JP2012067225A - Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module - Google Patents

Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module Download PDF

Info

Publication number
JP2012067225A
JP2012067225A JP2010214317A JP2010214317A JP2012067225A JP 2012067225 A JP2012067225 A JP 2012067225A JP 2010214317 A JP2010214317 A JP 2010214317A JP 2010214317 A JP2010214317 A JP 2010214317A JP 2012067225 A JP2012067225 A JP 2012067225A
Authority
JP
Japan
Prior art keywords
temperature
resin sheet
cured
epoxy resin
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010214317A
Other languages
Japanese (ja)
Inventor
Shihui Song
士輝 宋
Yoshitaka Takezawa
由高 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2010214317A priority Critical patent/JP2012067225A/en
Publication of JP2012067225A publication Critical patent/JP2012067225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a cured material of a resin sheet, by which a highly thermal conductive cured material of resin sheet can be obtained without containing an inorganic filler.SOLUTION: The method of producing the cured material of resin sheet includes: a composition film-forming step of forming a composition film by imparting an epoxy resin composition containing an epoxy resin monomer and a curing agent to a surface of a base material; a temperature-increasing step of increasing the temperature of the composition film up to a curing temperature at a programming rate of ≤50°C per minute; and a curing step of curing the composition film at the curing temperature.

Description

本発明は、樹脂シート硬化物の製造方法、樹脂シート硬化物、樹脂付金属箔、金属基板、LED基板、及びパワーモジュールに関する。   The present invention relates to a method for producing a cured resin sheet, a cured resin sheet, a metal foil with resin, a metal substrate, an LED substrate, and a power module.

パワートランジスタ、サーミスタ、プリント配線板及びICチップなどの半導体の分野、並びにその他の電気及び電子部品の分野では、放熱用部材を構成する熱伝導性絶縁材料として、熱伝導性エポキシ樹脂組成物が広く採用されている。   In the field of semiconductors such as power transistors, thermistors, printed wiring boards and IC chips, and other electrical and electronic parts, heat conductive epoxy resin compositions are widely used as heat conductive insulating materials constituting heat dissipation members. It has been adopted.

一般的に、樹脂単体の熱伝導率は低い。例えば、汎用エポキシ樹脂単独の熱伝導率は0.1〜0.2W/m・K程度である。
そこで、熱伝導率を向上させるために、樹脂中に無機フィラを充填する手法がよく用いられている。例えば特許文献1は、エポキシ樹脂中に無機フィラを80〜95質量%もの高充填率とする熱伝導性エポキシ樹脂組成物が記載されている。
Generally, the thermal conductivity of a single resin is low. For example, the thermal conductivity of a general-purpose epoxy resin alone is about 0.1 to 0.2 W / m · K.
Therefore, in order to improve the thermal conductivity, a method of filling an inorganic filler in a resin is often used. For example, Patent Document 1 describes a thermally conductive epoxy resin composition having an inorganic filler in a high filling rate of 80 to 95% by mass in an epoxy resin.

特開2001−348488号公報JP 2001-348488 A

しかしながら、樹脂中に無機フィラを充填させた熱伝導性樹脂組成物を用いて得られた樹脂シート(Bステージシート)は、無機フィラを充填させない場合に比べて柔軟性が低く、硬くて脆いため、割れやすくなってしまう場合がある。また、樹脂に無機フィラを充填させた場合、熱伝導性樹脂組成物中のエポキシ樹脂成分の割合が相対的に少なくなる。そのため、一般的に、アルミニウムや銅などの金属表面に対する樹脂シートの接着性、すなわち樹脂−金属界面の接着強度が大幅に低下する傾向にある。
さらに、市場において、放熱シートの厚みは200μm以上のものが多いのに対し、近年、電子機器の小型、薄型、高機能化に対応できる、より薄い放熱材料として、例えばシートの厚さが50μm以下のものが求められている。しかしながら、無機フィラが充填された熱伝導性樹脂組成物では、充填される無機フィラの粒径や含有量によっては、薄膜化が困難な場合がある。
However, the resin sheet (B stage sheet) obtained by using the thermally conductive resin composition in which the inorganic filler is filled in the resin is less flexible than the case in which the inorganic filler is not filled, and is hard and brittle. , It may be easy to break. Moreover, when the resin is filled with an inorganic filler, the proportion of the epoxy resin component in the thermally conductive resin composition is relatively reduced. Therefore, generally, the adhesiveness of the resin sheet to a metal surface such as aluminum or copper, that is, the adhesive strength at the resin-metal interface tends to be greatly reduced.
Furthermore, in the market, the thickness of the heat dissipation sheet is often 200 μm or more, but in recent years, as a thinner heat dissipation material that can cope with the miniaturization, thinness, and high functionality of electronic devices, for example, the sheet thickness is 50 μm or less. Things are sought. However, in the thermally conductive resin composition filled with the inorganic filler, it may be difficult to reduce the thickness depending on the particle size and content of the filled inorganic filler.

本発明の目的は、上記課題を解決し、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物が得られる樹脂シート硬化物の製造方法を提供することにある。
また本発明の目的は、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物、並びにこれを用いた樹脂付金属箔、金属基板、LED基板、及びパワーモジュールを提供することにある。
The objective of this invention is providing the manufacturing method of the resin sheet hardened | cured material which solves the said subject and can obtain the resin sheet hardened | cured material with high heat conductivity even if it does not contain an inorganic filler.
Another object of the present invention is to provide a cured resin sheet having high thermal conductivity without containing an inorganic filler, and a resin-coated metal foil, a metal substrate, an LED substrate, and a power module using the resin sheet. .

すなわち、前記課題を解決するための具体的手段は以下の通りである。
<1> エポキシ樹脂モノマーと硬化剤とを含むエポキシ樹脂組成物を基材の表面に付与して組成物膜を形成する組成物膜形成工程と、前記組成物膜の温度を50℃/分以下の昇温速度で硬化温度まで昇温する昇温工程と、前記硬化温度で前記組成物膜を硬化させる硬化工程と、を有する樹脂シート硬化物の製造方法である。
That is, specific means for solving the above-described problems are as follows.
<1> A composition film forming step of forming a composition film by applying an epoxy resin composition containing an epoxy resin monomer and a curing agent to the surface of the substrate, and a temperature of the composition film of 50 ° C./min or less It is the manufacturing method of the resin sheet hardened | cured material which has a temperature rising process heated up to a curing temperature by the temperature increase rate of this, and a hardening process which hardens the said composition film | membrane at the said hardening temperature.

<2> 前記昇温工程に先立って、前記組成物膜の温度を、前記エポキシ樹脂モノマーの相転移温度がT(℃)であるとき、T−20(℃)以上T+20(℃)以下の範囲の温度に維持する維持工程をさらに有する、<1>に記載の樹脂シート硬化物の製造方法である。 <2> Prior to the temperature raising step, the temperature of the composition film ranges from T-20 (° C.) to T + 20 (° C.) when the phase transition temperature of the epoxy resin monomer is T (° C.). It is a manufacturing method of the resin sheet hardened | cured material as described in <1> which further has the maintenance process maintained at this temperature.

<3> 前記硬化温度は、前記エポキシ樹脂モノマーの溶融温度以上である、<1>又は<2>に記載の樹脂シート硬化物の製造方法である。 <3> The method for producing a cured resin sheet according to <1> or <2>, wherein the curing temperature is equal to or higher than a melting temperature of the epoxy resin monomer.

<4> 前記維持工程に先立って、前記組成物膜の温度を50℃/分以下の降温速度で、前記維持工程における前記組成物膜の温度まで降温する降温工程をさらに有する、<2>又は<3>に記載の樹脂シート硬化物の製造方法である。 <4> Prior to the maintaining step, the method further includes a temperature lowering step of lowering the temperature of the composition film to a temperature of the composition film in the maintaining step at a temperature decreasing rate of 50 ° C./min or less. <3> A method for producing a cured resin sheet according to <3>.

<5> エポキシ樹脂を含有し、直径が10μm以上の球晶構造を有する樹脂シート硬化物である。 <5> A cured resin sheet containing an epoxy resin and having a spherulite structure with a diameter of 10 μm or more.

<6> 金属箔と、前記金属箔上に配置された<1>〜<4>のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は<5>に記載の樹脂シート硬化物と、を備える樹脂付金属箔である。 <6> Metal foil and cured resin sheet obtained by the method for producing a cured resin sheet according to any one of <1> to <4> disposed on the metal foil or <5>. It is metal foil with resin provided with the resin sheet hardened | cured material of description.

<7> 金属支持体と、前記金属支持体上に配置された<1>〜<4>のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は<5>に記載の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属箔と、を備える金属基板である。 <7> A metal sheet and a cured resin sheet obtained by the method for producing a cured resin sheet according to any one of <1> to <4> disposed on the metal sheet or <5 > A cured resin sheet according to the above and a metal foil disposed on the cured resin sheet.

<8> 金属支持体と、前記金属支持体上に配置された<1>〜<4>のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は<5>に記載の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属箔からなる回路層と、前記回路層上に配置されたLED素子と、を備えるLED基板である。 <8> A metal sheet and a cured resin sheet obtained by the method for producing a cured resin sheet according to any one of <1> to <4> disposed on the metal sheet or <5 > A cured resin sheet, a circuit layer composed of a metal foil disposed on the cured resin sheet, and an LED element disposed on the circuit layer.

<9> 金属支持体と、前記金属支持体上に配置された<1>〜<4>のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は<5>に記載の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属板と、前記金属板上に配置された半導体素子と、を備えるパワーモジュールである。 <9> A metal sheet and a cured resin sheet obtained by the method for producing a cured resin sheet according to any one of <1> to <4> arranged on the metal sheet or <5 > A cured resin sheet, a metal plate disposed on the cured resin sheet, and a semiconductor element disposed on the metal plate.

本発明によれば、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物が得られる樹脂シート硬化物の製造方法を提供することができる。
また本発明によれば、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物、並びにこれを用いた樹脂付金属箔、金属基板、LED基板、及びパワーモジュールを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, even if it does not contain an inorganic filler, the manufacturing method of the resin sheet hardened | cured material from which the resin sheet hardened | cured material with high heat conductivity is obtained can be provided.
Moreover, according to this invention, even if it does not contain an inorganic filler, the resin sheet hardened | cured material with high heat conductivity, and the metal foil with a resin using the same, a metal substrate, an LED board, and a power module can be provided. .

実施例4で得られた樹脂シート硬化物の顕微鏡写真である。4 is a photomicrograph of a cured resin sheet obtained in Example 4. 本発明にかかるLED基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the LED board concerning this invention. 本発明にかかるLED基板の一例を示す斜視図である。It is a perspective view which shows an example of the LED board concerning this invention. 本発明にかかるパワーモジュールの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the power module concerning this invention.

本発明において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
また本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
In the present invention, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes.
In the present specification, numerical ranges indicated using “to” indicate ranges including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.

[樹脂シート硬化物の製造方法]
本発明における樹脂シート硬化物の製造方法は、エポキシ樹脂モノマーと硬化剤とを含むエポキシ樹脂組成物を基材の表面に付与して組成物膜を形成する組成物膜形成工程と、前記組成物膜の温度を50℃/分以下の昇温速度で硬化温度まで昇温する昇温工程と、前記硬化温度で前記組成物膜を硬化させる硬化工程と、を有する。
[Method for producing cured resin sheet]
The method for producing a cured resin sheet according to the present invention includes a composition film forming step in which an epoxy resin composition containing an epoxy resin monomer and a curing agent is applied to the surface of a substrate to form a composition film, and the composition A heating step of raising the temperature of the film to a curing temperature at a heating rate of 50 ° C./min or less, and a curing step of curing the composition film at the curing temperature.

上記本発明における樹脂シート硬化物の製造方法を用いることにより、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物が得られる。上記製造方法を用いることで熱伝導性の高い樹脂シート硬化物が得られる理由は定かではないが、以下のように推測される。   By using the method for producing a cured resin sheet in the present invention, a cured resin sheet having high thermal conductivity can be obtained without containing an inorganic filler. The reason why a cured resin sheet with high thermal conductivity is obtained by using the above production method is not clear, but is presumed as follows.

上記の通り本発明においては、組成物膜を形成した後、硬化温度(すなわち硬化工程で組成物膜を硬化させるときの温度)まで昇温する速度を、上記のように50℃/分以下とする。このように、硬化温度までゆっくりと昇温することで、エポキシ樹脂モノマー分子が規則的に配列しやすく、球晶構造が成長し、直径の大きな(例えば10μm以上の)球晶構造が形成されると考えられる。その後、直径の大きな球晶構造が形成された状態で硬化工程を経ることにより、上記球晶構造が維持され、直径の大きな球晶構造を有するエポキシ樹脂を含む樹脂シート硬化膜が得られると考えられる。   As described above, in the present invention, after forming the composition film, the rate of raising the temperature to the curing temperature (that is, the temperature at which the composition film is cured in the curing step) is 50 ° C./min or less as described above. To do. As described above, by slowly raising the temperature to the curing temperature, the epoxy resin monomer molecules are easily arranged regularly, a spherulite structure grows, and a spherulite structure having a large diameter (for example, 10 μm or more) is formed. it is conceivable that. Thereafter, the curing process is performed in a state in which a spherulite structure having a large diameter is formed, so that the above spherulite structure is maintained and a cured resin sheet containing an epoxy resin having a spherulite structure having a large diameter is obtained. It is done.

