JP2012060003A - Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector - Google Patents

Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector Download PDF

Info

Publication number
JP2012060003A
JP2012060003A JP2010203098A JP2010203098A JP2012060003A JP 2012060003 A JP2012060003 A JP 2012060003A JP 2010203098 A JP2010203098 A JP 2010203098A JP 2010203098 A JP2010203098 A JP 2010203098A JP 2012060003 A JP2012060003 A JP 2012060003A
Authority
JP
Japan
Prior art keywords
sintered body
mol
voltage
oxide
resistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010203098A
Other languages
Japanese (ja)
Inventor
Tomoaki Kato
智明 加東
Iwao Kawamata
巌 河又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010203098A priority Critical patent/JP2012060003A/en
Publication of JP2012060003A publication Critical patent/JP2012060003A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a voltage nonlinear resistor element and an over-voltage protector which has a small leak current, and is provided with an excellent voltage application life property.SOLUTION: A voltage nonlinear resistor element comprises: a sintered body where a zinc oxide is made to be a principal component, and a bismuth oxide, an antimony oxide, a chromic oxide and a boron are included, and in a phase formed from said bismuth oxide, at least one kind of a potassium and a sodium exists, and a ratio (B/A) of a X-ray diffraction peak intensity (B) of a surface (-302) of a monoclinic BiBOto a X-ray diffraction peak intensity (A) of a surface (123) of a tetragonal BiCrOis 0.1 or less; a plurality of electrodes provided via said sintered body; and a resistive layer provided in a side surface of said sintered body.

Description

本発明は、避雷器、サージアブゾーバーなどの過電圧保護装置に好適に用いられる電圧非直線抵抗体素子、およびこの製造方法、並びに過電圧保護装置に関するものである。   The present invention relates to a voltage non-linear resistance element suitably used for an overvoltage protection device such as a lightning arrester and a surge absorber, a manufacturing method thereof, and an overvoltage protection device.

避雷器、サージアブゾーバーなどに用いられる電圧非直線抵抗体素子は、主成分である酸化亜鉛(ZnO)に電圧非直線性の発現に必須である酸化ビスマスをはじめ、電気特性の改善に有効な添加物を添加した組成物を粉砕、混合、造粒、成形、焼成及び後熱処理の各工程を経た焼結体に電極と側面高抵抗層とを設けることによって構成されている。   Voltage non-linear resistor elements used in lightning arresters, surge absorbers, etc. are effective additives for improving electrical properties, including bismuth oxide, which is essential for the expression of voltage non-linearity, as the main component, zinc oxide (ZnO). Is provided by providing an electrode and a side high-resistance layer on a sintered body that has been subjected to pulverization, mixing, granulation, molding, firing, and post-heat treatment.

電圧非直線抵抗体素子の動作は、サージエネルギーが印加されない待機状態と、サージエネルギーが加わる動作状態に大きく分けられる。現在、電圧非直線抵抗体素子は待機時に常に両端に電圧が印加されるいわゆるギャップレス構造で用いられることが主流であるため、待機時に微小ながら電流(もれ電流)が流れる。電圧非直線抵抗体素子のもれ電流の経時変化が増加傾向の場合、電圧非直線抵抗体素子の発熱量が増加する。発熱量が増加し電圧非直線抵抗体素子周囲との熱的なバランスが失われた場合、電圧非直線抵抗体素子は熱暴走する可能性があるため、待機時に電圧非直線抵抗体素子を流れるもれ電流を極力小さくし、経時に増加させないことが、電圧非直線抵抗体素子を搭載した過電圧保護装置の信頼性の観点から極めて重要である。
もれ電流が減少傾向を示す優れた課電寿命特性を確保するためには、焼成後に500℃程度の温度で電圧非直線抵抗体を後熱処理する手法がある。
The operation of the voltage non-linear resistor element is roughly divided into a standby state where no surge energy is applied and an operation state where surge energy is applied. At present, the voltage non-linear resistance element is mainly used in a so-called gapless structure in which a voltage is always applied to both ends during standby, so that a current (leakage current) flows in a small amount during standby. If the leakage current of the voltage nonlinear resistor element tends to increase with time, the amount of heat generated by the voltage nonlinear resistor element increases. When the amount of heat generation increases and the thermal balance with the surroundings of the voltage nonlinear resistor element is lost, the voltage nonlinear resistor element may run out of heat, so the voltage nonlinear resistor element flows during standby. It is extremely important from the viewpoint of the reliability of the overvoltage protection device on which the voltage non-linear resistance element is mounted to minimize the leakage current and not increase it with time.
In order to secure the excellent electric charge life characteristic in which the leakage current tends to decrease, there is a method in which the voltage nonlinear resistor is post-heat treated at a temperature of about 500 ° C. after firing.

電圧非直線抵抗体素子の電気特性は、焼結体の微細構造に大きく左右される。焼結体は大きく分けて酸化亜鉛粒子、亜鉛とアンチモンとを主成分とするスピネル粒子、粒界の3重点近辺に存在する酸化ビスマス相から構成される。電圧非直線性の発現に必須の添加物であるビスマスは、酸化ビスマス相だけでなく、酸化亜鉛粒子間の粒界に微量ながら存在することが知られている。また、その他にも添加物によってはシリコンを主成分とするケイ酸亜鉛粒子も観察される。   The electrical characteristics of the voltage non-linear resistance element greatly depend on the microstructure of the sintered body. The sintered body is roughly composed of zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase existing in the vicinity of the triple point of the grain boundary. It is known that bismuth, which is an additive essential for the expression of voltage non-linearity, exists not only in the bismuth oxide phase but also in a grain boundary between zinc oxide particles in a trace amount. In addition, zinc silicate particles mainly composed of silicon are also observed depending on the additive.

上述したような焼結体の微細構造は、添加物の種類、添加量、焼成条件などに大きく依存することが知られており、これまで、電圧非直線抵抗体素子の電気特性を改善するための様々な検討がなされている。
例えば、特許文献1には、酸化亜鉛、酸化アンチモン及び酸化ビスマスを特定の割合で配合した組成物を1000℃以下の温度で焼成することで、平坦率(V2.5kA/V1mA)が1.80未満である電圧非直線性に優れた電圧非直線抵抗体素子を低コストで得る方法が開示されている。また、特許文献2には、酸化亜鉛を主成分とし、酸化ビスマス等を含む電圧非直線抵抗体素子の酸化ビスマス相中に、ナトリウムあるいはカリウム所定の範囲で含ませることで、電圧非直線性と課電寿命特性を向上させることが記載されている。
The fine structure of the sintered body as described above is known to greatly depend on the type of additive, the amount added, the firing conditions, etc., and so far, in order to improve the electrical characteristics of the voltage nonlinear resistor element Various studies have been made.
For example, Patent Document 1 discloses that a flattening ratio (V 2.5 kA / V 1 mA ) is 1. by baking a composition containing zinc oxide, antimony oxide and bismuth oxide in a specific ratio at a temperature of 1000 ° C. or lower. A method for obtaining a voltage nonlinear resistor element having an excellent voltage nonlinearity of less than 80 at low cost is disclosed. Patent Document 2 discloses that voltage non-linearity is obtained by including sodium or potassium in a predetermined range in a bismuth oxide phase of a voltage non-linear resistor element containing zinc oxide as a main component and containing bismuth oxide or the like. It is described that the charging life characteristics are improved.

