol. 13, No. 2, pages 8-14

しかし、無機化合物の水酸化アルミニウムや水酸化マグネシウム等の水和物は、水に対して殆ど溶解しない不溶性であり通常の抄紙技術が使用できず、特別な混抄技術が必要な製造となるため工程が複雑で、製作するのが容易ではなくコストが掛かる。更に不燃性を付与するためには、セルロースの量の数倍の重量の無機化合物を配合しなければならないという問題がある。   However, hydrates such as aluminum hydroxide and magnesium hydroxide, which are inorganic compounds, are insoluble and hardly soluble in water, so that ordinary papermaking techniques cannot be used, and a process that requires special mixing techniques is required. Is complicated and expensive to manufacture. Furthermore, in order to impart nonflammability, there is a problem that an inorganic compound having a weight several times the amount of cellulose must be blended.

また、水酸化アルミニウムや水酸化マグネシウム等の無機化合物の水和物を使用した製品の難燃性は、主に加熱に際して無機化合物の水和物の結晶水の脱水分解による蒸発潜熱を利用したものであるが、水酸化アルミニウムは200〜350℃、水酸化マグネシウムは300〜400℃で結晶水が脱水分解するため、より高温域では対応できない問題がある。   In addition, the flame retardancy of products using inorganic compound hydrates such as aluminum hydroxide and magnesium hydroxide is mainly based on the latent heat of evaporation due to dehydration decomposition of crystal water of inorganic compound hydrates during heating. However, since water of crystallization is dehydrated and decomposed at 200 to 350 ° C. for aluminum hydroxide and 300 to 400 ° C. for magnesium hydroxide, there is a problem that cannot be handled at higher temperatures.

また、無機化合物の水和物を使用した製品は、結晶水の脱水分解が急激に起こるため結晶水の脱水分解後は難燃性を持続できず、これらの無機質紙自体が熱崩壊して耐熱保形性を失う問題があり、この熱崩壊を防ぐためにガラス繊維等の補強材が必要となり、製造工程の複雑さとコストアップを伴う問題がある。   Also, products using inorganic compound hydrates cannot sustain flame retardancy after dehydration and decomposition of crystal water because of rapid dehydration and decomposition of crystal water. There is a problem of losing shape retention, and a reinforcing material such as glass fiber is required to prevent this heat collapse, which causes a problem in the complexity and cost increase of the manufacturing process.

更に、建築基準法第2条第9号、及びISO834で定める防火設備や特定防火設備の遮炎性能試験で使用される標準加熱曲線での加熱温度は、加熱開始後5分で耐火標準が約600℃、20分で約800℃、60分で約1000℃近くまで上昇させ遮炎性能を評価するため、試験に対応できる難燃性能或いは不燃性能を備えた製品が求められている。   Furthermore, the heating temperature in the standard heating curve used in the fireproofing performance test of fire prevention equipment and specific fire prevention equipment specified in Building Standard Act Article 2 No. 9 and ISO834 is about 5 minutes after the start of heating. In order to evaluate the flame barrier performance by raising the temperature to 600 ° C., about 800 ° C. in 20 minutes, and about 1000 ° C. in 60 minutes, a product having flame retardancy or non-flammability that can be used for testing is required.

航空機や鉄道車両に使用されているアルミニウムやステンレスを用いた金属ハニカム材は、軽量で不燃性や剛性強度がある反面、金属製のため熱伝導率が高いという欠点があり、特にアルミニウムの場合は融点が660℃と低く、高温に対応できないという問題がある。また、金属ハニカム材はコストにおいてもセルロースを原料とするペーパーハニカム材に比べて著しく高価であり用途も限られる。   Metal honeycomb materials using aluminum and stainless steel used in aircraft and railway vehicles are lightweight, non-combustible and rigid, but have the disadvantage of high thermal conductivity because they are made of metal, especially in the case of aluminum. There is a problem that the melting point is as low as 660 ° C. and it cannot cope with high temperature. In addition, the metal honeycomb material is extremely expensive as compared with the paper honeycomb material using cellulose as a raw material, and its application is limited.

本発明は上述の課題に着目し成されたもので、植物繊維のセルロースを原料とする板紙及びその成形品である段ボールやペーパーハニカム等のセルロース系ハニカム構造体を、安全で安価な難燃剤である高濃度のホウ素化合物の水溶液に浸漬させ、中空構造のセルロース系ハニカム構造体に大量のホウ素化合物を含浸させる難燃処理を施すことで、有機物でありながら無機物の石膏ボードに匹敵するほどの高い不燃性能を備え、軽量且つ低コストで量産可能な耐火セルロース系ハニカム構造体を提供することを目的とする。   The present invention has been made by paying attention to the above-mentioned problems. It is a safe and inexpensive flame retardant for a paperboard made of vegetable fiber as a raw material and a cellulose-based honeycomb structure such as corrugated cardboard or paper honeycomb which is a molded product thereof. It is so high as to be comparable to an inorganic gypsum board, although it is organic, by immersing it in an aqueous solution of a high concentration of boron compound and applying a flame retardant treatment that impregnates a hollow cellulosic honeycomb structure with a large amount of boron compound. An object of the present invention is to provide a fire-resistant cellulose-based honeycomb structure that has non-combustible performance and can be mass-produced at a low cost at a low cost.

また、ホウ素化合物の持つセルロースに対する脱水炭化作用と熱溶融特性、更にハニカム構造体の持つ低い熱伝導特性との相乗効果により、セルロースの持つ利点を最大限に活かしホウ素化合物のみで難燃処理を行う製法によって、極めて簡単で環境負荷が少なく高い不燃性能を備えた耐火セルロース系ハニカム構造体を提供することを目的とする。   In addition, due to the synergistic effect of dehydration carbonization and thermal melting characteristics of cellulose with boron compound and low heat conduction characteristics of honeycomb structure, flame retardant treatment is performed only with boron compound, taking full advantage of cellulose. It is an object of the present invention to provide a fire-resistant cellulose-based honeycomb structure that is extremely simple, has a low environmental impact, and has high non-flammability.

本発明は上述の目的を達成するため、以下(1)〜(4)の構成を備えるものである。   In order to achieve the above-mentioned object, the present invention has the following configurations (1) to (4).

(1)中空構造を有するセルロース積層材であって、ホウ酸とホウ砂の混合比が概ね4:6のホウ素化合物を含浸させるため、15〜50重量%の濃度の前記ホウ素化合物を溶解させたPH7前後の水溶液を60〜80℃に加温し、該水溶液に前記セルロース積層材を浸漬して前記ホウ素化合物を含浸させたことを特徴とする耐火セルロース系ハニカム構造体。   (1) A cellulose laminated material having a hollow structure, and the boron compound having a concentration of 15 to 50% by weight was dissolved in order to impregnate the boron compound having a mixing ratio of boric acid and borax of approximately 4: 6. A refractory cellulose-based honeycomb structure in which an aqueous solution of about pH 7 is heated to 60 to 80 ° C., and the cellulose laminate is immersed in the aqueous solution to impregnate the boron compound.

(2)前記ホウ素化合物の水溶液は、前記セルロース積層材に前記ホウ素化合物の含浸率を上げるため、デンプンが更に付加されていることを特徴とする前記(1)記載の耐火セルロース系ハニカム構造体。   (2) The fireproof cellulose-based honeycomb structure according to (1), wherein the aqueous solution of the boron compound is further added with starch in order to increase the impregnation ratio of the boron compound to the cellulose laminate.

(3)前記中空構造を有するセルロース積層材は、セルロースで形成されたペーパーハニカム及び段ボールを複数積層した積層構造からなることを特徴とする前記(1)または(2)記載の耐火セルロース系ハニカム構造体。   (3) The fire-resistant cellulose-based honeycomb structure according to (1) or (2), wherein the cellulose laminated material having a hollow structure has a laminated structure in which a plurality of paper honeycombs and corrugated cardboards are laminated. body.