そして、直径の大きな球晶構造を有するエポキシ樹脂では、エポキシ樹脂の分子鎖が規則的に配列していることから、球晶構造の直径が小さい場合や球晶構造を有さない場合(すなわちエポキシ樹脂における分子鎖の規則性が低い場合)に比べて、熱が伝わりやすいと考えられる。そのため、本発明における樹脂シート硬化物の製造方法を用いることにより、他の方法を用いる場合に比べて、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物が得られるのであると推測される。   In the case of an epoxy resin having a spherulite structure with a large diameter, the molecular chain of the epoxy resin is regularly arranged, so that the spherulite structure has a small diameter or no spherulite structure (that is, an epoxy resin). It is thought that heat is more likely to be transmitted than when the molecular chain regularity in the resin is low. Therefore, by using the method for producing a cured resin sheet according to the present invention, a cured resin sheet having high thermal conductivity can be obtained without containing an inorganic filler as compared with the case of using other methods. Guessed.

ここで「樹脂シート硬化物」は、後述するように、エポキシ樹脂組成物に含まれるエポキシ樹脂モノマー等が反応して硬化したものを意味するが、硬化の度合いは特に限定されない。具体的には、「樹脂シート硬化物」は完全に硬化されたものに限られず、半硬化状態(エポキシ樹脂モノマー等の反応は起こっているものの、加熱等により、さらに反応して硬化することが可能な状態)のものも含まれ、いわゆるBステージシートであってもよく、Cステージシートであってもよい。すなわち、樹脂シート硬化物は、エポキシ樹脂組成物に含まれるエポキシ樹脂モノマー全てが反応してエポキシ樹脂となったものであってもよく、エポキシ樹脂モノマーの一部が未反応の状態で存在するものであってもよい。
以下、本発明における樹脂シート硬化物の製造方法の各工程について説明する。
Here, “resin sheet cured product” means a product obtained by reaction and curing of an epoxy resin monomer contained in an epoxy resin composition, as will be described later, but the degree of curing is not particularly limited. Specifically, the “resin sheet cured product” is not limited to a completely cured product, but may be cured in a semi-cured state (although a reaction of an epoxy resin monomer or the like has occurred, but may be further reacted and cured by heating or the like). In a possible state) and may be a so-called B stage sheet or a C stage sheet. That is, the resin sheet cured product may be one in which all of the epoxy resin monomer contained in the epoxy resin composition has reacted to become an epoxy resin, and a part of the epoxy resin monomer exists in an unreacted state. It may be.
Hereinafter, each process of the manufacturing method of the resin sheet hardened | cured material in this invention is demonstrated.

<組成物膜形成工程>
組成物膜形成工程においては、エポキシ樹脂組成物を基材の表面に付与して組成物膜を形成する。
エポキシ樹脂組成物は、上記の通り、少なくともエポキシ樹脂モノマーと硬化剤とを含み、その他に必要に応じて、硬化促進剤、エポキシ樹脂モノマー以外の樹脂、その他添加剤、溶剤等を含んでもよい。エポキシ樹脂組成物の詳細については後述する。
<Composition film formation step>
In the composition film forming step, the epoxy resin composition is applied to the surface of the base material to form a composition film.
As described above, the epoxy resin composition includes at least an epoxy resin monomer and a curing agent, and may further include a curing accelerator, a resin other than the epoxy resin monomer, other additives, a solvent, and the like as necessary. Details of the epoxy resin composition will be described later.

(基材)
上記基材は、上記組成物膜を形成できるものであれば特に限定されず、例えばPETフィルム等の離型フィルム;金箔、銅箔、アルミニウム箔等の金属箔;アルミニウム、鉄等の金属支持体;等を用いてもよく、発熱体そのものを基材として用いてもよい。
(Base material)
The base material is not particularly limited as long as it can form the composition film. For example, a release film such as a PET film; a metal foil such as a gold foil, a copper foil, or an aluminum foil; a metal support such as aluminum or iron Or the like, or the heating element itself may be used as a base material.

(付与方法)
基材の表面にエポキシ樹脂組成物を付与する方法は特に限定されないが、例えば、ギャップ間に被塗工物を通過させるコンマコート法、ノズルから流量を調整した樹脂ワニス(すなわち、溶剤を含むエポキシ樹脂組成物)を塗布するダイコート法のほか、リップコート法、グラビアコート法等の塗布法が挙げられる。
以下、基材の表面にエポキシ樹脂組成物を付与する工程について、エポキシ樹脂組成物が上記溶剤を含む場合と、含まない場合と、に分けて説明する。
(Granting method)
The method of applying the epoxy resin composition to the surface of the substrate is not particularly limited. For example, a comma coating method in which an article to be coated is passed between gaps, a resin varnish whose flow rate is adjusted from a nozzle (that is, an epoxy containing a solvent) In addition to the die coating method in which the resin composition) is applied, a coating method such as a lip coating method or a gravure coating method may be used.
Hereinafter, the step of applying the epoxy resin composition to the surface of the substrate will be described separately for the case where the epoxy resin composition contains the solvent and the case where it does not contain the solvent.

−エポキシ樹脂組成物が溶剤を含む場合−
エポキシ樹脂組成物が溶剤を含む場合、組成が均一な組成物膜を形成する観点から、エポキシ樹脂モノマー等が溶剤に溶解した溶液の状態で、エポキシ樹脂組成物を基材の表面に付与することが望ましい。
エポキシ樹脂組成物を溶液の状態にする方法としては、例えば、上記溶剤を含むエポキシ樹脂組成物を、必要に応じてエポキシ樹脂モノマー等が溶解する温度まで加熱し、溶液とする方法が挙げられる。
-When the epoxy resin composition contains a solvent-
When the epoxy resin composition contains a solvent, from the viewpoint of forming a composition film having a uniform composition, the epoxy resin composition is applied to the surface of the substrate in a solution state in which an epoxy resin monomer or the like is dissolved in the solvent. Is desirable.
Examples of the method for bringing the epoxy resin composition into a solution include a method in which the epoxy resin composition containing the solvent is heated to a temperature at which the epoxy resin monomer and the like are dissolved as necessary to obtain a solution.

上記加熱の温度としては、球晶構造形成前におけるエポキシ樹脂組成物の硬化を抑制する観点から、エポキシ樹脂モノマーの溶融温度(以下、「溶融温度」と称する場合がある)より低いことが望ましく、後述する維持工程における組成物膜の温度(以下、「維持温度」と称する場合がある)又は昇温工程において昇温を開始する時点の温度(以下、「昇温開始温度」と称する場合がある)以下の温度であることが望ましい。
また、エポキシ樹脂組成物を基材の表面に付与する際に、予め基材を加熱しておいてもよい。上記基材を加熱する温度は、例えば、基材の表面に付与するエポキシ樹脂組成物の溶液温度や、その後の工程を開始する時点の温度(例えば前記維持温度又は前記昇温開始温度等)が挙げられる。
The heating temperature is preferably lower than the melting temperature of the epoxy resin monomer (hereinafter sometimes referred to as “melting temperature”) from the viewpoint of suppressing the curing of the epoxy resin composition before the formation of the spherulite structure, The temperature of the composition film in the maintenance step described later (hereinafter sometimes referred to as “maintenance temperature”) or the temperature at the time of starting the temperature elevation in the temperature elevation step (hereinafter referred to as “temperature rise start temperature”). ) The following temperature is desirable.
Moreover, when applying an epoxy resin composition to the surface of a base material, you may heat a base material previously. The temperature at which the substrate is heated is, for example, the solution temperature of the epoxy resin composition applied to the surface of the substrate, or the temperature at the time of starting the subsequent process (for example, the maintenance temperature or the temperature increase start temperature). Can be mentioned.

−エポキシ樹脂組成物が溶剤を含まない場合−
エポキシ樹脂組成物が溶剤を含まない場合、組成が均一な組成物膜を形成する観点から、エポキシ樹脂モノマー等が溶融した溶融液の状態で、エポキシ樹脂組成物を基材の表面に付与することが望ましい。
エポキシ樹脂組成物を溶融液の状態にする方法としては、例えば、必要に応じて、エポキシ樹脂モノマーの溶融温度以上にエポキシ樹脂組成物を加熱し、溶融液とする方法が挙げられる。上記加熱温度としては、組成が均一な組成物膜を形成する観点から、前記溶融温度以上の温度が望ましく、前記溶融温度よりも50℃以上高い温度であることが望ましい。
-When the epoxy resin composition does not contain a solvent-
When the epoxy resin composition does not contain a solvent, from the viewpoint of forming a composition film having a uniform composition, the epoxy resin composition is applied to the surface of the substrate in a molten state in which the epoxy resin monomer is melted. Is desirable.
Examples of the method of bringing the epoxy resin composition into a molten state include a method in which the epoxy resin composition is heated to a temperature equal to or higher than the melting temperature of the epoxy resin monomer as necessary to obtain a molten liquid. The heating temperature is preferably a temperature equal to or higher than the melting temperature from the viewpoint of forming a composition film having a uniform composition, and is preferably a temperature higher by 50 ° C. than the melting temperature.

エポキシ樹脂組成物を溶融液の状態にするために加熱する場合における昇温速度は、球晶構造形成前におけるエポキシ樹脂組成物の硬化を抑制する観点から、60℃/分以上が好ましく、90℃/分以上がより好ましい。昇温速度を上記範囲とすることで、エポキシ樹脂組成物の硬化反応が進むよりも相対的に速くエポキシ樹脂組成物を溶融液の状態にすることができる。
また、上記加熱によって溶融液の状態となったエポキシ樹脂組成物を基材の表面に付与する前に、付与が可能な程度に冷却してもよい。
また、エポキシ樹脂組成物を基材の表面に付与する際に、予め基材を加熱しておいてもよい。上記基材を加熱する温度としては、例えば、基材の表面に付与するエポキシ樹脂組成物の温度から維持温度又は昇温開始温度までの範囲が挙げられる。
From the viewpoint of suppressing the curing of the epoxy resin composition before the formation of the spherulite structure, the rate of temperature increase when heating the epoxy resin composition to make it into a molten liquid is preferably 60 ° C./min or more, 90 ° C. / Min or more is more preferable. By setting the rate of temperature rise in the above range, the epoxy resin composition can be brought into a molten state relatively faster than the curing reaction of the epoxy resin composition proceeds.
Moreover, you may cool to the grade which can provide, before providing the epoxy resin composition which was in the state of the melt by the said heating to the surface of a base material.
Moreover, when applying an epoxy resin composition to the surface of a base material, you may heat a base material previously. As temperature which heats the said base material, the range from the temperature of the epoxy resin composition provided to the surface of a base material to a maintenance temperature or temperature rising start temperature is mentioned, for example.

(組成物の膜厚)
以上のようにして形成された組成物膜の膜厚としては、得られた樹脂シート硬化物の熱伝導率を高くする観点から、200μm以下が好ましく、100μm以下がより好ましく、50μm以下がさらに好ましい。膜厚が上記範囲であることにより、上記範囲よりも厚い場合に比べて、組成物膜内部で球晶が形成されにくい箇所が発生することや、形成した球晶同士が成長に伴ってぶつかることで変形したり、直径が小さくなったりすること等が起こりにくいと考えられる。そのため、組成物膜全体にわたって均一な球晶構造が形成されやすく、得られた樹脂シート硬化物の熱伝導率が高くなると考えられる。
なお、エポキシ樹脂組成物が溶剤を含む場合、上記「組成物膜の膜厚」は、溶剤が除去された後の膜厚を意味する。
(Film thickness of the composition)
The film thickness of the composition film formed as described above is preferably 200 μm or less, more preferably 100 μm or less, and further preferably 50 μm or less from the viewpoint of increasing the thermal conductivity of the obtained cured resin sheet. . When the film thickness is in the above range, a portion where spherulites are difficult to be formed in the composition film is generated compared to the case where the film thickness is thicker than the above range, or the formed spherulites collide with each other as they grow. It is unlikely that the material will be deformed or the diameter will be reduced. Therefore, it is considered that a uniform spherulite structure is easily formed over the entire composition film, and the thermal conductivity of the obtained resin sheet cured product is increased.
When the epoxy resin composition contains a solvent, the “film thickness of the composition film” means the film thickness after the solvent is removed.

<降温工程>
上記のように、エポキシ樹脂組成物が溶剤を含み、エポキシ樹脂組成物を溶液とするために加熱した温度が前記維持温度又は前記昇温開始温度よりも高い場合は、組成物膜の形成後、維持工程又は昇温工程の前に、組成物膜の温度を降温する前記降温工程を経る。
また上記のように、エポキシ樹脂組成物が溶剤を含まず、エポキシ樹脂組成物を溶融液の状態にするために溶融温度以上に加熱した場合も、組成物膜形成後維持工程又は昇温工程の前に、組成物膜の温度を維持温度又は昇温開始温度まで降温する降温工程を経る。
<Cooling process>
As described above, when the epoxy resin composition contains a solvent and the temperature heated to make the epoxy resin composition into a solution is higher than the maintenance temperature or the temperature increase start temperature, after the formation of the composition film, Before the maintenance step or the temperature raising step, the temperature lowering step of lowering the temperature of the composition film is performed.
In addition, as described above, the epoxy resin composition does not contain a solvent, and when the epoxy resin composition is heated to a melting temperature or higher in order to make it into a molten liquid, the maintenance step or the temperature raising step after the composition film is formed Before, a temperature lowering process is performed to lower the temperature of the composition film to the maintenance temperature or the temperature increase start temperature.

