JP2012057126A - Fluidized bed gasification furnace - Google Patents

Fluidized bed gasification furnace Download PDF

Info

Publication number
JP2012057126A
JP2012057126A JP2010204273A JP2010204273A JP2012057126A JP 2012057126 A JP2012057126 A JP 2012057126A JP 2010204273 A JP2010204273 A JP 2010204273A JP 2010204273 A JP2010204273 A JP 2010204273A JP 2012057126 A JP2012057126 A JP 2012057126A
Authority
JP
Japan
Prior art keywords
furnace
gas
furnace body
fluidized bed
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010204273A
Other languages
Japanese (ja)
Other versions
JP5965097B2 (en
Inventor
Makoto Takato
誠 高藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010204273A priority Critical patent/JP5965097B2/en
Publication of JP2012057126A publication Critical patent/JP2012057126A/en
Application granted granted Critical
Publication of JP5965097B2 publication Critical patent/JP5965097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized bed gasification furnace which can reduce the amount of water vapor to be used.SOLUTION: From a first gas box 32 disposed at the bottom of one side part of a furnace body 26, COgas 25 obtained by a carbon dioxide separator 24 is supplied into the furnace upwardly. The constitution is configured that water vapor 3 as a gasification agent is supplied into the furnace upwardly from a second gas box 34 disposed at the bottom of the other side part of the furnace body 26, and a fluidized bed 4 is formed by fluidizing a high temperature fluid medium 15 supplied to the furnace with the COgas 25 blown to the one side part of the furnace body 26. With the water vapor 3 blown to the other side part in the furnace body 26, a combustible gasification gas 18 is generated, while the fluid medium 15 and unburnt solid portions are fluidized to form the fluidized bed 4.

Description

本発明は流動層ガス化炉に関するものである。   The present invention relates to a fluidized bed gasifier.

二塔式ガス化炉の流動層ガス化炉においては、高温の流動媒体(硅砂、石灰性など)を、下部から吹き込まれる水蒸気により流動化して流動層を形成し、この状態で流動層上部のフリーボードへ石炭、バイオマスなどの固体原料を供給すると、該固体原料の可燃性のガス化ガス(H2、CO、炭化水素)と未燃固形分とに熱分解され、該未燃固形分の一部が水蒸気、あるいは固体原料自体から蒸発した水分と水性ガス化反応を行って可燃性のガス化ガス(H2、CO)を生成し、COの一部が水蒸気と反応して、CO2とH2Oを生成する(例えば、特許文献1)。また、流動層ガス化炉に供給された固体原料が流動層中の流動媒体に触れると、前記H2、CO、炭化水素、水分の他に、固体原料に含まれているタールが蒸発する。 In a fluidized bed gasification furnace of a two-column gasifier, a fluidized bed is formed by fluidizing a high-temperature fluidized medium (eg, sand, limestone) with water vapor blown from the lower part. When a solid raw material such as coal or biomass is supplied to a free board, it is pyrolyzed into a combustible gasification gas (H 2 , CO, hydrocarbon) of the solid raw material and an unburned solid, and the unburned solid A part of the water vapor or water vaporized from the solid raw material itself undergoes a water gasification reaction to generate a combustible gasification gas (H 2 , CO), and a part of the CO reacts with the water vapor to produce CO 2 And H 2 O are produced (for example, Patent Document 1). Further, when the solid material supplied to the fluidized bed gasification furnace comes into contact with the fluidized medium in the fluidized bed, the tar contained in the solid material evaporates in addition to the H 2 , CO, hydrocarbon, and moisture.

つまり、流動層ガス化炉に吹き込まれる水蒸気は、可燃性のガス化ガスを生成させるためのガス化剤であるとともに、前段の媒体分離装置から流動層ガス化炉に供給される高温の流動媒体を流動化して流動層を形成する役割を担っている。   That is, the water vapor blown into the fluidized bed gasification furnace is a gasifying agent for generating combustible gasification gas, and is a high-temperature fluidized medium supplied to the fluidized bed gasification furnace from the preceding medium separator. It plays the role of fluidizing and forming a fluidized bed.

特開2010−018749号公報JP 2010-018749 A

固体原料が流動層中の流動媒体に触れた際に蒸発したタールの一部は、未燃固形分や後続して流動層ガス化炉に供給される固体原料の表面に付着し、ガス化ガスの生成を阻害する。このため、流動層ガス化炉に吹き込まれる水蒸気の一部はガス化剤として機能せず、単に流動層を形成する役割だけを担っていることになり、水蒸気発生手段において水蒸気を発生させるためのエネルギーが無駄になっている。   Part of the tar evaporated when the solid raw material touches the fluidized medium in the fluidized bed adheres to the unburned solids and the surface of the solid raw material that is subsequently supplied to the fluidized bed gasification furnace. Inhibits the production of For this reason, a part of the steam blown into the fluidized bed gasification furnace does not function as a gasifying agent, but only plays a role of forming a fluidized bed, and is used to generate steam in the steam generating means. Energy is wasted.

本発明は上述した実情に鑑みてなしたもので、水蒸気の使用量を削減できる流動層ガス化炉を提供することを目的としている。   This invention is made | formed in view of the situation mentioned above, and it aims at providing the fluidized bed gasification furnace which can reduce the usage-amount of water vapor | steam.

上記目的を達成するため、請求項1に記載の発明は、
外方から炉本体の一側内方へ流動媒体と固体原料とが供給され、炉本体の他側内方から外部へ未燃固形分と流動媒体とガス化ガスとが送出される流動層ガス化炉において、
ガス化ガスに含まれているCO2ガスを分離し得る二酸化炭素分離手段と、
該二酸化炭素分離手段によって得たCO2ガスを前記炉本体の底部から炉内に上向きに供給し得る第一のガス供給手段と、
ガス化剤として水蒸気を前記炉本体の底部から炉内に上向きに供給し得る第二のガス供給手段とを備えている。
In order to achieve the above object, the invention described in claim 1
Fluidized bed gas in which fluidized medium and solid raw material are supplied from the outside to one side inside the furnace body, and unburned solid, fluidized medium and gasification gas are sent from the other side inside the furnace body to the outside In the furnace,
Carbon dioxide separation means capable of separating CO 2 gas contained in the gasification gas;
First gas supply means capable of supplying the CO 2 gas obtained by the carbon dioxide separation means upward from the bottom of the furnace body into the furnace;
And a second gas supply means capable of supplying steam as a gasifying agent upward from the bottom of the furnace body into the furnace.