(4)前記ホウ素化合物の水溶液は、その濃度を前記15〜50重量%の間で変えて前記セルロース積層材を浸漬させることで、15重量%で難燃性能、50重量%で不燃性能を具備することを特徴とする前記(1)乃至(3)いずれか1項に記載の耐火セルロース系ハニカム構造体。   (4) The aqueous solution of the boron compound has a flame retardance performance of 15% by weight and an incombustibility of 50% by weight by immersing the cellulose laminate by changing its concentration between 15 to 50% by weight. The fire-resistant cellulose-based honeycomb structure according to any one of (1) to (3), wherein:

本発明によれば、他の難燃剤、難燃補助剤、浸透剤、発泡剤、充填剤等を一切使用せず含浸率を上げるためのデンプンをバインダーとして添加する以外は、ホウ素化合物のみで難燃処理を施すことによって優れた不燃性と耐熱保形性を併せ持つ、植物繊維のセルロースを原料として成形された耐火セルロース系ハニカム構造体を提供することができる。   According to the present invention, it is difficult to use only a boron compound, except that other flame retardants, flame retardant aids, penetrants, foaming agents, fillers, etc. are not used and starch for increasing the impregnation rate is added as a binder. By applying the fuel treatment, it is possible to provide a fire-resistant cellulose-based honeycomb structure formed from plant fiber cellulose having both excellent non-flammability and heat-resistant shape retention.

(a)本実施例に係る耐火セルロース系ハニカム構造体の斜視図図、(b)ホウ素化合物水溶液による含浸方法を示す図(A) Perspective view of a refractory cellulose-based honeycomb structure according to the present embodiment, (b) Diagram showing an impregnation method with an aqueous boron compound solution (a)15重量%のホウ素化合物を含浸させた耐火セルロース系ハニカム構造体の試験体を示す図、(b)建築基準法第2条第9号及びISO5660に係る不燃材料の防火性能試験結果を示す図(A) The figure which shows the test body of the fire-resistant cellulose-type honeycomb structure which impregnated the boron compound of 15 weight%, (b) The fire prevention performance test result of the nonflammable material which concerns on Building Standard Act Article 2 No. 9 and ISO5660 Illustration 15重量%のホウ素化合物を含浸させた耐火セルロース系ハニカム構造体の試験体の防火性能試験結果を示すグラフThe graph which shows the fireproof performance test result of the test body of the fireproof cellulose type honeycomb structure which impregnated the boron compound of 15 weight% (a)50重量%のホウ素化合物を含浸させた耐火セルロース系ハニカム構造体の試験体を示す図、(b)建築基準法第2条第9号及びISO5660に係る不燃材料の防火性能試験結果を示す図(A) The figure which shows the test body of the fire-resistant cellulose-type honeycomb structure impregnated with the boron compound of 50 weight%, (b) The fire-proof performance test result of the nonflammable material which concerns on Building Standard Act Article 2 No. 9 and ISO5660 Illustration 50重量%のホウ素化合物を含浸させた耐火セルロース系ハニカム構造体の試験体の防火性能試験結果を示すグラフThe graph which shows the fireproof performance test result of the test body of the fireproof cellulose type honeycomb structure impregnated with 50 weight% boron compound (a)木製防火戸の建築基準法第2条第9号及びISO834に係る耐火標準加熱曲線を示す図、(b)従来の木製防火戸の構造図(A) The figure which shows the fireproof standard heating curve concerning Building Standard Act Article 2 No. 9 and ISO834 of the wooden fire door, (b) The structural diagram of the conventional wooden fire door

以下、本発明を実施するための形態を、図面に基づいて詳しく説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

図1(a)は本実施例に係る耐火セルロース系ハニカム構造体10を示し、その構造は、植物繊維のセルロース系ハニカム構造体1の持つ同一断面形状の細孔からなるセル2の集合体であり、通常のハニカム構造と呼ばれているセル2の断面形状が六角形状に限定するものではない。即ちペーパーハニカムやロールコア、板紙で波板を挟み込んだ段ボール、及び積層段ボール等も含めた中空構造を持つ同一断面形状の細孔であるセル2の集合体で、植物繊維からなるセルロースを原料とする中空構造のセルロース積層材の総称として、セルロース系ハニカム構造体1とするものである。   FIG. 1 (a) shows a refractory cellulose-based honeycomb structure 10 according to the present embodiment, and the structure is an aggregate of cells 2 composed of pores having the same cross-sectional shape of the cellulose-based honeycomb structure 1 of plant fibers. In addition, the cross-sectional shape of the cell 2 called a normal honeycomb structure is not limited to the hexagonal shape. In other words, it is an aggregate of cells 2 that are pores of the same cross-sectional shape including a paper honeycomb, a roll core, corrugated cardboard sandwiched between corrugated boards and laminated corrugated board, etc., and is made of cellulose made of plant fibers. As a general term for the hollow-structure cellulose laminate, the cellulosic honeycomb structure 1 is used.

本実施例では、説明を簡単にするためセルロース系ハニカム構造体(以下ハニカム構造体と記す)1の形状は、平板と波板を交互に重ねた中空構造の細孔からなるセル2の集合体のセル層2aを積層した積層段ボールを例として説明する。積層段ボールからなるハニカム構造体1は、波板の高さや積層するセル層2aの段数を変えることで厚さを調整することが可能であり、また波板のピッチや紙厚を変更することで密度を変更することも可能で、顧客の要求に対して柔軟に対応できる優れたハニカム構造体1となっている。   In the present embodiment, for simplicity of explanation, the shape of the cellulosic honeycomb structure (hereinafter referred to as the honeycomb structure) 1 is an aggregate of cells 2 composed of hollow pores in which flat plates and corrugated plates are alternately stacked. An example of a laminated cardboard in which the cell layers 2a are laminated will be described. The honeycomb structure 1 made of laminated corrugated cardboard can be adjusted in thickness by changing the height of the corrugated plate and the number of steps of the cell layers 2a to be laminated, and by changing the pitch of the corrugated plate and the paper thickness. The density can be changed, and the excellent honeycomb structure 1 that can flexibly respond to customer requirements is obtained.

ハニカム構造体1は、セルロースを原料とする紙で形成されており、空隙率が高く質量が小さい。また、ハニカム構造のセル層2aの特徴として中空構造のセル2の細孔では空気の移動が制限され、積層されたセル層2aの上下左右の壁面で其々のセル2が隔離された構造により対流が抑制されるため、難燃処理なしでも熱伝導率が極めて小さいという特徴を有する。しかし当然のことながら難燃処理なしでは、植物繊維のセルロースを原料とするハニカム構造体1は、炎で加熱すれば瞬時に燃え尽きてしまう。   The honeycomb structure 1 is made of paper made from cellulose, and has a high porosity and a small mass. In addition, as a feature of the cell layer 2a having the honeycomb structure, the movement of air is limited in the pores of the cell 2 having the hollow structure, and each cell 2 is isolated by the upper, lower, left and right wall surfaces of the stacked cell layer 2a. Since convection is suppressed, the thermal conductivity is extremely small even without flame retardant treatment. However, as a matter of course, without the flame retardant treatment, the honeycomb structure 1 made of plant fiber cellulose is burned out instantaneously when heated with a flame.

上述したハニカム構造体1の持つ優れた特徴を活かし、安価なホウ素化合物5で難燃処理を如何に施すかが、その処理方法により環境負荷が少なく高い不燃性能を備えた耐火セルロース系ハニカム構造体10を製造する重要な鍵となる。   Taking advantage of the excellent characteristics of the honeycomb structure 1 described above, how to perform a flame retardant treatment with an inexpensive boron compound 5, a fire resistant cellulose-based honeycomb structure having high non-flammability performance with less environmental load depending on the treatment method 10 is an important key to manufacturing.

図1(b)に示すように、デンプンの一種のコーンスターチをバインダーとして添加した高濃度のホウ素化合物5の加温した水溶液に、ハニカム構造体1を浸漬して含浸処理を施すことで含浸率を上げ、ハニカム構造体1に多量のホウ素化合物5を含浸させることができる。ハニカム構造体1にホウ素化合物5を含浸させた後、乾燥させた耐火セルロース系ハニカム構造体10は、含浸前のハニカム構造体1と外観上の変化は無い。   As shown in FIG. 1 (b), the impregnation rate is obtained by immersing the honeycomb structure 1 in a heated aqueous solution of a high concentration boron compound 5 to which a kind of starch corn starch is added as a binder, and performing an impregnation treatment. The honeycomb structure 1 can be impregnated with a large amount of the boron compound 5. The fire-resistant cellulose-based honeycomb structure 10 dried after impregnating the honeycomb structure 1 with the boron compound 5 has no change in appearance from the honeycomb structure 1 before impregnation.