特開2003−297612号公報JP 2003-297612 A 国際公開第2010/055586号International Publication No. 2010/055586

上述のとおり、電圧非直線抵抗体素子において、待機時の課電寿命特性を改善するためには、焼成後に500℃程度の後熱処理が必要である。しかし、この焼成後の後熱処理により課電寿命特性は改善されるものの、もれ電流が大幅に増加するという問題があった。またアルカリ金属の添加により、電圧非直線性と課電寿命特性の向上が図れるが、もれ電流の増加抑制については検討がなされていなかった。
本発明は、上記の課題を解決するためになされたものであり、もれ電流が小さく、かつ優れた課電寿命特性を備え、信頼性に優れた電圧非直線抵抗体素子および過電圧保護装置を提供することを目的とする。
As described above, in the voltage non-linear resistor element, post-heat treatment at about 500 ° C. is necessary after firing in order to improve the standby life characteristic during standby. However, the post-heat treatment after firing improves the electrical charging life characteristics, but there is a problem that the leakage current is greatly increased. Further, the addition of alkali metal can improve the voltage non-linearity and the electric charging life characteristics, but no investigation has been made on the suppression of the increase in leakage current.
The present invention has been made in order to solve the above-described problems, and provides a voltage non-linear resistor element and an overvoltage protection device that have a small leakage current, an excellent charging life characteristic, and excellent reliability. The purpose is to provide.

本発明に係る電圧非直線抵抗体素子は、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、ホウ素を含み、前記酸化ビスマスから形成される相にはカリウム及びナトリウムのうち少なくとも1種が存在し、且つ正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する単斜晶Bi429の(−302)面のX線回折ピーク強度(B)の比(B/A)が0.1以下である焼結体と、前記焼結体を介して設けられた複数の電極と、前記焼結体の側面に設けられた抵抗層とを備えたものである。 The voltage non-linear resistance element according to the present invention includes zinc oxide as a main component, and includes bismuth oxide, antimony oxide, chromium oxide, and boron. The phase formed from the bismuth oxide includes at least one of potassium and sodium. X-ray diffraction peak intensity (B) of monoclinic Bi 4 B 2 O 9 (−302) plane with respect to (123) plane X-ray diffraction peak intensity (A) of tetragonal Bi 16 CrO 27 A sintered body having a ratio (B / A) of 0.1 or less, a plurality of electrodes provided through the sintered body, and a resistance layer provided on a side surface of the sintered body. Is.

本発明に係る過電圧保護装置は、上記電圧非直線抵抗体素子と、前記電圧非直線抵抗体素子の複数の電極の少なくとも一つを接地へ、他の電極の少なくとも一つを被保護機器に接続する線路を具備するものである。   In the overvoltage protection device according to the present invention, the voltage non-linear resistor element and at least one of the plurality of electrodes of the voltage non-linear resistor element are connected to the ground, and at least one of the other electrodes is connected to the protected device. The track is provided.

本発明に係る電圧非直線抵抗体素子の製造方法は、酸化亜鉛粒子と、酸化ビスマス、酸化アンチモンとを混合して混合組成物を作製する工程と、前記混合組成物にカリウム及びナトリウムのうち少なくとも1種を含む金属化合物を0.026モル%以上0.052モル%以下の範囲で添加して組成物を作製する工程と、前記組成物を1000℃以下で焼成して焼結体を作製する工程と、前記焼結体の側面に前記焼結体より電気抵抗の高い抵抗層を形成する工程と、前記焼結体を介して複数の電極を形成する工程とを備えたものである。   The method for manufacturing a voltage non-linear resistor element according to the present invention includes a step of mixing a zinc oxide particle, bismuth oxide and antimony oxide to prepare a mixed composition, and at least one of potassium and sodium in the mixed composition. A step of preparing a composition by adding a metal compound containing one kind in a range of 0.026 mol% to 0.052 mol%, and firing the composition at 1000 ° C. or lower to produce a sintered body. A step, a step of forming a resistance layer having a higher electrical resistance than the sintered body on a side surface of the sintered body, and a step of forming a plurality of electrodes via the sintered body.

本発明によれば、もれ電流が小さく、かつ優れた課電寿命特性を有する電圧非直線抵抗体素子を安定して提供することができる。また、本発明による電圧非直線抵抗体素子を用いることで、信頼性に優れた過電圧保護装置を低コストで実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the voltage non-linear resistance element which has a small leakage current and has the outstanding electrical charging lifetime characteristic can be provided stably. Further, by using the voltage non-linear resistor element according to the present invention, an overvoltage protection device excellent in reliability can be realized at low cost.

本発明の実施の形態1に係るもれ電流と、Bi429(B)とBi16CrO27(A)との存在比(B/A)との関係を示した説明図である。A leakage current according to the first embodiment of the present invention, is a diagram showing the relationship between the Bi 4 B 2 O 9 (B ) and Bi 16 abundance ratio of CrO 27 (A) (B / A) . 本発明の実施の形態1に係るもれ電流とアルカリ金属添加量との関係を示した説明図である。It is explanatory drawing which showed the relationship between the leak current which concerns on Embodiment 1 of this invention, and an alkali metal addition amount. 本発明の実施の形態1に係る焼結体の一部の構造を示す模式図である。It is a schematic diagram which shows a partial structure of the sintered compact which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る電圧非直線抵抗体素子を示す模式断面図である。It is a schematic cross section which shows the voltage non-linear resistance element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る過電圧保護装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the overvoltage protection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施例1に係る焼結体の一部の電子顕微鏡写真である。It is a one part electron micrograph of the sintered compact which concerns on Example 1 of this invention.