請求項2に記載の発明は、請求項1に記載の発明において、
第一のガス供給手段を、CO2ガスを前記炉本体の一側底部から炉内に上向きに供給し得るように構成し、
第二のガス供給手段を、水蒸気を前記炉本体の他側底部から炉内に上向きに供給し得る構成したもので、
炉本体内の一側底部に供給されるCO2ガスは、流動媒体を流動化して流動層を形成する役割だけを担い、
炉本体内の他側底部に供給される水蒸気は、可燃性のガス化ガスを生成させるためのガス化剤であるとともに、前記流動媒体と未燃固形分を流動化して流動層を形成する役割を担う。
The invention according to claim 2 is the invention according to claim 1,
The first gas supply means is configured to be able to supply CO 2 gas upward from one side bottom of the furnace body into the furnace,
The second gas supply means is configured to be able to supply water vapor upward from the other bottom of the furnace body into the furnace,
The CO 2 gas supplied to the bottom of one side in the furnace body only plays the role of fluidizing the fluid medium to form a fluidized bed,
Water vapor supplied to the bottom of the other side in the furnace body is a gasifying agent for generating combustible gasification gas, and also serves to fluidize the fluid medium and unburned solids to form a fluidized bed. Take on.

請求項3に記載の発明は、請求項2に記載の発明において、
炉本体内に仕切板を設けられ、炉本体内の流動媒体が滞留し得る範囲の上部を、第一のガス供給手段上方の熱分解ゾーンと第二のガス供給手段上方のガス化ゾーンとに区分したもので、
前記仕切板が、ガス化ゾーンから熱分解ゾーンへ水蒸気が拡散することを抑えるので、可燃性のガス化ガスを効率よく生成することができる。
The invention according to claim 3 is the invention according to claim 2,
A partition plate is provided in the furnace body, and the upper part of the range in which the fluid medium in the furnace body can stay is divided into a pyrolysis zone above the first gas supply means and a gasification zone above the second gas supply means. Divided into
Since the partition plate prevents water vapor from diffusing from the gasification zone to the pyrolysis zone, a combustible gasification gas can be efficiently generated.

請求項4に記載の発明は、請求項1、2のいずれかに記載の流動層ガス化炉において、
炉本体を、一側の第一の炉本体と、他側の第二の炉本体と、第一、第二の炉本体の下部を連通させる移送通路とによって構成し、
第一の炉本体に第一のガス供給手段を設け、
第二の炉本体に第二のガス供給手段を設けたもので、
移送通路内に入った流動媒体及び未燃固形分が、第一の炉本体から第二の炉本体へ水蒸気が流れ込むことを防ぐので、可燃性のガス化ガスを効率よく生成することができる。
Invention of Claim 4 is a fluidized bed gasification furnace in any one of Claims 1, 2,
The furnace body is constituted by a first furnace body on one side, a second furnace body on the other side, and a transfer passage that communicates the lower portions of the first and second furnace bodies,
A first gas supply means is provided in the first furnace body,
The second furnace body is provided with a second gas supply means,
Since the flowing medium and unburned solid content that have entered the transfer passage prevent water vapor from flowing from the first furnace body to the second furnace body, a combustible gasification gas can be efficiently generated.

本発明の流動層ガス化炉によれば、下記のような優れた作用効果を奏し得る。   According to the fluidized bed gasification furnace of the present invention, the following excellent effects can be obtained.

二酸化炭素分離手段でガス化ガスから分離したCO2ガスを第一のガス供給手段を介して炉本体内の一側部へ送り込み、流動媒体及び固体原料の流動層の形成に利用するので、流動層ガス化炉全体としての水蒸気の使用量が削減され、水蒸気を発生させるためのエネルギーの消費を少なくすることができる。 The CO 2 gas separated from the gasification gas by the carbon dioxide separation means is sent to one side of the furnace body through the first gas supply means and used for forming the fluidized bed of the fluidized medium and the solid raw material. The amount of water vapor used in the entire bed gasifier is reduced, and energy consumption for generating water vapor can be reduced.

本発明の流動層ガス化炉の第1の例を用いた二塔式ガス化炉を示す概念図である。It is a conceptual diagram which shows the two-column type | mold gasification furnace using the 1st example of the fluidized bed gasification furnace of this invention. 本発明の流動層ガス化炉の第2の例を用いた二塔式ガス化炉を示す概念図である。It is a conceptual diagram which shows the two-column type gasification furnace using the 2nd example of the fluidized bed gasification furnace of this invention. 本発明の流動層ガス化炉の第3の例を用いた二塔式ガス化炉を示す概念図である。It is a conceptual diagram which shows the two-column type gasification furnace using the 3rd example of the fluidized bed gasification furnace of this invention.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の流動層ガス化炉の第1の例を用いた二塔式ガス化炉を示すもので、26は流動層ガス化炉を構成する炉本体、6は燃焼炉である。   FIG. 1 shows a two-column gasification furnace using a first example of a fluidized bed gasification furnace of the present invention, wherein 26 is a furnace body constituting the fluidized bed gasification furnace, and 6 is a combustion furnace.

炉本体26内では、水蒸気3(ガス化剤)と固体原料5(石炭、バイオマスなど)とからガス化ガス18と可燃性固形分(未燃固形分)が生成され、この未燃性固形分と流動層4を形成する流動媒体との混合流体は、シール部8(ループシール)を経て燃焼炉6へ送給される。   In the furnace body 26, the gasified gas 18 and combustible solids (unburned solids) are generated from the steam 3 (gasification agent) and the solid raw material 5 (coal, biomass, etc.). And the fluid mixture forming the fluidized bed 4 is fed to the combustion furnace 6 through the seal portion 8 (loop seal).

燃焼炉6では、その下部から分散板9を介して供給される空気10(もしくは酸素)によって前記未燃固形分を流動燃焼させ、流動媒体を加熱する。燃焼炉6で流動燃焼した燃焼流体11は、燃焼炉6の上部から排ガス管12を経てホットサイクロンなどの媒体分離装置13に送給され、燃焼排ガス14と流動媒体15とに分離される。   In the combustion furnace 6, the unburned solid content is fluidly burned by air 10 (or oxygen) supplied from below through the dispersion plate 9 to heat the fluidized medium. The combustion fluid 11 fluidized and combusted in the combustion furnace 6 is fed to the medium separation device 13 such as a hot cyclone from the upper part of the combustion furnace 6 through the exhaust gas pipe 12 and separated into the combustion exhaust gas 14 and the fluidized medium 15.

前記シール部8には、その下部から供給される水蒸気3によって混合流体7を上向きに移送させる個所があり、燃焼炉6に供給される空気10(もしくは酸素)が流動層ガス化炉1へ流れ込むことを防いでいる。   The seal portion 8 has a portion where the mixed fluid 7 is transferred upward by the water vapor 3 supplied from below, and the air 10 (or oxygen) supplied to the combustion furnace 6 flows into the fluidized bed gasification furnace 1. It prevents that.

媒体分離装置13において燃焼流体11から分離された高温(800℃程度)の流動媒体15は、ダウンカマー16及びシール部21(ループシール)を経て前記流動層ガス化炉1に供給される。また、流動層ガス化炉1の流動層4の上部のフリーボード17に生成されたガス化ガス18は、導出管19を経てホットサイクロンなどの固体分離装置20に送給され、ここでガス化ガス18中に含まれている固体粒子23が分離される。   A high-temperature (about 800 ° C.) fluidized medium 15 separated from the combustion fluid 11 in the medium separator 13 is supplied to the fluidized bed gasifier 1 through a downcomer 16 and a seal portion 21 (loop seal). Further, the gasified gas 18 generated on the free board 17 at the upper part of the fluidized bed 4 of the fluidized bed gasification furnace 1 is supplied to a solid separation device 20 such as a hot cyclone through a lead-out pipe 19 where it is gasified. The solid particles 23 contained in the gas 18 are separated.