しかし、乾燥後の耐火セルロース系ハニカム構造体10は、ハニカム構造体1に含浸させたホウ素化合物5が、加熱される過程で脱水炭化作用を発揮することにより耐火セルロース系ハニカム構造体10が炭化し、その炭化した耐火セルロース系ハニカム構造体10の表面を熱溶融したホウ素化合物5が覆うことで、空気を遮断して難燃性能を更に高める効果が得られる。   However, in the dried refractory cellulose-based honeycomb structure 10, the boron compound 5 impregnated in the honeycomb structure 1 exhibits dehydration carbonization in the process of being heated, whereby the refractory cellulose-based honeycomb structure 10 is carbonized. By covering the surface of the carbonized refractory cellulose-based honeycomb structure 10 with the thermally melted boron compound 5, the effect of further improving the flame retardancy by blocking air is obtained.

<ホウ素化合物の難燃作用>
ホウ素化合物5で難燃処理された耐火セルロース系ハニカム構造体10については、ホウ素化合物5が木材や木質系材料の防火剤や難燃剤として効果のあることが以前から知られていることを利用して製造されている。
<Flame-retardant effect of boron compounds>
For the fire-resistant cellulose-based honeycomb structure 10 flame-treated with the boron compound 5, it is known that the boron compound 5 has been known to be effective as a fire retardant and flame retardant for wood and wood-based materials. Manufactured.

しかし、ホウ素化合物5は他のハロゲン系や燐系の難燃剤に比べて安全性は高いが、常温では水に数パーセントしか溶解しないため、ホウ素化合物5単独では被処理物に十分な量を含浸させることができず、期待される難燃効果を得るために、通常は他の難燃剤や難燃補助剤と併用して使用されることが多く、ホウ素化合物5を含浸させる上で最大の課題であった。また、木材や木質系材料をホウ素化合物5の高温の水溶液で処理して含浸量を増加させても、乾燥後にホウ素化合物5が木材や木質系材料の表面に析出するという課題もあった。   However, the boron compound 5 is safer than other halogen-based and phosphorus-based flame retardants, but only a few percent dissolves in water at room temperature. Therefore, the boron compound 5 alone impregnates a sufficient amount in the object to be treated. In order to obtain the expected flame retardant effect, it is usually used in combination with other flame retardants and flame retardant adjuvants, and the biggest problem in impregnating the boron compound 5 Met. Further, even when wood or a wood-based material is treated with a high-temperature aqueous solution of the boron compound 5 to increase the amount of impregnation, there is a problem that the boron compound 5 is deposited on the surface of the wood or wood-based material after drying.

しかし、例えば特開2005−112700号公報等に開示されている高濃度のホウ素化合物の水溶液を作り出す方法により、高濃度のホウ素化合物5の水溶液を利用して木材や木質系材料に含浸させることが可能となった。上記方法はこの高濃度のホウ素化合物5の水溶液で、ハニカム構造体1に多量のホウ素化合物5を含浸させる含浸処理の技術の基本となっている。   However, it is possible to impregnate wood or wood-based materials using a high-concentration boron compound 5 aqueous solution by a method for producing a high-concentration boron compound aqueous solution disclosed in, for example, JP-A-2005-112700. It has become possible. The above method is the basis of an impregnation technique in which the honeycomb structure 1 is impregnated with a large amount of the boron compound 5 with this high concentration boron compound 5 aqueous solution.

また、乾燥後に耐火セルロース系ハニカム構造体10に含浸させたホウ素化合物5は、加熱される過程でホウ素化合物5の持つセルロースに対する脱水炭化作用により耐火セルロース系ハニカム構造体10が炭化した後、その炭化した耐火セルロース系ハニカム構造体10の表面をホウ素化合物5が熱溶融して覆うことで、空気を遮断する溶融被膜を形成して難燃性を更に高める効果が得られる。   In addition, the boron compound 5 impregnated in the refractory cellulose-based honeycomb structure 10 after drying is carbonized after the refractory cellulose-based honeycomb structure 10 is carbonized by dehydration carbonization of the boron compound 5 to cellulose in the process of being heated. By covering the surface of the fire-resistant cellulose-based honeycomb structure 10 with the boron compound 5 being thermally melted, an effect of further improving the flame retardancy can be obtained by forming a molten film that blocks air.

このホウ素化合物5の難燃作用については、加熱によりホウ素化合物5が溶融して被燃焼材料の表面に溶融被膜を形成し、空気の供給を遮断する物理的な作用によるものであると当初は考えられてきたが、ホウ素化合物5が難燃剤として燐酸系と同様な化学的な作用を持つことが知られたのは1960年代に入ってからである。   The flame retardant action of the boron compound 5 is initially thought to be due to the physical action of melting the boron compound 5 by heating to form a molten film on the surface of the combusted material and blocking the supply of air. However, it was not until the 1960s that the boron compound 5 was known to have a chemical action similar to that of phosphoric acid as a flame retardant.

通常、ホウ素化合物5が防火剤、難燃剤として有効に作用するのは、木材のセルロース等の水酸基を持つ材料に限るとされ、ホウ素化合物5は水酸基を持つセルロース等の材料の熱分解に深くかかわりを持ち、水酸基からの脱水素及び脱水とそれに伴う炭素残渣の増加をもたらす脱水炭化作用と、炭素の酸化及び気化の阻害作用の二つの作用があるとされている。   Usually, boron compound 5 is effective only as a fire retardant and flame retardant for materials having hydroxyl groups such as cellulose of wood, and boron compound 5 is deeply involved in thermal decomposition of materials such as cellulose having hydroxyl groups. It is said that there are two actions, dehydration carbonization effecting dehydrogenation and dehydration from the hydroxyl group and accompanying carbon increase, and inhibition action of carbon oxidation and vaporization.

ごく最近の研究では、例えば特開2008−163050号公報で開示されているホウ素化合物5であるホウ酸の添加量が一定量を超えると、ホウ酸は硫酸や塩酸等の強酸と同様にセルロースの炭化温度を著しく低温側にシフトさせて炭化を促進させる酸触媒としての作用を発揮するとされている。また、硫酸によるセルロースの熱分解を制御して、レボグルコサンの生成を経由しないで炭化収率を向上させる方法も紹介されている。   In very recent research, for example, when the amount of boric acid, which is a boron compound 5 disclosed in Japanese Patent Application Laid-Open No. 2008-163050, exceeds a certain amount, boric acid is dissolved in cellulose as well as strong acids such as sulfuric acid and hydrochloric acid. It is said that it acts as an acid catalyst that promotes carbonization by significantly shifting the carbonization temperature to a lower temperature side. In addition, a method for improving the carbonization yield without passing through the formation of levoglucosan by controlling the thermal decomposition of cellulose by sulfuric acid has been introduced.

従来、難燃剤としてのホウ素化合物5はホウ酸とホウ砂の混合物が使用されるが、ホウ酸とホウ砂の最適混合比に関して長い間論議されてきたが、その理論的根拠については不明であり、またホウ素化合物5が難燃剤として有効に作用するには、アルカリ金属、或いはアルカリ土類金属の存在が不可欠であることが分かってきた。   Conventionally, the boron compound 5 as a flame retardant has been a mixture of boric acid and borax, but has been discussed for a long time with regard to the optimum mixing ratio of boric acid and borax, but the theoretical basis is unclear. In addition, it has been found that the presence of an alkali metal or an alkaline earth metal is indispensable for the boron compound 5 to act effectively as a flame retardant.

ホウ酸とアルカリ金属の配合比が適切であれば、木材や木質材料の赤熱反応と発火反応の両方を効果的に抑制することが可能であると考えられ、更にホウ酸はアルカリ金属の存在下で、水に対する溶解度が上がることも知られるようになった。従って、経験的にしか知られていなかったホウ酸と、ホウ酸アルカリ金属塩であるホウ砂を混合することで難燃性が向上することの理由が判明した。   If the mixing ratio of boric acid and alkali metal is appropriate, it is considered possible to effectively suppress both red-hot reaction and ignition reaction of wood and woody materials, and boric acid in the presence of alkali metal. It has also been known that the solubility in water increases. Therefore, the reason why flame retardancy is improved by mixing boric acid, which was known only empirically, and borax, which is an alkali metal borate salt, has been found.