このように昇温工程に先立って組成物膜の温度を前記維持温度又は昇温開始温度まで降温する降温工程を有する場合は、降温工程における降温速度を50℃/分以下とすることが望ましい。降温速度を上記範囲とすることによって、降温速度が上記範囲よりも大きい場合に比べて、より熱伝導性の高い樹脂シート硬化物が得られる。その理由は定かではないが、以下のように推測される。   As described above, when the temperature lowering step is performed to lower the temperature of the composition film to the maintenance temperature or the temperature rising start temperature prior to the temperature rising step, it is desirable that the temperature lowering rate in the temperature lowering step is 50 ° C./min or less. By setting the cooling rate to the above range, a cured resin sheet having higher thermal conductivity can be obtained as compared with the case where the cooling rate is larger than the above range. The reason is not clear, but is presumed as follows.

上記のようにゆっくりと組成物膜を冷却することで、エポキシ樹脂モノマーの分子が規則的に配列しやすく、降温工程中に上記球晶構造が形成されやすいと考えられる。そして降温工程において球晶構造が形成された後に上記昇温工程を経ることによって、球晶構造がさらに成長すると考えられる。そのため、降温速度が速い場合に比べて、最終的に直径の大きな球晶構造が形成され、より熱伝導性の高い樹脂シート硬化物が得られると推測される。   By slowly cooling the composition film as described above, the molecules of the epoxy resin monomer are likely to be regularly arranged, and the spherulite structure is likely to be formed during the temperature lowering process. And it is thought that a spherulite structure grows further by passing through the above-mentioned temperature rising process after a spherulite structure was formed in a temperature decreasing process. Therefore, it is presumed that a spherulite structure having a large diameter is finally formed, and a cured resin sheet having higher thermal conductivity can be obtained as compared with the case where the temperature lowering rate is high.

なお、降温工程における降温速度は、上記の通り直径の大きな球晶構造を形成する観点から50℃/分以下が望ましく、30℃/分以下がより望ましい。また上記降温速度は、球晶構造が形成される前に硬化してしまうことを抑制する観点から、10℃/分以上が望ましく、20℃/分以上がより望ましい。   In addition, the temperature lowering rate in the temperature lowering step is preferably 50 ° C./min or less, more preferably 30 ° C./min or less from the viewpoint of forming a spherulite structure having a large diameter as described above. Further, the temperature lowering rate is preferably 10 ° C./min or more, and more preferably 20 ° C./min or more from the viewpoint of suppressing hardening before the spherulite structure is formed.

さらに、球晶構造形成前におけるエポキシ樹脂組成物の硬化を抑制する観点からは、エポキシ樹脂組成物の加熱により溶融温度に達してから組成物膜形成後の降温により溶融温度に達するまでに要する時間を、10分以下とすることが望ましく、5分以下とすることがより望ましい。   Furthermore, from the viewpoint of suppressing the curing of the epoxy resin composition before the formation of the spherulite structure, the time required to reach the melting temperature by the temperature drop after forming the composition film after the melting temperature is reached by heating the epoxy resin composition Is preferably 10 minutes or less, and more preferably 5 minutes or less.

<維持工程>
本発明の樹脂シート硬化物の製造方法においては、前記昇温工程に先立って、前記組成物膜の温度を、前記エポキシ樹脂モノマーの相転移温度がT(℃)であるとき、T−20(℃)以上T+20(℃)以下の範囲の温度に維持する維持工程をさらに有することが好ましい。
<Maintenance process>
In the method for producing a cured resin sheet of the present invention, prior to the temperature raising step, the temperature of the composition film is T-20 (when the phase transition temperature of the epoxy resin monomer is T (° C.)). It is preferable to further have a maintenance step of maintaining the temperature in the range of not less than C.) and not more than T + 20 (° C.).

上記維持工程をさらに有することにより、さらに熱伝導性の高い樹脂シート硬化物が得られる。その理由は定かではないが、以下のように推測される。
具体的には、維持工程において組成物膜をT(℃)付近(T−20(℃)以上T+20(℃)以下)の温度に維持することにより、組成物膜中のエポキシ樹脂モノマー分子が規則的に配列し、球晶構造が形成されると考えられる。そしてその後、昇温工程において上記のようにゆっくり昇温することで、エポキシ樹脂モノマーの球晶構造がさらに成長し、最終的により直径の大きな球晶構造が形成され、より熱伝導性の高い樹脂シート硬化物が得られると推測される。
By having the said maintenance process further, the resin sheet hardened | cured material with higher heat conductivity is obtained. The reason is not clear, but is presumed as follows.
Specifically, by maintaining the composition film at a temperature in the vicinity of T (° C.) (T-20 (° C.) or more and T + 20 (° C.) or less) in the maintaining step, the epoxy resin monomer molecules in the composition film are ordered. It is considered that a spherulite structure is formed. And after that, by slowly raising the temperature as described above in the temperature raising step, the spherulite structure of the epoxy resin monomer further grows, and finally a spherulite structure having a larger diameter is formed, and the resin having higher thermal conductivity. It is estimated that a cured sheet is obtained.

維持工程における組成物膜の温度(維持温度)は、上記の通りT−20(℃)以上T+20(℃)以下が望ましく、T−10(℃)以上T+10(℃)以下がより望ましく、T(℃)付近が最も望ましい。特に、エポキシ樹脂物モノマーが溶剤を含む場合は、溶剤をゆっくり揮発させ、直径の大きな球晶構造を形成する観点からも、上記維持温度はT(℃)付近が最も望ましい。また、より直径の大きな球晶構造を形成する観点からは、維持温度が高い方が望ましく、具体的にはT(℃)以上T+20(℃)であることが望ましい。   As described above, the temperature (maintenance temperature) of the composition film in the maintenance step is preferably T-20 (° C.) or more and T + 20 (° C.) or less, more preferably T-10 (° C.) or more and T + 10 (° C.) or less, and T ( (° C) is most desirable. In particular, when the epoxy resin monomer contains a solvent, the maintenance temperature is most preferably in the vicinity of T (° C.) from the viewpoint of slowly evaporating the solvent and forming a spherulite structure having a large diameter. Further, from the viewpoint of forming a spherulite structure having a larger diameter, it is desirable that the maintenance temperature is higher, and specifically, T (° C.) or more and T + 20 (° C.) is desirable.

維持温度を上記範囲とすることにより、上記範囲よりも高い場合に比べ、エポキシ樹脂モノマーの分子配列が進まないうちに硬化してしまうことに起因する結晶度の低い球晶構造の形成や球晶以外の不規則な結晶構造の形成が抑制される。また上記の通り、維持温度が上記範囲であることにより、上記範囲よりも低い場合に比べて、直径の大きな球晶構造が形成されやすい。そのため、維持温度が上記範囲であることにより、上記範囲よりも高い場合や低い場合に比べて、熱伝導性が良好な樹脂シート硬化物が得られる。   By setting the maintenance temperature within the above range, compared to the case where the maintenance temperature is higher than the above range, the formation of spherulite structures or spherulites with low crystallinity due to curing before the molecular arrangement of the epoxy resin monomer progresses The formation of an irregular crystal structure other than is suppressed. Further, as described above, when the maintenance temperature is in the above range, a spherulite structure having a large diameter is easily formed as compared with a case where the maintenance temperature is lower than the above range. Therefore, when the maintenance temperature is in the above range, a cured resin sheet having good thermal conductivity can be obtained as compared with cases where the maintenance temperature is higher or lower than the above range.

ここで、上記「エポキシ樹脂モノマーの相転移温度(T℃)」とは、エポキシ樹脂モノマーが結晶相から液晶相に転移する温度のことを意味し、示差走査熱量測定装置(DSC;PERKIN−ELMER社製、型番:TAC 7/DX)によって得られた温度である。具体的には、上記示差走査熱量測定装置を用い、30mgの試料を昇温速度10℃で測定して得られたDSC曲線において、吸熱ピークのうち低温側のピークの極大値における温度を上記「相転移温度(T℃)」とする。 Here, The "phase transition temperature of the epoxy resin monomer (T ° C.)" means the temperature at which the epoxy resin monomer is transferred to the liquid crystal phase and the crystal phase, differential scanning calorimeter (DSC; PERKIN-ELMER It is the temperature obtained by the company make, model number: TAC 7 / DX). Specifically, in the DSC curve obtained by measuring a 30 mg sample at a heating rate of 10 ° C. using the differential scanning calorimeter, the temperature at the maximum value of the low-temperature side peak among the endothermic peaks is expressed as “ Phase transition temperature (T ° C.) ”.

また、維持工程において上記温度に維持する時間としては、球晶の熱的安定化の観点から例えば10分以上1時間以下の範囲が挙げられ、30分以上1時間以下の範囲がより好ましい。特に、エポキシ樹脂組成物が溶剤を含む場合は、溶剤が揮発して組成物膜が乾燥するまで維持工程を行うことが望ましい。   Moreover, as time to maintain at the said temperature in a maintenance process, the range of 10 minutes or more and 1 hour or less is mentioned from a viewpoint of thermal stabilization of a spherulite, for example, The range of 30 minutes or more and 1 hour or less is more preferable. In particular, when the epoxy resin composition contains a solvent, it is desirable to perform the maintaining step until the solvent is volatilized and the composition film is dried.

なお、上記維持工程と後述する昇温工程とは、連続的に行われることが望ましい。例えば、T+20(℃)よりも高い温度から前記維持温度まで降温する降温工程を有する場合、降温工程に先立って維持工程が行われるよりも、降温工程の後に維持工程が行われ、その後連続的に昇温工程を経ることが望ましい。例えば維持工程の後に、T+20(℃)よりも高い温度から降温させる降温工程を有する場合、維持工程で形成された球晶構造がT+20(℃)よりも高い温度において崩壊することが考えられる。一方、降温工程の後に維持工程が行われ、その後連続的に昇温工程が行われることで、上記球晶構造の崩壊が回避されると共に、降温工程で形成された球晶構造が、その後の維持工程及び昇温工程において成長し、より直径の大きな球晶構造が得られると考えられる。   In addition, it is desirable to perform the said maintenance process and the temperature rising process mentioned later continuously. For example, in the case of having a temperature lowering process for lowering the temperature from a temperature higher than T + 20 (° C.) to the maintenance temperature, the maintenance process is performed after the temperature lowering process, and then continuously after the temperature lowering process is performed prior to the temperature lowering process. It is desirable to go through a temperature raising step. For example, in the case where a temperature lowering process for lowering the temperature from a temperature higher than T + 20 (° C.) is provided after the maintenance step, it is conceivable that the spherulite structure formed in the maintenance step collapses at a temperature higher than T + 20 (° C.). On the other hand, the maintenance step is performed after the temperature lowering step, and then the temperature rising step is continuously performed, so that the collapse of the spherulite structure is avoided, and the spherulite structure formed in the temperature lowering step is It is considered that a spherulite structure having a larger diameter is obtained by growing in the maintenance process and the temperature raising process.

<昇温工程>
昇温工程においては、前記昇温開始温度から後述する硬化温度まで昇温する。
上記昇温工程における昇温速度は、上記の通り50℃/分以下であり、30℃/分以下が望ましく、10℃/分以下がより望ましく、1℃/分以下が特に望ましい。昇温速度が上記範囲であることにより、昇温速度が上記範囲よりも速い場合に比べて、エポキシ樹脂モノマーの分子が短時間に多量のエネルギーを得て分子運動が激しくなることに起因する球晶構造の崩壊が抑制される。また上記昇温速度は、作業効率向上の観点から、0.2℃/分以上が望ましく、0.5℃/分以上がより望ましい。
なお、維持工程を経た後に昇温工程を経る場合、前記昇温開始温度は例えば維持温度であることが望ましい。また維持工程を有しない場合でも、前記昇温開始温度は、前記維持温度と同様の温度(すなわちT−20(℃)以上T+20(℃)以下の範囲の温度)であることが望ましい。
<Temperature raising process>
In the temperature raising step, the temperature is raised from the temperature raising start temperature to the curing temperature described later.
As described above, the temperature raising rate in the temperature raising step is 50 ° C./min or less, preferably 30 ° C./min or less, more preferably 10 ° C./min or less, and particularly preferably 1 ° C./min or less. Due to the temperature rising rate being in the above range, the sphere caused by the molecular motion of the epoxy resin monomer molecules in a short period of time resulting in intense molecular motion compared to the case where the temperature rising rate is faster than the above range. The collapse of the crystal structure is suppressed. The temperature increase rate is preferably 0.2 ° C./min or more, and more preferably 0.5 ° C./min or more from the viewpoint of improving work efficiency.
In addition, when passing through a temperature rising process after passing through a maintenance process, it is desirable that the said temperature rising start temperature is a maintenance temperature, for example. Even when the maintenance step is not provided, it is desirable that the temperature rise start temperature is the same temperature as the maintenance temperature (that is, a temperature in the range of T−20 (° C.) to T + 20 (° C.)).