更に、ガス化ガス18中にはCO2ガス25が10〜15%程度の割合で混合しており、このCO2ガス25を回収するために、固体分離装置20の後段に二酸化炭素分離手段24を設けている。二酸化炭素分離手段24ではCO2ガス25を、メタノールを吸収液に用いるレクチゾール法、またはポリエチレングリコールのジメチルエーテルを吸収液に用いるセレクソール法などの物理吸収方法によって回収する。 Further, CO 2 gas 25 is mixed in the gasification gas 18 at a ratio of about 10 to 15%. In order to recover the CO 2 gas 25, the carbon dioxide separation means 24 is provided at the rear stage of the solid separation device 20. Is provided. In the carbon dioxide separation means 24, the CO 2 gas 25 is recovered by a physical absorption method such as a rectizol method using methanol as an absorbing solution or a selexol method using dimethyl ether of polyethylene glycol as an absorbing solution.

前記シール部21には、その下部から供給される水蒸気3によって流動媒体15を上向きに移送させる個所があり、流動層ガス化炉1からガスが固体分離装置20へ流れ込むことを防いでいる。   The seal portion 21 has a portion where the fluidized medium 15 is transferred upward by the water vapor 3 supplied from the lower portion thereof, and prevents the gas from flowing from the fluidized bed gasification furnace 1 into the solid separation device 20.

図中、22は原料供給装置であり、該原料供給装置22は、流動層ガス化炉1内の流動層4の上部のフリーボード17に固体原料5を供給するように構成されている。   In the figure, reference numeral 22 denotes a raw material supply device, and the raw material supply device 22 is configured to supply the solid raw material 5 to the free board 17 at the top of the fluidized bed 4 in the fluidized bed gasification furnace 1.

流動層ガス化炉は、炉本体26の一側部に、前記シール部21から炉内へ高温の流動媒体15を供給する流動媒体入口27、及び前記原料供給装置22から炉内へ固体原料5を供給する原料入口28を設け、炉本体26の他側部に、炉内から前記シール部8へ未燃固形分と流動媒体との混合流体7を送出させる流動媒体出口29、及び炉内から前記固体分離装置20へガス化ガス18を送出させるガス出口30とを設けたものである。   The fluidized bed gasification furnace includes a fluidized medium inlet 27 for supplying a high temperature fluidized medium 15 from the seal portion 21 into the furnace, and a solid material 5 from the material supply device 22 into the furnace. A raw material inlet 28 is provided, a fluid medium outlet 29 for sending a mixed fluid 7 of unburned solids and fluid medium from the inside of the furnace to the seal portion 8 on the other side of the furnace body 26, and from the inside of the furnace A gas outlet 30 for sending the gasified gas 18 to the solid separator 20 is provided.

図1に示す流動層ガス化炉の特徴部分は、炉本体26の一側部の底部に、前記二酸化炭素分離手段24によりガス化ガス18から分離したCO2ガス25を、分散板31を介して炉内へ上向きに供給し得る中空構造の第一のガスボックス32を設け、炉本体26の他側部の底部に、ガス化剤としての水蒸気3を、分散板33を介して炉内へ上向きに供給し得る中空構造の第二のガスボックス34を設けた点にある。 A characteristic part of the fluidized bed gasification furnace shown in FIG. 1 is that a CO 2 gas 25 separated from the gasification gas 18 by the carbon dioxide separation means 24 is disposed on the bottom of one side of the furnace body 26 via a dispersion plate 31. A first gas box 32 having a hollow structure that can be supplied upward into the furnace is provided, and water vapor 3 as a gasifying agent is introduced into the furnace via a dispersion plate 33 at the bottom of the other side of the furnace body 26. The second gas box 34 having a hollow structure that can be supplied upward is provided.

更に、シール部8,21に二酸化炭素分離手段24で得たCO2ガス25を供給し、シール部8においては、その下部から供給されるCO2ガス25によって混合流体7を上向きに移送させるようにして、燃焼炉6に供給される空気10(もしくは酸素)が炉本体26へ流れ込むことを防ぎ、シール部21においては、その下部から供給されるCO2ガス25によって流動媒体15を上向きに移送させるようにして、炉本体26からガスが固体分離装置20へ流れ込むことを防いでいる。二酸化炭素分離手段24で得たCO2ガス25は、ブロワ(図示せず)により昇圧され、第一のガスボックス32、及びシール部8,21へと送り込まれる。 Further, the CO 2 gas 25 obtained by the carbon dioxide separation means 24 is supplied to the seal parts 8 and 21, and the mixed fluid 7 is transferred upward by the CO 2 gas 25 supplied from the lower part in the seal part 8. Thus, the air 10 (or oxygen) supplied to the combustion furnace 6 is prevented from flowing into the furnace body 26, and the fluid medium 15 is transferred upward by the CO 2 gas 25 supplied from the lower part in the seal portion 21. Thus, the gas is prevented from flowing from the furnace body 26 to the solid separation device 20. The CO 2 gas 25 obtained by the carbon dioxide separation means 24 is pressurized by a blower (not shown) and sent to the first gas box 32 and the seal portions 8 and 21.

次に、図1に示す流動層ガス化炉の作動について述べる。二塔式ガス化炉の稼働中は、二酸化炭素分離手段24で得たCO2ガス25を、炉本体26一側部の底部に設けた第一のガスボックス32の分散板31を介して炉内へ上向きに供給し、水蒸気発生手段(図示せず)によって発生させたガス化剤としての水蒸気3を、炉本体26他側部の底部に設けた第二のガスボックス34の分散板33を介して炉内へ上向きに供給する。 Next, the operation of the fluidized bed gasifier shown in FIG. 1 will be described. During operation of the two-column gasification furnace, the CO 2 gas 25 obtained by the carbon dioxide separation means 24 is supplied to the furnace through the dispersion plate 31 of the first gas box 32 provided at the bottom of one side of the furnace body 26. A dispersion plate 33 of a second gas box 34 provided with steam 3 as a gasifying agent supplied upward and generated by a steam generating means (not shown) at the bottom of the other side of the furnace body 26 is provided. To feed upward into the furnace.

媒体分離装置13からシール部21を経て炉本体26一側部内に供給された直後の高温の流動媒体15は、第一のガスボックス32から吹き込まれるCO2ガス25により流動化して流動層4を形成する。この状態で原料供給装置22により炉本体26一側内部のフリーボード17に石炭、バイオマスなどの固体原料5を供給すると、該固体原料5が可燃性のガス化ガス18(H2、CO、炭化水素)と未燃固形分とに熱分解される。また、炉本体26に供給された固体原料5が流動層4中の流動媒体に触れた際には、前記H2、CO、炭化水素、水分の他に、固体原料5に含まれているタールが蒸発する。 The high-temperature fluidized medium 15 immediately after being supplied from the medium separator 13 through the seal portion 21 into one side of the furnace main body 26 is fluidized by the CO 2 gas 25 blown from the first gas box 32 and the fluidized bed 4 is formed. Form. In this state, when the raw material supply device 22 supplies the solid raw material 5 such as coal or biomass to the free board 17 on one side of the furnace body 26, the solid raw material 5 becomes combustible gasified gas 18 (H 2 , CO, carbonized). Hydrogen) and unburned solids. Further, when the solid raw material 5 supplied to the furnace body 26 touches the fluidized medium in the fluidized bed 4, the tar contained in the solid raw material 5 in addition to the H 2 , CO, hydrocarbon, and moisture. Evaporates.