本実施例のホウ素化合物5の水溶液は、ホウ酸とホウ砂の混合水溶液で混合比を概ね4:6とすることで、酸性紙などに見られる経年劣化を考慮したph7前後になるように調整した水溶液であり、その濃度は要求される難燃性能に応じて15〜50重量%の濃度とする。また、ハニカム構造体1を浸漬する際、ホウ素化合物5の十分な溶解度を得るために水溶液の温度は60〜80℃の範囲とする。   The aqueous solution of the boron compound 5 of this example is adjusted to be around ph7 in consideration of the aged deterioration found in acidic paper etc. by mixing the aqueous solution of boric acid and borax with a mixing ratio of 4: 6. The concentration is 15 to 50% by weight depending on the required flame retardant performance. In addition, when the honeycomb structure 1 is immersed, the temperature of the aqueous solution is set in the range of 60 to 80 ° C. in order to obtain sufficient solubility of the boron compound 5.

更に本実施例では、デンプンの一種であるコーンスターチをバインダーとして添加することで、ハニカム構造体1に多量のホウ素化合物5を含浸させる処理を行っている。   Furthermore, in this example, a process for impregnating the honeycomb structure 1 with a large amount of the boron compound 5 is performed by adding corn starch, which is a kind of starch, as a binder.

<ハニカム構造体のホウ素化合物による難燃処理>
図1(b)に示すホウ素化合物5の高温の水溶液で処理し、含浸量を増加させたハニカム構造体1を使用して、濃硫酸の存在下の常温で起こるセルロースの急激な脱水炭化作用が、多量のホウ素化合物の存在下でも加熱することによって急激に起こることを後述する検証試験によって確認した。
<Flame-retardant treatment of honeycomb structure with boron compound>
Using the honeycomb structure 1 treated with a high temperature aqueous solution of the boron compound 5 shown in FIG. 1B and increasing the amount of impregnation, the rapid dehydration carbonization action of cellulose that occurs at room temperature in the presence of concentrated sulfuric acid. It was confirmed by a verification test to be described later that it occurs suddenly by heating even in the presence of a large amount of boron compound.

耐火セルロース系ハニカム構造体10の特徴は、ハニカム構造体1のセル2の持つ構造上の特徴である低熱伝導特性と大きな比表面積により、多量のホウ素化合物5の存在下でのセルロースの燃焼挙動時において、低温域で炭化を促進させる酸触媒としての作用を発揮させることで劇的に促進されるホウ素化合物5の脱水炭化作用と、ホウ素化合物5の加熱による熱溶融被膜を形成することができる点にある。   The feature of the refractory cellulosic honeycomb structure 10 is due to the low thermal conductivity and the large specific surface area, which are the structural features of the cells 2 of the honeycomb structure 1, during the combustion behavior of cellulose in the presence of a large amount of boron compound 5. , The dehydration carbonization action of the boron compound 5 that is dramatically accelerated by exerting the action as an acid catalyst that promotes carbonization in a low temperature range, and the formation of a hot melt film by heating the boron compound 5 It is in.

本実施例に係る耐火セルロース系ハニカム構造体10の製造は、図1(b)に示すようにハニカム構造体1を60〜80℃の範囲に加温した高濃度のホウ素化合物5の水溶液に浸漬し含浸させた後、乾燥させる難燃処理方法が採られている。ハニカム構造のセル2は空隙率が高く比表面積も大きいが、ハニカム構造体1を構成する紙も三次元網目構造を持ち空隙率が高く比表面積も大きいため、積層したハニカム構造体1は、全体として多量のホウ素化合物5を含浸させるのに最適な材料であるといえる。またホウ素化合物5の含浸率を上げる目的で、ホウ素化合物5の水溶液にはデンプンの一種のコーンスターチをバインダーとして添加する。   The manufacture of the refractory cellulose-based honeycomb structure 10 according to the present example is performed by immersing the honeycomb structure 1 in an aqueous solution of a high-concentration boron compound 5 heated in the range of 60 to 80 ° C. as shown in FIG. Then, after being impregnated, a flame retardant treatment method is employed in which the material is dried. The honeycomb structure cell 2 has a high porosity and a large specific surface area, but the paper constituting the honeycomb structure 1 also has a three-dimensional network structure and a high porosity and a large specific surface area. It can be said that this is an optimal material for impregnating a large amount of boron compound 5. In order to increase the impregnation rate of the boron compound 5, a kind of starch corn starch is added to the aqueous solution of the boron compound 5 as a binder.

また、ホウ素化合物5は、セルロース等の多糖類と化学反応を起こしてエステルを形成することが知られており、本実施例に係る耐火セルロース系ハニカム構造体10には、物理的、化学的の両面で多量のホウ素化合物5が含ませることが可能となる。   Further, the boron compound 5 is known to form an ester by causing a chemical reaction with a polysaccharide such as cellulose, and the refractory cellulose-based honeycomb structure 10 according to this embodiment has a physical and chemical structure. A large amount of boron compound 5 can be contained on both sides.

本実施例のハニカム構造体1をホウ素化合物5の水溶液に浸漬する時間について、浸漬時間はおおよそ5〜10秒程度とし、被浸漬物の材質やサイズに応じて適宜調整することも可能である。また、ハニカム構造体1を所定の含水率まで乾燥させる際、その乾燥方法については特に限定しない。   About the time which immerses the honeycomb structure 1 of a present Example in the aqueous solution of the boron compound 5, immersion time shall be about 5-10 seconds and it can also adjust suitably according to the material and size of a to-be-immersed object. Further, when the honeycomb structure 1 is dried to a predetermined moisture content, the drying method is not particularly limited.

<耐火セルロース系ハニカム構造体の防火性能試験>
本実施例に係る耐火セルロース系ハニカム構造体10の難燃作用について、外部機関に委託し実施した防火性能試験結果により説明する。
<Fireproof performance test of fireproof cellulosic honeycomb structure>
The fire-retardant action of the fire-resistant cellulose-based honeycomb structure 10 according to the present embodiment will be described with reference to the fire performance test results commissioned to an external engine.

図2〜図5は、本実施例の耐火セルロース系ハニカム構造体10の建築基準法第2条第9号に係る不燃材料の防火試験で、「コーンカロリーメーターによる発熱性試験」の検証試験の結果である(財団法人日本建築センターが定めた「防耐火性能試験・評価業務方法書」の難燃性能試験・評価方法に基づく発熱性試験)。   2 to 5 are fire-proof tests of non-combustible materials according to Article 2, Item 9 of the Building Standards Law of the fire-resistant cellulose-based honeycomb structure 10 of the present embodiment. This is the result (exothermic test based on the flame retardant performance test / evaluation method of the “Fireproof and Fireproof Performance Test / Evaluation Procedure Method” established by the Japan Architecture Center).

試験方法の判定基準は、建築基準法第2条第9号に規定される試験体が「難燃」、「準不燃」、「不燃」の其々の基準を満足する場合に合格と判断される。   Judgment criteria of the test method are judged to be acceptable if the test specimen specified in Article 2, Item 9 of the Building Standards Law satisfies each standard of “Flame retardant”, “Semi-incombustible”, and “Non-flammable”. The

難燃は、加熱開始後5分間の総発熱量が8MJ/m以下であること、加熱開始後5分間、防火上有害な裏面まで貫通する亀裂及び穴がないこと、また加熱開始後5分間、最高発熱速度が10秒以上継続して200KW/mを超えないこと、この基準を満足する場合に合格としている。 Flame retardancy is that the total calorific value for 5 minutes after the start of heating is 8 MJ / m 2 or less, 5 minutes after the start of heating, there are no cracks and holes penetrating to the back side that are harmful to fire prevention, and 5 minutes after the start of heating. The maximum heat generation rate continues for 10 seconds or more and does not exceed 200 KW / m 2 .

準不燃は、加熱開始後10分間の総発熱量が8MJ/m以下であること、加熱開始後10分間、防火上有害な裏面まで貫通する亀裂及び穴がないこと、また加熱開始後10分間、最高発熱速度が10秒以上継続して200KW/mを超えないこと、この基準を満足する場合に合格としている。 Quasi-incombustibility is that the total calorific value for 10 minutes after the start of heating is 8 MJ / m 2 or less, 10 minutes after the start of heating, there are no cracks and holes penetrating to the rear side, which is harmful to fire prevention, and 10 minutes after the start of heating. The maximum heat generation rate continues for 10 seconds or more and does not exceed 200 KW / m 2 .