<硬化工程>
硬化工程においては、組成物膜の温度を硬化温度に維持することによって組成物膜の硬化反応を進める。硬化工程を経た結果、組成物膜に含まれるエポキシ樹脂モノマー等が反応してエポキシ樹脂が生成し、樹脂シート硬化物が得られる。
本発明の樹脂シート硬化物の製造方法においては、前記硬化温度が、エポキシ樹脂モノマーの溶融温度以上であることが好ましい。昇温工程で前記溶融温度までゆっくり昇温することで、溶融温度よりも低い温度で昇温を終了する場合に比べ、硬化工程の後に樹脂シート硬化物を加熱又は冷却しても球晶構造が崩壊されにくく、樹脂シート硬化物の熱伝導性が維持されやすいと考えられる。
ここで、溶融温度の測定は、示差走査熱量測定装置(DSC;PERKIN−ELMER社製、型番:TAC 7/DX)によって行われる。具体的には、上記示差走査熱量測定装置を用い、30mgの試料を昇温速度10℃で測定して得られたDSC曲線において、吸熱ピークのうち高温側のピークの極大値における温度を上記「溶融温度」とする。
<Curing process>
In the curing step, the curing reaction of the composition film is advanced by maintaining the temperature of the composition film at the curing temperature. As a result of the curing step, the epoxy resin monomer contained in the composition film reacts to produce an epoxy resin, and a cured resin sheet is obtained.
In the method for producing a cured resin sheet of the present invention, the curing temperature is preferably equal to or higher than the melting temperature of the epoxy resin monomer. By slowly raising the temperature to the melting temperature in the temperature raising step, the spherulite structure can be obtained even if the resin sheet cured product is heated or cooled after the curing step, compared to the case where the temperature raising is finished at a temperature lower than the melting temperature. It is considered that the thermal conductivity of the cured resin sheet is easily maintained because the resin sheet is not easily collapsed.
Here, the melting temperature is measured by a differential scanning calorimeter (DSC; manufactured by PERKIN-ELMER, model number: TAC 7 / DX). Specifically, in the DSC curve obtained by measuring a 30 mg sample at a heating rate of 10 ° C. using the differential scanning calorimeter, the temperature at the maximum value of the peak on the high temperature side among the endothermic peaks is expressed as “ "Melting temperature".

硬化工程において硬化温度に維持する時間は、硬化温度、組成物膜の組成、及び目的とする硬化の度合い等によって適宜選択される。   The time for maintaining the curing temperature in the curing step is appropriately selected depending on the curing temperature, the composition of the composition film, the target degree of curing, and the like.

また、上記硬化工程の後に、硬化温度とは異なる温度でさらに組成物膜を硬化させる工程(以下、「後硬化工程」と称する場合がある)を有していてもよい。具体的には、例えば、硬化工程の後に、さらに温度を上昇させ、上昇させた温度で維持することで硬化を進めることを複数回繰り返すステップキュア等が挙げられる。上記ステップキュアを行うことで、高い温度で一度に硬化させる場合や、低い温度でのみ硬化させる場合に比べ、直径の大きな球晶構造を維持しつつ、硬化の度合いが高い樹脂シート硬化物が得られる。
上記後硬化工程においては、最終的に溶融温度よりも50℃以上高い温度まで昇温することが好ましい。ここで、硬化温度よりも高い温度で後硬化工程を行うために昇温する場合においても、上記昇温工程と同様に、昇温速度が50℃/分以下であることが好ましく、30℃/分以下がより好ましく、10℃/分以下がさらに好ましい。また、上記「硬化工程」及び「後硬化工程」において、組成物膜を硬化させる時間は、例えば、合計で6時間以上8時間以下の範囲が挙げられる。
Moreover, after the said hardening process, you may have the process (henceforth a "post-curing process") which further hardens a composition film | membrane at the temperature different from hardening temperature. Specifically, for example, after the curing step, step cure that repeats a plurality of times by further increasing the temperature and maintaining the temperature at the increased temperature may be mentioned. By performing the above-mentioned step cure, a cured resin sheet with a high degree of curing can be obtained while maintaining a spherulite structure with a large diameter as compared with the case of curing at a high temperature all at once or the case of curing only at a low temperature. It is done.
In the post-curing step, it is preferable that the temperature is finally raised to a temperature higher by 50 ° C. than the melting temperature. Here, even when the temperature is raised to perform the post-curing step at a temperature higher than the curing temperature, the temperature rising rate is preferably 50 ° C./min or less, as in the temperature rising step, Minutes or less is more preferable, and 10 ° C./minute or less is more preferable. In the “curing step” and the “post-curing step”, the time for curing the composition film is, for example, in the range of 6 hours to 8 hours in total.

<エポキシ樹脂組成物の組成>
エポキシ樹脂組成物は、上記の通り、少なくともエポキシ樹脂モノマーと硬化剤とを含み、その他に必要に応じて、硬化促進剤、エポキシ樹脂モノマー以外の樹脂、その他添加剤、溶剤等を含んでもよい。以下、エポキシ樹脂組成物の組成について詳細に説明する。
<Composition of epoxy resin composition>
As described above, the epoxy resin composition includes at least an epoxy resin monomer and a curing agent, and may further include a curing accelerator, a resin other than the epoxy resin monomer, other additives, a solvent, and the like as necessary. Hereinafter, the composition of the epoxy resin composition will be described in detail.

(エポキシ樹脂モノマー)
本発明に用いられるエポキシ樹脂モノマーは、特に限定されるものではないが、球晶の形成の観点から、分子が自己配列性を有するもの又は自己配列しやすいものであることが好ましい。分子が自己配列性を有するエポキシ樹脂モノマー又は自己配列しやすいエポキシ樹脂モノマーとしては、例えば、メソゲン骨格を有するエポキシ樹脂モノマー等が挙げられ、具体的には、例えば、特開2005−206814で記載されたメソゲン骨格を有するエポキシ樹脂モノマーなどが挙げられる。メソゲン骨格を有するエポキシ樹脂モノマーとしては、さらに具体的には、例えば、1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン、1−{(2−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン、1−{(3−エチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン等が挙げられる。
(Epoxy resin monomer)
Although the epoxy resin monomer used for this invention is not specifically limited, From a viewpoint of formation of a spherulite, it is preferable that a molecule | numerator has a self-arrangement property, or a thing which is easy to carry out a self-arrangement. Examples of the epoxy resin monomer having a self-aligning molecule or an epoxy resin monomer that is easily self-aligned include, for example, an epoxy resin monomer having a mesogenic skeleton, and specifically described in, for example, JP-A-2005-206814. And epoxy resin monomers having a mesogenic skeleton. More specifically, examples of the epoxy resin monomer having a mesogenic skeleton include 1-{(3-methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1- Cyclohexene, 1-{(2-methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene, 1-{(3-ethyl-4-oxiranylmethoxy) ) Phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene and the like.

(エポキシ樹脂モノマー以外の樹脂)
エポキシ樹脂組成物には、樹脂成分として、本発明の効果を損ねない範囲においてエポキシ樹脂モノマー以外の樹脂を含んでもよい。エポキシ樹脂モノマー以外の樹脂としては、例えば、アクリル樹脂、フェノール樹脂、ポリアミド樹脂などの樹脂が挙げられる。
エポキシ樹脂モノマー以外の樹脂の添加量としては、例えばエポキシ樹脂モノマー100質量部に対し、10質量部以下の範囲が挙げられる。
(Resin other than epoxy resin monomer)
The epoxy resin composition may contain a resin other than the epoxy resin monomer as a resin component as long as the effects of the present invention are not impaired. Examples of the resin other than the epoxy resin monomer include resins such as acrylic resin, phenol resin, and polyamide resin.
As addition amount of resin other than an epoxy resin monomer, the range of 10 mass parts or less is mentioned with respect to 100 mass parts of epoxy resin monomers, for example.

(硬化剤)
エポキシ樹脂組成物は、上記の通り硬化剤を含む。前記硬化剤はエポキシ樹脂モノマーと反応して樹脂硬化物を形成可能な化合物であれば特に制限はないが、例えば、ジシアンジアミド、芳香族ジアミンなどのアミン系硬化剤;フェノールノボラック樹脂、クレゾールノボラック樹脂などのフェノール系硬化剤;メルカプタン系硬化剤;等が使用できる。硬化剤は、熱伝導率向上の観点から、カテコール、レゾルシノール、p−ハイドロキノン等のように2官能フェノール硬化剤であることが好ましい。
また、硬化剤の添加量は、高熱伝導率の観点から、エポキシ樹脂モノマーのエポキシ当量で、エポキシ樹脂モノマーに対し、1対1が好ましい。
(Curing agent)
The epoxy resin composition contains a curing agent as described above. The curing agent is not particularly limited as long as it is a compound capable of reacting with an epoxy resin monomer to form a resin cured product. For example, amine curing agents such as dicyandiamide and aromatic diamine; phenol novolac resin, cresol novolac resin, etc. Phenol-based curing agents, mercaptan-based curing agents, and the like can be used. From the viewpoint of improving thermal conductivity, the curing agent is preferably a bifunctional phenol curing agent such as catechol, resorcinol, p-hydroquinone and the like.
Moreover, the addition amount of a hardening | curing agent is the epoxy equivalent of an epoxy resin monomer from a viewpoint of high heat conductivity, and 1: 1 is preferable with respect to an epoxy resin monomer.

(硬化促進剤)
エポキシ樹脂組成物は、硬化促進剤を含んでもよい。硬化促進剤は、特に限定されず、当技術分野において周知の化合物であってよい。硬化促進剤としては、例えば、トリフェニルホスフィン、2−エチル−4−メチルイミダゾール、三フッ化ホウ素アミン錯体、1−ベンジル−2−メチルイミダゾール等を使用することができる。硬化促進剤は、高熱伝導化の観点から、トリフェニルホスフィンであることが好ましい。
上記硬化促進剤の添加量としては、例えば、硬化剤100質量部に対し、0.5質量部以上1.0質量部以下の範囲が挙げられる。
(Curing accelerator)
The epoxy resin composition may contain a curing accelerator. The curing accelerator is not particularly limited, and may be a compound well known in the art. As the curing accelerator, for example, triphenylphosphine, 2-ethyl-4-methylimidazole, boron trifluoride amine complex, 1-benzyl-2-methylimidazole and the like can be used. The curing accelerator is preferably triphenylphosphine from the viewpoint of achieving high thermal conductivity.
As addition amount of the said hardening accelerator, the range of 0.5 mass part or more and 1.0 mass part or less is mentioned with respect to 100 mass parts of hardening | curing agents, for example.

(その他添加剤)
エポキシ樹脂組成物は、上記の通り、その他添加剤を含んでもよい。その他添加剤としては、例えば、難燃剤、増粘剤、顔料等の各種添加剤が挙げられる。
上記その他添加剤の添加量としては、例えば、エポキシ樹脂モノマー100質量部に対し、10質量部以下の範囲が挙げられる。
(Other additives)
The epoxy resin composition may contain other additives as described above. Examples of other additives include various additives such as flame retardants, thickeners, and pigments.
As addition amount of the said other additive, the range of 10 mass parts or less is mentioned with respect to 100 mass parts of epoxy resin monomers, for example.

なお、上記添加剤の影響で、樹脂の球晶構造が生成しにくくなったり、サイズ(球晶構造の直径)が小さくなったりする場合は、それらの添加剤を添加しないほうが望ましい。具体的には、例えば、樹脂組成物の柔軟性を向上させるためにアクリル樹脂(アクリル系エラストマ)を添加すると、エラストマの添加によって、樹脂シート硬化物の形成時における球晶構造の生成が阻害され、得られた樹脂シート硬化物の熱伝導率が低下する場合がある。よって、熱伝導率を向上させる観点から、エポキシ樹脂組成物が上記アクリル系エラストマを含有しないほうが望ましい。   In addition, when it becomes difficult to produce | generate the spherulite structure of resin or the size (diameter of a spherulite structure) becomes small under the influence of the said additive, it is desirable not to add those additives. Specifically, for example, when an acrylic resin (acrylic elastomer) is added to improve the flexibility of the resin composition, the addition of the elastomer inhibits the formation of a spherulite structure during the formation of the cured resin sheet. The heat conductivity of the obtained resin sheet cured product may decrease. Therefore, from the viewpoint of improving thermal conductivity, it is desirable that the epoxy resin composition does not contain the acrylic elastomer.

また上記の通り、本発明の樹脂シート硬化物の製造方法では、無機フィラを含有しなくても熱伝導性の高い樹脂シート硬化物が得られる。そのため、本発明の樹脂シート硬化物の製造方法において、無機フィラの添加量が、エポキシ樹脂モノマー100質量部に対し10質量部以下であることが望ましく、無機フィラを全く用いないことがより望ましい。それにより、無機フィラを多く用いた場合に特有の柔軟性低下、接着性低下、及びフィルム薄膜化困難性等が回避されつつ、熱伝導性の高い樹脂シート硬化物が得られる。   Moreover, as above-mentioned, in the manufacturing method of the resin sheet hardened | cured material of this invention, even if it does not contain an inorganic filler, a resin sheet hardened | cured material with high heat conductivity is obtained. Therefore, in the method for producing a cured resin sheet of the present invention, the amount of inorganic filler added is desirably 10 parts by mass or less with respect to 100 parts by mass of the epoxy resin monomer, and more desirably, no inorganic filler is used. Thereby, the resin sheet cured | curing material with high heat conductivity is obtained, avoiding the softness | flexibility fall, adhesiveness fall, difficulty of film thinning, etc. peculiar when many inorganic fillers are used.

