JP2012059489A - Laminated battery - Google Patents

Laminated battery Download PDF

Info

Publication number
JP2012059489A
JP2012059489A JP2010200659A JP2010200659A JP2012059489A JP 2012059489 A JP2012059489 A JP 2012059489A JP 2010200659 A JP2010200659 A JP 2010200659A JP 2010200659 A JP2010200659 A JP 2010200659A JP 2012059489 A JP2012059489 A JP 2012059489A
Authority
JP
Japan
Prior art keywords
battery
gas
electrode group
laminate
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010200659A
Other languages
Japanese (ja)
Inventor
Kazuto Sakakura
和人 坂倉
Takuhiro Nishimura
卓寛 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010200659A priority Critical patent/JP2012059489A/en
Publication of JP2012059489A publication Critical patent/JP2012059489A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which: a laminated battery is different from conventional lithium ion batteries; its sheath material is composed of films; and therefore, battery blistering arises due to insufficient strength for suppressing deformation of the sheath material when gas is generated inside the laminated battery.SOLUTION: In the laminated battery, a gas adsorption layer 1 is formed on an interior surface portion except sealed portions in an interior surface of a housing part 16 of an electrode group 1 of a sheath material 14 composed of laminate films. The gas adsorption layer 1 is configured to absorb gas generated inside.

Description

本発明は、リチウムイオン電池に代表される二次電池に関し、特に外装体としてラミ
ネートフィルムを用いたラミネート電池に関するものである。
The present invention relates to a secondary battery represented by a lithium ion battery, and more particularly to a laminate battery using a laminate film as an exterior body.

近年、携帯電話、ノート型パーソナルコンピュータ、デジタルスチルカメラ、デジタルビデオカメラなどのポータブル電子機器の小型・軽量化に伴って、これらのポータブル電子機器の電源として軽く、薄く、高容量な二次電池が求められている。   In recent years, as portable electronic devices such as mobile phones, notebook personal computers, digital still cameras, and digital video cameras have become smaller and lighter, a light, thin, and high-capacity secondary battery has been used as a power source for these portable electronic devices. It has been demanded.

このような二次電池としてエネルギー密度の大きなリチウムイオン電池が着目されているが、従来のように円筒形または扁平形の金属製の外装缶を用いたリチウムイオン電池では形状が限られてしまうため、より形状の自由度の高い二次電池が要望されている。   Lithium ion batteries with large energy density are attracting attention as such secondary batteries, but the shape of lithium ion batteries using a cylindrical or flat metal outer can as in the past is limited. There is a demand for a secondary battery having a higher degree of freedom in shape.

そこで、アルミニウムラミネートフィルムなどの外装体を用いたラミネート電池の開発が進んでいる。   Therefore, development of a laminate battery using an exterior body such as an aluminum laminate film is in progress.

しかし、このようなラミネート電池は従来のリチウムイオン電池とは異なり、外装体がフィルムで構成されているため、ラミネート電池の内部にガスが発生した場合には、金属製の外装缶に比べると外装体の変形を押さえ込むための強度が不足することで電池膨れが発生する課題があった。   However, unlike a conventional lithium ion battery, such a laminated battery has an outer casing made of a film. Therefore, when gas is generated inside the laminated battery, the outer casing is more in comparison with a metal outer can. There was a problem that battery swelling occurred due to insufficient strength to suppress deformation of the body.

加えて、近年の携帯電話、ノート型パーソナルコンピュータの消費電力の大幅な上昇、高温環境での使用などにより、非水電解液の分解などによりガスが発生しやすい状況に
なっており、以前にも増して電池膨れが重要な課題となってきている。
In addition, due to the drastic increase in power consumption of mobile phones and notebook personal computers in recent years and the use in high-temperature environments, gas is likely to be generated due to decomposition of non-aqueous electrolyte. In addition, battery swelling has become an important issue.

そこで、図3に示すように正極板22と負極板23とが多孔質絶縁体からなるセパレータ24を介して直接的に接触しないよう巻回もしくは積層してなる電極群21を電池
ケースに収納したリチウム二次電池において、ゼオライトを電極活物質に混合することが提案されている(例えば、特許文献1参照)。
Therefore, as shown in FIG. 3, the electrode group 21 formed by winding or stacking the positive electrode plate 22 and the negative electrode plate 23 so as not to be in direct contact via the separator 24 made of a porous insulator is housed in a battery case. In a lithium secondary battery, it has been proposed to mix zeolite with an electrode active material (see, for example, Patent Document 1).

また、図4に示すように正極集電体31に正極合剤層32を形成した正極板33と多孔質絶縁体からなるセパレータ37と正極板33と対向して配置された負極集電体34に負極合剤層35を形成した負極板36と多孔質絶縁体からなるセパレータ38とを順に積層し、長手方向に巻回して構成した電極群39において、セパレータ37,38としてガス吸収剤をセパレータ基材に混ぜ込む構成としたことが提案されている(例えば、特許文献2参照)。   Further, as shown in FIG. 4, a positive electrode plate 33 in which a positive electrode mixture layer 32 is formed on a positive electrode current collector 31, a separator 37 made of a porous insulator, and a negative electrode current collector 34 disposed to face the positive electrode plate 33. In the electrode group 39 formed by sequentially laminating a negative electrode plate 36 on which a negative electrode mixture layer 35 is formed and a separator 38 made of a porous insulator and winding them in the longitudinal direction, gas separators are used as separators 37, 38. It has been proposed that the structure is mixed with a base material (see, for example, Patent Document 2).

さらに、図5に示すように正極活物質層と負極活物質層との間に固体電解質またはゲル電解質を配設した電極群41をラミネートフィルムよりなる外装材42に収容し、周囲を熱溶着した非水電解質電池において、外装材42と電極群41との間にかなり厚みのあるガス吸着性物質43,44を設けることが提案されている(例えば、特許文献3参照)。   Further, as shown in FIG. 5, an electrode group 41 in which a solid electrolyte or a gel electrolyte is disposed between a positive electrode active material layer and a negative electrode active material layer is accommodated in an exterior material 42 made of a laminate film, and the periphery is thermally welded. In a non-aqueous electrolyte battery, it has been proposed to provide gas-adsorbing substances 43 and 44 having a considerable thickness between the exterior material 42 and the electrode group 41 (see, for example, Patent Document 3).

特開平11−260416号公報JP-A-11-260416 特開2008−146963号公報JP 2008-146963 A 特開2001−155790号公報JP 2001-155790 A

しかしながら、特許文献1の従来技術におけるリチウム二次電池では、正極合剤層または負極合剤層にゼオライトを混合することで、電池反応に寄与しない余分な添加物が存在するために本来の電池反応を阻害する恐れがある。   However, in the lithium secondary battery according to the prior art of Patent Document 1, there is an extra additive that does not contribute to the battery reaction by mixing zeolite in the positive electrode mixture layer or the negative electrode mixture layer. May interfere.

また、特許文献2の従来技術における非水電解質二次電池では、ガス吸収剤をセパレータに混合することで、セパレータの内部に余分な添加物が存在するため、セパレータが本来有する電解液保持特性、シャットダウン特性などの機能を損なう恐れがある。   Moreover, in the non-aqueous electrolyte secondary battery in the prior art of Patent Document 2, by mixing the gas absorbent with the separator, an extra additive is present inside the separator, so the electrolyte retention characteristics inherent in the separator, Functions such as shutdown characteristics may be impaired.