以下、本発明の実施の形態について説明する。
実施の形態1.
これまで、例えば、特開平8−138910号公報に開示されるように、電圧非直線抵抗体素子中のナトリウムやカリウムの量が増大すると、電気特性は悪化するものと認識されており、その混入量を極力少なくすることによって優れた電圧非直線性を達成しようとする試みがなされてきた。しかしながら、本発明者らが、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモンを必須成分として含む組成物の配合や焼成温度について種々検討した結果、ナトリウム等のアルカリ金属を組成物に添加すると、電圧非直線抵抗体素子のもれ電流の大きさに差異が生じることが分かった。更に、その現象を詳細に分析した結果、もれ電流が大きいものでは、単斜晶Bi429が正方晶Bi16CrO27に対して或る比率以上存在することがわかった。言い換えればもれ電流が小さいものでは、正方晶Bi16CrO27に対する単斜晶Bi429の存在比率が或る値以下であること、及びその存在比率は、アルカリ金属の添加量を調整することにより制御可能であることを見出し、本発明を完成させるに至った。
Embodiments of the present invention will be described below.
Embodiment 1 FIG.
Until now, for example, as disclosed in Japanese Patent Application Laid-Open No. 8-138910, it has been recognized that when the amount of sodium or potassium in the voltage non-linear resistance element increases, the electrical characteristics are deteriorated. Attempts have been made to achieve excellent voltage nonlinearity by minimizing the amount. However, as a result of various studies on the composition and firing temperature of a composition containing zinc oxide as a main component and containing bismuth oxide and antimony oxide as essential components, the present inventors added an alkali metal such as sodium to the composition. It was found that there was a difference in the leakage current of the voltage nonlinear resistor element. Furthermore, as a result of detailed analysis of the phenomenon, it was found that monoclinic Bi 4 B 2 O 9 was present in a certain ratio or more with respect to tetragonal Bi 16 CrO 27 when the leakage current was large. In other words, when the leakage current is small, the abundance ratio of monoclinic Bi 4 B 2 O 9 to tetragonal Bi 16 CrO 27 is less than a certain value, and the abundance ratio depends on the amount of alkali metal added. The present inventors have found that control is possible by adjusting, and have completed the present invention.

即ち、単斜晶Bi429と正方晶Bi16CrO27との存在比率がもれ電流の大小に影響を及ぼすことを見出した。
さらに、最適な焼結体の微細構造を分析したところ、正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する単斜晶Bi429の(−302)面のX線回折ピーク強度(B)の比(B/A)が0以上0.1以下の範囲であり、酸化亜鉛粒子と、亜鉛及びアンチモンを主成分とするスピネル粒子と、酸化ビスマス相とから主として構成され、酸化ビスマス相中にカリウム及びナトリウムからなる群から選択される少なくとも1種のアルカリ金属が存在することも見出した。
That is, it has been found that the abundance ratio of monoclinic Bi 4 B 2 O 9 and tetragonal Bi 16 CrO 27 affects the magnitude of leakage current.
Further, when the microstructure of the optimum sintered body was analyzed, the monoclinic Bi 4 B 2 O 9 (−302) of the tetraclinic Bi 16 CrO 27 with respect to the X-ray diffraction peak intensity (A) of the (123) plane was analyzed. The ratio (B / A) of the X-ray diffraction peak intensity (B) of the surface is in the range of 0 to 0.1, zinc oxide particles, spinel particles mainly composed of zinc and antimony, and a bismuth oxide phase It was also found that at least one alkali metal selected from the group consisting of potassium and sodium is present in the bismuth oxide phase.

図1にもれ電流と、Bi429(B)とBi16CrO27(A)との存在比(B/A)との関係を示す。図1よりB/Aを0.1以下とすると著しくもれ電流を小さくできることがわかる。このときの課電寿命特性を評価すると、B/Aが0.16以下の範囲で良好であることがわかった。
したがって、酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、ホウ酸を含み、前記酸化ビスマスから形成される相にはカリウム及びナトリウムのうち少なくとも1種が存在し、且つ正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する単斜晶Bi429の(−302)面のX線回折ピーク強度(B)の比(B/A)が0.1以下である焼結体とすることにより、もれ電流が小さく、かつ優れた課電寿命特性を有する電圧非直線抵抗体素子を得ることができる。
FIG. 1 shows the relationship between the leakage current and the abundance ratio (B / A) between Bi 4 B 2 O 9 (B) and Bi 16 CrO 27 (A). As can be seen from FIG. 1, when B / A is 0.1 or less, the leakage current can be significantly reduced. When the electric charging life characteristics at this time were evaluated, it was found that B / A was good within a range of 0.16 or less.
Therefore, the main component is zinc oxide, which contains bismuth oxide, antimony oxide, chromium oxide, and boric acid. The phase formed from the bismuth oxide contains at least one of potassium and sodium, and tetragonal Bi 16. The ratio (B / A) of the X-ray diffraction peak intensity (B) of the (−302) plane of monoclinic Bi 4 B 2 O 9 to the X-ray diffraction peak intensity (A) of the (123) plane of CrO 27 is 0. By using a sintered body having a thickness of 1 or less, a voltage non-linear resistance element having a small leakage current and an excellent electric charge life characteristic can be obtained.