流動層ガス化炉内の流動媒体及び未燃固形分は、外部から炉本体26内の一側部に流動媒体15と固体原料5が供給されること、並びに炉本体26内の他側部から外部へ未燃固形分と流動媒体との混合流体7が送出されることの相乗的な効果で、炉本体26内をその一側部から他側部へ向けて漸次移動する。   The fluid medium and unburned solid content in the fluidized bed gasification furnace are supplied from the outside to the fluid medium 15 and the solid raw material 5 to one side part in the furnace body 26 and from the other side part in the furnace body 26. Due to the synergistic effect of sending the mixed fluid 7 of the unburned solid content and the fluidized medium to the outside, the inside of the furnace body 26 is gradually moved from one side to the other side.

そして、炉本体26の他側部において前記流動媒体15と未燃固形分は、第2のガスボックス34から吹き込まれる水蒸気3により引き続き流動層4を形成する。未燃固形分の一部は水蒸気3、あるいは固体原料5自体から蒸発した水分と水性ガス化反応を行って可燃性のガス化ガス18(H2、CO)を生成し、COの一部が水蒸気3と反応して、CO2とH2Oを生成する。 The fluidized medium 15 and the unburned solid content on the other side of the furnace body 26 continue to form the fluidized bed 4 by the water vapor 3 blown from the second gas box 34. A part of the unburned solid content undergoes a water gasification reaction with water vapor 3 or moisture evaporated from the solid raw material 5 itself to produce a combustible gasification gas 18 (H 2 , CO). Reacts with water vapor 3 to produce CO 2 and H 2 O.

つまり、炉本体26内の一側部に吹き込まれるCO2ガス25は、前段の媒体分離装置13から炉本体26に供給される高温の流動媒体15を流動化して流動層4を形成する役割だけを担い、炉本体26内の他側部に吹き込まれる水蒸気3は、可燃性のガス化ガス18を生成させるためのガス化剤であるとともに、前記流動媒体15と未燃固形分を流動化して流動層4を形成する役割を担っている。 That is, the CO 2 gas 25 blown into one side of the furnace main body 26 serves only to form the fluidized bed 4 by fluidizing the high-temperature fluid medium 15 supplied to the furnace main body 26 from the preceding medium separator 13. The steam 3 blown into the other side of the furnace body 26 is a gasifying agent for generating the combustible gasified gas 18 and fluidizes the fluid medium 15 and unburned solids. It plays the role of forming the fluidized bed 4.

未燃固形分と流動媒体との混合流体7は、シール部8を経て燃焼炉6へ送給され、該燃焼炉6に供給される空気10により未燃固形分が燃焼するとともに高速で流動する流動媒体の加熱が図られる。未燃固形分の燃焼によって流動媒体を加熱した燃焼流体11は、排ガス管12を経て媒体分離装置13に送給され、燃焼排ガス14と流動媒体15とに分離される。   The mixed fluid 7 of the unburned solid and the fluid medium is fed to the combustion furnace 6 through the seal portion 8, and the unburned solid is burned by the air 10 supplied to the combustion furnace 6 and flows at a high speed. The fluid medium is heated. The combustion fluid 11 in which the fluid medium is heated by the combustion of the unburned solid content is fed to the medium separator 13 through the exhaust gas pipe 12 and separated into the combustion exhaust gas 14 and the fluid medium 15.

この後、流動媒体15はダウンカマー16及びシール部21を経て流動層ガス化炉1に還流する。また、流動層ガス化炉1の流動層4の上部のフリーボード17に生成されたガス化ガス18は、導出管19を経てホットサイクロンなどの固体分離装置20に送給され、ガス化ガス18中に含まれている固体粒子23が分離され、更に、ガス化ガス18中に混合しているCO2ガス25は二酸化炭素分離手段24によって回収される。このCO2ガス25は、ブロワ(図示せず)により昇圧され、第一のガスボックス32、及びシール部8,21へと送り込まれる。 Thereafter, the fluidized medium 15 returns to the fluidized bed gasification furnace 1 through the downcomer 16 and the seal portion 21. Further, the gasified gas 18 generated on the free board 17 at the upper part of the fluidized bed 4 of the fluidized bed gasification furnace 1 is supplied to a solid separation device 20 such as a hot cyclone through a lead-out pipe 19, and the gasified gas 18 The solid particles 23 contained therein are separated, and the CO 2 gas 25 mixed in the gasification gas 18 is recovered by the carbon dioxide separation means 24. The CO 2 gas 25 is pressurized by a blower (not shown) and sent to the first gas box 32 and the seal portions 8 and 21.

図1に示す流動層ガス化炉では、二酸化炭素分離手段24でガス化ガス18から分離したCO2ガス25を、炉本体26内の一側部、及びシール部8,21へ送り込み、炉本体26においては流動層4の形成に利用し、シール部8においては、炉本体26への空気10(もしくは酸素)の流入抑止に利用し、シール部21においては、固体分離装置20へのガスの流入抑止に利用するので、流動層ガス化炉全体としての水蒸気3の使用量が削減され、水蒸気3を発生させるために水蒸気発生手段(図示せず)が消費するエネルギーを少なくすることができる。 In the fluidized bed gasification furnace shown in FIG. 1, the CO 2 gas 25 separated from the gasification gas 18 by the carbon dioxide separation means 24 is sent to one side part in the furnace body 26 and the seal parts 8 and 21, and the furnace body. 26 is used to form the fluidized bed 4, the seal portion 8 is used to suppress the flow of air 10 (or oxygen) into the furnace body 26, and the seal portion 21 is used to prevent gas from flowing into the solid separator 20. Since it uses for inflow suppression, the usage-amount of the water vapor | steam 3 as the whole fluidized bed gasification furnace is reduced, and the energy which a water vapor | steam generation means (not shown) consumes in order to generate the water vapor | steam 3 can be decreased.

図2は本発明の流動層ガス化炉の第2の例を用いた二塔式ガス化炉を示すものであり、図中、図1と同一の符号を付した部分は同一物を表している。   FIG. 2 shows a two-column gasification furnace using a second example of the fluidized bed gasification furnace of the present invention. In the figure, the same reference numerals as those in FIG. Yes.

