JP2012056841A - Silicon seed, and processing method and processing apparatus of the same - Google Patents

Silicon seed, and processing method and processing apparatus of the same Download PDF

Info

Publication number
JP2012056841A
JP2012056841A JP2011228525A JP2011228525A JP2012056841A JP 2012056841 A JP2012056841 A JP 2012056841A JP 2011228525 A JP2011228525 A JP 2011228525A JP 2011228525 A JP2011228525 A JP 2011228525A JP 2012056841 A JP2012056841 A JP 2012056841A
Authority
JP
Japan
Prior art keywords
cross
section
core material
silicon
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011228525A
Other languages
Japanese (ja)
Inventor
Yukio Yamaguchi
幸男 山口
Toshiyuki Ishii
敏由記 石井
Tetsushi Imamura
哲士 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011228525A priority Critical patent/JP2012056841A/en
Publication of JP2012056841A publication Critical patent/JP2012056841A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon seed where the cross-section of a core material of an erecting part is processed in a polygonal shape to improve the current-carrying state and the flow of raw material gas in a furnace, regarding a rod-like core material such as a silicon seed used for producing a polycrystalline silicon rod, and to provide a processing method and processing apparatus of the silicon seed.SOLUTION: In this method for producing a silicon seed that is used for producing polycrystalline silicon and is erected in a reverse U shape in the furnace, a rotating grinding wheel having, on the outer peripheral surface, a polygonal groove having a width corresponding to the outer diameter of a rod-like core material forming the silicon seed is used, the core material is processed in a shape of a polygonal cross-section by pressing the polygonal groove of the rotating grinding wheel onto a side surface of the rod-like core material having a square cross-section, moving it longitudinally, and grinding the core material, and the silicon seed where the cross-section of the erecting part other than the base end and upper end is polygonal and the cross-sections of the base end, the upper end, and the connecting part are square.

Description

本発明は、シーメンス法による多結晶シリコンロッドの製造に用いるシリコン芯材(シリコンシード)の加工方法と加工装置、および加工されたシリコン芯材に関する。 The present invention relates to a method and apparatus for processing a silicon core material (silicon seed) used for manufacturing a polycrystalline silicon rod by the Siemens method, and a processed silicon core material.

半導体デバイスの素材であるシリコン単結晶は工業的には主にCZ法により製造されており、その原料である多結晶シリコンは専らシーメンス法によって製造されている。シーメンス法による多結晶シリコンの製造では、反応炉内に棒状のシリコン芯材を立て、このシリコン芯材に通電してシリコン芯材を1000℃前後に赤熱し、この炉内にクロルシラン類と水素ガスを導入し、シリコン芯材の表面にシリコン結晶を析出させて棒状の多結晶シリコンロッドを製造する。 A silicon single crystal that is a material of a semiconductor device is industrially manufactured mainly by the CZ method, and polycrystalline silicon that is a raw material thereof is manufactured exclusively by the Siemens method. In the production of polycrystalline silicon by the Siemens method, a rod-shaped silicon core material is set up in a reaction furnace, the silicon core material is energized to red heat the silicon core material to around 1000 ° C., and chlorosilanes and hydrogen gas are introduced into the furnace. And a silicon crystal is deposited on the surface of the silicon core material to produce a rod-shaped polycrystalline silicon rod.

この製造方法において、従来から使用されているシリコン芯材は、多結晶シリコンロッドから切り出された断面が10mm角程度の四角形の細長い角棒(角柱)であり、これを逆U字形に組み立て炉内に設置している。ところが、角柱シード(角形断面)を用いると、原料ガスの流れがシード表面の角部によって乱されるため、シード長さに沿った多結晶シリコンの均一な成長が得られず、結晶成長の遅れによる不均一な部分が局部的に発生し、多結晶シリコンロッド表面の長さ方向に縦筋が付く場合がある。 In this manufacturing method, the silicon core material conventionally used is a rectangular long rectangular bar (square column) having a cross section of about 10 mm square cut out from a polycrystalline silicon rod, and this is assembled into an inverted U-shape in the furnace. It is installed in. However, when a prismatic seed (rectangular cross section) is used, the flow of the source gas is disturbed by the corners of the seed surface, so that uniform growth of polycrystalline silicon along the seed length cannot be obtained, and crystal growth is delayed. In some cases, non-uniform portions due to the above occur locally, and vertical stripes are attached in the length direction of the surface of the polycrystalline silicon rod.