さらに、特許文献3の従来技術における非水電解質のラミネート電池では、かなりの厚さのガス吸着性物質を設けるための余分なスペースがラミネート電池の内部に必要となり、
体積エネルギー密度が低下し高容量なラミネート電池を実現することが困難となる。
Furthermore, in the nonaqueous electrolyte laminated battery in the prior art of Patent Document 3, an extra space for providing a considerably thick gas adsorbing material is required inside the laminated battery,
It becomes difficult to realize a laminated battery having a high capacity and a low volume energy density.

また、ラミネートフィルムを金型にて圧力を加え絞り成形を行って電極群の収納部を形成することで、収納部におけるコーナー部の内面の厚みは薄くなるため、ラミネートフィルムの成形した内面に電極群を入れる際、摩擦が生じてラミネートフィルムの内面に傷が入り非水電解液が浸入して漏液したり、電解液を介して内部短絡を起こす確率が上がる場合があるという課題があった。   In addition, since the laminate film is formed by applying pressure to the laminate film to form an electrode group housing portion, the thickness of the inner surface of the corner portion of the housing portion is reduced. When putting a group, there was a problem that there was a case where friction occurred and the inner surface of the laminate film was scratched and the nonaqueous electrolytic solution entered and leaked, or the probability of causing an internal short circuit through the electrolytic solution was increased. .

本発明は上記従来の課題を鑑みてなされたもので、正極板および負極板を多孔質絶縁体を介して巻回または積層して構成した電極群と非水電解液とを成形されたラミネートフィルムからなる外装材で封止したラミネート電池であって、ラミネートフィルムに電極群を収容する収納部を形成し、この収納部におけるコーナー部の内面にガス吸着剤を配置したことにより、電池の特性を阻害することなく、電池特性低下を防ぎ、余分なスペースを必要とせず、しかも電極群の組込み時のラミネートフィルムの薄肉部の補強を行って安全性を高め、かつラミネートフィルムからなる外装材の膨らみを抑制できるラミネート電池を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and is a laminate film in which an electrode group formed by winding or laminating a positive electrode plate and a negative electrode plate via a porous insulator and a non-aqueous electrolyte is formed. A laminate battery sealed with an exterior material made of the above, wherein a storage portion for storing an electrode group is formed in a laminate film, and a gas adsorbent is arranged on the inner surface of the corner portion of the storage portion, thereby improving the battery characteristics. Without hindering, battery characteristics are prevented from deteriorating, no extra space is required, and the thin part of the laminate film is reinforced when the electrode group is assembled to increase safety, and the swell of the exterior material made of the laminate film It aims at providing the laminated battery which can suppress.

上記目的を達成するために本発明は、正極板および負極板を多孔質絶縁体を介して巻回または積層して構成した電極群と非水電解液とを成形されたラミネートフィルムからなる外装材で封止したラミネート電池であって、外装材に電極群を収容する収納部を有し、この収納部におけるコーナー部の内面にガス吸着剤を配置したことを特徴とするものである。   In order to achieve the above object, the present invention provides an exterior material comprising a laminate film formed by molding an electrode group formed by winding or laminating a positive electrode plate and a negative electrode plate via a porous insulator and a non-aqueous electrolyte. The laminated battery is sealed in a battery having a housing portion for housing an electrode group in an exterior material, and a gas adsorbent is disposed on the inner surface of a corner portion of the housing portion.

本発明によれば、外装材の収納部へ電極群を収容した際の収納部におけるコーナー部の内面にガス吸着剤を配置することによって、電池内部へ余分なスペースを確保することなく、体積エネルギー密度を低下させずに構成することができ、電池の特性を阻害することなく、電池の内圧上昇による膨れを抑制することができる。   According to the present invention, by arranging the gas adsorbent on the inner surface of the corner portion of the storage portion when the electrode group is stored in the storage portion of the exterior material, the volume energy can be obtained without securing extra space inside the battery. The battery can be configured without lowering the density, and swelling due to an increase in the internal pressure of the battery can be suppressed without impairing battery characteristics.

また、外装材の収納部を成形する際に薄くなるコーナー部の内面を保護して非水電解液の漏液および電極群と外装材との短絡を抑止できる。   Further, the inner surface of the corner portion that becomes thin when the housing portion for the exterior material is molded can be protected to prevent leakage of the nonaqueous electrolyte and a short circuit between the electrode group and the exterior material.

本発明の一実施の形態に係る扁平形ラミネート電池の分解斜視図1 is an exploded perspective view of a flat laminate battery according to an embodiment of the present invention. (a)本発明の一実施の形態に係る扁平形ラミネート電池の一部切欠斜視図、(b)本発明の扁平形ラミネート電池のリード取り出し方向からみた断面図、(c)図2(b)のコーナー部分の拡大図、(d)本発明の一実施の形態に係る扁平形ラミネート電池の平面図(A) A partially cutaway perspective view of a flat laminate battery according to an embodiment of the present invention, (b) a cross-sectional view of the flat laminate battery of the present invention as viewed from the lead-out direction, (c) FIG. 2 (b) (D) The top view of the flat laminated battery which concerns on one embodiment of this invention 従来例における電極群の分解斜視図Disassembled perspective view of electrode group in conventional example 別の従来例における電極群の分解斜視図An exploded perspective view of an electrode group in another conventional example 別の従来例におけるラミネート二次電池の分解斜視図An exploded perspective view of a laminated secondary battery in another conventional example

本発明の第1の発明においては、正極板および負極板を多孔質絶縁体を介して巻回または積層して構成した電極群と非水電解液とを成形されたラミネートフィルムからなる外装材で封止したラミネート電池であって、ラミネートフィルムに電極群を収容する収納部を形成し、この収納部におけるコーナー部の少なくとも一箇所以上の内面にガス吸着剤を配置したことにより、この収容部のコーナー部には収納部と電極群の接することのないすき間ができる。このすき間、特に収納部のコーナー部のすき間を埋めるように、ガス吸着材を収納部のコーナー部内面に配置したラミネート電池とすることにより、ガス吸着剤を配置するのに余分なスペースが不必要かつ電池の特性を阻害することなく、ラミネート電池内部に発生するガスを効率よく吸収し、電池膨れを抑制することができることで安全性の高い扁平形ラミネート電池を提供することができる。   In the first invention of the present invention, an exterior material comprising a laminate film formed by molding an electrode group formed by winding or laminating a positive electrode plate and a negative electrode plate via a porous insulator and a non-aqueous electrolyte solution. A sealed laminated battery, in which a storage portion for storing an electrode group is formed in a laminate film, and a gas adsorbent is disposed on at least one inner surface of a corner portion in the storage portion, In the corner portion, there is a gap between the storage portion and the electrode group that does not contact. By using a laminated battery in which the gas adsorbent is placed on the inner surface of the corner of the storage unit so as to fill this gap, especially the corner of the storage unit, no extra space is required to place the gas adsorbent. In addition, it is possible to efficiently absorb the gas generated inside the laminated battery without inhibiting the battery characteristics, and to suppress battery swelling, thereby providing a highly safe flat laminated battery.