さらに、上記最適な焼結体を得るための製造方法について検討した。酸化亜鉛粒子と、酸化ビスマス、酸化アンチモンとを混合して混合組成物を作製し、混合した組成物にカリウム及びナトリウムのうち少なくとも1種を含む金属化合物を適量添加して組成物を作製し、この組成物を1000℃以下で焼成して焼結体を作成し、焼結体の側面に焼結体より電気抵抗の高い抵抗層を形成し、さらに焼結体を介して電極を形成して電圧非直線抵抗体素子とし、これを評価した。図2にもれ電流とアルカリ金属添加量との関係を示す。図2より、アルカリ金属添加量を0.026モル%以上0.052モル%以下の範囲とすると著しくもれ電流を小さくできることがわかる。このときの課電寿命特性を評価すると、アルカリ金属添加量が0.013モル%以上0.052モル%以下の範囲で良好であることがわかった。
したがって、酸化亜鉛粒子と、酸化ビスマス、酸化アンチモンとを混合して混合組成物を作製する工程と、この混合組成物にカリウム及びナトリウムのうち少なくとも1種を含む金属化合物を0.026モル%以上0.052モル%以下の範囲で添加して組成物を作製する工程と、この組成物を1000℃以下で焼成して焼結体を作製する工程と、焼結体の側面に焼結体より電気抵抗の高い抵抗層を形成する工程と、焼結体を介して複数の電極を形成する工程とを備えた方法によって、電圧非直線抵抗体素子を作製することにより、もれ電流が小さく、かつ優れた課電寿命特性を有する電圧非直線抵抗体素子を得ることができる。もれ電流を安定して抑制するためには、アルカリ金属の添加量を0.027モル%以上とすることがさらに好ましい。
さらに、この方法で作製した焼結体のBi429(B)とBi16CrO27(A)との存在比(B/A)は、ほぼ0.1以下であった。
Furthermore, a manufacturing method for obtaining the optimum sintered body was examined. A mixture composition is prepared by mixing zinc oxide particles, bismuth oxide and antimony oxide, and a composition is prepared by adding an appropriate amount of a metal compound containing at least one of potassium and sodium to the mixed composition. The composition is fired at 1000 ° C. or lower to prepare a sintered body, a resistance layer having a higher electrical resistance than the sintered body is formed on the side surface of the sintered body, and an electrode is formed through the sintered body. This was evaluated as a voltage non-linear resistor element. FIG. 2 shows the relationship between the leakage current and the amount of alkali metal added. FIG. 2 shows that the leakage current can be significantly reduced when the alkali metal addition amount is in the range of 0.026 mol% to 0.052 mol%. Evaluation of the electric charging life characteristics at this time revealed that the addition amount of the alkali metal was good in the range of 0.013 mol% or more and 0.052 mol% or less.
Therefore, a step of preparing a mixed composition by mixing zinc oxide particles, bismuth oxide and antimony oxide, and 0.026 mol% or more of a metal compound containing at least one of potassium and sodium in the mixed composition The step of adding 0.052 mol% or less to produce a composition, the step of firing this composition at 1000 ° C. or less to produce a sintered body, and the side of the sintered body from the sintered body By producing a voltage non-linear resistor element by a method comprising a step of forming a resistance layer having a high electrical resistance and a step of forming a plurality of electrodes via a sintered body, the leakage current is small, In addition, it is possible to obtain a voltage non-linear resistor element having excellent electric charging life characteristics. In order to stably suppress the leakage current, it is more preferable that the amount of alkali metal added is 0.027 mol% or more.
Furthermore, the abundance ratio (B / A) of Bi 4 B 2 O 9 (B) to Bi 16 CrO 27 (A) in the sintered body produced by this method was approximately 0.1 or less.

本発明の実施の形態による電圧非直線抵抗体素子の焼結体は、図3に示すように、酸化亜鉛粒子1と、亜鉛及びアンチモンを主成分とするスピネル粒子2と、酸化ビスマス相3とから主として構成され、酸化亜鉛粒子1の結晶内には双晶境界4が存在している。更に、酸化ビスマス相3には、添加されたカリウム若しくはナトリウム、またはカリウムとナトリウム両方のアルカリ金属が存在することが、微細構造分析により確認された。更に、酸化ビスマス相中に存在するアルカリ金属により単斜晶Bi429の生成が抑制されているため、焼結体中に単斜晶Bi429は存在しないか、又は正方晶Bi16CrO27に比べてかなり少ない量で存在しており、具体的には、X線回折法による分析で、正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する単斜晶Bi429の(−302)面のX線回折ピーク強度(B)の比(B/A)が0.1以下の範囲となるような量である。 As shown in FIG. 3, the sintered body of the voltage nonlinear resistor element according to the embodiment of the present invention includes zinc oxide particles 1, spinel particles 2 mainly composed of zinc and antimony, and bismuth oxide phase 3. The twin boundary 4 exists in the crystal of the zinc oxide particles 1. Furthermore, it was confirmed by microstructural analysis that bismuth oxide phase 3 contained added potassium or sodium, or both potassium and sodium alkali metals. Furthermore, because it is produced suppression of monoclinic Bi 4 B 2 O 9 with an alkali metal present in the bismuth oxide phase, or absent monoclinic Bi 4 B 2 O 9 in the sintered body, or are present in amounts considerably less than the tetragonal Bi 16 CrO 27, specifically, the analysis by X-ray diffractometry, X-ray diffraction peak intensity of the (123) plane of the tetragonal Bi 16 CrO 27 (a The ratio (B / A) of the X-ray diffraction peak intensity (B) of the (−302) plane of monoclinic Bi 4 B 2 O 9 with respect to () is in an amount of 0.1 or less.

酸化亜鉛(ZnO)は、電圧非直線性の確保、エネルギー耐量の向上及び長寿命化の総合的観点から、組成物中に、90モル%以上98モル%以下の範囲で含まれることが好ましく、95モル%以上98モル%以下の範囲で含まれることが更に好ましい。酸化亜鉛としては、平均粒子径が1μm以下の粉末を用いることが好ましい。   Zinc oxide (ZnO) is preferably contained in the composition in a range of 90 mol% or more and 98 mol% or less from the comprehensive viewpoint of ensuring voltage non-linearity, improving energy resistance and extending the life, More preferably, it is contained in the range of 95 mol% or more and 98 mol% or less. As zinc oxide, it is preferable to use a powder having an average particle diameter of 1 μm or less.

酸化ビスマス(Bi23)は、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.5モル%以上2モル%以下の範囲で含まれることが好ましく、0.7モル%以上1.5モル%以下の範囲で含まれることが更に好ましい。
酸化アンチモン(Sb23)は、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で含まれることが好ましく、0.2モル%以上0.8モル%以下の範囲で含まれることが更に好ましい。
また、電圧非直線性及び課電寿命をより向上させるため、酸化ビスマス(Bi23)及び酸化アンチモン(Sb23)は、組成物中に、総量で0.5モル%以上2モル%以下の範囲で含まれることが好ましく、1.0モル%以上1.5モル%以下の範囲で含まれることが更に好ましい。
Bismuth oxide (Bi 2 O 3 ) is preferably contained in the composition in the range of 0.5 mol% or more and 2 mol% or less in order to further improve the voltage non-linearity and the charging life. More preferably, it is contained in the range of 7 mol% or more and 1.5 mol% or less.
Antimony oxide (Sb 2 O 3 ) is preferably contained in the composition in the range of 0.1 mol% or more and 2 mol% or less in order to further improve the voltage non-linearity and the charging life. More preferably, it is contained in the range of 2 mol% or more and 0.8 mol% or less.
Further, in order to further improve the voltage nonlinearity and the charging life, bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) are added in a total amount of 0.5 mol% or more and 2 mol. %, Preferably in the range of 1.0 mol% or more and 1.5 mol% or less.