(溶剤)
エポキシ樹脂組成物は、溶剤を含んだ樹脂ワニスとして用いてもよい。
溶剤は、特に限定されるものではなく、例えば、メチルエチルケトン、シクロヘキサノン、アセトン、テトラヒドロフランなどを使用することができる。使用するエポキシ樹脂モノマーの種類によるが、球晶を形成させやすい観点からは、エポキシ樹脂モノマーに対して溶解性の高い溶剤(例えばエポキシ樹脂モノマーの溶解度が14g/100gより大きい溶剤等)を使用することが好ましい。上記のように、球晶構造は分子の規則的配列によって形成されるものである。分子が自己配列しやすいほど球晶形成がしやすい。エポキシ樹脂モノマーに対して溶解性の高い溶剤を使用する場合、エポキシ樹脂モノマーが溶剤中に溶解した状態となりやすく、そのような状態においては自由に運動できるエポキシ樹脂モノマーの分子が多くなる。その結果、組成物膜中において球晶構造が形成しやすく、球晶構造の生成量が増え、また球晶構造の直径も大きくなり、熱伝導率が向上しやすくなると推測される。
上記溶剤の使用量は、エポキシ樹脂モノマーの溶解度によって好適な範囲が異なるが、例えばエポキシ樹脂モノマー100質量部に対し、80質量部以上200質量部以下の範囲が挙げられる。
(solvent)
The epoxy resin composition may be used as a resin varnish containing a solvent.
The solvent is not particularly limited, and for example, methyl ethyl ketone, cyclohexanone, acetone, tetrahydrofuran and the like can be used. Depending on the type of epoxy resin monomer to be used, from the viewpoint of easily forming spherulites, a solvent having high solubility in the epoxy resin monomer (for example, a solvent having a solubility of the epoxy resin monomer greater than 14 g / 100 g) is used. It is preferable. As described above, the spherulite structure is formed by a regular arrangement of molecules. The easier the molecules are self-aligned, the easier it is to form spherulites. When a solvent having high solubility with respect to the epoxy resin monomer is used, the epoxy resin monomer is likely to be dissolved in the solvent, and in such a state, the number of molecules of the epoxy resin monomer that can move freely increases. As a result, it is presumed that the spherulite structure is easily formed in the composition film, the amount of the spherulite structure generated is increased, the diameter of the spherulite structure is increased, and the thermal conductivity is easily improved.
The amount of the solvent used varies depending on the solubility of the epoxy resin monomer, and examples include a range of 80 parts by mass to 200 parts by mass with respect to 100 parts by mass of the epoxy resin monomer.

[樹脂シート硬化物]
次に、樹脂シート硬化物について説明する。
本発明の樹脂シート硬化物は、エポキシ樹脂を含有し、直径が10μm以上の球晶構造を有する。本発明の樹脂シート硬化物は、例えば、上記本発明の樹脂シート硬化物の製造方法により得られる。
[Hardened resin sheet]
Next, the cured resin sheet will be described.
The resin sheet cured product of the present invention contains an epoxy resin and has a spherulite structure with a diameter of 10 μm or more. The cured resin sheet of the present invention is obtained, for example, by the method for producing a cured resin sheet of the present invention.

本発明の樹脂シート硬化物は、上記のように直径の大きな球晶構造を有することにより、エポキシ樹脂が熱を伝えやすく、無機フィラを含有しなくても熱伝導性が高いものとなる。
球晶構造の直径は、高熱伝導率の観点から、上記の通り10μm以上であり、20μm以上が望ましく、40μm以上がより望ましく、大きいほど熱伝導率が高くなる。また球晶構造の直径は、球晶構造が密接に配列することにより熱伝導率が高くなるという観点から、100μm以下が望ましく、80μm以下がより望ましい。
Since the cured resin sheet of the present invention has a spherulite structure with a large diameter as described above, the epoxy resin can easily conduct heat, and even if it does not contain an inorganic filler, it has high thermal conductivity.
From the viewpoint of high thermal conductivity, the diameter of the spherulite structure is 10 μm or more as described above, preferably 20 μm or more, more preferably 40 μm or more, and the larger the value, the higher the thermal conductivity. In addition, the diameter of the spherulite structure is preferably 100 μm or less, and more preferably 80 μm or less, from the viewpoint that the thermal conductivity is increased by closely arranging the spherulite structures.

ここで上記「球晶」とは、分子の規則的配列によって形成された高分子化合物の結晶であり、例えば、球体状、楕円体状、円盤状ものが挙げられる。具体的には、図1に示されるような形状を有する。
なお図1は、本願実施例4で製造された樹脂シート硬化物を、以下の方法によって観察して得られた顕微鏡写真である。具体的には、サンプル(得られた樹脂シート硬化物)を偏光顕微鏡(POM)(BX−51:オリンパス光学工業株式会社)の観察ステージの中央にのせる。偏光顕微鏡の2枚の偏光板を直角になるように重ねた状態になっていることを確認した後に、ピントを合わせてサンプルの表面を、500倍の倍率で観察する。
Here, the “spherulite” is a crystal of a polymer compound formed by a regular arrangement of molecules, and examples thereof include spheres, ellipsoids, and disks. Specifically, it has a shape as shown in FIG.
FIG. 1 is a photomicrograph obtained by observing the cured resin sheet produced in Example 4 of the present application by the following method. Specifically, the sample (obtained resin sheet cured product) is placed at the center of the observation stage of a polarizing microscope (POM) (BX-51: Olympus Optical Co., Ltd.). After confirming that the two polarizing plates of the polarizing microscope are stacked at right angles, the surface of the sample is observed with a magnification of 500 times by focusing.

球晶は光学的異方性物体であるため、偏光顕微鏡によって球晶を観察すると、「マルタ十字」と呼ばれる消光模様が観測される。したがって、樹脂シート硬化物のサンプルを偏光顕微鏡で確認することで、球晶構造の有無を判別することができる。サンプルが厚すぎると、光の透過率が低くて観察しにくいため、厚みが50μm以下のサンプルを使用することが好ましい。また、サンプルの球晶構造を見やすいように、500倍以上の拡大率で観察することが好ましい。   Since spherulites are optically anisotropic objects, when spherulites are observed with a polarizing microscope, a quenching pattern called “Maltese cross” is observed. Therefore, the presence or absence of the spherulite structure can be determined by checking the cured resin sheet sample with a polarizing microscope. If the sample is too thick, it is difficult to observe because the light transmittance is low. Therefore, it is preferable to use a sample having a thickness of 50 μm or less. Moreover, it is preferable to observe at a magnification of 500 times or more so that the spherulite structure of the sample can be easily seen.

球晶構造は、上記偏光顕微鏡のほか、走査型電子顕微鏡(SEM)を用いても観測することができる。具体的な測定方法としては、例えば、走査型電子顕微鏡(SEM)(Philips XL30)を用いて、試料表面にプラチナ蒸着を施した後、高真空下、加速電圧10kVで二次電子像を観察する。特に偏光顕微鏡との併用によって球晶構造の確認が容易となる。   The spherulite structure can be observed using a scanning electron microscope (SEM) in addition to the polarizing microscope. As a specific measuring method, for example, using a scanning electron microscope (SEM) (Philips XL30), after depositing platinum on the sample surface, a secondary electron image is observed under an acceleration voltage of 10 kV under high vacuum. . In particular, the combined use with a polarizing microscope facilitates confirmation of the spherulite structure.

また球晶構造の直径についても、上記偏光顕微鏡等の観察により測定される。具体的には、例えば、偏光顕微鏡によって観測された球晶のうち、10個の球晶について直径の測定を行い、その平均を上記「球晶構造の直径」とする。
なお、球晶構造が真円以外の形状である場合(例えば楕円である場合等)における上記「直径」とは、球晶構造の径のうち最も短い径を言う。
The diameter of the spherulite structure is also measured by observation with the polarizing microscope or the like. Specifically, for example, diameters of 10 spherulites among spherulites observed with a polarizing microscope are measured, and the average is defined as the above-mentioned “diameter of spherulite structure”.
The “diameter” when the spherulite structure has a shape other than a perfect circle (for example, an ellipse) refers to the shortest diameter among the spherulite structures.

本発明の樹脂シート硬化物は、上記の通り少なくともエポキシ樹脂を含む。エポキシ樹脂は、上記の通り、エポキシ樹脂モノマー等が反応して得られるものであり、樹脂シート硬化物が硬化前のエポキシ樹脂モノマーや硬化剤等を含んでいてもよい。
本発明の樹脂シート硬化物の膜厚については、上記樹脂シート硬化物の製造方法における組成物膜の膜厚と同様である。
The resin sheet cured product of the present invention contains at least an epoxy resin as described above. As described above, the epoxy resin is obtained by reacting an epoxy resin monomer or the like, and the cured resin sheet may contain an epoxy resin monomer or a curing agent before curing.
About the film thickness of the resin sheet hardened | cured material of this invention, it is the same as that of the film thickness of the composition film | membrane in the manufacturing method of the said resin sheet hardened | cured material.

また本発明の樹脂シート硬化物は、上記のとおり無機フィラを含有しなくても熱伝導率が高い。そのため、樹脂シート硬化物中における無機フィラの含有量を少なくするか、又は無機フィラを含有させないことで、上記高熱伝導性に加えて、柔軟性向上、接着性向上、及びフィルム薄膜化容易性等の効果が得られる。なお、無機フィラの含有量は、上記効果を得る観点から、樹脂シート硬化物全体に対し、10質量%以下が望ましく、0質量%であることが最も望ましい。   Moreover, the resin sheet cured | curing material of this invention has high heat conductivity, even if it does not contain an inorganic filler as mentioned above. Therefore, by reducing the content of the inorganic filler in the cured resin sheet or not including the inorganic filler, in addition to the high thermal conductivity, the flexibility is improved, the adhesion is improved, and the film is thinned easily. The effect is obtained. In addition, 10 mass% or less is desirable with respect to the whole resin sheet hardened | cured material from the viewpoint of obtaining the said effect, and, as for content of an inorganic filler, it is the most desirable that it is 0 mass%.

以上説明した本発明の樹脂シート硬化物は、上記の通り熱伝導性が良好であるため、例えば、発熱体と放熱板との間に設けられ、発熱体から発せられた熱を放熱板に伝える用途に用いられる。本発明の樹脂シート硬化物の用途としては、具体的には、例えば、後述する樹脂付金属箔、金属基板、LED基板、パワーモジュール等が挙げられる。   Since the cured resin sheet of the present invention described above has good thermal conductivity as described above, for example, it is provided between the heat generating element and the heat radiating plate, and transfers heat generated from the heat generating element to the heat radiating plate. Used for applications. Specific examples of uses of the cured resin sheet of the present invention include, for example, a metal foil with resin, a metal substrate, an LED substrate, and a power module, which will be described later.

[樹脂付金属箔]
本発明の樹脂付金属箔は、金属箔と、前記金属箔上に配置された前記本発明の樹脂シート硬化物と、を備える。本発明の樹脂付金属箔は、前記本発明の樹脂シート硬化物を有することで、熱伝導率に優れる。
前記金属箔としては、金箔、銅箔、アルミニウム箔など特に制限されないが、一般的には銅箔が用いられる。
前記金属箔の厚みとしては、例えば1μm〜35μmの範囲が挙げられるが、20μm以下の金属箔を用いることで可とう性がより向上する。
また、金属箔として、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔、又はアルミニウムと銅箔とを複合した2層構造複合箔を用いることもできる。
[Metal foil with resin]
The metal foil with resin of this invention is equipped with metal foil and the resin sheet hardened | cured material of the said this invention arrange | positioned on the said metal foil. The resin-attached metal foil of the present invention is excellent in thermal conductivity by having the resin sheet cured product of the present invention.
The metal foil is not particularly limited, such as a gold foil, a copper foil, and an aluminum foil, but generally a copper foil is used.
Examples of the thickness of the metal foil include a range of 1 μm to 35 μm, but the flexibility is further improved by using a metal foil of 20 μm or less.
Moreover, as metal foil, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as an intermediate layer, and a copper layer of 0.5-15 μm and 10-300 μm on both sides. A composite foil having a three-layer structure provided with a copper layer or a two-layer structure composite foil in which aluminum and copper foil are combined can also be used.

樹脂付金属箔は、例えば、前記本発明の樹脂シート硬化物の製造方法において、基材として金属箔を用いることにより得られる。具体的には、例えば、前記エポキシ樹脂組成物を金属箔上に付与して組成物膜を形成し、前記硬化工程において組成物膜がBステージ状態(半硬化状態)になるように加熱処理することで製造することができる。
樹脂付金属箔の製造条件は特に制限されないが、例えば組成物膜の厚みが50〜200μmとなるように塗布することが好ましく、60〜150μmとなることがより好ましい。
The resin-attached metal foil is obtained, for example, by using a metal foil as a substrate in the method for producing a cured resin sheet of the present invention. Specifically, for example, the epoxy resin composition is applied onto a metal foil to form a composition film, and heat treatment is performed so that the composition film is in a B-stage state (semi-cured state) in the curing step. Can be manufactured.
The production conditions of the resin-coated metal foil are not particularly limited, but for example, it is preferably applied so that the thickness of the composition film is 50 to 200 μm, and more preferably 60 to 150 μm.

[金属基板]
本発明の金属基板は、金属支持体と、前記金属支持体上に配置された前記本発明の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属箔と、を備える。本発明の金属基板は、金属支持体と金属箔との間に配置された前記本発明の樹脂シート硬化物を有することで、熱伝導性に優れる。
前記金属支持体は目的に応じて、その素材及び厚み等が適宜選択される。具体的には例えば、アルミニウム、鉄等の金属を用い、厚みを0.5mm以上5mm以下とすることができる。
また樹脂層上に配置される金属箔は、前記樹脂付金属箔における金属箔と同義であり、好ましい態様も同様である。
[Metal substrate]
The metal substrate of the present invention includes a metal support, the cured resin sheet of the present invention disposed on the metal support, and a metal foil disposed on the cured resin sheet. The metal substrate of this invention is excellent in thermal conductivity by having the said resin sheet hardened | cured material of this invention arrange | positioned between a metal support body and metal foil.
The material and thickness of the metal support are appropriately selected according to the purpose. Specifically, for example, a metal such as aluminum or iron can be used, and the thickness can be set to 0.5 mm or more and 5 mm or less.
Moreover, the metal foil arrange | positioned on a resin layer is synonymous with the metal foil in the said metal foil with resin, and its preferable aspect is also the same.