また、収納部を成形する際に薄くなったコーナー部の内面を保護して非水電解液の漏液および電極群と外装材との短絡を抑止できる。   Moreover, the inner surface of the corner part which became thin when shape | molding a storage part can be protected, and the leakage of a non-aqueous electrolyte and the short circuit with an electrode group and an exterior material can be suppressed.

本発明の第2の発明においては、ガス吸着剤を収納部における各コーナー部の内面に配置したことにより、ラミネートフィルムを金型にて圧力を加え絞り成形を行ったことで薄くなった収納部の内面、特に各コーナー部内面を保護するようにガス吸着剤を配置することによって、収納部のラミネートフィルムが薄くなったコーナー部の剛性を高め、電極群を挿入する際の摩擦による収納部の内面を保護して非水電解液の漏液および電極群と外装材の短絡を抑止できる。   In the second invention of the present invention, the gas adsorbent is arranged on the inner surface of each corner portion in the storage portion, so that the storage portion is thinned by drawing the laminate film by applying pressure with a mold. By arranging the gas adsorbent so as to protect the inner surface of each corner portion, especially the inner surface of each corner portion, the rigidity of the corner portion where the laminate film of the storage portion is thinned is increased, and the storage portion of the storage portion due to friction when inserting the electrode group is increased. By protecting the inner surface, leakage of the non-aqueous electrolyte and short circuit between the electrode group and the exterior material can be suppressed.

さらに、収納部における各コーナー部の内面に形成されたガス吸着剤と電極群とが接することにより、外装材と電極群との位置を固定することができ、後工程にあるリード付近のシール精度を向上させ、漏液防止など電池の品質を向上させる。   Furthermore, the gas adsorbent formed on the inner surface of each corner portion in the storage portion and the electrode group can be in contact with each other, so that the position of the exterior material and the electrode group can be fixed, and the sealing accuracy near the lead in the subsequent process And improve battery quality, such as preventing leakage.

本発明の第3の発明においては、ガス吸着剤を無機酸化物をシリカゲル、ゼオライト、活性炭、ステアリン酸金属塩、ハイドロタルサイト、水素吸蔵合金、活性アルミナ、遷移金属酸化物、ソーダ石灰、酸化カルシウム、酸化マグネシウム、アスカライトの少なくとも一種以上の材料により構成したことにより、H、CO、CO、CH、CHなどの発生したガスに対して最適なガス吸着剤を選択することで、より効果的にガスを吸着し電池のふくらみを最小限に抑えることができる。 In the third invention of the present invention, the gas adsorbent is an inorganic oxide silica gel, zeolite, activated carbon, stearic acid metal salt, hydrotalcite, hydrogen storage alloy, activated alumina, transition metal oxide, soda lime, calcium oxide. Selecting the most suitable gas adsorbent for the generated gas such as H 2 , CO, CO 2 , CH 4 , C 2 H 6 by being composed of at least one material of magnesium oxide and ascarite Thus, the gas can be more effectively adsorbed and the swelling of the battery can be minimized.

以下、本発明の一実施の形態について図面を参照しながらラミネート電池の一例である扁平形ラミネート電池の構成を説明する。   Hereinafter, a configuration of a flat laminate battery which is an example of a laminate battery will be described with reference to the drawings for an embodiment of the present invention.

図1は、ラミネートフィルムからなる外装材14の内面にガス吸着剤1を形成した扁平形ラミネート電池15の分解斜視図を示す。このときのラミネートフィルムからなる外装材14は、例えばナイロンフィルム、アルミニウム箔、ポリエチレンフィルムを積層し貼り合わせたアルミニウムラミネートフィルムにより構成されている。   FIG. 1 is an exploded perspective view of a flat laminate battery 15 in which a gas adsorbent 1 is formed on the inner surface of an exterior material 14 made of a laminate film. The exterior material 14 made of a laminate film at this time is made of an aluminum laminate film in which, for example, a nylon film, an aluminum foil, and a polyethylene film are laminated and bonded together.

予め、ラミネートフィルムを金型にて圧力を加え絞り成形を行い、収納部16を形成した。この際、収納部16のコーナー部が特に薄くなるので、その薄くなった部分を保護するように収納部16におけるコーナー部の内面にガス吸着剤1を配置することにより、収納部16のラミネートフィルムが薄くなったコーナー部の剛性を高め、電極群11を挿入する際の摩擦による収納部16の内面を保護して電解液の漏液および電極群11と外装材14の短絡を防止する。
またガス吸着材1を収納部16の各コーナー部へ配置することにより、収納部16へ電極群11を挿入した際に、電極群11と収納部16のコーナー部のすき間を埋めることで収納部16内部の電極群11の揺動を限りなく小さくすることができ、後工程にあるラミネートフィルムを溶着させるシール時の電極群11によるリード位置のズレを防止し、シール工程の精度を向上させ、リードの位置ズレから生じるシール不良による漏液を抑止することができ、ラミネート電池の品質を飛躍的に高める。
In advance, the laminate film 16 was drawn by applying pressure with a mold to form the storage portion 16. At this time, since the corner portion of the storage portion 16 is particularly thin, the laminate film of the storage portion 16 is provided by disposing the gas adsorbent 1 on the inner surface of the corner portion of the storage portion 16 so as to protect the thinned portion. The rigidity of the corner portion where the thickness is reduced is increased, the inner surface of the storage portion 16 is protected by friction when the electrode group 11 is inserted, and the leakage of the electrolyte and the short-circuit between the electrode group 11 and the exterior member 14 are prevented.
Further, by disposing the gas adsorbent 1 at each corner portion of the storage portion 16, when the electrode group 11 is inserted into the storage portion 16, the gap between the electrode group 11 and the corner portion of the storage portion 16 is filled. 16, the oscillation of the electrode group 11 in the interior can be reduced as much as possible, the displacement of the lead position by the electrode group 11 at the time of sealing to weld the laminate film in the subsequent process is improved, and the accuracy of the sealing process is improved, Leakage due to poor sealing caused by misalignment of leads can be suppressed, and the quality of the laminated battery can be dramatically improved.

電極群11は正極集電体4と正極合剤層5からなる正極板6と負極集電体7と負極合剤層8からなる負極板9の間に多孔質絶縁体としてのセパレータ10aおよび10bを同方向に渦巻状に巻回した構成からなる。また、正極板6は 正極リード12から、また負極板9は負極リード13から各々正極と負極の電気を取り出す構造となっており、扁平形ラミネート電池15の内部で発生したガスをガス吸着剤1で吸着させる構成としている。   The electrode group 11 includes separators 10 a and 10 b as porous insulators between a positive electrode plate 6 composed of a positive electrode current collector 4 and a positive electrode mixture layer 5, and a negative electrode plate 9 composed of a negative electrode current collector 7 and a negative electrode mixture layer 8. Are wound in the same direction in a spiral shape. The positive electrode plate 6 has a structure for taking out the electricity of the positive electrode and the negative electrode from the positive electrode lead 12 and the negative electrode plate 9 from the negative electrode lead 13, respectively. The gas generated in the flat laminate battery 15 is removed from the gas adsorbent 1. It is set as the structure made to adsorb.