さらに、酸化クロム(Cr23)は、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.05モル%以上0.5モル%以下の範囲で含ませることが好ましく、0.1モル%以上0.3モル%以下の範囲で含ませることが更に好ましい。
またホウ酸(H3BO3)は、課電寿命をより向上させるため、組成物中に、0.01モル%以上0.5モル%以下の範囲で含ませることが好ましく、0.04モル%以上0.2モル%以下の範囲で含ませることが更に好ましい。またホウ酸以外でも、ホウ素を含む水溶性のものであれば、例えば酸化ホウ素をホウ酸の代わりに用いても良い。
Furthermore, chromium oxide (Cr 2 O 3 ) may be included in the composition in the range of 0.05 mol% or more and 0.5 mol% or less in order to further improve the voltage nonlinearity and the electric charging life. Preferably, it is more preferably included in the range of 0.1 mol% or more and 0.3 mol% or less.
Further, boric acid (H 3 BO 3 ) is preferably contained in the composition in the range of 0.01 mol% to 0.5 mol% in order to further improve the electric charging life, and 0.04 mol More preferably, it is contained in the range of not less than 0.2% and not more than 0.2 mol%. Other than boric acid, for example, boron oxide may be used instead of boric acid as long as it is water-soluble and contains boron.

カリウム及びナトリウムから選択される少なくとも1種のアルカリ金属は、焼結体における正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する単斜晶Bi429の(−302)面のX線回折ピーク強度(B)の比(B/A)が0.1以下の範囲となるように添加すればよいが、もれ電流が小さく課電寿命特性に優れた電圧非直線抵抗体素子を得るために、組成物中に0.026モル%を超え、0.052モル%未満の範囲で添加することが好ましい。このアルカリ金属の添加量が、0.052モル%以上となると、もれ電流は小さいままであるが、課電寿命特性が低下する傾向にある。このアルカリ金属は、平均粒子径が1μm以下のNa2CO3、K2CO3などの粉末状の金属化合物として配合するか、あるいはこれらを溶かした水溶液として配合することができる。 At least one alkali metal selected from potassium and sodium is monoclinic Bi 4 B 2 O 9 with respect to the X-ray diffraction peak intensity (A) of the (123) plane of tetragonal Bi 16 CrO 27 in the sintered body. It may be added so that the ratio (B / A) of the X-ray diffraction peak intensity (B) on the (−302) plane is in the range of 0.1 or less, but the leakage current is small and the charging life characteristics are excellent. In order to obtain a voltage non-linear resistor element, it is preferable to add it in the composition in a range of more than 0.026 mol% and less than 0.052 mol%. When the addition amount of the alkali metal is 0.052 mol% or more, the leakage current remains small, but the electric charging life characteristics tend to be lowered. The alkali metal can be blended as a powdered metal compound such as Na 2 CO 3 or K 2 CO 3 having an average particle diameter of 1 μm or less, or can be blended as an aqueous solution in which these are dissolved.

さらに、電圧非直線性及び課電寿命をより向上させるため、上記した成分以外に、酸化ニッケル(NiO)、二酸化マンガン(MnO2)、酸化コバルト(Co34)、硝酸アルミニウム(Al(NO33)、二酸化珪素等を配合してもよい。これらの酸化物は、組成物中に、総量で1モル%以上2モル%以下の範囲とすればよい。また、これらの酸化物としては、平均粒子径が1μm以下の粉末を用いることが好ましい。 Furthermore, in order to further improve the voltage nonlinearity and the charging life, in addition to the above components, nickel oxide (NiO), manganese dioxide (MnO 2 ), cobalt oxide (Co 3 O 4 ), aluminum nitrate (Al (NO 3) 3), it may be blended with silicon dioxide and the like. These oxides may be in the range of 1 mol% to 2 mol% in total in the composition. Moreover, as these oxides, it is preferable to use a powder having an average particle diameter of 1 μm or less.

さらに、電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で酸化ニッケルを配合してもよい。電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で二酸化マンガンを配合してもよい。電圧非直線性及び課電寿命をより向上させるため、組成物中に、0.1モル%以上2モル%以下の範囲で酸化コバルトを配合してもよい。電圧非直線性をより向上させるため、組成物中に、0.001モル%以上0.01モル%以下の範囲で硝酸アルミニウムを配合してもよい。   Furthermore, in order to further improve the voltage nonlinearity and the charging life, nickel oxide may be blended in the composition in the range of 0.1 mol% or more and 2 mol% or less. In order to further improve the voltage nonlinearity and the charging life, manganese dioxide may be blended in the composition in the range of 0.1 mol% to 2 mol%. In order to further improve the voltage non-linearity and the service life, cobalt oxide may be blended in the composition in the range of 0.1 mol% to 2 mol%. In order to further improve the voltage nonlinearity, aluminum nitrate may be blended in the composition in the range of 0.001 mol% to 0.01 mol%.

次に、本発明の実施の形態による電圧非直線抵抗体素子の製造方法について具体例を説明する。上記した原料から構成される組成物を調製した後、これに水、分散剤及びポリビニルアルコール等の結合剤(バインダー)を添加し、粉砕・混合を十分に行って均一な組成のスラリーを作製する。このスラリーをスプレードライヤーで乾燥・造粒して造粒物を得る。得られた造粒物を、例えば200kgf/cm2以上500kgf/cm2以下の成形圧で成形して所定形状の成形体を得る。次に、成形体を、大気中又は酸素雰囲気中で、450℃程度に加熱してバインダーを除去し、続いて、1000℃以下で焼成して焼結体を得る。この焼結体に、例えば図4に示す構成を得るために、アルミニウム溶射等により電極7を形成し、ガラスの焼き付けや抵抗値の高い拡散層の導入等により抵抗層6を形成する。
本実施の形態による電圧非直線抵抗体素子の製造方法によれば、優れた電圧非直線性を有する電圧非直線抵抗体素子を低不良率で得られるにも関わらず、焼成温度が1000℃以下と低いため、焼成時の電力消費量を大幅に削減することができる。このように、本実施の形態による電圧非直線抵抗体素子の製造方法は、従来の製造方法に比べて製造時のCO2排出量を大幅に削減することができるので、環境に優しい方法といえる。
Next, a specific example of the method for manufacturing the voltage nonlinear resistor element according to the embodiment of the present invention will be described. After preparing the composition composed of the above-mentioned raw materials, water, a dispersant, and a binder (binder) such as polyvinyl alcohol are added thereto, and the mixture is sufficiently pulverized and mixed to prepare a slurry having a uniform composition. . This slurry is dried and granulated with a spray dryer to obtain a granulated product. The obtained granules to obtain a molded body having a predetermined shape by molding, for example, 200 kgf / cm 2 or more 500 kgf / cm 2 or less of the molding pressure. Next, the molded body is heated to about 450 ° C. in air or an oxygen atmosphere to remove the binder, and then fired at 1000 ° C. or lower to obtain a sintered body. For example, in order to obtain the structure shown in FIG. 4 in this sintered body, the electrode 7 is formed by aluminum spraying or the like, and the resistance layer 6 is formed by baking glass or introducing a diffusion layer having a high resistance value.
According to the method for manufacturing a voltage non-linear resistor element according to the present embodiment, although the voltage non-linear resistor element having excellent voltage non-linearity can be obtained with a low defect rate, the firing temperature is 1000 ° C. or less. Therefore, the power consumption during firing can be significantly reduced. As described above, the method for manufacturing a voltage non-linear resistor element according to the present embodiment can be said to be an environmentally friendly method because CO 2 emission during manufacturing can be greatly reduced as compared with the conventional manufacturing method. .