不燃は、加熱開始後20分間の総発熱量が8MJ/m以下であること、加熱開始後20分間、防火上有害な裏面まで貫通する亀裂及び穴がないこと、また加熱開始後20分間、最高発熱速度が10秒以上継続して200KW/mを超えないこと、この基準を満足する場合に合格としている。 Incombustibility, the total calorific value for 20 minutes after the start of heating is 8 MJ / m 2 or less, 20 minutes after the start of heating, there are no cracks and holes penetrating to the back side, which is harmful for fire prevention, and 20 minutes after the start of heating. The maximum exothermic rate continues for 10 seconds or more and does not exceed 200 KW / m 2 , and this is passed if this criterion is satisfied.

以上の試験方法の判定基準に基づき、ホウ素化合物5の濃度が15重量%と50重量%の水溶液に浸漬し含浸処理を施した耐火セルロース系ハニカム構造体10の試験体について、難燃性能の検証を行った。   Based on the determination criteria of the above test method, the flame retardant performance verification of the test body of the refractory cellulose-based honeycomb structure 10 immersed in an aqueous solution having a boron compound 5 concentration of 15% by weight and 50% by weight was performed. Went.

図2(a)はハニカム構造体1を60℃のホウ素化合物5の15%水溶液で浸漬し、含浸させた耐火セルロース系ハニカム構造体10の試験体で、材料構成は古紙100%のD3と呼ばれる120g/mの紙材で作られた積層段ボールである。 FIG. 2 (a) is a test body of a fire-resistant cellulose-based honeycomb structure 10 in which the honeycomb structure 1 is immersed in a 15% aqueous solution of a boron compound 5 at 60 ° C. and impregnated. This is a laminated cardboard made of 120 g / m 2 paper material.

同一条件で形成された試験体は、縦横幅が99mm,厚さ20mmの段ボール積層材で、ホウ素化合物5の15重量%水溶液を含浸させ、質量が約31〜34gの耐火セルロース系ハニカム構造体10の試験体No.1〜3で検証試験を行った。   A test body formed under the same conditions is a corrugated cardboard laminate material having a vertical and horizontal width of 99 mm and a thickness of 20 mm, impregnated with a 15 wt% aqueous solution of boron compound 5, and a fire-resistant cellulose-based honeycomb structure 10 having a mass of about 31 to 34 g. Specimen No. The verification test was performed in 1-3.

図3(b)に示す試験結果より、ホウ素化合物5の15重量%水溶液で難燃処理された耐火セルロース系ハニカム構造体10の試験体は、いずれも難燃性能試験に合格であったが、準不燃及び不燃性能は不合格であった。三試験体共に試験初期の加熱によるガス発生がみられ、約1分後に一度着火して消炎し、その後の5〜6分後に再着火し1〜3分間発炎が継続したが、その後消炎して安定する。また試験後の試験体の状況では、ハニカム構造体1のセル2構造は保持したまま炭化し、炭化による縦横寸法の収縮がみられた。   From the test results shown in FIG. 3 (b), all of the test bodies of the fire-resistant cellulose-based honeycomb structure 10 that were flame-treated with the 15% by weight aqueous solution of the boron compound 5 passed the flame-retardant performance test. Quasi-incombustible and non-combustible performance was rejected. In all three specimens, gas was generated by heating at the beginning of the test. After about 1 minute, it was ignited once and extinguished. After that, it was ignited again after 5 to 6 minutes and the flame continued for 1 to 3 minutes. And stable. Moreover, in the state of the test body after the test, the cell 2 structure of the honeycomb structure 1 was carbonized while being retained, and shrinkage of the vertical and horizontal dimensions due to carbonization was observed.

図3(a),図3(b),図3(c)は、耐火セルロース系ハニカム構造体10の試験体No.1〜3の発熱速度及び総発熱量測定曲線を示すグラフで、三試験体共にほぼ同一の性能を示す結果となっている。発熱速度は、最初の着火と二度目の着火のときに上昇が見られるが消炎後は安定し、最大でも50kW/mを超えることはない。また、総発熱量は再発炎に合わせて上昇し、7〜8分前後に8MJ/mを超える結果であった。質量も加熱される過程で、脱水炭化作用による水分の蒸発により減少することが確認された。 3 (a), 3 (b), and 3 (c) show the test specimen No. 1 of the refractory cellulose-based honeycomb structure 10. FIG. It is a graph which shows the heat_generation | fever rate of 1-3, and a total calorific value measurement curve, and has shown the result which shows the performance which is substantially the same with all three test bodies. The rate of heat generation increases during the first ignition and the second ignition but is stable after extinguishing the flame and does not exceed 50 kW / m 2 at the maximum. In addition, the total calorific value increased with the recurrence, and exceeded 8 MJ / m 2 in about 7 to 8 minutes. It was confirmed that the mass also decreased during the process of heating due to evaporation of moisture due to dehydration carbonization.

図4(a)はハニカム構造体1を60℃のホウ素化合物5の50%水溶液で浸漬処理し、含浸させた耐火セルロース系ハニカム構造体10の試験体で、材料構成は古紙100%のD3と呼ばれる120g/mの紙材で作られた積層段ボールである。 FIG. 4 (a) is a test body of a fire-resistant cellulose-based honeycomb structure 10 impregnated by immersing the honeycomb structure 1 with a 50% aqueous solution of a boron compound 5 at 60 ° C. It is a laminated cardboard made of a paper material called 120 g / m 2 .

試験体は同一条件で形成され、縦横幅が99mm,厚さ20mmの段ボール積層材で、ホウ素化合物5の50重量%水溶液を含浸させ、質量が41〜43gの耐火セルロース系ハニカム構造体10の試験体No.4〜6で検証試験を行った。   A test body is formed under the same conditions, and is a corrugated cardboard laminate having a vertical and horizontal width of 99 mm and a thickness of 20 mm, impregnated with a 50% by weight aqueous solution of boron compound 5, and testing a fire-resistant cellulose-based honeycomb structure 10 having a mass of 41 to 43 g. Body No. A verification test was conducted at 4-6.

図4(b)に示す試験結果より、ホウ素化合物5で難燃処理された耐火セルロース系ハニカム構造体10の試験体は、いずれも最高基準の不燃性能試験に合格し、三試験体共に結果のばらつきが少なく、試験初期の加熱によるガス発生及び着火はなかった。試験後の試験体の状況では、ハニカム構造体1の炭化によるセル2構造を保持し、炭化による縦横寸法の収縮がみられた。   From the test results shown in FIG. 4 (b), all of the test pieces of the fire-resistant cellulose-based honeycomb structure 10 flame-treated with the boron compound 5 passed the highest standard non-flammability performance test. There was little variation, and there was no gas generation or ignition due to heating at the beginning of the test. In the state of the test body after the test, the cell 2 structure was retained by carbonization of the honeycomb structure 1, and shrinkage of the vertical and horizontal dimensions due to carbonization was observed.

図5(a),図5(b),図5(c)は、耐火セルロース系ハニカム構造体10の試験体No.4〜6の発熱速度及び総発熱量測定曲線を示すグラフで、三試験体共にほぼ同一の性能を示す結果となっている。20分間の試験において、発熱速度は最高でも10kW/mを超えることはなく安定し、総発熱量も6MJ/m以下の性能を示して、難燃、準不燃、不燃の基準を全て満足している。 5 (a), 5 (b), and 5 (c) are test Nos. Of fire-resistant cellulose-based honeycomb structure 10. FIG. It is a graph which shows the heat_generation | fever rate of 4-6, and a total calorific value measurement curve, and has shown the result which shows the substantially same performance with all three test bodies. In a 20-minute test, the heat generation rate is stable without exceeding 10 kW / m 2 at the maximum, and the total heat generation performance is 6 MJ / m 2 or less. is doing.

特に、図4に示すホウ素化合物5の50重量%水溶液を含浸させた耐火セルロース系ハニカム構造体10の試験体No.4〜6は、法令上では12.5mmの石膏ボードと同等の不燃材料として認定を受けることができる性能を備えていることが確認された。   In particular, the specimen No. 1 of the refractory cellulose-based honeycomb structure 10 impregnated with a 50% by weight aqueous solution of the boron compound 5 shown in FIG. It was confirmed that Nos. 4 to 6 have the performance that can be certified as non-combustible materials equivalent to 12.5 mm gypsum board by law.