本発明の金属基板は、例えば、前記発明の樹脂シート硬化物の製造方法において、基材として金属支持体を用いることにより得られる。具体的には、例えば、アルミニウム等の金属支持体上に、前記エポキシ樹脂組成物を付与して組成物膜を形成し、昇温工程及び硬化工程を経て半硬化状態の樹脂シート硬化物を得た後、さらに樹脂シート硬化物に金属箔を配置して、これを加熱・加圧処理して、樹脂シート硬化物をさらに硬化することで製造することができる。また、金属支持体上に、前記樹脂付金属箔を樹脂シート硬化物が金属支持体に対向するように張り合わせた後、これを加熱・加圧処理して、樹脂シート硬化物をさらに硬化することで製造することもできる。   The metal substrate of this invention is obtained by using a metal support body as a base material in the manufacturing method of the resin sheet hardened | cured material of the said invention, for example. Specifically, for example, the epoxy resin composition is applied to a metal support such as aluminum to form a composition film, and a semi-cured resin sheet cured product is obtained through a temperature raising step and a curing step. Then, it can manufacture by arrange | positioning metal foil to a resin sheet hardened | cured material further, heat-pressing this, and further hardening | curing a resin sheet hardened | cured material. In addition, after the resin-coated metal foil is laminated on a metal support so that the cured resin sheet faces the metal support, this is heated and pressurized to further cure the cured resin sheet. Can also be manufactured.

前記樹脂シート硬化物をさらに硬化する加熱・加圧処理の条件は、樹脂シート硬化物の構成に応じて適宜選択される。例えば、加熱温度が80〜250℃で、圧力が0.5〜8.0MPaであることが好ましく、加熱温度が130〜230℃で、圧力が1.5〜5.0MPaであることがより好ましい。   The conditions for the heating / pressurizing treatment for further curing the cured resin sheet are appropriately selected according to the configuration of the cured resin sheet. For example, the heating temperature is preferably 80 to 250 ° C. and the pressure is preferably 0.5 to 8.0 MPa, the heating temperature is 130 to 230 ° C., and the pressure is more preferably 1.5 to 5.0 MPa. .

[LED基板]
図2及び図3に、本発明のLED基板の一例を概略的に示す。
図2及び図3に示されたLED基板100は、例えば、金属支持体14と、前記金属支持体上に配置された前記本発明の樹脂シート硬化物12と、前記樹脂シート硬化物12上に配置された金属箔からなる回路層10と、前記回路層上に配置されたLED素子20と、を備える。
金属支持体14上に熱伝導率が優れる前記樹脂シート硬化物12が形成されていることで、LED素子20から放出される熱を効率的に放熱することが可能になる。
[LED substrate]
2 and 3 schematically show an example of the LED substrate of the present invention.
The LED substrate 100 shown in FIG. 2 and FIG. 3 includes, for example, a metal support 14, the cured resin sheet 12 of the present invention disposed on the metal support, and the cured resin sheet 12. The circuit layer 10 which consists of the arrange | positioned metal foil, and the LED element 20 arrange | positioned on the said circuit layer are provided.
By forming the cured resin sheet 12 having excellent thermal conductivity on the metal support 14, it is possible to efficiently dissipate heat released from the LED elements 20.

LED基板100は、例えば、上記のようにして得られる金属基板上の金属箔に回路加工して、金属支持体14上に配置された樹脂シート硬化物12上に回路層10を形成する工程と、形成された回路層10上にLED素子20を配置する工程と、を含む製造方法で製造することができる。
金属基板上の金属箔に回路加工する工程には、フォトリソ等の通常用いられる方法を適用することができる。また回路層10上にLED素子20を配置する工程についても、通常用いられる方法を特に制限なく用いることができる。
LED substrate 100 is, for example, a process of forming a circuit layer 10 on a resin sheet cured product 12 disposed on a metal support 14 by processing a metal foil on a metal substrate obtained as described above. And the step of disposing the LED element 20 on the formed circuit layer 10.
A commonly used method such as photolithography can be applied to the process of processing the metal foil on the metal substrate. In addition, for the step of disposing the LED element 20 on the circuit layer 10, a commonly used method can be used without any particular limitation.

[パワーモジュール]
図4に、本発明のパワーモジュールの一例を概略的に示す。
図4に示されたパワーモジュール200は、例えば、金属支持体1と、前記金属支持体1上に配置された前記本発明の樹脂シート硬化物2と、前記樹脂シート硬化物2上に配置された金属板3と、前記金属板3上にはんだ4を介して配置された半導体素子5と、を備える。
金属支持体1と金属板3との間に、熱伝導率に優れる前記樹脂シート硬化物2が形成されていることで、半導体素子5から放出される熱を効率的に放熱することが可能になる。
[Power module]
FIG. 4 schematically shows an example of the power module of the present invention.
The power module 200 shown in FIG. 4 is disposed on, for example, the metal support 1, the cured resin sheet 2 of the present invention disposed on the metal support 1, and the cured resin sheet 2. A metal plate 3 and a semiconductor element 5 disposed on the metal plate 3 via a solder 4.
Since the resin sheet cured product 2 having excellent thermal conductivity is formed between the metal support 1 and the metal plate 3, it is possible to efficiently dissipate heat released from the semiconductor element 5. Become.

上記金属支持体1としては、例えばアルミ、銅等の金属板が用いられ、ヒートシンクの役割を果たすものである。
また、上記金属板3としては、例えば銅板等が挙げられ、熱伝導率の高い金属板であることが望ましい。
また、上記半導体素子5としては、例えば、IGBT、サイリスタ等が挙げられる。
As the metal support 1, for example, a metal plate such as aluminum or copper is used and serves as a heat sink.
Moreover, as said metal plate 3, a copper plate etc. are mentioned, for example, It is desirable that it is a metal plate with high heat conductivity.
Examples of the semiconductor element 5 include an IGBT and a thyristor.

なお、パワーモジュール200は、金属板3と半導体素子5との間にはんだ4を用いているが、はんだ4は必要に応じて用いればよく、はんだ4を用いない形態もありうる。   In the power module 200, the solder 4 is used between the metal plate 3 and the semiconductor element 5. However, the solder 4 may be used as necessary, and there may be a form in which the solder 4 is not used.

パワーモジュール200は、例えば、上記本発明の樹脂シート硬化物の製造方法において、基材として上記金属支持体1を用い、金属支持体1上に樹脂シート硬化物2を形成させる工程と、樹脂シート硬化物2上に金属板3を貼り合わせる工程と、金属板3上にはんだ4を介して半導体素子5を配置する工程と、を含む製造方法で製造することができる。   For example, in the method for producing a cured resin sheet of the present invention, the power module 200 uses the metal support 1 as a base material to form a cured resin sheet 2 on the metal support 1 and a resin sheet. It can be manufactured by a manufacturing method including a step of bonding the metal plate 3 on the cured product 2 and a step of disposing the semiconductor element 5 on the metal plate 3 via the solder 4.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.

<実施例1>
1−(3−メチル−4−ヒドロキシフェニル)−4−(4−ヒドロキシフェニル)−1−シクロヘキセンとエピクロルヒドリンから合成された1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン3.6525部(エポキシ樹脂モノマー)と、カテコールレゾルシノールノボラック樹脂1.123部(日立化成工業株式会社製、硬化剤)と、トリフェニルホスフィン0.038部(和光純薬工業株式会社製、硬化促進剤)と、を混合させて、さらに、メチルエチルケトン3.369部(和光純薬工業株式会社製、溶剤)と、シクロヘキサノン1.123部と、を均一に混合させ、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を70℃まで加熱して、エポキシ樹脂モノマー、硬化剤、及び硬化促進剤を溶剤に溶解させて溶液の状態とした。
<Example 1>
1-{(3-Methyl-4-oxiranylmethoxy) phenyl} -4 synthesized from 1- (3-methyl-4-hydroxyphenyl) -4- (4-hydroxyphenyl) -1-cyclohexene and epichlorohydrin -(4-oxiranylmethoxyphenyl) -1-cyclohexene 3.6525 parts (epoxy resin monomer), 1.123 parts catechol resorcinol novolak resin (manufactured by Hitachi Chemical Co., Ltd., curing agent), triphenylphosphine 0 0.038 parts (manufactured by Wako Pure Chemical Industries, Ltd., curing accelerator), and 3.369 parts of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd., solvent), 1.123 parts of cyclohexanone, Were mixed uniformly to obtain an epoxy resin composition. The obtained epoxy resin composition was heated to 70 ° C., and the epoxy resin monomer, the curing agent, and the curing accelerator were dissolved in a solvent to form a solution.

基材としてPETフィルムを用い、基材を100℃に加熱した状態で、溶液の状態となったエポキシ樹脂組成物を手塗りにより基材に塗布し、組成物膜を得た(組成物膜形成工程)。その後、100℃で30分維持し、組成物膜中の溶剤を揮発させた(維持工程)。偏光顕微鏡によって観察することで、溶剤の揮発に伴ってエポキシ樹脂モノマーの球晶構造が形成されていることが確認された。なお、溶剤が揮発した状態における組成物膜の膜厚は、200μmであった。   Using a PET film as a base material, the epoxy resin composition in a solution state was applied to the base material by hand coating in a state where the base material was heated to 100 ° C. to obtain a composition film (formation of a composition film) Process). Then, it maintained at 100 degreeC for 30 minutes, and volatilized the solvent in a composition film | membrane (maintenance process). By observing with a polarizing microscope, it was confirmed that the spherulite structure of the epoxy resin monomer was formed with the volatilization of the solvent. In addition, the film thickness of the composition film | membrane in the state in which the solvent volatilized was 200 micrometers.

その後、昇温速度10℃/分で140℃まで昇温し(昇温工程)、140℃の状態で2時間維持することで、組成物膜の硬化を進めた(硬化工程)。その後、さらに165℃まで昇温(昇温速度10℃/分)して2時間維持し、190℃まで昇温(昇温速度10℃/分)して2時間維持するステップキュアにより、樹脂シート硬化物を得た。   Then, it heated up to 140 degreeC with the temperature increase rate of 10 degree-C / min (temperature raising process), and hardening of the composition film was advanced by maintaining at the state of 140 degreeC for 2 hours (curing process). Thereafter, the temperature is further increased to 165 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours, and the temperature is increased to 190 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours. A cured product was obtained.

偏光顕微鏡とSEMで樹脂シート硬化物を観察したところ、直径10μmの球晶構造が確認された。
また、熱伝導率を温度波熱分析装置(アイフェイズ社製、ai−phase mobile1)により測定した結果、0.53W/m・Kであった。
また、上記エポキシ樹脂モノマーの相転移温度及び溶融温度を上記方法により測定した結果、相転移温度が100℃であり、溶融温度が140℃であった。
When the cured resin sheet was observed with a polarizing microscope and SEM, a spherulite structure having a diameter of 10 μm was confirmed.
Moreover, it was 0.53 W / m * K as a result of measuring thermal conductivity with the temperature wave thermal analyzer (the product made by an eye phase, ai-phase mobile1).
Moreover, as a result of measuring the phase transition temperature and melting temperature of the said epoxy resin monomer by the said method, the phase transition temperature was 100 degreeC and the melting temperature was 140 degreeC.

<実施例2>
1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン3.6525部(エポキシ樹脂モノマー)と、カテコールレゾルシノールノボラック樹脂1.123部(日立化成工業株式会社製、硬化剤)と、トリフェニルホスフィン0.038部(和光純薬工業株式会社製、硬化促進剤)と、を混合させ、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、昇温速度90℃/分で190℃まで加熱して、エポキシ樹脂モノマー等が溶融した溶融液の状態とした。
<Example 2>
1-{(3-Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene (3.6525 parts (epoxy resin monomer)) and catechol resorcinol novolak resin 123 parts (manufactured by Hitachi Chemical Co., Ltd., curing agent) and 0.038 parts of triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., curing accelerator) were mixed to obtain an epoxy resin composition. The obtained epoxy resin composition was heated to 190 ° C. at a temperature rising rate of 90 ° C./min to obtain a molten liquid state in which the epoxy resin monomer and the like were melted.

基材としてPETフィルムを用い、基材を190℃に加熱した状態で、溶融液の状態となったエポキシ樹脂組成物を手塗りにより基材に塗布し、組成物膜を得た(組成物膜形成工程)。組成物膜の膜厚は、200μmであった。
その後、組成物膜の温度を降温速度30℃/分で100℃まで降温した(降温工程)。偏光顕微鏡によって観察することで、降温に従ってエポキシ樹脂モノマーの球晶構造が形成されていることが確認された。なお、溶融液の状態とするための加熱から降温工程までの間において、エポキシ樹脂組成物が140℃以上となっていた時間は2分であった。
Using a PET film as a base material, the epoxy resin composition in a molten state was applied to the base material by hand coating with the base material heated to 190 ° C. to obtain a composition film (composition film) Forming step). The film thickness of the composition film was 200 μm.
Thereafter, the temperature of the composition film was lowered to 100 ° C. at a temperature lowering rate of 30 ° C./min (temperature lowering step). By observing with a polarizing microscope, it was confirmed that the spherulite structure of the epoxy resin monomer was formed according to the temperature drop. In addition, the time which the epoxy resin composition was 140 degreeC or more between the heating for making it into a molten liquid state, and a temperature fall process was 2 minutes.