更に、本実施の形態によって得られる電圧非直線抵抗体素子を用いて、図5に示す過電圧保護装置を作製できる。ここで、過電圧保護装置は、電圧非直線抵抗体素子10の複数の電極の少なくとも一つを接地へ、他の電極の少なくとも一つを被保護機器8に接続する線路10を具備している。複数の電圧非直線抵抗体素子10を積層して搭載してもよい。このように本発明に係る電圧非直線抵抗体素子を用いることにより、優れた保護性能を有する避雷器、サージアブソーバーなどの過電圧保護装置を安価に提供することができる。   Further, the overvoltage protection device shown in FIG. 5 can be manufactured by using the voltage non-linear resistance element obtained by this embodiment. Here, the overvoltage protection device includes a line 10 that connects at least one of the plurality of electrodes of the voltage non-linear resistance element 10 to ground and connects at least one of the other electrodes to the protected device 8. A plurality of voltage nonlinear resistor elements 10 may be stacked and mounted. Thus, by using the voltage non-linear resistance element according to the present invention, it is possible to provide an overvoltage protection device such as a lightning arrester and a surge absorber having excellent protection performance at low cost.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1〜6及び比較例1〜4>
酸化ビスマス(Bi23)粉末 0.9モル%、酸化アンチモン(Sb23)粉末 0.4モル%、酸化ニッケル(NiO)粉末 0.5モル%、二酸化マンガン(MnO2)粉末 0.5モル%、酸化クロム(Cr23)粉末 0.1モル%、酸化コバルト(Co34)粉末 0.4モル%、硝酸アルミニウム(Al(NO33・9H2O) 0.004モル%及びホウ酸(H3BO3) 0.16モル%を配合したものを基本組成とし、これにNa2CO3又はK2CO3を0.026モル%〜0.052モル%の範囲で添加し、表1に示す10種の組成物を用意した。残部は酸化亜鉛(ZnO)である。なお、それぞれの原料には工業用原料又は試薬を用い、粉末原料についてはすべて平均粒子径が1μm以下のものを使用した。
表1に示した組成物それぞれに、純水、分散剤及び結合剤を添加し、粉砕、混合を十分に行って均一な組成を持つスラリーを作製した。
作製したスラリーをスプレードライヤーで造粒し、得られた造粒粉を成形圧500kgf/cm2で成形して、直径40mm、厚さ10mm程度のディスク状の成形体を得た。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
<Examples 1-6 and Comparative Examples 1-4>
Bismuth oxide (Bi 2 O 3 ) powder 0.9 mol%, antimony oxide (Sb 2 O 3 ) powder 0.4 mol%, nickel oxide (NiO) powder 0.5 mol%, manganese dioxide (MnO 2 ) powder 0 0.5 mol%, chromium oxide (Cr 2 O 3 ) powder 0.1 mol%, cobalt oxide (Co 3 O 4 ) powder 0.4 mol%, aluminum nitrate (Al (NO 3 ) 3 .9H 2 O) 0 .004 mol% and boric acid (H 3 BO 3 ) 0.16 mol% are used as a basic composition, and Na 2 CO 3 or K 2 CO 3 is added in an amount of 0.026 mol% to 0.052 mol%. 10 compositions shown in Table 1 were prepared. The balance is zinc oxide (ZnO). In addition, an industrial raw material or a reagent was used for each raw material, and all powder raw materials having an average particle diameter of 1 μm or less were used.
Pure water, a dispersant, and a binder were added to each of the compositions shown in Table 1, and pulverization and mixing were sufficiently performed to prepare a slurry having a uniform composition.
The produced slurry was granulated with a spray dryer, and the resulting granulated powder was molded at a molding pressure of 500 kgf / cm 2 to obtain a disk-shaped molded body having a diameter of about 40 mm and a thickness of about 10 mm.

成形体を、大気中にて、450℃で5時間加後熱処理した(脱バインダー工程)後、950℃の焼成温度で5時間焼成を行った(焼成工程)。昇温及び降温速度は50℃/時間とした。焼成後の試料は大気中において500℃で5時間後熱処理を実施した(後熱処理工程)。   The molded body was heated in the atmosphere at 450 ° C. for 5 hours and then heat-treated (debinding step), and then fired at a firing temperature of 950 ° C. for 5 hours (firing step). The temperature increase and decrease rate was 50 ° C./hour. The calcined sample was post-heat treated at 500 ° C. for 5 hours in the air (post heat treatment step).

〔平坦率の評価及び不良率の計算〕
焼結体5の側面に、インパルス電圧印加時の側面閃絡防止用の側面高抵抗層6(樹脂)を塗布し、ディスク両面にはアルミニウム溶射によりアルミニウム電極7を形成して、評価用の試料とした。
[Evaluation of flatness and calculation of defect rate]
A side high resistance layer 6 (resin) for preventing side flashing when an impulse voltage is applied is applied to the side surface of the sintered body 5, and an aluminum electrode 7 is formed on both sides of the disk by aluminum spraying. It was.