上記の検証試験の結果から、セルロースで形成されたハニカム構造体1のセル2の持つ比表面積の大きさを利用し、多量のホウ素化合物5を含浸させることによって、他の難燃剤、難燃補助剤、浸透剤、発泡剤、充填剤、補強材を併用せずに高温での加熱に対して、ハニカム構造体1のセル2が熱崩壊することなく長時間保形性を維持できる耐火セルロース系ハニカム構造体10を作成することが可能であることを検証できた。   From the result of the above verification test, by utilizing the specific surface area of the cell 2 of the honeycomb structure 1 formed of cellulose and impregnating a large amount of the boron compound 5, other flame retardants and flame retardant aids are obtained. Refractory cellulose system that can maintain shape retention for a long time without heat collapse of the cells 2 of the honeycomb structure 1 against heating at a high temperature without using an agent, a penetrating agent, a foaming agent, a filler, and a reinforcing material. It was verified that the honeycomb structure 10 could be produced.

従って、本実施例の耐火セルロース系ハニカム構造体10は、ホウ素化合物5の水溶液の濃度を変えることで、「難燃」、「準不燃」、「不燃」の性能を具備した耐火セルロース系ハニカム構造体10を製造することが可能であり、幅広い顧客の要求に対応できる不燃材料を提供することができる。   Accordingly, the refractory cellulose-based honeycomb structure 10 of the present example has a refractory cellulose-based honeycomb structure having performances of “flame retardant”, “quasi-incombustible”, and “non-flammable” by changing the concentration of the aqueous solution of the boron compound 5. The body 10 can be manufactured, and an incombustible material capable of meeting a wide range of customer requirements can be provided.

また、本実施例に係る耐火セルロース系ハニカム構造体10の特徴は、ハニカム構造体1のセル2の持つ構造上の特徴である低熱伝導特性、多量のホウ素化合物5の存在下でのセルロースの燃焼挙動時における脱水炭化作用の劇的な促進と、ホウ素化合物5の加熱による熱溶融被膜が形成されることである。   The features of the refractory cellulose-based honeycomb structure 10 according to the present embodiment are the low thermal conductivity characteristics that are structural features of the cells 2 of the honeycomb structure 1 and the combustion of cellulose in the presence of a large amount of the boron compound 5. This is to dramatically accelerate dehydration carbonization during the behavior and to form a hot melt film by heating the boron compound 5.

そして、検証試験においてハニカム構造体1の炭化する際にセル2構造が保持された結果より、耐火セルロース系ハニカム構造体10を加熱した場合、ハニカム構造体1のセル2に含浸された多量のホウ素化合物5が存在するため、本来のセルロースの燃焼挙動における熱分解温度よりも低い温度で熱分解が始まり、ホウ素化合物5による脱水炭化作用が劇的に促進されることも確認された。   When the refractory cellulose-based honeycomb structure 10 is heated from the result of maintaining the cell 2 structure when the honeycomb structure 1 is carbonized in the verification test, a large amount of boron impregnated in the cell 2 of the honeycomb structure 1 It was also confirmed that since compound 5 exists, thermal decomposition starts at a temperature lower than the thermal decomposition temperature in the original combustion behavior of cellulose, and dehydration carbonization by boron compound 5 is dramatically accelerated.

この燃焼挙動時点でのセルロースの熱分解で発生する物質の大半は水蒸気であり、分解ガスによって失われるセルロース中の炭素成分は少なく、セルロース中の大部分の炭素は炭化物として残ることが確認された。従って、図3,図5のグラフの総発熱量が示すように、セルロース中の炭素の殆んどが燃焼に関与せず、そのため発熱量が小さくなることも確認できた。   Most of the substance generated by pyrolysis of cellulose at the time of this combustion behavior is water vapor, and the carbon component in cellulose lost by the cracked gas is small, and it was confirmed that most carbon in cellulose remains as carbide. . Therefore, as shown by the total calorific value in the graphs of FIGS. 3 and 5, it was confirmed that most of the carbon in the cellulose was not involved in the combustion, and therefore the calorific value was small.

即ち、ホウ素化合物5が水酸基を持つセルロース等の材料の熱分解に深くかかわりを持ち、水酸基からの脱水素及び脱水とそれに伴う炭素残渣の増加をもたらす脱水炭化作用と、炭素の酸化及び気化の阻害作用が確認された。   That is, boron compound 5 is deeply involved in thermal decomposition of materials such as cellulose having a hydroxyl group, dehydration carbonization effecting dehydrogenation and dehydration from the hydroxyl group and accompanying increase in carbon residue, and inhibition of carbon oxidation and vaporization. The effect was confirmed.

また、この検証試験において加熱によりホウ素化合物5から放出される水蒸気と、セルロースの燃焼分解に伴う水蒸気の蒸発潜熱により耐火セルロース系ハニカム構造体10の温度の上昇は妨げられ、その結果、燃焼による発熱は極めて緩やかなものとなる。   Further, in this verification test, the increase in temperature of the refractory cellulose-based honeycomb structure 10 is hindered by the steam released from the boron compound 5 by heating and the latent heat of vaporization of steam accompanying the combustion decomposition of cellulose, and as a result, the heat generated by combustion Will be very gradual.

同時に、ホウ素化合物5が水蒸気を放出した後、ホウ素化合物5は加熱によって熱溶融してガラス状となり、炭化したセル2を覆う溶融被膜を形成してハニカム構造体1のセル2及びセル層2aの形状を保持し、セル2が崩壊することを防止する効果を発揮する。   At the same time, after the boron compound 5 releases water vapor, the boron compound 5 is thermally melted by heating to become glassy, and a molten film covering the carbonized cells 2 is formed to form the cells 2 and the cell layers 2a of the honeycomb structure 1. The shape is maintained and the cell 2 is prevented from collapsing.

ハニカム構造体1の積層段ボールの構造は、その特徴である中空構造のセル2の形状も保持されるので、細孔のセル2の中では空気の移動が制限され、更に上下左右のセル2が隔離されたハニカム構造により対流が抑制されることで外部からの酸素の供給が絶たれた状態と、ハニカム構造の熱伝導率が極めて小さいという特徴により、酸素が十分供給されない状態では加熱を継続しても炭化した耐火セルロース系ハニカム構造体10は燃焼せずに赤熱状態を保ち続ける効果を生むことが確認された。   The structure of the laminated corrugated cardboard of the honeycomb structure 1 also retains the shape of the hollow structure cell 2 which is a feature of the honeycomb structure 1, so that the movement of air is restricted in the pore cell 2, and the upper, lower, left and right cells 2 are Heating is continued in a state where oxygen is not sufficiently supplied due to the fact that the supply of oxygen from the outside is cut off by the isolated honeycomb structure and the thermal conductivity of the honeycomb structure is extremely small. Even in this case, it was confirmed that the carbonized refractory cellulose-based honeycomb structure 10 has an effect of maintaining a red hot state without burning.

即ち、セルロースから変化した炭化物は殆どが炭素のみであり、赤熱状態となってもホウ素化合物5が熱溶融に伴うガラス状の溶融被膜となって炭化物のセル2を覆うことで、酸素の供給が遮断されて高い難燃性を示す結果となった。   That is, most of the carbide changed from cellulose is only carbon, and even if it becomes a red heat state, the boron compound 5 becomes a glass-like molten film accompanying heat melting and covers the carbide cell 2, thereby supplying oxygen. The result was high flame retardancy when blocked.

炭化物は十分な酸素が存在しない環境下では燃焼せず、特に純粋な炭素の場合は、限界酸素指数が65で燃え難い物質とされている。限界酸素指数とは、燃焼性を表す相対的な数値で、その材料が燃焼を継続するのにあるいは一定量の材料が燃焼しつくすのに必要とする酸素の最少濃度を示し、指数の高い材料ほど燃え難い材料である。   Carbides do not burn in an environment where there is not enough oxygen, and especially in the case of pure carbon, the limit oxygen index is 65 and it is regarded as a material that is difficult to burn. The critical oxygen index is a relative value that represents flammability. It indicates the minimum concentration of oxygen required for the material to continue burning or for a certain amount of material to burn out. It is a material that does not easily burn.