また、ラミネート電池15の内部で発生するガスの種類によって異なるが、ガス吸着剤1として無機酸化物からなる構造材を用い耐電解液性のある結着材で結合したガス吸着剤を構成した。ガス吸着剤1はシリカゲル、ゼオライト、活性炭、ステアリン酸金属塩、ハイドロタルサイト、水素吸蔵合金、活性アルミナ、遷移金属酸化物、ソーダ石灰、酸化カルシウム、酸化マグネシウム、アスカライトの少なくとも一種以上の材料の中から選定することができる。   Further, although depending on the type of gas generated inside the laminate battery 15, a gas adsorbent bonded with an electrolyte-resistant binder was formed using a structural material made of an inorganic oxide as the gas adsorbent 1. The gas adsorbent 1 is made of at least one material of silica gel, zeolite, activated carbon, stearic acid metal salt, hydrotalcite, hydrogen storage alloy, activated alumina, transition metal oxide, soda lime, calcium oxide, magnesium oxide, and ascarite. You can choose from among them.

正極集電体4の両面に正極合剤層5を形成した正極板6と負極集電体7の両面に負極合剤層8を形成した負極板9の間に多孔質絶縁体としてのセパレータ10a,10bを介して一方向に渦巻状に巻回して構成した電極群11を図2に示したように扁平形になるように加圧し、この電極群11から正極リード12および負極リード13を導出した後に図2(a)に示すようにラミネートフィルムからなる外装材14に所定量の非水電解液とともに収容し、三辺の熱溶着面2を封止し残りの一方は折り返すことで図2(b)に示す扁平形ラミネート電池15を構成している。   Separator 10a as a porous insulator between positive electrode plate 6 having positive electrode mixture layer 5 formed on both sides of positive electrode current collector 4 and negative electrode plate 9 having negative electrode mixture layer 8 formed on both sides of negative electrode current collector 7 , 10b, and the electrode group 11 formed by spirally winding in one direction is pressurized so as to be flat as shown in FIG. 2, and the positive electrode lead 12 and the negative electrode lead 13 are derived from the electrode group 11. After that, as shown in FIG. 2 (a), it is accommodated together with a predetermined amount of non-aqueous electrolyte in a packaging material 14 made of a laminate film, and the heat welding surface 2 on three sides is sealed and the remaining one is folded back. A flat laminate battery 15 shown in FIG.

図2(a)は、ラミネートフィルムからなる外装材14へ金型にて圧力を加え絞り成形を行い収納部16を形成し、その収納部16のコーナー部の内面にガス吸着剤1を配置して電極群11を封入した扁平形ラミネート電池15の外装材14を開封した斜視図を示す。扁平形ラミネート電池15の内部で発生したガスが、ラミネート電池外部へ流出する場合、収納部のラミネートが薄くなった部分に発生するピンホール、あるいは溶着不良による溶着部のピンホールを通って流出するが、その際、図2(d)の斜線部分へ滞留しやすい、この収納部16のコーナー部の内面にガス吸着剤1を設けたことによってより効率的かつ確実にラミネート電池内部で発生したガスを吸着させる構成にしている。   In FIG. 2A, the housing material 16 is formed by applying pressure to the exterior material 14 made of a laminate film with a mold to form the housing portion 16, and the gas adsorbent 1 is disposed on the inner surface of the corner portion of the housing portion 16. The perspective view which opened the exterior material 14 of the flat laminated battery 15 which enclosed the electrode group 11 is shown. When the gas generated inside the flat laminate battery 15 flows out of the laminate battery 15, it flows out through the pinhole generated in the thinned portion of the storage part or the pinhole of the welded part due to poor welding. However, the gas generated in the laminated battery more efficiently and reliably by providing the gas adsorbent 1 on the inner surface of the corner portion of the storage portion 16 that tends to stay in the hatched portion in FIG. Is configured to adsorb.

図2の(b)は、正極リード12,負極リード13の取り付け側から見た電極群11とラミネートフィルムからなる収納部16の断面図を示す。ラミネートフィルムからなる外装材14のコーナー部の内面にガス吸着剤1を配置した構造で、特にラミネートフィルムで形成する電極群11の収納部16のコーナー部の近傍へ配置することによって、ガス吸着剤1を配置するためのスペースを確保することなく配置することができ、内部で発生したガスを効果的に吸着させる構成としている。   FIG. 2B is a cross-sectional view of the storage unit 16 made of the electrode group 11 and the laminate film as viewed from the attachment side of the positive electrode lead 12 and the negative electrode lead 13. The gas adsorbent 1 has a structure in which the gas adsorbent 1 is arranged on the inner surface of the corner portion of the exterior material 14 made of a laminate film, and in particular, in the vicinity of the corner portion of the storage portion 16 of the electrode group 11 formed of the laminate film. 1 can be arranged without securing a space for arranging, and the gas generated inside is effectively adsorbed.

図2の(c)は、図2(b)のコーナー部近傍の拡大図を示す。外装材14の収納部16を絞り成形する際にコーナー部内面の外装材14の厚みは薄くなる。薄くなった部分を保護するように収納部16のコーナー部と電極群11のすき間を埋めてガス吸着剤1を配置することにより、収納部16のコーナー部の剛性を高め、電解液の漏液および電極群11と外装材14との短絡を抑止できる。   FIG. 2C shows an enlarged view of the vicinity of the corner portion of FIG. When the housing portion 16 of the exterior material 14 is drawn, the thickness of the exterior material 14 on the inner surface of the corner portion is reduced. By disposing the gas adsorbent 1 by filling the gap between the corner portion of the storage portion 16 and the electrode group 11 so as to protect the thinned portion, the rigidity of the corner portion of the storage portion 16 is increased, and the electrolyte leaks. And the short circuit with the electrode group 11 and the exterior | packing material 14 can be suppressed.

さらに、以下に電極群11の構成要素について、さらに詳しく説明する。   Further, the constituent elements of the electrode group 11 will be described in more detail below.

まず、正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   First, as the positive electrode active material, for example, lithium cobaltate and its modified body (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and its modified body (partly nickel-substituted cobalt) Etc.), and complex oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、各種グラファイトを単独あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

このときの結着材としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着材などを用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着材中に混入させることも可能である。   As the binder at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. It is also possible to mix an acrylate monomer or an acrylate oligomer having a reactive functional group introduced into the binder.

正極板6は正極集電体4としてアルミニウムまたはアルミニウム合金あるいはニッケルまたはニッケル合金よりなる金属箔を用いることができ、正極集電体4の片面または両面に正極活物質、導電材、結着材を分散媒中にプラネタリーミキサー等の分散機により混合分散させた正極合剤塗料を塗布、乾燥、圧延して正極合剤層5を形成することにより作製される。   In the positive electrode plate 6, a metal foil made of aluminum, an aluminum alloy, nickel, or a nickel alloy can be used as the positive electrode current collector 4. A positive electrode active material, a conductive material, and a binder are placed on one or both surfaces of the positive electrode current collector 4. It is produced by forming a positive electrode mixture layer 5 by applying, drying and rolling a positive electrode mixture paint mixed and dispersed in a dispersion medium by a dispersing machine such as a planetary mixer.

次に、負極活物質としては、例えば各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料、並びに各種合金組成材料を用いることができる。   Next, as the negative electrode active material, for example, various natural graphites and artificial graphites, silicon-based composite materials such as silicide, and various alloy composition materials can be used.