図2に示す流動層ガス化炉では、炉本体26内に仕切板35を設けることにより、流動媒体が滞留し得る範囲(流動層4が形成される範囲)の上部を、第一のガスボックス32上方(炉本体26の一側部)の熱分解ゾーン36と第二のガスボックス34上方(炉本体26の他側部)のガス化ゾーン37とに区分している。   In the fluidized bed gasification furnace shown in FIG. 2, by providing the partition plate 35 in the furnace body 26, the upper part of the range in which the fluidized medium can stay (the range in which the fluidized bed 4 is formed) is provided in the first gas box. 32 is divided into a pyrolysis zone 36 above (one side part of the furnace body 26) and a gasification zone 37 above the second gas box 34 (other side part of the furnace body 26).

仕切板35は流動層4が形成される範囲の上部に設けられているので、流動層4が形成される範囲の下部は、炉本体26の一側部と他側部とが区分されることなく連通しており、流動媒体及び未燃固形分は熱分解ゾーン36から仕切板35の下方を通り抜け、ガス化ゾーン37へ向けて漸次移動できる。   Since the partition plate 35 is provided at the upper part of the range where the fluidized bed 4 is formed, the lower part of the range where the fluidized bed 4 is formed is divided into one side and the other side of the furnace body 26. The fluid medium and the unburned solids can move gradually from the pyrolysis zone 36 to the gasification zone 37 through the lower part of the partition plate 35.

次に、図2に示す流動層ガス化炉の作動について述べる。二塔式ガス化炉の稼働中は、二酸化炭素分離手段24で得たCO2ガス25を、炉本体26一側部の底部に設けた第一のガスボックス32の分散板31を介して炉内の熱分解ゾーン36へ上向きに供給し、水蒸気発生手段(図示せず)によって発生させたガス化剤としての水蒸気3を、炉本体26の他側部の底部に設けた第二のガスボックス34の分散板33を介して炉内のガス化ゾーン37へ上向きに供給する。 Next, the operation of the fluidized bed gasifier shown in FIG. 2 will be described. During operation of the two-column gasification furnace, the CO 2 gas 25 obtained by the carbon dioxide separation means 24 is supplied to the furnace through the dispersion plate 31 of the first gas box 32 provided at the bottom of one side of the furnace body 26. A second gas box provided with steam 3 as a gasifying agent supplied upwardly to the internal pyrolysis zone 36 and generated by a steam generating means (not shown) at the bottom of the other side of the furnace body 26. The gas is supplied upward to the gasification zone 37 in the furnace through the 34 dispersion plates 33.

媒体分離装置13から熱分解ゾーン36に供給された直後の高温の流動媒体15は、第一のガスボックス32から吹き込まれるCO2ガス25により流動化して流動層4を形成する。この状態で原料供給装置22により熱分解ゾーン36上方のフリーボード17に固体原料5を供給すると、該固体原料5が可燃性のガス化ガス18(H2、CO、炭化水素)と未燃固形分とに熱分解される。また、熱分解ゾーン36に供給された固体原料5が流動層4中の流動媒体に触れた際には、前記H2、CO、炭化水素、水分の他に、固体原料5に含まれているタールが蒸発する。 The high-temperature fluidized medium 15 immediately after being supplied from the medium separator 13 to the thermal decomposition zone 36 is fluidized by the CO 2 gas 25 blown from the first gas box 32 to form the fluidized bed 4. When the solid raw material 5 is supplied to the free board 17 above the pyrolysis zone 36 by the raw material supply device 22 in this state, the solid raw material 5 is combustible gasified gas 18 (H 2 , CO, hydrocarbon) and unburned solid. Pyrolyzed in minutes. Further, when the solid raw material 5 supplied to the pyrolysis zone 36 touches the fluid medium in the fluidized bed 4, it is contained in the solid raw material 5 in addition to the H 2 , CO, hydrocarbons and moisture. The tar evaporates.

流動層ガス化炉内の流動媒体及び未燃固形分は、外部から炉本体26内の一側部の熱分解ゾーン36に流動媒体15と固体原料5が供給されること、並びに炉本体26内の他側部のガス化ゾーン37から外部へ未燃固形分と流動媒体との混合流体7が送出されることの相乗的な効果により、熱分解ゾーン36から仕切板35の下方を通り抜け、ガス化ゾーン37へ向けて漸次移動する。   The fluidized medium and unburned solid content in the fluidized bed gasification furnace are supplied from the outside to the thermal decomposition zone 36 on one side of the furnace body 26, the fluidized medium 15 and the solid raw material 5, and the furnace body 26. Due to the synergistic effect that the mixed fluid 7 of the unburned solid and the fluidized medium is sent to the outside from the gasification zone 37 on the other side, the gas passes through the lower part of the partition plate 35 from the pyrolysis zone 36 and gas. Gradually move toward the control zone 37.

そして、ガス化ゾーン37において前記流動媒体15と未燃固形分は、第2のガスボックス34から吹き込まれる水蒸気3により引き続き流動層4を形成する。未燃固形分の一部は水蒸気3、あるいは固体原料5自体から蒸発した水分と水性ガス化反応を行って可燃性のガス化ガス18(H2、CO)を生成し、COの一部が水蒸気3と反応して、CO2とH2Oを生成する。 In the gasification zone 37, the fluidized medium 15 and the unburned solid matter continuously form a fluidized bed 4 by the water vapor 3 blown from the second gas box 34. A part of the unburned solid content undergoes a water gasification reaction with water vapor 3 or moisture evaporated from the solid raw material 5 itself to produce a combustible gasification gas 18 (H 2 , CO). Reacts with water vapor 3 to produce CO 2 and H 2 O.

つまり、熱分解ゾーン36に吹き込まれるCO2ガス25は、前段の媒体分離装置13から炉本体26に供給される高温の流動媒体15を流動化して流動層4を形成する役割だけを担い、ガス化ゾーン37に吹き込まれる水蒸気3は、可燃性のガス化ガス18を生成させるためのガス化剤であるとともに、前記流動媒体15と未燃固形分を流動化して流動層4を形成する役割を担っている。 That is, the CO 2 gas 25 blown into the thermal decomposition zone 36 has only the role of fluidizing the high-temperature fluid medium 15 supplied from the preceding medium separator 13 to the furnace body 26 to form the fluidized bed 4. The water vapor 3 blown into the gasification zone 37 is a gasifying agent for generating the combustible gasification gas 18 and plays a role of fluidizing the fluid medium 15 and unburned solids to form the fluidized bed 4. I'm in charge.

図2に示す流動層ガス化炉では、二酸化炭素分離手段24でガス化ガス18から分離したCO2ガス25を、炉本体26内の熱分解ゾーン36、及びシール部8,21へ送り込み、炉本体26においては流動層4の形成に利用し、シール部8においては、炉本体26への空気10(もしくは酸素)の流入抑止に利用し、シール部21においては、固体分離装置20へのガスの流入抑止に利用するので、流動層ガス化炉全体としての水蒸気3の使用量が削減され、水蒸気3を発生させるために水蒸気発生手段(図示せず)が消費するエネルギーを少なくすることができる。 In the fluidized bed gasification furnace shown in FIG. 2, the CO 2 gas 25 separated from the gasification gas 18 by the carbon dioxide separation means 24 is sent to the thermal decomposition zone 36 in the furnace body 26 and the seal portions 8 and 21, and the furnace The main body 26 is used for forming the fluidized bed 4, the seal portion 8 is used for suppressing the flow of air 10 (or oxygen) into the furnace main body 26, and the seal portion 21 is used for gas to the solid separation device 20. As a result, the amount of water vapor 3 used as a whole fluidized bed gasification furnace is reduced, and the energy consumed by the water vapor generating means (not shown) for generating water vapor 3 can be reduced. .