更に検証試験の結果より、含浸させるホウ素化合物5の濃度を変更することによって、用途及びコストに応じて、難燃、準不燃、不燃の耐火性能を備えた耐火セルロース系ハニカム構造体10を簡単に製造することが可能で、木製防火戸の芯材や内装用建材の不燃材料として幅広い顧客の要求に対応できる不燃素材を提供することができる。   Furthermore, from the result of the verification test, by changing the concentration of the boron compound 5 to be impregnated, the fire-resistant cellulose-based honeycomb structure 10 having fire resistance performance of flame retardant, semi-incombustible, and non-flammable can be easily changed according to the use and cost. It is possible to produce non-combustible materials that can meet a wide range of customer requirements as non-combustible materials for wooden fire door cores and interior building materials.

以上、本実施例の耐火セルロース系ハニカム構造体の特徴は、使用材料は植物繊維から得られるセルロースと、水溶液に含まれるホウ素化合物とデンプンであって、いずれも天然素材であり安全で環境負荷が低く、安価で大量に入手可能な材料で形成されている。   As described above, the characteristics of the fire-resistant cellulose-based honeycomb structure of the present example are the materials used are cellulose obtained from plant fibers, boron compounds and starch contained in an aqueous solution, both of which are natural materials and safe and environmentally friendly. It is made of a low-priced, inexpensive material that can be obtained in large quantities.

また難燃処理の工程は、セルロースのハニカム構造体をホウ素化合物の高濃度水溶液に浸漬し乾燥させる、或いはセルロースの波板や板紙をホウ素化合物の高濃度水溶液に浸漬し乾燥させ後に積層段ボールを形成するだけで良く、製法が極めて簡単で大型で複雑な機械装置や設備を必要としない。また他の難燃剤、難燃補助剤、浸透剤、発泡剤、充填剤等を一切使用しないため、低コストでの量産が可能である。   In addition, the flame retardant treatment process is performed by immersing the cellulose honeycomb structure in a high concentration aqueous solution of boron compound and drying, or by immersing and drying the cellulose corrugated board or paperboard in the high concentration aqueous solution of boron compound to form a laminated corrugated board. The manufacturing process is extremely simple, and there is no need for large and complicated machinery and equipment. In addition, since no other flame retardants, flame retardant aids, penetrants, foaming agents, fillers and the like are used, mass production at low cost is possible.

セルロースで形成されたハニカム構造体は、空隙率が高いため極めて軽量であり、熱伝導率が極めて低いハニカム構造のセルにより、加熱面から非加熱面への熱伝導が極めて緩やかで、裏面温度の上昇を招かない特徴を効果的に発揮できる材料である。ホウ素化合物の水溶液の濃度を調整することによって難燃性能の調整が可能で、またハニカム構造体のセルの形状及び細孔の大きさや密度の調整によっても難燃性能の調整が可能である。   The honeycomb structure formed of cellulose is extremely lightweight due to its high porosity, and the heat conduction from the heated surface to the non-heated surface is very gentle due to the honeycomb structure cells having extremely low thermal conductivity, and the back surface temperature is low. It is a material that can effectively exhibit characteristics that do not cause an increase. The flame retardant performance can be adjusted by adjusting the concentration of the aqueous solution of the boron compound, and the flame retardant performance can also be adjusted by adjusting the shape of the cells of the honeycomb structure and the size and density of the pores.

耐火セルロース系ハニカム構造体の難燃性能が極めて高いことが確認されたことで、木製防火扉等のハニカムサンドイッチの芯材として使用する場合には、表面材に可燃物の使用も可能である。   When it is confirmed that the fire-resistant cellulose-based honeycomb structure has extremely high flame retardancy, when used as a core material of a honeycomb sandwich such as a wooden fire door, a combustible material can be used as a surface material.

また、ハニカム構造は強度に方向性があり、本実施例の耐火セルロース系ハニカム構造体も強度には方向性を持つが、難燃性に関する方向性は無いため用途や機能に応じてハニカム構造体のセルの方向性を自由に選択することができる。   In addition, the honeycomb structure has directionality in strength, and the refractory cellulose-based honeycomb structure of this example also has directionality in strength, but there is no directionality regarding flame retardancy, so there is no honeycomb structure according to the application and function. The directionality of the cell can be freely selected.

1 ハニカム構造体(中空構造を有するセルロース積層材に対応)
2 セル
2a セル層
5 ホウ素化合物
10 耐火セルロース系ハニカム構造体
30 芯材
31 框材
32 耐火シート
33 加熱発泡材
34 表面化粧材
40 木製防火戸
1 Honeycomb structure (corresponds to cellulose laminate with hollow structure)
2 Cell 2a Cell layer 5 Boron compound 10 Fire-resistant cellulose-based honeycomb structure 30 Core material 31 Firewood material 32 Fireproof sheet 33 Heating foam material 34 Surface decorative material 40 Wooden fire door

(1)中空構造を有するセルロース積層材であって、PH7となるようにホウ酸とホウ砂を混合したホウ素化合物を15〜50重量%の濃度で溶解させるため60〜80℃に加温し、更にデンプンを付加した水溶液に、前記セルロース積層材を浸漬して前記ホウ素化合物を含浸させたことを特徴とする耐火セルロース系ハニカム構造体。 (1) A cellulose laminated material having a hollow structure, which is heated to 60 to 80 ° C. to dissolve a boron compound in which boric acid and borax are mixed so as to be PH7 at a concentration of 15 to 50% by weight, Furthermore , a refractory cellulose-based honeycomb structure , wherein the cellulose laminate material is immersed in an aqueous solution to which starch is added to impregnate the boron compound.

(2)前記ホウ素化合物の水溶液は、前記セルロース積層材に前記ホウ素化合物の含浸率を上げるための前記デンプンが付加されていることを特徴とする前記(1)記載の耐火セルロース系ハニカム構造体。 (2) The refractory cellulose-based honeycomb structure according to (1) , wherein the starch for increasing the boron compound impregnation rate is added to the cellulose laminated material in the boron compound aqueous solution.

(3)前記中空構造を有するセルロース積層材は、セルロースで形成されたペーパーハニカムまたは段ボールを複数積層した積層構造からなることを特徴とする前記(1)または(2)記載の耐火セルロース系ハニカム構造体。 (3) The refractory cellulose-based honeycomb structure according to (1) or (2), wherein the cellulose laminated material having a hollow structure has a paper honeycomb formed of cellulose or a laminated structure in which a plurality of cardboards are laminated. body.

(4)前記ホウ素化合物の水溶液は、その濃度を前記15〜50重量%の間で変えて前記セルロース積層材を浸漬させることで、建築基準法第2条第9号に規定される燃焼試験において、難燃、準不燃、不燃として評価される難燃性能を具備することを特徴とする前記(1)乃至(3)いずれか1項に記載の耐火セルロース系ハニカム構造体。 (4) In the combustion test prescribed in Article 2-9 of the Building Standards Act , the aqueous solution of the boron compound is immersed in the cellulose laminate by changing its concentration between 15 to 50% by weight . The fire-resistant cellulose-based honeycomb structure according to any one of (1) to (3), wherein the fire-resistant cellulose-based honeycomb structure has flame retardancy evaluated as flame retardant, semi-flame retardant, and non-flammable .

(1)中空構造を有するセルロース積層材であって、ウ酸とホウ砂を混合したホウ素化合物を15〜50重量%の濃度で溶解させるため60〜80℃に加温し、更にデンプンを付加した水溶液に、前記セルロース積層材を浸漬して前記ホウ素化合物を含浸させたことを特徴とする耐火セルロース系ハニカム構造体。 (1) a cellulosic laminate having a hollow structure, warmed to 60-80 ° C. to dissolve the boron compound mixed with boric acid and borax at a concentration of 15 to 50 wt%, further adding starch A fire-resistant cellulose-based honeycomb structure, wherein the cellulose laminate is immersed in the aqueous solution so as to be impregnated with the boron compound.

(2)前記ホウ素化合物の水溶液は、ホウ酸とホウ砂の混合比を4:6としてPH7となるように混合し、且つ前記セルロース積層材に前記ホウ素化合物の含浸率を上げるためのバインダとして前記デンプンが付加されていることを特徴とする前記(1)記載の耐火セルロース系ハニカム構造体。 (2) The aqueous solution of the boron compound is mixed so that the mixing ratio of boric acid and borax is 4: 6 so as to be PH7, and the cellulose laminate is used as a binder for increasing the impregnation rate of the boron compound. The refractory cellulose-based honeycomb structure according to (1), wherein starch is added.