この巻き込みの発生を防止あるいは抑制するには、反応炉内のガス流を均一にすれば良いが、角柱シードを用いたままで炉内全体のガス流を均一化するのは難しい。そこで、シードを多角形断面にしたシードや、シード表面の角部を面取りした丸形断面のシード(丸形シード)を用いることが考えられる。
また、角形断面のシードを用いると多結晶シリコンの成長時に微小な内部空隙(鬆)や歪みが生じる場合があり、これを防止するために、丸形断面や多角形断面のシードが提案されている。(特許文献1)
In order to prevent or suppress the occurrence of this entrainment, the gas flow in the reaction furnace may be made uniform, but it is difficult to make the gas flow in the whole furnace uniform while using the prism seed. Therefore, it is conceivable to use a seed having a polygonal cross section as a seed, or a seed having a round cross section (round seed) with chamfered corners of the seed surface.
In addition, when a seed with a square cross section is used, microscopic internal voids or distortion may occur during the growth of polycrystalline silicon. To prevent this, seeds with a round cross section or a polygon cross section have been proposed. Yes. (Patent Document 1)

特開2004−149324JP 2004-149324 A

ところが、多角断面や丸形断面等のシードを用いるには、多結晶シリコンロッドから直接に多角形あるいは丸形シードを切り出すことはできないので、最初に断面が四角の角形シードを切り出し、これを多角形や丸形断面に加工する必要がある。従来、断面角形のシードを丸形断面に加工するには、例えば、円盤形の砥石を用いる場合には、回転する砥石の平面をシード表面の角部に押し当てて角部を研削し、この角部の研削を繰り返して丸形に加工している。しかし、この方法は平面研削を繰り返すものであるので、手間がかかるうえに長手方向に沿って均一な多角形や丸形断面を形成するのが難しい。 However, in order to use seeds such as polygonal cross sections and round cross sections, it is impossible to cut out polygonal or round seeds directly from a polycrystalline silicon rod. It needs to be processed into a square or round cross section. Conventionally, in order to process a square-shaped seed into a round cross-section, for example, when using a disk-shaped grindstone, the plane of the rotating grindstone is pressed against the corner of the seed surface, and the corner is ground. The corner is ground repeatedly to make a round shape. However, since this method repeats surface grinding, it takes time and it is difficult to form a uniform polygon or round cross section along the longitudinal direction.

また、反応炉内に逆U字型のシードを設ける場合、通常、一対の棒状シードを立設し、その上端どうしを連結用シードによって接続して組み立てているが、互いに突き合わされる接続部分のシード断面が丸形や多角形であると接続が難しく、また互いの接触面積が少ないので通電状態が不良になる虞がある。シード全体の断面を丸形や多角形に加工すると、このような問題を生じる。 Further, when an inverted U-shaped seed is provided in the reaction furnace, usually a pair of rod-shaped seeds are erected and the upper ends of the seeds are connected by a connecting seed. If the seed cross section is round or polygonal, connection is difficult, and the contact area is small, so there is a risk that the energized state will be poor. Such a problem occurs when the entire cross section of the seed is processed into a round shape or a polygon shape.

本発明は、従来の上記問題を解決したものであって、シーメンス法による多結晶シリコンロッドの製造に用いるシリコンシードについて、組立が容易であって通電状態および原料ガスの流通が良好であるように加工したシリコンシードとその加工方法および加工装置を提供する。 The present invention solves the above-mentioned conventional problems so that the silicon seed used for the production of a polycrystalline silicon rod by the Siemens method is easy to assemble, and the energized state and the flow of the source gas are good. A processed silicon seed, a processing method thereof, and a processing apparatus are provided.

本発明によれば、以下のシリコンシードが提供される。
〔1〕多結晶シリコンの製造に用いられ、炉内に逆U字形に立設されるシリコンシードであって、立設部分の基端部および上端部の断面が角形であり、さらに該立設部分を接続する連結部分の断面が角形である一方、該基端部および該上端部を除く立設部分の断面が多角形であることを特徴とするシリコンシード。
According to the present invention, the following silicon seed is provided.
[1] A silicon seed that is used in the manufacture of polycrystalline silicon and is erected in an inverted U-shape in a furnace, and the base end and upper end of the erected part are square in cross section, and further A silicon seed, wherein a cross-section of a connecting portion connecting the portions is square, and a cross-section of a standing portion excluding the base end portion and the upper end portion is polygonal.