また、炉本体26内に設けた仕切板35が、ガス化ゾーン37から熱分解ゾーン36へ水蒸気3が拡散することを抑えるので、可燃性のガス化ガス18(H2、CO)を効率よく生成することができる。 Moreover, since the partition plate 35 provided in the furnace body 26 suppresses the diffusion of the water vapor 3 from the gasification zone 37 to the pyrolysis zone 36, the combustible gasification gas 18 (H 2 , CO) is efficiently generated. Can be generated.

図3は本発明の流動層ガス化炉の第3の例を用いた二塔式ガス化炉を示すものであり、図中、図1、図2と同一の符号を付した部分は同一物を表している。   FIG. 3 shows a two-column gasifier using a third example of a fluidized bed gasifier according to the present invention. In the figure, the same reference numerals as those in FIGS. 1 and 2 denote the same parts. Represents.

この流動層ガス化炉は、第一の炉本体26A、第二の炉本体26B、及び移送通路26Cを備え、第一の炉本体26Aの一側部に、シール部21から炉内へ高温の流動媒体15を供給する流動媒体入口27、及び原料供給装置22から炉内へ固体原料5を供給する原料入口28を設け、第二の炉本体26Bの他側部に、炉内からシール部8へ未燃固形分と流動媒体との混合流体7を送出させる流動媒体出口29、及び炉内から固体分離装置20へガス化ガス18を送出させるガス出口30とを設け、前記移送通路26Cを介して第一の炉本体26Aの他側部の下部に第二の炉本体26Bの一側部の下部を連通させている。   This fluidized bed gasification furnace includes a first furnace main body 26A, a second furnace main body 26B, and a transfer passage 26C. One side of the first furnace main body 26A has a high temperature from the seal portion 21 into the furnace. A fluid medium inlet 27 for supplying the fluid medium 15 and a material inlet 28 for supplying the solid material 5 from the material supply device 22 into the furnace are provided, and the seal portion 8 from the inside of the furnace is provided on the other side of the second furnace body 26B. There are provided a fluid medium outlet 29 for sending the mixed fluid 7 of unburned solids and fluid medium, and a gas outlet 30 for sending the gasification gas 18 from the furnace to the solid separator 20, via the transfer passage 26C. The lower part of one side part of the second furnace body 26B is communicated with the lower part of the other side part of the first furnace body 26A.

第一の炉本体26Aの他側部の下部と第二の炉本体26Bの一側部の下部とは、移送通路26Cを介して連通しているので、流動媒体及び未燃固形分は第一の炉本体26Aから移送通路26Cを通り抜け、第二の炉本体26Bへ向けて漸次移動できる。   Since the lower part of the other side part of the first furnace body 26A and the lower part of one side part of the second furnace body 26B communicate with each other via the transfer passage 26C, the fluid medium and the unburned solid content are the first. It can move gradually from the furnace body 26A through the transfer passage 26C toward the second furnace body 26B.

図3に示す流動層ガス化炉の特徴部分は、第一の炉本体26Aの底部に、前記二酸化炭素分離手段24によりガス化ガス18から分離したCO2ガス25を、分散板31を介して炉内へ上向きに供給し得る中空構造の第一のガスボックス32を設け、第二の炉本体26Bの底部に、ガス化剤としての水蒸気3を、分散板33を介して炉内へ上向きに供給し得る中空構造の第二のガスボックス34を設けた点にある。 The characteristic part of the fluidized bed gasification furnace shown in FIG. 3 is that the CO 2 gas 25 separated from the gasification gas 18 by the carbon dioxide separation means 24 is disposed at the bottom of the first furnace body 26A via the dispersion plate 31. A first gas box 32 having a hollow structure that can be fed upward into the furnace is provided, and water vapor 3 as a gasifying agent is placed upward into the furnace via a dispersion plate 33 at the bottom of the second furnace body 26B. The second gas box 34 having a hollow structure that can be supplied is provided.

次に、図3に示す流動層ガス化炉の作動について述べる。二塔式ガス化炉の稼働中は、二酸化炭素分離手段24で得たCO2ガス25を、第一の炉本体26Aの底部に設けた第一のガスボックス32の分散板31を介して第一の炉本体26A内へ上向きに供給し、水蒸気発生手段(図示せず)によって発生させたガス化剤としての水蒸気3を、第二の炉本体26Bの底部に設けた第二のガスボックス34の分散板33を介して第二の炉本体26B内へ上向きに供給する。 Next, the operation of the fluidized bed gasifier shown in FIG. 3 will be described. During operation of the two-column gasifier, the CO 2 gas 25 obtained by the carbon dioxide separation means 24 is passed through the dispersion plate 31 of the first gas box 32 provided at the bottom of the first furnace body 26A. A second gas box 34 provided at the bottom of the second furnace body 26B with water vapor 3 as a gasifying agent supplied upward into one furnace body 26A and generated by a steam generation means (not shown). Is supplied upward through the dispersion plate 33 into the second furnace body 26B.

媒体分離装置13から第一の炉本体26Aに供給された直後の高温の流動媒体15は、第一のガスボックス32から吹き込まれるCO2ガス25により流動化して流動層4を形成する。この状態で原料供給装置22により流動層4上方のフリーボード17に固体原料5を供給すると、該固体原料5が可燃性のガス化ガス18(H2、CO、炭化水素)と未燃固形分とに熱分解される。また、第一の炉本体26Aに供給された固体原料5が流動層4中の流動媒体に触れた際には、前記H2、CO、炭化水素、水分の他に、固体原料5に含まれているタールが蒸発する。 The high-temperature fluidized medium 15 immediately after being supplied from the medium separator 13 to the first furnace body 26 </ b > A is fluidized by the CO 2 gas 25 blown from the first gas box 32 to form the fluidized bed 4. When the solid raw material 5 is supplied to the free board 17 above the fluidized bed 4 by the raw material supply device 22 in this state, the solid raw material 5 is combustible gasified gas 18 (H 2 , CO, hydrocarbon) and unburned solid content. And pyrolyzed. Further, when the solid raw material 5 supplied to the first furnace body 26A touches the fluid medium in the fluidized bed 4, it is contained in the solid raw material 5 in addition to the H 2 , CO, hydrocarbon, and moisture. The tar is evaporated.