その後、100℃で30分維持した(維持工程)後、昇温速度1℃/分で140℃まで昇温し(昇温工程)、140℃の状態で2時間維持することで、組成物膜の硬化を進めた(硬化工程)。その後、さらに165℃まで昇温(昇温速度10℃/分)して2時間維持し、190℃まで昇温(昇温速度10℃/分)して2時間維持するステップキュアにより、樹脂シート硬化物を得た。
偏光顕微鏡とSEMで樹脂シート硬化物を観察したところ、直径10μmの球晶構造が確認された。熱伝導率を前記方法により測定した結果、0.52W/m・Kであった。
Then, after maintaining at 100 ° C. for 30 minutes (maintenance step), the temperature is increased to 140 ° C. at a temperature increase rate of 1 ° C./min (temperature increase step), and the composition film is maintained at 140 ° C. for 2 hours. Advanced curing (curing process). Thereafter, the temperature is further increased to 165 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours, and the temperature is increased to 190 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours. A cured product was obtained.
When the cured resin sheet was observed with a polarizing microscope and SEM, a spherulite structure having a diameter of 10 μm was confirmed. The thermal conductivity was measured by the above method and found to be 0.52 W / m · K.

<実施例3>
1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン3.6525部(エポキシ樹脂モノマー)と、カテコールレゾルシノールノボラック樹脂1.123部(日立化成工業株式会社製、硬化剤)と、トリフェニルホスフィン0.038部(和光純薬工業株式会社製、硬化促進剤)と、を混合させて、さらに、メチルエチルケトン3.369部(和光純薬工業株式会社製、溶剤)と、シクロヘキサノン1.123部と、を均一に混合させ、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を70℃まで加熱して、エポキシ樹脂モノマー、硬化剤、及び硬化促進剤を溶剤に溶解させて溶液の状態とした。
<Example 3>
1-{(3-Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene (3.6525 parts (epoxy resin monomer)) and catechol resorcinol novolak resin 123 parts (manufactured by Hitachi Chemical Co., Ltd., curing agent) and 0.038 parts of triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., curing accelerator) were mixed, and further 3.369 parts of methyl ethyl ketone ( Wako Pure Chemical Industries, Ltd., solvent) and 1.123 parts of cyclohexanone were uniformly mixed to obtain an epoxy resin composition. The obtained epoxy resin composition was heated to 70 ° C., and the epoxy resin monomer, the curing agent, and the curing accelerator were dissolved in a solvent to form a solution.

基材としてPETフィルムを用い、基材を100℃に加熱した状態で、溶液の状態となったエポキシ樹脂組成物を手塗りにより基材に塗布し、組成物膜を得た(組成物膜形成工程)。その後、100℃で30分維持し、組成物膜中の溶剤を揮発させた(維持工程)。偏光顕微鏡によって観察することで、溶剤の揮発に伴ってエポキシ樹脂モノマーの球晶構造が形成されていることが確認された。なお、溶剤が揮発した状態における組成物膜の膜厚は、200μmであった。   Using a PET film as a base material, the epoxy resin composition in a solution state was applied to the base material by hand coating in a state where the base material was heated to 100 ° C. to obtain a composition film (formation of a composition film) Process). Then, it maintained at 100 degreeC for 30 minutes, and volatilized the solvent in a composition film | membrane (maintenance process). By observing with a polarizing microscope, it was confirmed that the spherulite structure of the epoxy resin monomer was formed with the volatilization of the solvent. In addition, the film thickness of the composition film | membrane in the state in which the solvent volatilized was 200 micrometers.

その後、昇温速度1℃/分で140℃まで昇温し(昇温工程)、140℃の状態で2時間維持することで、組成物膜の硬化を進めた(硬化工程)。その後、さらに165℃まで昇温(昇温速度10℃/分)して2時間維持し、190℃まで昇温(昇温速度10℃/分)して2時間維持するステップキュアにより、樹脂シート硬化物を得た。
偏光顕微鏡とSEMで樹脂シート硬化物を観察したところ、直径40μmの球晶構造が確認された。熱伝導率を前記方法により測定した結果、0.56W/m・Kであった。
Then, it heated up to 140 degreeC with the temperature increase rate of 1 degree-C / min (temperature raising process), and hardening of the composition film was advanced by maintaining at 140 degreeC for 2 hours (curing process). Thereafter, the temperature is further increased to 165 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours, and the temperature is increased to 190 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours. A cured product was obtained.
When the cured resin sheet was observed with a polarizing microscope and SEM, a spherulite structure with a diameter of 40 μm was confirmed. As a result of measuring the thermal conductivity by the above method, it was 0.56 W / m · K.

<実施例4>
1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン3.6525部(エポキシ樹脂モノマー)と、カテコールレゾルシノールノボラック樹脂1.123部(日立化成工業株式会社製、硬化剤)と、トリフェニルホスフィン0.038部(和光純薬工業株式会社製、硬化促進剤)と、を混合させて、さらに、メチルエチルケトン3.369部(和光純薬工業株式会社製、溶剤)と、シクロヘキサノン1.123部と、を均一に混合させ、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を70℃まで加熱して、エポキシ樹脂モノマー、硬化剤、及び硬化促進剤を溶剤に溶解させて溶液の状態とした。
<Example 4>
1-{(3-Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene (3.6525 parts (epoxy resin monomer)) and catechol resorcinol novolak resin 123 parts (manufactured by Hitachi Chemical Co., Ltd., curing agent) and 0.038 parts of triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., curing accelerator) were mixed, and further 3.369 parts of methyl ethyl ketone ( Wako Pure Chemical Industries, Ltd., solvent) and 1.123 parts of cyclohexanone were uniformly mixed to obtain an epoxy resin composition. The obtained epoxy resin composition was heated to 70 ° C., and the epoxy resin monomer, the curing agent, and the curing accelerator were dissolved in a solvent to form a solution.

基材としてPETフィルムを用い、基材を100℃に加熱した状態で、溶液の状態となったエポキシ樹脂組成物を手塗りにより基材に塗布し、組成物膜を得た(組成物膜形成工程)。その後、100℃で30分維持し、組成物膜中の溶剤を揮発させた(維持工程)。偏光顕微鏡によって観察することで、溶剤の揮発に伴ってエポキシ樹脂モノマーの球晶構造が形成されていることが確認された。なお、溶剤が揮発した状態における組成物膜の膜厚は、50μmであった。   Using a PET film as a base material, the epoxy resin composition in a solution state was applied to the base material by hand coating in a state where the base material was heated to 100 ° C. to obtain a composition film (formation of a composition film) Process). Then, it maintained at 100 degreeC for 30 minutes, and volatilized the solvent in a composition film | membrane (maintenance process). By observing with a polarizing microscope, it was confirmed that the spherulite structure of the epoxy resin monomer was formed with the volatilization of the solvent. In addition, the film thickness of the composition film | membrane in the state in which the solvent volatilized was 50 micrometers.

その後、昇温速度1℃/分で140℃まで昇温し(昇温工程)、140℃の状態で2時間維持することで、組成物膜の硬化を進めた(硬化工程)。その後、さらに165℃まで昇温(昇温速度10℃/分)して2時間維持し、190℃まで昇温(昇温速度10℃/分)して2時間維持するステップキュアにより、樹脂シート硬化物を得た。
偏光顕微鏡とSEMで樹脂シート硬化物を観察したところ、直径80μmの球晶構造が確認された。熱伝導率を前記方法により測定した結果、0.66W/m・Kであった。
Then, it heated up to 140 degreeC with the temperature increase rate of 1 degree-C / min (temperature raising process), and hardening of the composition film was advanced by maintaining at 140 degreeC for 2 hours (curing process). Thereafter, the temperature is further increased to 165 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours, and the temperature is increased to 190 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours. A cured product was obtained.
When the cured resin sheet was observed with a polarizing microscope and SEM, a spherulite structure with a diameter of 80 μm was confirmed. As a result of measuring the thermal conductivity by the above method, it was 0.66 W / m · K.

<比較例1>
1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン3.6525部(エポキシ樹脂モノマー)と、カテコールレゾルシノールノボラック樹脂1.123部(日立化成工業株式会社製、硬化剤)と、トリフェニルホスフィン0.038部(和光純薬工業株式会社製、硬化促進剤)と、を混合させ、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を、昇温速度90℃/分で190℃まで加熱して、エポキシ樹脂モノマー等が溶融した溶融液の状態とした。
<Comparative Example 1>
1-{(3-Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene (3.6525 parts (epoxy resin monomer)) and catechol resorcinol novolak resin 123 parts (manufactured by Hitachi Chemical Co., Ltd., curing agent) and 0.038 parts of triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., curing accelerator) were mixed to obtain an epoxy resin composition. The obtained epoxy resin composition was heated to 190 ° C. at a temperature rising rate of 90 ° C./min to obtain a molten liquid state in which the epoxy resin monomer and the like were melted.

基材としてPETフィルムを用い、基材を190℃に加熱した状態で、溶融液の状態となったエポキシ樹脂組成物を手塗りにより基材に塗布し、組成物膜を得た。組成物膜の膜厚は、200μmであった。
その後、組成物膜の温度を降温速度30℃/分で100℃まで降温した(降温工程)。100℃で30分維持した(維持工程)後、昇温速度90℃/分で140℃まで昇温し(昇温工程)、140℃の状態で2時間維持することで、組成物膜の硬化を進めた(硬化工程)。その後、さらに165℃まで昇温(昇温速度10℃/分)して2時間維持し、190℃まで昇温(昇温速度10℃/分)して2時間維持するステップキュアにより、樹脂シート硬化物を得た。
偏光顕微鏡とSEMで樹脂シート硬化物を観察したところ、直径10μm未満の球晶構造しか確認されなかった。熱伝導率を前記方法により測定した結果、0.30W/m・Kであった。
A PET film was used as a base material, and the epoxy resin composition in a melt state was applied to the base material by hand coating with the base material heated to 190 ° C. to obtain a composition film. The film thickness of the composition film was 200 μm.
Thereafter, the temperature of the composition film was lowered to 100 ° C. at a temperature lowering rate of 30 ° C./min (temperature lowering step). After maintaining at 100 ° C. for 30 minutes (maintenance step), the temperature of the composition film is increased to 140 ° C. at a temperature increase rate of 90 ° C./min (temperature increase step) and maintained at 140 ° C. for 2 hours to cure the composition film. Advanced (curing process). Thereafter, the temperature is further increased to 165 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours, and the temperature is increased to 190 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours. A cured product was obtained.
When the cured resin sheet was observed with a polarizing microscope and SEM, only a spherulite structure with a diameter of less than 10 μm was confirmed. As a result of measuring the thermal conductivity by the above method, it was 0.30 W / m · K.

<比較例2>
1−{(3−メチル−4−オキシラニルメトキシ)フェニル}−4−(4−オキシラニルメトキシフェニル)−1−シクロヘキセン3.6525部(エポキシ樹脂モノマー)と、カテコールレゾルシノールノボラック樹脂1.123部(日立化成工業株式会社製、硬化剤)と、トリフェニルホスフィン0.038部(和光純薬工業株式会社製、硬化促進剤)と、を混合させて、さらに、メチルエチルケトン3.369部(和光純薬工業株式会社製、溶剤)と、シクロヘキサノン1.123部と、を均一に混合させ、エポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を70℃まで加熱して、エポキシ樹脂モノマー、硬化剤、及び硬化促進剤を溶剤に溶解させて溶液の状態とした。
<Comparative example 2>
1-{(3-Methyl-4-oxiranylmethoxy) phenyl} -4- (4-oxiranylmethoxyphenyl) -1-cyclohexene (3.6525 parts (epoxy resin monomer)) and catechol resorcinol novolak resin 123 parts (manufactured by Hitachi Chemical Co., Ltd., curing agent) and 0.038 parts of triphenylphosphine (manufactured by Wako Pure Chemical Industries, Ltd., curing accelerator) were mixed, and further 3.369 parts of methyl ethyl ketone ( Wako Pure Chemical Industries, Ltd., solvent) and 1.123 parts of cyclohexanone were uniformly mixed to obtain an epoxy resin composition. The obtained epoxy resin composition was heated to 70 ° C., and the epoxy resin monomer, the curing agent, and the curing accelerator were dissolved in a solvent to form a solution.

基材としてPETフィルムを用い、基材を100℃に加熱した状態で、溶液の状態となったエポキシ樹脂組成物を手塗りにより基材に塗布し、組成物膜を得た。その後、100℃で30分維持し、組成物膜中の溶剤を揮発させた。偏光顕微鏡によって観察することで、溶剤の揮発に伴ってエポキシ樹脂モノマーの球晶構造が形成されていることが確認された。なお、溶剤が揮発した状態における組成物膜の膜厚は、200μmであった。   A PET film was used as a substrate, and the epoxy resin composition in a solution state was applied to the substrate by hand coating with the substrate heated to 100 ° C. to obtain a composition film. Then, it maintained at 100 degreeC for 30 minutes, and volatilized the solvent in a composition film | membrane. By observing with a polarizing microscope, it was confirmed that the spherulite structure of the epoxy resin monomer was formed with the volatilization of the solvent. In addition, the film thickness of the composition film | membrane in the state in which the solvent volatilized was 200 micrometers.

その後、昇温速度90℃/分で140℃まで昇温し(昇温工程)、140℃の状態で2時間維持することで、組成物膜の硬化を進めた(硬化工程)。その後、さらに165℃まで昇温(昇温速度10℃/分)して2時間維持し、190℃まで昇温(昇温速度10℃/分)して2時間維持するステップキュアにより、樹脂シート硬化物を得た。
偏光顕微鏡とSEMで樹脂シート硬化物を観察したところ、直径10μm未満の球晶構造しか確認されなかった。熱伝導率を前記方法により測定した結果、0.30W/m・Kであった。
Then, it heated up to 140 degreeC with the temperature increase rate of 90 degreeC / min (temperature raising process), and hardening of the composition film was advanced by maintaining at 140 degreeC for 2 hours (curing process). Thereafter, the temperature is further increased to 165 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours, and the temperature is increased to 190 ° C. (temperature increase rate: 10 ° C./min) and maintained for 2 hours. A cured product was obtained.
When the cured resin sheet was observed with a polarizing microscope and SEM, only a spherulite structure with a diameter of less than 10 μm was confirmed. As a result of measuring the thermal conductivity by the above method, it was 0.30 W / m · K.