Claims (4)

中空構造を有するセルロース積層材であって、
ホウ酸とホウ砂の混合比が概ね4:6のホウ素化合物を含浸させるため、15〜50重量%の濃度の前記ホウ素化合物を溶解させたPH7前後の水溶液を60〜80℃に加温し、該水溶液に前記セルロース積層材を浸漬して前記ホウ素化合物を含浸させたことを特徴とする耐火セルロース系ハニカム構造体。
A cellulose laminate having a hollow structure,
In order to impregnate a boron compound having a mixing ratio of boric acid and borax of approximately 4: 6, an aqueous solution around PH7 in which the boron compound having a concentration of 15 to 50% by weight is dissolved is heated to 60 to 80 ° C. A fire-resistant cellulose-based honeycomb structure, wherein the cellulose laminate is immersed in the aqueous solution and impregnated with the boron compound.
前記ホウ素化合物の水溶液は、前記セルロース積層材に前記ホウ素化合物の含浸率を上げるため、デンプンが更に付加されていることを特徴とする請求項1記載の耐火セルロース系ハニカム構造体。   The refractory cellulose-based honeycomb structure according to claim 1, wherein the aqueous solution of the boron compound is further added with starch to increase the impregnation ratio of the boron compound to the cellulose laminate. 前記中空構造を有するセルロース積層材は、セルロースで形成されたペーパーハニカム及び段ボールを複数積層した積層構造からなることを特徴とする請求項1または請求項2記載の耐火セルロース系ハニカム構造体。   The refractory cellulose-based honeycomb structure according to claim 1 or 2, wherein the cellulose laminated material having a hollow structure has a laminated structure in which a plurality of paper honeycombs and corrugated board made of cellulose are laminated. 前記ホウ素化合物の水溶液は、その濃度を前記15〜50重量%の間で変えて前記セルロース積層材を浸漬させることで、15重量%で難燃性能、50重量%で不燃性能を具備することを特徴とする請求項1乃至3いずれか1項に記載の耐火セルロース系ハニカム構造体。   The aqueous solution of the boron compound has a flame retardant performance at 15% by weight and a non-flammable performance at 50% by weight by immersing the cellulose laminate by changing its concentration between 15 to 50% by weight. The refractory cellulose-based honeycomb structure according to any one of claims 1 to 3, wherein
JP2010217264A 2010-09-28 2010-09-28 Fire-resistant cellulosic honeycomb structure Active JP4959832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217264A JP4959832B2 (en) 2010-09-28 2010-09-28 Fire-resistant cellulosic honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217264A JP4959832B2 (en) 2010-09-28 2010-09-28 Fire-resistant cellulosic honeycomb structure

Publications (2)

Publication Number Publication Date
JP2012071470A true JP2012071470A (en) 2012-04-12
JP4959832B2 JP4959832B2 (en) 2012-06-27

Family

ID=46167819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217264A Active JP4959832B2 (en) 2010-09-28 2010-09-28 Fire-resistant cellulosic honeycomb structure

Country Status (1)

Country Link
JP (1) JP4959832B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031948A (en) * 2021-11-16 2022-02-11 武汉理工大学 Bio-based fire-retardant and explosion-proof material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222371A (en) * 1992-02-07 1993-08-31 Nippon Oil & Fats Co Ltd Flameproofing composition
JPH06264395A (en) * 1993-03-10 1994-09-20 Sanyo Chem Ind Ltd Flame retardant composition
JPH07217071A (en) * 1994-02-07 1995-08-15 Kimio Sugawara Column member
JPH08103979A (en) * 1994-10-04 1996-04-23 Nittetsu Mining Co Ltd Paper honeycomb core treated by flame retardance
WO2001038081A1 (en) * 1999-11-26 2001-05-31 Sanyo Chemical Industries, Ltd. Honeycomb core material for sandwich structure and method for manufacturing the same
JP2005112700A (en) * 2003-10-10 2005-04-28 Kanazawa Inst Of Technology Aqueous solution of boron compound stable in room temperature, manufacturing method and utilization of the same
JP3150617U (en) * 2009-02-19 2009-05-28 紘一 新覚 Cross laminated cardboard board
JP2010106553A (en) * 2008-10-30 2010-05-13 Kyorin Co Ltd Wooden fireproof door

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222371A (en) * 1992-02-07 1993-08-31 Nippon Oil & Fats Co Ltd Flameproofing composition
JPH06264395A (en) * 1993-03-10 1994-09-20 Sanyo Chem Ind Ltd Flame retardant composition
JPH07217071A (en) * 1994-02-07 1995-08-15 Kimio Sugawara Column member
JPH08103979A (en) * 1994-10-04 1996-04-23 Nittetsu Mining Co Ltd Paper honeycomb core treated by flame retardance
WO2001038081A1 (en) * 1999-11-26 2001-05-31 Sanyo Chemical Industries, Ltd. Honeycomb core material for sandwich structure and method for manufacturing the same
JP2005112700A (en) * 2003-10-10 2005-04-28 Kanazawa Inst Of Technology Aqueous solution of boron compound stable in room temperature, manufacturing method and utilization of the same
JP2010106553A (en) * 2008-10-30 2010-05-13 Kyorin Co Ltd Wooden fireproof door
JP3150617U (en) * 2009-02-19 2009-05-28 紘一 新覚 Cross laminated cardboard board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114031948A (en) * 2021-11-16 2022-02-11 武汉理工大学 Bio-based fire-retardant and explosion-proof material and preparation method thereof
CN114031948B (en) * 2021-11-16 2022-10-28 武汉理工大学 Bio-based fire-retardant and explosion-proof material and preparation method thereof

Also Published As

Publication number Publication date
JP4959832B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
RU2645538C2 (en) Fire-resistant composition and fire-resistant thermal insulating plate
Kandare et al. Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection
US6827984B2 (en) Process of using sodium silicate to create fire retardant products
Hapuarachchi et al. Fire retardancy of natural fibre reinforced sheet moulding compound
JP7473123B2 (en) Fire-retardant laminate and method for producing the same
JP2006219329A (en) Stable liquid composition of boron compound and its manufacturing method and its application
CN103878847A (en) Fire-retardant wood and preparation method and application thereof
Kandare et al. The effect of fire‐retardant additives and a surface insulative fabric on fire performance and mechanical property retention of polyester composites
NZ200896A (en) Fire-resistant expanded polystyrene
Jin et al. Flame retardant properties of laminated bamboo lumber treated with monoammonium phosphate (MAP) and boric acid/borax (SBX) compounds
Tsapko et al. Effect of a flame-retardant coating on the burning parameters of wood samples
KR20180117511A (en) Method for fabricating of noncombustible styrofoam panel
Zhu et al. Fire performance of sandwich composites with intumescent mat protection: Evolving thermal insulation, post-fire performance and rail industry testing
Kandare et al. The use of fire‐retardant intumescent mats for fire and heat protection of glass fibre‐reinforced polyester composites: thermal barrier properties
KR102197209B1 (en) Fireproof board and manufacturing method thereof
JP4959832B2 (en) Fire-resistant cellulosic honeycomb structure
KR101448253B1 (en) Intumescence fireproof coating composition with ligneous cellulose fiber
JP2009029103A (en) Product subjected to flame retardance treatment or fireproof treatment
KR20180075268A (en) Semi-nonflammable board using Kenaf non-woven fabric and manufacturing method thereof
KR101071782B1 (en) The manufacture method of non-framable paper and incombustible material using the same
KR101085932B1 (en) Intumescence fireproof coating composition with ligneous cellulose fiber
Zhang et al. Magnesium silica gel crystallized in the cell lumen of Chinese fir to construct porous structure for filtering toxic fumes
JP3167902U (en) Fireproof tatami floor
Mazela et al. Classification Tests of the Reaction to Fire of Modified Cellulosic Materials Encrusted with Expandable Graphite
KR20170127125A (en) The manufacturing method of eco-friendly nonflammable lightweight heat insulating materials used ceramic-fiber and water-glass for fire prevention, and therefor eco-friendly nonflammable lightweight heat insulating materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4959832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250