流動層ガス化炉内の流動媒体及び未燃固形分は、外部から第一の炉本体26A内に流動媒体15と固体原料5が供給されること、並びに第二の炉本体26B内から外部へ未燃固形分と流動媒体との混合流体7が送出されることの相乗的な効果により、第一の炉本体26Aから移送通路26Cを通り抜け、第二の炉本体26Bへ向けて漸次移動する。   The fluidized medium and unburned solid content in the fluidized bed gasification furnace are supplied from the outside to the first furnace body 26A by the fluidized medium 15 and the solid raw material 5, and from the second furnace body 26B to the outside. Due to the synergistic effect of sending the mixed fluid 7 of the unburned solid and the fluid medium, the mixed fluid 7 passes through the transfer passage 26C from the first furnace body 26A and gradually moves toward the second furnace body 26B.

そして、第二の炉本体26Bにおいて前記流動媒体15と未燃固形分は、第2のガスボックス34から吹き込まれる水蒸気3により流動層4を形成する。未燃固形分の一部は水蒸気3、あるいは固体原料5自体から蒸発した水分と水性ガス化反応を行って可燃性のガス化ガス18(H2、CO)を生成し、COの一部が水蒸気3と反応して、CO2とH2Oを生成する。 In the second furnace body 26 </ b> B, the fluidized medium 15 and the unburned solid matter form a fluidized bed 4 by the water vapor 3 blown from the second gas box 34. A part of the unburned solid content undergoes a water gasification reaction with water vapor 3 or moisture evaporated from the solid raw material 5 itself to produce a combustible gasification gas 18 (H 2 , CO). Reacts with water vapor 3 to produce CO 2 and H 2 O.

つまり、第一の炉本体26Aに吹き込まれるCO2ガス25は、前段の媒体分離装置13から第一の炉本体26Aに供給される高温の流動媒体15を流動化して流動層4を形成する役割だけを担い、第二の炉本体26Bに吹き込まれる水蒸気3は、可燃性のガス化ガス18を生成させるためのガス化剤であるとともに、前記流動媒体15と未燃固形分を流動化して流動層4を形成する役割を担っている。 That is, the CO 2 gas 25 blown into the first furnace body 26A fluidizes the high-temperature fluid medium 15 supplied to the first furnace body 26A from the preceding medium separator 13 and forms the fluidized bed 4. The water vapor 3 that is only carried and is blown into the second furnace body 26B is a gasifying agent for generating the combustible gasification gas 18, and fluidizes the fluidized medium 15 and unburned solids to flow. It plays the role of forming the layer 4.

図3に示す流動層ガス化炉では、二酸化炭素分離手段24でガス化ガス18から分離したCO2ガス25を、第一の炉本体26A、及びシール部8,21へ送り込み、第一の炉本体26Aにおいては流動層4の形成に利用し、シール部8においては、第二の炉本体26Bへの空気10(もしくは酸素)の流入抑止に利用し、シール部21においては、固体分離装置20へのガスの流入抑止に利用するので、流動層ガス化炉全体としての水蒸気3の使用量が削減され、水蒸気3を発生させるために水蒸気発生手段(図示せず)が消費するエネルギーを少なくすることができる。 In the fluidized bed gasification furnace shown in FIG. 3, the CO 2 gas 25 separated from the gasification gas 18 by the carbon dioxide separation means 24 is sent to the first furnace body 26A and the seal portions 8 and 21, and the first furnace The main body 26A is used for forming the fluidized bed 4, the seal portion 8 is used for suppressing the inflow of air 10 (or oxygen) into the second furnace main body 26B, and the seal portion 21 is used for the solid separation device 20. Is used to suppress the inflow of gas into the fluidized bed, so that the amount of water vapor 3 used in the fluidized bed gasification furnace as a whole is reduced, and the energy consumed by water vapor generating means (not shown) for generating water vapor 3 is reduced. be able to.

また、移送通路26C内の流動媒体及び未燃固形分が、第一の炉本体26Aから第二の炉本体26Bへ水蒸気3が流れ込むことを防ぐので、可燃性のガス化ガス18(H2、CO)を効率よく生成することができる。 Further, since the flowing medium and unburned solid content in the transfer passage 26C prevent the water vapor 3 from flowing from the first furnace body 26A to the second furnace body 26B, the combustible gasified gas 18 (H 2 , CO) can be generated efficiently.

3 水蒸気
5 固体原料
7 混合流体
18 ガス化ガス
24 二酸化炭素分離手段
25 CO2ガス
26 炉本体
26A 第一の炉本体
26B 第二の炉本体
26C 移送通路
32 第一のガスボックス(第一のガス供給手段)
34 第二のガスボックス(第二のガス供給手段)
35 仕切板
36 熱分解ゾーン
37 ガス化ゾーン
3 Steam 5 Solid material 7 Mixed fluid 18 Gasification gas 24 Carbon dioxide separation means 25 CO 2 gas 26 Furnace body 26A First furnace body 26B Second furnace body 26C Transfer passage 32 First gas box (first gas Supply means)
34 Second gas box (second gas supply means)
35 Partition plate 36 Pyrolysis zone 37 Gasification zone

Claims (4)

外方から炉本体の一側内方へ流動媒体と固体原料とが供給され、炉本体の他側内方から外部へ未燃固形分と流動媒体とガス化ガスとが送出される流動層ガス化炉において、
ガス化ガスに含まれているCO2ガスを分離し得る二酸化炭素分離手段と、
該二酸化炭素分離手段によって得たCO2ガスを前記炉本体の底部から炉内に上向きに供給し得る流動層形成用の第一のガス供給手段と、
ガス化剤として水蒸気を前記炉本体の底部から炉内に上向きに供給し得る流動層形成用の第二のガス供給手段とを備えたことを特徴とする流動層ガス化炉。
Fluidized bed gas in which fluidized medium and solid raw material are supplied from the outside to one side inside the furnace body, and unburned solid, fluidized medium and gasification gas are sent from the other side inside the furnace body to the outside In the furnace,
Carbon dioxide separation means capable of separating CO 2 gas contained in the gasification gas;
A first gas supply means for forming a fluidized bed capable of supplying the CO 2 gas obtained by the carbon dioxide separation means upward from the bottom of the furnace body into the furnace;
A fluidized bed gasification furnace comprising a fluidized bed forming second gas supply means capable of supplying steam as a gasifying agent upward from the bottom of the furnace body into the furnace.
第一のガス供給手段は、CO2ガスを前記炉本体の一側底部から炉内に上向きに供給し得るように構成され、
第二のガス供給手段は、水蒸気を前記炉本体の他側底部から炉内に上向きに供給し得る構成された請求項1に記載の流動層ガス化炉。
The first gas supply means is configured to be able to supply CO 2 gas upward from one side bottom of the furnace body into the furnace,
2. The fluidized bed gasification furnace according to claim 1, wherein the second gas supply means is configured to be able to supply water vapor upward from the other bottom portion of the furnace body into the furnace.
炉本体内には仕切板が設けられ、炉本体内の流動媒体が滞留し得る範囲の上部を、第一のガス供給手段上方の熱分解ゾーンと第二のガス供給手段上方のガス化ゾーンとに区分した請求項2に記載の流動層ガス化炉。   A partition plate is provided in the furnace body, and the upper part of the range in which the fluid medium in the furnace body can stay is divided into a pyrolysis zone above the first gas supply means and a gasification zone above the second gas supply means. The fluidized bed gasification furnace according to claim 2, which is divided into two categories. 炉本体は、一側の第一の炉本体と、他側の第二の炉本体と、第一、第二の炉本体の下部を連通させる移送通路とによって構成され、
第一の炉本体に第一のガス供給手段を設け、
第二の炉本体に第二のガス供給手段を設けた請求項1または2に記載の流動層ガス化炉。
The furnace body is composed of a first furnace body on one side, a second furnace body on the other side, and a transfer passage that communicates the lower portions of the first and second furnace bodies,
A first gas supply means is provided in the first furnace body,
The fluidized bed gasification furnace according to claim 1 or 2, wherein a second gas supply means is provided in the second furnace body.
JP2010204273A 2010-09-13 2010-09-13 Fluidized bed gasifier Active JP5965097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204273A JP5965097B2 (en) 2010-09-13 2010-09-13 Fluidized bed gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204273A JP5965097B2 (en) 2010-09-13 2010-09-13 Fluidized bed gasifier