各実施例、比較例で作製した高熱伝導性エポキシ樹脂組成物の球晶サイズと熱伝導率の検討結果を表1にまとめる。   Table 1 summarizes the examination results of the spherulite size and the thermal conductivity of the high thermal conductivity epoxy resin composition prepared in each example and comparative example.

表1の結果から本発明の樹脂シート硬化物の製造方法によれば、比較例における樹脂シート硬化物の製造方法に比べ、直径の大きな球晶構造を有し、熱伝導率の高い樹脂シート硬化物が得られることがわかる。   From the results of Table 1, according to the method for producing a cured resin sheet according to the present invention, compared to the method for producing a cured resin sheet in the comparative example, the resin sheet has a large diameter spherulite structure and high thermal conductivity. It turns out that a thing is obtained.

1 金属支持体
2 樹脂シート硬化物
3 金属板
4 はんだ
5 半導体素子
10 回路層
12 樹脂シート硬化物
14 金属支持体
20 LED素子
100 LED基板
200 パワーモジュール
DESCRIPTION OF SYMBOLS 1 Metal support body 2 Resin sheet hardened | cured material 3 Metal plate 4 Solder 5 Semiconductor element 10 Circuit layer 12 Resin sheet hardened | cured material 14 Metal support body 20 LED element 100 LED board 200 Power module

Claims (9)

エポキシ樹脂モノマーと硬化剤とを含むエポキシ樹脂組成物を基材の表面に付与して組成物膜を形成する組成物膜形成工程と、
前記組成物膜の温度を50℃/分以下の昇温速度で硬化温度まで昇温する昇温工程と、
前記硬化温度で前記組成物膜を硬化させる硬化工程と、
を有する樹脂シート硬化物の製造方法。
A composition film forming step for forming a composition film by applying an epoxy resin composition containing an epoxy resin monomer and a curing agent to the surface of the substrate;
A temperature raising step of raising the temperature of the composition film to a curing temperature at a temperature raising rate of 50 ° C./min or less;
A curing step of curing the composition film at the curing temperature;
The manufacturing method of the resin sheet hardened | cured material which has this.
前記昇温工程に先立って、前記組成物膜の温度を、前記エポキシ樹脂モノマーの相転移温度がT(℃)であるとき、T−20(℃)以上T+20(℃)以下の範囲の温度に維持する維持工程をさらに有する、請求項1に記載の樹脂シート硬化物の製造方法。   Prior to the temperature raising step, when the phase transition temperature of the epoxy resin monomer is T (° C.), the temperature of the composition film is T-20 (° C.) or higher and T + 20 (° C.) or lower. The manufacturing method of the resin sheet hardened | cured material of Claim 1 which further has a maintenance process to maintain. 前記硬化温度は、前記エポキシ樹脂モノマーの溶融温度以上である、請求項1又は請求項2に記載の樹脂シート硬化物の製造方法。   The method for producing a cured resin sheet according to claim 1 or 2, wherein the curing temperature is equal to or higher than a melting temperature of the epoxy resin monomer. 前記維持工程に先立って、前記組成物膜の温度を50℃/分以下の降温速度で、前記維持工程における前記組成物膜の温度まで降温する降温工程をさらに有する、請求項2又は請求項3に記載の樹脂シート硬化物の製造方法。   Prior to the maintaining step, the method further comprises a temperature lowering step of lowering the temperature of the composition film to a temperature of the composition film in the maintaining step at a temperature decreasing rate of 50 ° C / min or less. The manufacturing method of the resin sheet hardened | cured material of description. エポキシ樹脂を含有し、直径が10μm以上の球晶構造を有する樹脂シート硬化物。   A cured resin sheet containing an epoxy resin and having a spherulite structure with a diameter of 10 μm or more. 金属箔と、前記金属箔上に配置された請求項1〜請求項4のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は請求項5に記載の樹脂シート硬化物と、を備える樹脂付金属箔。   The resin sheet hardened | cured material obtained by the metal foil and the manufacturing method of the resin sheet hardened | cured material of any one of Claims 1-4 arrange | positioned on the said metal foil, or resin of Claim 5 A metal foil with resin, comprising a cured sheet. 金属支持体と、前記金属支持体上に配置された請求項1〜請求項4のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は請求項5に記載の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属箔と、を備える金属基板。   The resin sheet hardened | cured material obtained by the manufacturing method of the metal sheet | seat and the resin sheet hardened | cured material of any one of Claims 1-4 arrange | positioned on the said metal support body, or Claim 5. A metal substrate comprising a cured resin sheet of the above and a metal foil disposed on the cured resin sheet. 金属支持体と、前記金属支持体上に配置された請求項1〜請求項4のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は請求項5に記載の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属箔からなる回路層と、前記回路層上に配置されたLED素子と、を備えるLED基板。   The resin sheet hardened | cured material obtained by the manufacturing method of the metal sheet | seat and the resin sheet hardened | cured material of any one of Claims 1-4 arrange | positioned on the said metal support body, or Claim 5. An LED substrate comprising: a cured product of the resin sheet; a circuit layer made of a metal foil disposed on the cured resin sheet; and an LED element disposed on the circuit layer. 金属支持体と、前記金属支持体上に配置された請求項1〜請求項4のいずれか1項に記載の樹脂シート硬化物の製造方法により得られた樹脂シート硬化物又は請求項5に記載の樹脂シート硬化物と、前記樹脂シート硬化物上に配置された金属板と、前記金属板上に配置された半導体素子と、を備えるパワーモジュール。   The resin sheet hardened | cured material obtained by the manufacturing method of the metal sheet | seat and the resin sheet hardened | cured material of any one of Claims 1-4 arrange | positioned on the said metal support body, or Claim 5. A power module comprising: a cured resin sheet, a metal plate disposed on the cured resin sheet, and a semiconductor element disposed on the metal plate.
JP2010214317A 2010-09-24 2010-09-24 Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module Pending JP2012067225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214317A JP2012067225A (en) 2010-09-24 2010-09-24 Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214317A JP2012067225A (en) 2010-09-24 2010-09-24 Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module

Publications (1)

Publication Number Publication Date
JP2012067225A true JP2012067225A (en) 2012-04-05

Family

ID=46164867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214317A Pending JP2012067225A (en) 2010-09-24 2010-09-24 Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module

Country Status (1)

Country Link
JP (1) JP2012067225A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218023A (en) * 2013-05-09 2014-11-20 日立化成株式会社 Highly heat-conductive film
WO2018147425A1 (en) 2017-02-09 2018-08-16 富士フイルム株式会社 Curable composition, thermally conductive material, and device with thermally conductive layer
WO2019013261A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019013323A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019013343A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019013325A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019013299A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Thermally conductive material, device provided with thermally conductive layer, thermally conductive material formation composition, disc-shaped liquid crystal compound
WO2019131332A1 (en) 2017-12-27 2019-07-04 富士フイルム株式会社 Composition, thermally conductive material, device having thermal conduction layer, and method of producing thermally conductive material
WO2020067364A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film
US10633252B2 (en) 2016-01-26 2020-04-28 Fujifilm Corporation Surface-modified inorganic substance, method for manufacturing same, resin composition, thermally conductive material, and device
WO2020153205A1 (en) 2019-01-23 2020-07-30 富士フイルム株式会社 Composition, thermally-conductive sheet, and device equipped with thermally-conductive layer
WO2020158259A1 (en) 2019-02-01 2020-08-06 富士フイルム株式会社 Composition for forming thermally conductive material, and thermally conductive material
US10752778B2 (en) 2016-01-26 2020-08-25 Fujifilm Corporation Resin composition containing surface-modified inorganic substance, thermally conductive material, and device
US10774212B2 (en) 2016-01-26 2020-09-15 Fujifilm Corporation Thermally conductive material, resin composition, and device
WO2020195496A1 (en) 2019-03-28 2020-10-01 富士フイルム株式会社 Composition and heat conducting material
WO2021010291A1 (en) 2019-07-17 2021-01-21 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, and surface-modified inorganic substance
WO2021039732A1 (en) 2019-08-26 2021-03-04 富士フイルム株式会社 Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2021059806A1 (en) 2019-09-27 2021-04-01 富士フイルム株式会社 Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2021131803A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Composition, heat conductive sheet, and device having heat conductive sheet
WO2021131669A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Boron nitride particles, composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2021157246A1 (en) 2020-02-06 2021-08-12 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218023A (en) * 2013-05-09 2014-11-20 日立化成株式会社 Highly heat-conductive film
US10633252B2 (en) 2016-01-26 2020-04-28 Fujifilm Corporation Surface-modified inorganic substance, method for manufacturing same, resin composition, thermally conductive material, and device
US10752778B2 (en) 2016-01-26 2020-08-25 Fujifilm Corporation Resin composition containing surface-modified inorganic substance, thermally conductive material, and device
US10774212B2 (en) 2016-01-26 2020-09-15 Fujifilm Corporation Thermally conductive material, resin composition, and device
WO2018147425A1 (en) 2017-02-09 2018-08-16 富士フイルム株式会社 Curable composition, thermally conductive material, and device with thermally conductive layer
WO2019013323A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019013299A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Thermally conductive material, device provided with thermally conductive layer, thermally conductive material formation composition, disc-shaped liquid crystal compound
WO2019013325A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019013343A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
EP3816147A1 (en) 2017-07-14 2021-05-05 FUJIFILM Corporation Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound
WO2019013261A1 (en) 2017-07-14 2019-01-17 富士フイルム株式会社 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
WO2019131332A1 (en) 2017-12-27 2019-07-04 富士フイルム株式会社 Composition, thermally conductive material, device having thermal conduction layer, and method of producing thermally conductive material
WO2020067364A1 (en) 2018-09-28 2020-04-02 富士フイルム株式会社 Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film
WO2020153205A1 (en) 2019-01-23 2020-07-30 富士フイルム株式会社 Composition, thermally-conductive sheet, and device equipped with thermally-conductive layer
WO2020158259A1 (en) 2019-02-01 2020-08-06 富士フイルム株式会社 Composition for forming thermally conductive material, and thermally conductive material
WO2020195496A1 (en) 2019-03-28 2020-10-01 富士フイルム株式会社 Composition and heat conducting material
WO2021010291A1 (en) 2019-07-17 2021-01-21 富士フイルム株式会社 Composition for forming thermally conductive material, thermally conductive material, and surface-modified inorganic substance
WO2021039732A1 (en) 2019-08-26 2021-03-04 富士フイルム株式会社 Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2021059806A1 (en) 2019-09-27 2021-04-01 富士フイルム株式会社 Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2021131803A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Composition, heat conductive sheet, and device having heat conductive sheet
WO2021131669A1 (en) 2019-12-26 2021-07-01 富士フイルム株式会社 Boron nitride particles, composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer
WO2021157246A1 (en) 2020-02-06 2021-08-12 富士フイルム株式会社 Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer

Similar Documents

Publication Publication Date Title
JP2012067225A (en) Method of producing cured material of resin sheet, cured material of resin sheet, metal foil with resin, metal substrate, led substrate and power module
TWI577790B (en) Hardened heat dissipation composition
KR101348330B1 (en) Method of manufacturing area mounting semiconductor device
JP6119610B2 (en) Epoxy resin composition, semi-cured epoxy resin composition, cured epoxy resin composition, resin sheet, prepreg, laminate, metal substrate, wiring board, method for producing semi-cured epoxy resin composition, and method for producing cured epoxy resin composition
WO2011104996A1 (en) Thermosetting resin composition, b-stage thermally conductive sheet, and power module
JP2018138634A (en) Resin composition and semiconductor device using the resin composition
JP5344022B2 (en) Epoxy resin composition, prepreg, laminate, resin sheet, printed wiring board, and semiconductor device
JP2013151655A (en) Resin composition, resin composition sheet and manufacturing method for resin composition sheet, resin composition sheet with metal foil, b-stage sheet, semi-hardened resin composition sheet with metal foil, metal base wiring board material, metal base wiring board, led light source member, and power semiconductor device
JP6594799B2 (en) Thermally conductive adhesive composition, thermal conductive adhesive sheet and method for producing laminate
JP2012004352A (en) Insulation material, metal base substrate and semiconductor module, and method of manufacturing the same
JP6570259B2 (en) Resin composition, insulating film, and semiconductor device
TW201618251A (en) Interlayer filler composition for semiconductor device, and method for manufacturing semiconductor device
TW200845250A (en) Manufacturing method of circuit board and semiconductor manufacturing apparatus
JP2016216639A (en) Prepreg, resin substrate, metal-clad laminate, printed wiring board, and semiconductor device
JP2021091783A (en) Composition, cured product, multilayer sheet, heat dissipation component, and electronic component
JP2018039992A (en) Resin composition and three-dimensional laminated type semiconductor device using the resin composition
JPWO2016088744A1 (en) Resin sheet and printed wiring board
JP2017019900A (en) Adhesive composition, adhesive film, metal foil with resin and metal base substrate
JP6139172B2 (en) Thermosetting resin filler and printed wiring board obtained using the same
JP7252027B2 (en) Curable resin composition for hole filling
JP2008088405A (en) Resin composition, heat conductive sheet, highly heat conductive adhesive sheet with metal foil and highly heat conductive adhesive sheet with metal plate
JP2021091784A (en) Composition, multilayer sheet, heat dissipation component, and electronic component
JP2008277768A (en) Insulative heat conductive sheet
WO2015178393A1 (en) Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon
JP6398096B2 (en) Resin structure, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426