平坦率はV2.35kA/V0.46mAにより評価した。V2.35kAは試料に8×20μsのインパルス電圧を印加し、そのピーク値を読み取ってV2.35kAとした。また、V0.46mAは60Hzの交流電圧(正弦波)を用いて測定を行った。交流を印加した場合、試料を流れる電流は抵抗性成分(Ir)と容量性成分(Ic)に分かれるが、抵抗分もれ電流抽出装置を用いてIrを抽出した。具体的にはIrが0.46mAとなる印加電圧を読み取りV0.46mAとした。
実施例1〜6及び比較例1〜4の試料では後熱処理後のもれ電流および課電寿命特性を評価した。もれ電流は室温で課電率70%のIrを測定した。また後熱処理後の試料は120℃、課電率90%の条件下でIrの経時変化を測定し、その増減によって課電寿命特性の合否を判定した。課電寿命の合否判定は、電圧印加時のIrが増加傾向を示さないものを合格とした。これらもれ電流、課電寿命特性の評価結果を表1に示した。
The flatness was evaluated based on V 2.35 kA / V 0.46 mA . For V 2.35 kA, an impulse voltage of 8 × 20 μs was applied to the sample, and the peak value was read as V 2.35 kA . V 0.46 mA was measured using an AC voltage (sine wave) of 60 Hz. When alternating current is applied, the current flowing through the sample is divided into a resistive component (Ir) and a capacitive component (Ic). Ir was extracted using a resistance leakage current extraction device. Specifically, the applied voltage at which Ir becomes 0.46 mA was read and set to V 0.46 mA .
For the samples of Examples 1 to 6 and Comparative Examples 1 to 4, the leakage current and post-heating life characteristics after post-heat treatment were evaluated. As for the leakage current, Ir having an electric charge rate of 70% was measured at room temperature. In addition, the post-heat treatment sample was subjected to measurement of Ir change over time under the conditions of 120 ° C. and an electric charge rate of 90%. The pass / fail judgment of the charging life was determined to pass if the Ir at the time of voltage application did not show an increasing tendency. Table 1 shows the evaluation results of the leakage current and the applied lifetime characteristic.

表1に示されるように、実施例1〜6ではもれ電流が小さく、課電寿命特性は良好であった。これに対し、比較例1〜4では、もれ電流が小さいものの課電寿命特性が不良であるか、あるいは課電寿命特性は良好であるがもれ電流が大きいかのいずれかであり、もれ電流が小さくかつ課電寿命特性が良好な電圧非直線抵抗体を得ることが出来なかった。   As shown in Table 1, in Examples 1 to 6, the leakage current was small, and the electric charging life characteristics were good. On the other hand, in Comparative Examples 1 to 4, either the leakage current is small, but the charging life characteristics are poor, or the charging life characteristics are good, but the leakage current is large, It was not possible to obtain a voltage non-linear resistor with a small leakage current and good charging life characteristics.

〔微細構造の解析〕
焼成体を切断した後、メノウ乳ばちで30分程度粉砕し、粉末X線回折法を用いて焼成体に含まれるビスマスの生成物の結晶構造を解析したところ、すべての試料から、α−Bi23、Bi16CrO27の存在が確認され、また一部の試料からはBi429の存在も確認された。更に、もれ電流が比較的大きな試料の解析を進めたところ、これらの試料では、Bi16CrO27の(123)面のX線回折ピークの強度(A)とし、Bi429の(−302)面のX線回折ピークの強度(B)とした時の、B/Aが0.1を超えることが確認された。解析結果を表1に示した。
更に、ナトリウムあるいはカリウムを添加した試料を高性能電子プローブマイクロアナライザ(EPMA:Electron Probe Microanalyzer)を用いて分析したところ、酸化ビスマス相中に添加したナトリウムあるいはカリウムが存在することが確認された。図6に実施例1により得た焼結体の電子顕微鏡写真を示す。酸化亜鉛粒子1、スピネル粒子2、酸化ビスマス相3、双晶境界4が明確に観察され、EPMA像から酸化ビスマス相中のナトリウムあるいはカリウムが確認できた。
[Analysis of microstructure]
After cutting the fired body, it was pulverized with agate milk beak for about 30 minutes, and the crystal structure of the product of bismuth contained in the fired body was analyzed using a powder X-ray diffraction method. The presence of Bi 2 O 3 and Bi 16 CrO 27 was confirmed, and the presence of Bi 4 B 2 O 9 was also confirmed from some samples. Furthermore, when analysis of samples having a relatively large leakage current was advanced, in these samples, the intensity (A) of the X-ray diffraction peak of the (123) plane of Bi 16 CrO 27 was used, and Bi 4 B 2 O 9 It was confirmed that B / A exceeds 0.1 when the intensity (B) of the X-ray diffraction peak of the (−302) plane is used. The analysis results are shown in Table 1.
Furthermore, when a sample to which sodium or potassium was added was analyzed using a high performance electron probe microanalyzer (EPMA), it was confirmed that sodium or potassium added was present in the bismuth oxide phase. FIG. 6 shows an electron micrograph of the sintered body obtained in Example 1. Zinc oxide particles 1, spinel particles 2, bismuth oxide phase 3 and twin boundaries 4 were clearly observed, and sodium or potassium in the bismuth oxide phase could be confirmed from the EPMA image.

これらのことから、ナトリウムあるいはカリウムには、もれ電流増加の要因となると考えられるBi429の生成を直接抑制する効果があることが分かり、また、ナトリウムあるいはカリウムの添加によりBi429の生成量を特定量以下に調整することで、もれ電流を著しく低減できることが明らかとなった。ただし、比較例2及び4の結果から分かるように、ナトリウムあるいはカリウムを0.052mol%を超える量添加すると、もれ電流は小さなままであるが、もれ電流の経時変化が増加傾向を示し、課電寿命が不良となる。このように課電寿命特性が不良となる理由は、添加したナトリウムあるいはカリウムが酸化ビスマス相だけでなく酸化亜鉛粒子にも固溶し始めることに由来するものと考えられる。 From these, the sodium and potassium, found that there is a direct effect of inhibiting the formation of Bi 4 B 2 O 9, which is considered to be a factor of leak current increase, also, Bi 4 by addition of sodium or potassium It has been clarified that the leakage current can be remarkably reduced by adjusting the amount of B 2 O 9 produced to a specific amount or less. However, as can be seen from the results of Comparative Examples 2 and 4, when sodium or potassium was added in an amount exceeding 0.052 mol%, the leakage current remained small, but the change over time in the leakage current showed an increasing tendency, The charging life is poor. It is considered that the reason why the electric charging life characteristics become poor is derived from the fact that the added sodium or potassium starts to dissolve in not only the bismuth oxide phase but also the zinc oxide particles.

また、ナトリウムやカリウムと同様にリチウムの添加実験も実施したが、試料は絶縁物に近い状態となり電気特性の評価ができなかった。すなわち、アルカリ金属であるリチウムは、酸化亜鉛の抵抗を大幅に増大させ、焼結体をほぼ絶縁物に近い状態にすることも確認した。電圧非直線抵抗体素子中に含まれるアルカリ金属は電気特性を悪化させるものと認識されていたが、本実施例のようにアルカリ金属を積極的に添加することにより、もれ電流が小さく優れた課電寿命特性を有する電圧非直線抵抗体素子が得られる効果は、これまでと全く異なる特異な効果であると言える。





































In addition, an experiment of adding lithium was conducted in the same manner as sodium and potassium, but the sample was in a state close to an insulator, and the electrical characteristics could not be evaluated. That is, it was also confirmed that lithium, which is an alkali metal, greatly increases the resistance of zinc oxide and makes the sintered body almost in the state of an insulator. Alkali metal contained in the voltage non-linear resistor element was recognized as deteriorating electrical characteristics, but by adding the alkali metal positively as in this example, the leakage current was small and excellent. It can be said that the effect of obtaining the voltage non-linear resistance element having the charging life characteristic is a peculiar effect completely different from the conventional one.





