このときの結着材としては、ポリフッ化ビニリデン(PVdF)およびその変性体を用いることができる。しかしながら、リチウムイオンの受入れ性を向上させるという観点からは、スチレン−ブタジエン共重合体ゴム粒子(SBR)またはその変性体と増粘剤としてカルボキシメチルセルロース(CMC)をはじめとするセルロース系樹脂等とを併用したものや、スチレン−ブタジエン共重合体ゴム粒子またはその変性体に上記セルロース系樹脂を少量添加したものを使用するのが好ましい。また、シリサイドなどのシリコン系複合材料、並びに各種合金組成材料では負極集電体7の表面に負極活物質層8を柱状に選択的に担持する場合で、特に蒸着による場合、結着材としては負極活物質層8と集電体9との境界で負極活物質の酸素濃度を増加させて脆化を緩和し結着力を増すことが好ましい。   As the binder at this time, polyvinylidene fluoride (PVdF) and a modified body thereof can be used. However, from the viewpoint of improving the acceptability of lithium ions, styrene-butadiene copolymer rubber particles (SBR) or a modified product thereof and a cellulose resin such as carboxymethyl cellulose (CMC) as a thickener are used. It is preferable to use those used in combination, or those obtained by adding a small amount of the above cellulose-based resin to styrene-butadiene copolymer rubber particles or modified products thereof. Further, in the case of silicon composite materials such as silicide, and various alloy composition materials, the negative electrode active material layer 8 is selectively supported in the form of a column on the surface of the negative electrode current collector 7, and in particular, by vapor deposition, It is preferable to increase the oxygen concentration of the negative electrode active material at the boundary between the negative electrode active material layer 8 and the current collector 9 to alleviate embrittlement and increase the binding force.

負極板9は負極集電体7として銅または銅合金よりなる多孔質金属体を用いることができ、厚みが10μm以上40μm以下である負極集電体7の片面または両面に負極活物質,結着材、必要に応じて導電材、増粘剤を分散媒中にプラネタリーミキサー等の分散機により混合分散させた負極合剤塗料を塗布、乾燥、圧延して負極合剤層8を形成することにより作製される。   The negative electrode plate 9 can use a porous metal body made of copper or a copper alloy as the negative electrode current collector 7. The negative electrode current collector 7 is bonded to one or both sides of the negative electrode current collector 7 having a thickness of 10 μm to 40 μm. A negative electrode mixture layer 8 is formed by applying, drying, and rolling a negative electrode mixture paint in which a material, if necessary, a conductive material and a thickener are mixed and dispersed in a dispersion medium by a dispersing machine such as a planetary mixer. It is produced by.

また、多孔質絶縁体としてのセパレータ10a,10bについては、扁平形ラミネート電池15の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。このセパレータ10a,10bの厚みは特に限定されないが10〜25μmとすれば良い。   Further, the separators 10a and 10b as the porous insulators are not particularly limited as long as the separators 10a and 10b have a composition that can withstand the use range of the flat laminate battery 15. However, a microporous film of an olefin resin such as polyethylene or polypropylene is simply used. One or a combination is generally used and preferred as an embodiment. The thickness of the separators 10a and 10b is not particularly limited, but may be 10 to 25 μm.

この扁平形ラミネート電池15において正極リード12と負極リード13はそれぞれ正極板6と負極板9に接続され、外装材14により封止されることで密閉性が確保されおり、正極リード12と負極リード13の先コーナー部が外装材14の外部に突出し、外部端子としての機能を果たしている。   In this flat laminate battery 15, the positive electrode lead 12 and the negative electrode lead 13 are connected to the positive electrode plate 6 and the negative electrode plate 9, respectively, and sealed with an exterior material 14 to ensure hermeticity. The 13 front corners project outside the exterior material 14 and function as external terminals.

さらに、このときの非水電解液は、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。また、正極板6または負極板9の上に良好な被膜を形成させるためおよび過充電時の安定性を保証するために、ビニレンカーボネート(VC)およびシクロヘキシルベンゼン(CHB)並びにその変性体を用いるのが好ましい。 Furthermore, the nonaqueous electrolytic solution at this time can use various lithium compounds such as LiPF 6 and LiBF 4 as electrolyte salts. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent. Further, in order to form a good film on the positive electrode plate 6 or the negative electrode plate 9 and to ensure stability during overcharge, vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof are used. Is preferred.

以下、本発明の具体的な実施例について図面を参照しながら、さらに詳しく説明する。   Hereinafter, specific embodiments of the present invention will be described in more detail with reference to the drawings.

本発明における一実施例として、ラミネートフィルムからなる外装材14の収納部16のコーナー部へガス吸着剤1を形成した扁平形ラミネート電池の実施例について以下に説明する。   As an embodiment of the present invention, an embodiment of a flat laminate battery in which the gas adsorbent 1 is formed at the corner portion of the storage portion 16 of the exterior material 14 made of a laminate film will be described below.

正極板6および負極板9の間に多孔質絶縁体としてのセパレータ10a,10bを介して巻回した電極群11を非水電解液とともにラミネートフィルムからなる外装材14に封入した扁平形ラミネート電池15の構成であって、図2に示すように、ラミネートフィルムを金型にて圧力を加え絞り成形を行った収納部16へ電極群11を収容した場合の収納部16のコーナー部の一箇所にガス吸着剤1を配置したラミネートフィルムからなる外装材14を作製し、図1に示すような扁平形ラミネート電池15を製作し実施例1とした。ガス吸着剤には、耐電解液性からなる結着材としてポリエチレン(PE)を含有した無機酸化物からなる構造材の活性炭と水素吸蔵合金を用いた。   A flat laminated battery 15 in which an electrode group 11 wound between a positive electrode plate 6 and a negative electrode plate 9 via separators 10a and 10b as porous insulators is enclosed in a packaging material 14 made of a laminate film together with a non-aqueous electrolyte. As shown in FIG. 2, as shown in FIG. 2, in the corner portion of the storage unit 16 when the electrode group 11 is stored in the storage unit 16 in which the laminate film is pressed with a mold and subjected to drawing. An exterior material 14 made of a laminate film in which the gas adsorbent 1 was disposed was produced, and a flat laminate battery 15 as shown in FIG. As the gas adsorbent, activated carbon and a hydrogen storage alloy of a structural material made of an inorganic oxide containing polyethylene (PE) as a binder made of an electrolyte solution resistance were used.

正極板6および負極板9の間に多孔質絶縁体としてのセパレータ10a、10bを介して巻回した電極群11を非水電解液とともにラミネートフィルムからなる外装材14に封入した扁平形ラミネート電池15の構成であって、図2に示すように、ラミネートフィルムを金型にて圧力を加え絞り成形を行った収納部16へ電極群11を収容した場合の各収納部16における各コーナー部へガス吸着材1を塗布したラミネートフィルムからなる外装材14を作製し、図1に示すような扁平形ラミネート電池15を製作し実施例2とした。ガス吸着剤には、耐電解液性からなる結着材としてポリエチレン(PE)を含有した無機酸化物からなる構造材の活性炭と水素吸蔵合金を用いた。   A flat laminated battery 15 in which an electrode group 11 wound between a positive electrode plate 6 and a negative electrode plate 9 via separators 10a and 10b as porous insulators is enclosed in a packaging material 14 made of a laminate film together with a non-aqueous electrolyte. As shown in FIG. 2, gas is applied to each corner portion in each storage portion 16 when the electrode group 11 is stored in the storage portion 16 in which the laminate film is formed by applying pressure with a mold. An exterior material 14 made of a laminate film coated with the adsorbent 1 was produced, and a flat laminate battery 15 as shown in FIG. As the gas adsorbent, activated carbon and a hydrogen storage alloy of a structural material made of an inorganic oxide containing polyethylene (PE) as a binder made of an electrolyte solution resistance were used.