Publications (2)

Publication Number Publication Date
JP2012057126A true JP2012057126A (en) 2012-03-22
JP5965097B2 JP5965097B2 (en) 2016-08-03

Family

ID=46054602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204273A Active JP5965097B2 (en) 2010-09-13 2010-09-13 Fluidized bed gasifier

Country Status (1)

Country Link
JP (1) JP5965097B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098126A (en) * 2012-11-16 2014-05-29 Ihi Corp Circulation-type fluidized-bed gasification furnace
WO2014148556A1 (en) * 2013-03-21 2014-09-25 株式会社Ihi Gasified-gas generation system
JP2015044933A (en) * 2013-08-28 2015-03-12 株式会社Ihi Gasification gas generation system
JP2016216634A (en) * 2015-05-22 2016-12-22 株式会社Ihi Gasification gas generator
JP2018080247A (en) * 2016-11-16 2018-05-24 株式会社Ihi Gasified gas generation system
JP2019098261A (en) * 2017-12-04 2019-06-24 国立大学法人群馬大学 Operation method of circulation device, and loop seal
JP2019137817A (en) * 2018-02-15 2019-08-22 株式会社Ihi Synthetic gas generation system
JP2020055946A (en) * 2018-10-02 2020-04-09 株式会社Ihi Gasification gas production apparatus, and production method of gasification gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029689A1 (en) * 2006-09-08 2008-03-13 Ihi Corporation Method of divided-fluidized-bed gasification for solid fuel and relevant gasification apparatus
JP2008094928A (en) * 2006-10-11 2008-04-24 Ihi Corp Fluidized bed gasification method and apparatus
JP2008208297A (en) * 2007-02-28 2008-09-11 Ihi Corp Fuel gasification apparatus
WO2008107929A1 (en) * 2007-03-02 2008-09-12 Ihi Corporation Apparatus for controlling grain circulation amount in circulatory fluidized bed furnace
JP2008303377A (en) * 2007-05-08 2008-12-18 National Institute Of Advanced Industrial & Technology Method for generating combustible gas and gasification reaction furnace therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029689A1 (en) * 2006-09-08 2008-03-13 Ihi Corporation Method of divided-fluidized-bed gasification for solid fuel and relevant gasification apparatus
JP2008094928A (en) * 2006-10-11 2008-04-24 Ihi Corp Fluidized bed gasification method and apparatus
JP2008208297A (en) * 2007-02-28 2008-09-11 Ihi Corp Fuel gasification apparatus
WO2008107929A1 (en) * 2007-03-02 2008-09-12 Ihi Corporation Apparatus for controlling grain circulation amount in circulatory fluidized bed furnace
JP2008303377A (en) * 2007-05-08 2008-12-18 National Institute Of Advanced Industrial & Technology Method for generating combustible gas and gasification reaction furnace therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098126A (en) * 2012-11-16 2014-05-29 Ihi Corp Circulation-type fluidized-bed gasification furnace
WO2014148556A1 (en) * 2013-03-21 2014-09-25 株式会社Ihi Gasified-gas generation system
JP2014181306A (en) * 2013-03-21 2014-09-29 Ihi Corp Gasified gas production system
AU2014239350B2 (en) * 2013-03-21 2016-06-16 Ihi Corporation Gasified-gas generation system
CN104955923B (en) * 2013-03-21 2016-11-30 株式会社Ihi Gasification gas generates system
JP2015044933A (en) * 2013-08-28 2015-03-12 株式会社Ihi Gasification gas generation system
JP2016216634A (en) * 2015-05-22 2016-12-22 株式会社Ihi Gasification gas generator
JP2018080247A (en) * 2016-11-16 2018-05-24 株式会社Ihi Gasified gas generation system
JP2019098261A (en) * 2017-12-04 2019-06-24 国立大学法人群馬大学 Operation method of circulation device, and loop seal
JP7125080B2 (en) 2017-12-04 2022-08-24 国立大学法人群馬大学 Operating method of circulation flow device and loop seal
JP2019137817A (en) * 2018-02-15 2019-08-22 株式会社Ihi Synthetic gas generation system
JP2020055946A (en) * 2018-10-02 2020-04-09 株式会社Ihi Gasification gas production apparatus, and production method of gasification gas
JP7135686B2 (en) 2018-10-02 2022-09-13 株式会社Ihi Gasification gas production device and gasification gas production method

Also Published As

Publication number Publication date
JP5965097B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5965097B2 (en) Fluidized bed gasifier
JP5114412B2 (en) Separation type fluidized bed gasification method and gasification apparatus for solid fuel
JP3933105B2 (en) Fluidized bed gasification system
JP4888551B2 (en) Fluidized bed gasification method
JP4923934B2 (en) Fluidized bed gasification method and apparatus
JP5532207B2 (en) Circulating fluidized bed gasification reactor
JP2007112873A (en) Method and system for gasification of gasification fuel
JP2011026491A (en) Circulating fluidized bed gasification furnace structure
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JP2011026489A (en) Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace
CN106635171B (en) A kind of method and apparatus of biomass pressurized gasification production coal gas
JP2011042697A (en) Circulating fluidized bed type gasification method and apparatus
AU2007347601B2 (en) Method of gasifying gasification fuel and apparatus therefor
KR102032823B1 (en) Circulating Fluidized Bed Gasifier Equipped with Heat Exchanger Therein
JP6008082B2 (en) Gasification apparatus and gasification method
WO2010021010A1 (en) Fuel gasification system
JP2007231062A (en) Gasification system
JP2008208260A (en) Fuel gasification apparatus
JP5004093B2 (en) Gasification reactor for generating combustible gas
CN108916866B (en) Sleeve type multi-fuel circulating-bubbling combined fluidized bed boiler
CN104927922B (en) Moving bed pressurized coal gasification produces the technique and device for being the richest in alkane coal-gas
CN208136183U (en) A kind of low-grade fuel gasification system
JP4413646B2 (en) Circulating fluidized bed gasification system
JP6600988B2 (en) Gasification gas generator
JP6259991B2 (en) Circulating fluidized bed gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150302

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5965097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250