Figure 2012060003
Figure 2012060003

1 酸化亜鉛粒子、2 スピネル粒子、3 酸化ビスマス相、4 双晶境界、5 焼結体、6 抵抗層、7 電極、8 被保護機器、9 線路、10 電圧非直線抵抗体素子 DESCRIPTION OF SYMBOLS 1 Zinc oxide particle, 2 Spinel particle, 3 Bismuth oxide phase, 4 Twin boundary, 5 Sintered body, 6 Resistance layer, 7 Electrode, 8 Protected apparatus, 9 Line, 10 Voltage nonlinear resistance element

Claims (3)

酸化亜鉛を主成分とし、酸化ビスマス、酸化アンチモン、酸化クロム、ホウ素を含み、前記酸化ビスマスから形成される相にはカリウム及びナトリウムのうち少なくとも1種が存在し、且つ正方晶Bi16CrO27の(123)面のX線回折ピーク強度(A)に対する単斜晶Bi429の(−302)面のX線回折ピーク強度(B)の比(B/A)が0.1以下である焼結体と、前記焼結体を介して設けられた複数の電極と、前記焼結体の側面に設けられた抵抗層とを備えたことを特徴とする電圧非直線抵抗体素子。 The main component is zinc oxide, which contains bismuth oxide, antimony oxide, chromium oxide, and boron. The phase formed from the bismuth oxide contains at least one of potassium and sodium, and is composed of tetragonal Bi 16 CrO 27 . Ratio (B / A) of X-ray diffraction peak intensity (B) of (−302) plane of monoclinic Bi 4 B 2 O 9 to X-ray diffraction peak intensity (A) of (123) plane is 0.1 or less A voltage non-linear resistance element comprising: a sintered body, a plurality of electrodes provided through the sintered body, and a resistance layer provided on a side surface of the sintered body. 請求項1に記載の電圧非直線抵抗体素子と、前記電圧非直線抵抗体素子の複数の電極の少なくとも一つを接地へ、他の電極の少なくとも一つを被保護機器に接続する線路を具備することを特徴とする過電圧保護装置。   2. A voltage non-linear resistor element according to claim 1, and a line for connecting at least one of a plurality of electrodes of the voltage non-linear resistor element to ground and connecting at least one of the other electrodes to a protected device. An overvoltage protection device. 酸化亜鉛粒子と、酸化ビスマス、酸化アンチモンとを混合して混合組成物を作製する工程と、
前記混合組成物にカリウム及びナトリウムのうち少なくとも1種を含む金属化合物を0.026モル%以上0.052モル%以下の範囲で添加して組成物を作製する工程と、
前記組成物を1000℃以下で焼成して焼結体を作製する工程と、
前記焼結体の側面に前記焼結体より電気抵抗の高い抵抗層を形成する工程と、
前記焼結体を介して複数の電極を形成する工程と、
を備えたことを特徴とする電圧非直線抵抗体素子の製造方法。
Mixing zinc oxide particles with bismuth oxide and antimony oxide to produce a mixed composition;
Adding a metal compound containing at least one of potassium and sodium to the mixed composition in a range of 0.026 mol% to 0.052 mol%, and producing a composition;
Firing the composition at 1000 ° C. or lower to produce a sintered body;
Forming a resistance layer having a higher electrical resistance than the sintered body on a side surface of the sintered body;
Forming a plurality of electrodes via the sintered body;
A method for manufacturing a voltage non-linear resistor element, comprising:
JP2010203098A 2010-09-10 2010-09-10 Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector Pending JP2012060003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203098A JP2012060003A (en) 2010-09-10 2010-09-10 Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203098A JP2012060003A (en) 2010-09-10 2010-09-10 Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector

Publications (1)

Publication Number Publication Date
JP2012060003A true JP2012060003A (en) 2012-03-22

Family

ID=46056716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203098A Pending JP2012060003A (en) 2010-09-10 2010-09-10 Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector

Country Status (1)

Country Link
JP (1) JP2012060003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251385A (en) * 2012-05-31 2013-12-12 Toshiba Corp Current and voltage nonlinear resistor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251385A (en) * 2012-05-31 2013-12-12 Toshiba Corp Current and voltage nonlinear resistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH11340009A (en) Nonlinear resistor
CN102167579B (en) ZnO-Bi2O3-B2O3 series voltage-sensitive material sintered at lower temperature and preparation method thereof
JP2007173313A (en) Current-voltage nonlinear resistor
JP5065624B2 (en) Current-voltage non-linear resistors and lightning arresters
JP2018521497A (en) Manufacturing method of large capacity ZnO varistor
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
JP5065688B2 (en) Current-voltage nonlinear resistor
JP2012060003A (en) Voltage nonlinear resistor element, manufacturing method for the same, and over-voltage protector
CN101625918B (en) Current-voltage nonlinear resistor
JP5334636B2 (en) Voltage non-linear resistor, lightning arrester equipped with voltage non-linear resistor, and method of manufacturing voltage non-linear resistor
JP4282243B2 (en) Non-linear resistor
EP2144256B1 (en) Current/voltage nonlinear resistor
JP5388937B2 (en) Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor
JP2008162820A (en) Voltage nonlinear resistor, and manufacturing method of the same
JP2007329178A (en) Current-voltage non-linear resistor, and lightning arrester
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
JP2007329148A (en) Current-voltage nonlinear resistor
JP2001326108A (en) Voltage nonlinear resistor and its manufacturing method
JP2003007512A (en) Nonlinear resistor element
JP2007329174A (en) Current-voltage non-linear resistor, and lightening arrester
JP2005097070A (en) Zinc oxide-based sintered compact and zinc oxide varistor
JP5995772B2 (en) Voltage non-linear resistor, method for manufacturing the same, and overvoltage protection device including the same
JP2002305105A (en) Method for manufacturing voltage nonlinear resistor
JP2011210878A (en) Voltage nonlinear resistor and method for manufacturing the same
JP2002289408A (en) Method for manufacturing voltage nonlinear resistor