本実施の形態では、ラミネート電池として扁平形ラミネート電池を採用したが、他の形状のラミネート電池でも構わない。   In the present embodiment, a flat laminate battery is adopted as the laminate battery, but a laminate battery of another shape may be used.

(比較例1)
正極板6および負極板9の間に多孔質絶縁体としてのセパレータ10a、10bを介して巻回した電極群11を非水電解液とともにラミネートフィルムからなる外装材14に封入した扁平形ラミネート電池15の構成であって、ラミネートフィルムの電極群11の収納部16の内面および電極群11の収納部16の側面にはガス吸着層1を塗布しないものとし、図1に示すような扁平形ラミネート電池15を製作し比較例1とした。
(Comparative Example 1)
A flat laminated battery 15 in which an electrode group 11 wound between a positive electrode plate 6 and a negative electrode plate 9 via separators 10a and 10b as porous insulators is enclosed in a packaging material 14 made of a laminate film together with a non-aqueous electrolyte. The gas-adsorbing layer 1 is not applied to the inner surface of the storage portion 16 of the electrode group 11 and the side surface of the storage portion 16 of the electrode group 11 of the laminate film, and a flat laminate battery as shown in FIG. 15 was produced as Comparative Example 1.

(比較例2)
正極板6および負極板9の間にガス吸着層1を混ぜ込んだ多孔質絶縁体としての
セパレータ10a,10bを介して巻回した電極群11を非水電解液とともにラミネートフィルムからなる外装材14に封入した扁平形ラミネート電池15の構成とした。ガス吸着層1を混ぜ込んだ多孔質絶縁体10a,10bは、250℃にて溶融したポリエチレン(PE)に、流動パラフィンおよび活性炭と水素吸蔵合金を投入して混ぜた後、厚み1mmの板状に成形し加熱しながら、四塩化炭素によって流動パラフィンを除去し、100℃にて真空乾燥することによりガス吸着層1を混ぜ込んだ構成として、図1に示すような扁平形ラミネート電池15を製作し比較例2とした。
(Comparative Example 2)
An outer packaging material 14 made of a laminate film together with a non-aqueous electrolyte is formed by winding an electrode group 11 wound through separators 10a and 10b as porous insulators in which a gas adsorption layer 1 is mixed between a positive electrode plate 6 and a negative electrode plate 9. The configuration of the flat laminate battery 15 enclosed in the battery is as follows. The porous insulators 10a and 10b mixed with the gas adsorption layer 1 are made of polyethylene (PE) melted at 250 ° C., mixed with liquid paraffin, activated carbon and a hydrogen storage alloy, and then mixed into a plate shape having a thickness of 1 mm. A flat laminate battery 15 as shown in FIG. 1 is manufactured as a configuration in which the gas adsorption layer 1 is mixed by removing liquid paraffin with carbon tetrachloride and drying at 100 ° C. while being molded and heated. Comparative Example 2 was obtained.

上記実施例1〜2および比較例1〜2扁平形ラミネート電池をそれぞれ50個ずつ作製し以下のような評価を行った。   Each of the above-described Examples 1-2 and Comparative Examples 1-2, flat-type laminate batteries, 50 pieces were produced and evaluated as follows.

(電池ふくれ量)
扁平形ラミネート電池15を製作直後の電池の厚みと、充放電を500サイクル行った後の電池の厚みを測定し、これらの平均値の差を算出した。
(Battery swelling)
The thickness of the battery immediately after production of the flat laminate battery 15 and the thickness of the battery after 500 cycles of charge and discharge were measured, and the difference between these average values was calculated.

(容量維持率)
扁平形ラミネート電池15を定電流560mA/4.2Vカットの後に定電圧4.2V保持/40mAカットの充電と定電流800mA/3Vカットの放電の充放電条件にて500回充放電サイクルを繰り返した後の放電容量を初期容量に対する容量維持率として評価した。
(Capacity maintenance rate)
The flat laminate battery 15 was repeatedly charged and discharged 500 times under a constant current of 560 mA / 4.2 V cut followed by a charge of a constant voltage of 4.2 V hold / 40 mA cut and a discharge of a constant current of 800 mA / 3 V cut. The later discharge capacity was evaluated as a capacity retention rate with respect to the initial capacity.

(内部短絡不良率)
250回の充放電サイクルを終了するまでの内部短絡不良した電池の割合を算出した。
(Internal short-circuit failure rate)
The percentage of batteries with internal short circuit failure until the end of 250 charge / discharge cycles was calculated.

(発生ガスの耐内圧圧力)
電極群を収納しない空のラミネート電池外装材を形成し、水中で内圧試験を行い、一定量の内部からのガスが漏れた際の圧力からラミネートの封止性を評価した。
(Internal pressure resistance of generated gas)
An empty laminate battery outer packaging material that does not house the electrode group was formed, an internal pressure test was performed in water, and the sealing performance of the laminate was evaluated from the pressure when a certain amount of gas leaked from the inside.

以上の評価結果を(表1)に示した。   The above evaluation results are shown in Table 1.

Figure 2012059489
Figure 2012059489

まず、500サイクル後の電池ふくれ量が大きかった比較例1および比較例2の扁平形ラミネート電池を分解し、発生したガスの分析を行った。その結果、CO、H、CH、Cのガスが検出された。 First, the flat laminate batteries of Comparative Example 1 and Comparative Example 2 that had a large amount of battery swelling after 500 cycles were disassembled, and the generated gas was analyzed. As a result, CO 2 , H 2 , CH 4 , and C 2 H 6 gases were detected.

(表1)の結果より、実施例1〜2において500サイクル後の容量維持率は90%を維持し、内部短絡の不良率については0%の結果であった。   From the results of (Table 1), in Examples 1 and 2, the capacity maintenance rate after 500 cycles was maintained at 90%, and the failure rate of internal short circuit was 0%.

実施例1においてはラミネートフィルムの外装材14の収納部16のコーナー部のいずれか一箇所の内面にガス吸着剤1を形成したものとしては、耐電解液性からなる結着材としてポリエチレン(PE)を含有した無機酸化物からなる構造材の活性炭と水素吸蔵合金によりCH、CおよびHが吸着されたことで500サイクル後の電池ふくれ量が減少したものと考えられる。 In Example 1, as the gas adsorbent 1 formed on the inner surface of any one of the corner portions of the storage portion 16 of the laminate film outer packaging material 14, polyethylene (PE It is considered that the amount of battery swelling after 500 cycles was reduced by the adsorption of CH 4 , C 2 H 6 and H 2 by activated carbon and a hydrogen storage alloy of a structural material made of an inorganic oxide containing).

実施例2においてはラミネートフィルムの外装材14の収納部16における各コーナー部の内面に、耐電解液性からなる結着材としてポリエチレン(PE)を含有した無機酸化物からなる構造材の活性炭と水素吸蔵合金によるガス吸着材1を配置することにより、実施例1よりも効果的にCH、CおよびHが吸着されたことで500サイクル後の電池ふくれ量が減少したものと考えられる。 In Example 2, activated carbon of a structural material made of an inorganic oxide containing polyethylene (PE) as a binder made of an electrolytic solution resistance on the inner surface of each corner portion in the storage portion 16 of the outer packaging material 14 of the laminate film, By disposing the gas adsorbent 1 made of a hydrogen storage alloy, the amount of battery swelling after 500 cycles was reduced because CH 4 , C 2 H 6 and H 2 were adsorbed more effectively than in Example 1. Conceivable.

電池ふくれ量から実施例1と比較するとガス吸収量は向上していると考えられ、収納部16の各コーナー部へ配置したものの方がガス吸着の効率が良いと考えられる。また、収納部16のコーナー部へガス吸着剤1を配置することによって、電極群11を固定することができ、振動などによって電池内部の部品が外装材14を傷つけることを保護し、シール性の向上にも繋がる。   The amount of gas absorption is considered to be improved compared to Example 1 from the amount of battery swelling, and it is considered that the gas absorption efficiency is better when the gas is disposed at each corner of the storage portion 16. Further, by arranging the gas adsorbent 1 in the corner portion of the storage portion 16, the electrode group 11 can be fixed, and it protects the parts inside the battery from damaging the exterior material 14 due to vibration or the like, and has a sealing property. It leads to improvement.

比較例1は、ガス吸着層1を構成しないため実施例1〜2のいずれよりも500サイクル後の電池ふくれ量が増加していることがわかる。   Since Comparative Example 1 does not constitute the gas adsorption layer 1, it can be seen that the amount of battery swelling after 500 cycles is increased compared to any of Examples 1 and 2.

比較例2は、多孔質絶縁体としてガス吸着層1を混ぜ込んだセパレータ10aを用いているため、正極板6と負極板9でのイオン伝導率が悪くなったと考えられ500サイクル後の容量維持率が悪くなっている。   Since Comparative Example 2 uses the separator 10a mixed with the gas adsorption layer 1 as a porous insulator, it is considered that the ionic conductivity in the positive electrode plate 6 and the negative electrode plate 9 was deteriorated, and the capacity was maintained after 500 cycles. The rate is getting worse.

以上の結果より、本発明の扁平形ラミネート電池において正極板6および負極板9を多孔質絶縁体としてのセパレータ10a,10bを介して巻回または積層した電極群11を非水電解液とともにラミネートフィルムからなる外装材14に封入した扁平形ラミネート電池であって、ラミネートフィルムを金型にて圧力を加え絞り成形を行った収納部16へ電極群11を挿入した場合の収納部のコーナー部へガス吸着剤1を構成したことにより、500サイクル後の電池ふくれ量を抑制することができ、かつ500サイクル後の容量維持率も高いことが分かった。また、内部短絡不良率が低下することや発生ガスの耐内圧圧力も維持できることが分かった。   From the above results, in the flat laminate battery of the present invention, the electrode group 11 in which the positive electrode plate 6 and the negative electrode plate 9 are wound or laminated via the separators 10a and 10b as porous insulators is laminated with a non-aqueous electrolyte. A flat laminated battery encapsulated in an outer packaging material 14 made of a gas, which is applied to a corner portion of a storage portion when the electrode group 11 is inserted into a storage portion 16 in which a laminate film is pressed by a mold and subjected to drawing. It has been found that by configuring the adsorbent 1, the amount of battery swelling after 500 cycles can be suppressed, and the capacity retention rate after 500 cycles is also high. Moreover, it turned out that the internal short circuit defect rate falls and the internal pressure-proof pressure of generated gas can also be maintained.

なお、実施例1〜2においてはガス吸着材1として、活性炭、水素吸蔵合金を用いたが、これらに限定されるものではなく、発生するガスの種類に応じて、酸化カルシウム、シリカゲル、ゼオライト、活性炭、ステアリン酸金属塩、ハイドロタルサイト、水素吸蔵合金、活性アルミナ、遷移金属酸化物、ソーダ石灰、酸化カルシウム、酸化マグネシウム、アスカライトの少なくとも一種以上の材料から任意に選定することができる。   In Examples 1 and 2, activated carbon and hydrogen storage alloy were used as the gas adsorbent 1, but are not limited to these, and depending on the type of gas generated, calcium oxide, silica gel, zeolite, It can be arbitrarily selected from at least one material of activated carbon, metal stearate, hydrotalcite, hydrogen storage alloy, activated alumina, transition metal oxide, soda lime, calcium oxide, magnesium oxide, and ascarite.

本発明に係るラミネート電池は、電極群の収納部におけるコーナー部の内面にガス吸着剤を配したことにより、充放電により非水系ラミネート電池の内部で発生したガスをガス吸着剤で吸着することで、外装材であるラミネートフィルムの膨らみを抑制することが可能であり、電子機器および通信機器の多機能化に伴って高容量化が望まれているポータブル電子機器の電源などとして有用である。   In the laminate battery according to the present invention, the gas adsorbent is arranged on the inner surface of the corner portion in the electrode group housing portion, thereby adsorbing the gas generated inside the non-aqueous laminate battery by charge / discharge with the gas adsorbent. Further, it is possible to suppress the swelling of the laminate film that is an exterior material, and it is useful as a power source for portable electronic devices in which higher capacity is desired along with the multifunctionalization of electronic devices and communication devices.

1 ガス吸着剤
2 熱溶着面
4 正極集電体
5 正極合剤層
6 正極板
7 負極集電体
8 負極合剤層
9 負極板
10a,10b 多孔質絶縁体としてのセパレータ
11 電極群
12 正極リード
13 負極リード
14 ラミネートフィルムからなる外装材
15 扁平形ラミネート電池
16 収納部
DESCRIPTION OF SYMBOLS 1 Gas adsorbent 2 Heat welding surface 4 Positive electrode collector 5 Positive electrode mixture layer 6 Positive electrode plate 7 Negative electrode collector 8 Negative electrode mixture layer 9 Negative electrode plate 10a, 10b Separator as porous insulator 11 Electrode group 12 Positive electrode lead DESCRIPTION OF SYMBOLS 13 Negative electrode lead 14 Exterior material which consists of laminated films 15 Flat laminated battery 16 Storage part

Claims (3)

正極板および負極板を多孔質絶縁体を介して巻回または積層して構成した電極群と非水電解液とを成形されたラミネートフィルムからなる外装材で封止したラミネート電池であって、前記ラミネートフィルムに、前記電極群を収容する収納部を形成し、この収納部におけるコーナー部の少なくとも一箇所以上の内面にガス吸着剤を配置したラミネート電池。 A laminated battery in which a positive electrode plate and a negative electrode plate are wound or laminated via a porous insulator and sealed with an exterior material made of a laminate film formed of a non-aqueous electrolyte and an electrode group, A laminate battery in which a storage portion for storing the electrode group is formed in a laminate film, and a gas adsorbent is disposed on at least one inner surface of a corner portion in the storage portion. 前記ガス吸着剤を前記収納部における各コーナー部の内面に配置したことを特徴とする請求項1記載のラミネート電池。 The laminated battery according to claim 1, wherein the gas adsorbent is disposed on an inner surface of each corner portion in the storage portion. 前記ガス吸着剤をシリカゲル、ゼオライト、活性炭、ステアリン酸金属塩、ハイドロタルサイト、水素吸蔵合金、活性アルミナ、遷移金属酸化物、ソーダ石灰、酸化カルシウム、酸化マグネシウム、アスカライトの少なくとも一種類以上の材料により構成したことを特徴とする請求項1または2に記載のラミネート電池。 The gas adsorbent is at least one material selected from silica gel, zeolite, activated carbon, stearic acid metal salt, hydrotalcite, hydrogen storage alloy, activated alumina, transition metal oxide, soda lime, calcium oxide, magnesium oxide, and ascarite. The laminated battery according to claim 1 or 2, wherein
JP2010200659A 2010-09-08 2010-09-08 Laminated battery Pending JP2012059489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010200659A JP2012059489A (en) 2010-09-08 2010-09-08 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010200659A JP2012059489A (en) 2010-09-08 2010-09-08 Laminated battery

Publications (1)

Publication Number Publication Date
JP2012059489A true JP2012059489A (en) 2012-03-22

Family

ID=46056370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010200659A Pending JP2012059489A (en) 2010-09-08 2010-09-08 Laminated battery

Country Status (1)

Country Link
JP (1) JP2012059489A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115403A1 (en) * 2013-01-23 2014-07-31 トヨタ自動車株式会社 Nonaqueous-electrolyte secondary battery and manufacturing method therefor
WO2015136722A1 (en) * 2013-05-20 2015-09-17 栗田工業株式会社 Lithium ion battery and electronic device using same
KR20170068730A (en) * 2015-12-10 2017-06-20 주식회사 엘지화학 Battery Cell Comprising Electrode Lead Having Gas Adsorbent
KR20170134114A (en) * 2016-05-27 2017-12-06 주식회사 엘지화학 A pouch for an electrochemical device and an electrochemical device comprising the same
KR20190072203A (en) 2017-12-15 2019-06-25 주식회사 엘지화학 Cylindrical Battery Having Carbon Material
KR20190084794A (en) * 2018-01-09 2019-07-17 주식회사 엘지화학 Battery Case Having Gas Adsorption Layer
JP2020009665A (en) * 2018-07-10 2020-01-16 日東電工株式会社 Gas adsorption sheet for secondary battery
WO2020202698A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Battery
CN113889711A (en) * 2021-09-08 2022-01-04 珠海恩捷新材料科技有限公司 Metal composite membrane capable of adsorbing gas, preparation method thereof and bagged battery
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023191199A1 (en) * 2022-04-01 2023-10-05 삼성에스디아이 주식회사 Exterior material for rechargeable lithium battery and rechargeable lithium battery including same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143062A (en) * 2013-01-23 2014-08-07 Toyota Motor Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
US10177408B2 (en) 2013-01-23 2019-01-08 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for producing same
WO2014115403A1 (en) * 2013-01-23 2014-07-31 トヨタ自動車株式会社 Nonaqueous-electrolyte secondary battery and manufacturing method therefor
WO2015136722A1 (en) * 2013-05-20 2015-09-17 栗田工業株式会社 Lithium ion battery and electronic device using same
US10547090B2 (en) 2015-12-10 2020-01-28 Lg Chem, Ltd. Battery cell including electrode lead containing gas adsorbent
KR20170068730A (en) * 2015-12-10 2017-06-20 주식회사 엘지화학 Battery Cell Comprising Electrode Lead Having Gas Adsorbent
JP2018525784A (en) * 2015-12-10 2018-09-06 エルジー・ケム・リミテッド Battery cell with electrode lead containing gas adsorbent
KR102103378B1 (en) * 2015-12-10 2020-04-22 주식회사 엘지화학 Battery Cell Comprising Electrode Lead Having Gas Adsorbent
KR20170134114A (en) * 2016-05-27 2017-12-06 주식회사 엘지화학 A pouch for an electrochemical device and an electrochemical device comprising the same
KR102250898B1 (en) 2016-05-27 2021-05-10 주식회사 엘지화학 A pouch for an electrochemical device and an electrochemical device comprising the same
KR20190072203A (en) 2017-12-15 2019-06-25 주식회사 엘지화학 Cylindrical Battery Having Carbon Material
KR102234218B1 (en) 2018-01-09 2021-03-31 주식회사 엘지화학 Battery Case Having Gas Adsorption Layer
JP2020513151A (en) * 2018-01-09 2020-04-30 エルジー・ケム・リミテッド Battery case including gas adsorption layer
WO2019139272A1 (en) * 2018-01-09 2019-07-18 주식회사 엘지화학 Battery case comprising gas adsorption layer
KR20190084794A (en) * 2018-01-09 2019-07-17 주식회사 엘지화학 Battery Case Having Gas Adsorption Layer
JP7045543B2 (en) 2018-01-09 2022-04-01 エルジー エナジー ソリューション リミテッド Battery case including gas adsorption layer
US11581592B2 (en) 2018-01-09 2023-02-14 Lg Energy Solution, Ltd. Battery case having gas adsorption layer
JP2020009665A (en) * 2018-07-10 2020-01-16 日東電工株式会社 Gas adsorption sheet for secondary battery
JP7043361B2 (en) 2018-07-10 2022-03-29 日東電工株式会社 Gas adsorption sheet for secondary batteries
WO2020202698A1 (en) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 Battery
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN113889711A (en) * 2021-09-08 2022-01-04 珠海恩捷新材料科技有限公司 Metal composite membrane capable of adsorbing gas, preparation method thereof and bagged battery
WO2023191199A1 (en) * 2022-04-01 2023-10-05 삼성에스디아이 주식회사 Exterior material for rechargeable lithium battery and rechargeable lithium battery including same

Similar Documents

Publication Publication Date Title
JP2012059489A (en) Laminated battery
WO2011135818A1 (en) Secondary battery
JP2011249269A (en) Laminate battery
JP6139194B2 (en) Nonaqueous electrolyte secondary battery
JP2009301892A (en) Battery
KR20080079607A (en) Non-aqueous electrolyte secondary battery
US20100112437A1 (en) Lithium ion secondary battery
WO2008050604A1 (en) Sealed secondary battery
WO2015136688A1 (en) Nonaqueous electrolyte secondary battery and battery pack
JP7476936B2 (en) Film-covered battery, battery pack, and method for manufacturing said film-covered battery
US20080199764A1 (en) Safer high energy battery
JP2013168349A (en) Secondary battery and secondary battery module
EP3675261A1 (en) Method for producing power storage element and power storage element
JP6124399B2 (en) Nonaqueous electrolyte secondary battery
KR20140024600A (en) Lithium ion secondary battery cell and module comprising phase change material
JP2017054739A (en) Secondary battery
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP6021367B2 (en) Nonaqueous electrolyte secondary battery
JP2018085186A (en) Secondary battery
JP6903683B2 (en) Non-aqueous electrolyte batteries and battery packs
KR100888286B1 (en) Secondary Battery Having Bottom Insulator with Endothermic Material
WO2020090591A1 (en) Secondary battery
KR100354247B1 (en) Lithium secondary batteries
JP7258005B2 (en) Non-aqueous electrolyte secondary battery
CN111435729A (en) Lithium ion secondary battery