さらに、本発明によれば以下のシリコンシードの加工方法および加工装置が提供される。
〔2〕多結晶シリコンの製造に用いられ、炉内に逆U字形に立設されるシリコンシードの製造方法であって、シリコンシードを形成する棒状芯材の外径に対応する溝幅の多角形の溝を外周面に有す回転砥石を用い、断面が角形の棒状芯材の側面に該回転砥石の多角形の溝を押し当てて長手方向に移動させて研削することによって該芯材を多角形断面に加工し、基端部および上端部を除く立設部分の断面が多角形であって、該基端部と該上端部および連結部分の断面が角形であるシリコンシードを製造する方法。
〔3〕回転砥石を有し、該回転砥石はその外周面に棒状芯材の外径に対応する溝幅の多角形の溝を外周面に備えており、該溝を棒状芯材の側面に押し当てて研削することによって、該棒状芯材の断面を多角形に成形することを特徴とする加工装置。
〔4〕回転砥石の外周面に形成された溝状研磨部の材質がダイヤモンド、メタルレンジ、炭化ケイ素(SiC)、窒化ケイ素(SiN)であり、シリコンシードの断面を上記溝部分に対応する形状に加工する上記[3]に記載する加工装置。
Furthermore, according to the present invention, the following silicon seed processing method and processing apparatus are provided.
[2] A method of manufacturing a silicon seed that is used for manufacturing polycrystalline silicon and is erected in an inverted U shape in a furnace, and has a large groove width corresponding to the outer diameter of a rod-shaped core material forming the silicon seed. Using a rotating grindstone having a square groove on the outer peripheral surface, the polygonal groove of the rotating grindstone is pressed against the side surface of a rod-shaped core material having a square cross section, and the core material is moved by grinding in the longitudinal direction. A method of manufacturing a silicon seed which is processed into a polygonal cross section and has a polygonal cross section of a standing portion excluding a base end portion and an upper end portion, and a cross section of the base end portion, the upper end portion and the connecting portion is a square shape .
[3] A rotating grindstone is provided, and the rotating grindstone is provided with a polygonal groove having a groove width corresponding to the outer diameter of the rod-shaped core material on the outer circumferential surface, and the groove is formed on the side surface of the rod-shaped core material. A processing apparatus characterized by forming a cross-section of the rod-shaped core into a polygon by pressing and grinding.
[4] The material of the groove-shaped polishing portion formed on the outer peripheral surface of the rotating grindstone is diamond, metal range, silicon carbide (SiC), silicon nitride (SiN), and the shape corresponding to the groove portion in the cross section of the silicon seed The processing apparatus according to the above [3], wherein the processing device is processed into the above.

本発明の加工装置は、回転砥石を有し、該回転砥石はその外周面に棒状芯材の外径に対応する溝幅の多角形の溝を外周面に備えており、該溝を棒状芯材の側面に押し当てて研削することによって、該棒状芯材の断面を多角形に成形するので、平面研削を繰り返す方法とは異なり、棒状芯材の長手方向に沿って均一な多角形断面を容易に形成することができる。 The processing apparatus of the present invention has a rotating grindstone, and the rotating grindstone is provided with a polygonal groove having a groove width corresponding to the outer diameter of the rod-shaped core material on the outer circumferential surface thereof. By pressing against the side of the material and grinding, the cross section of the rod-shaped core is formed into a polygon, so unlike the method of repeating surface grinding, a uniform polygonal cross-section along the longitudinal direction of the rod-shaped core It can be formed easily.

また、本発明の加工装置は、回転砥石の外周面に形成された溝状研磨部の材質がダイヤモンド、メタルレンジ、炭化ケイ素(SiC)、窒化ケイ素(SiN)であるので、シリコンシードを加工する際に不純物の混入が少なく、高純度の多結晶シリコンを製造することができる。 Further, the processing apparatus of the present invention processes a silicon seed because the material of the groove-shaped polishing portion formed on the outer peripheral surface of the rotating grindstone is diamond, metal range, silicon carbide (SiC), or silicon nitride (SiN). In this case, high purity polycrystalline silicon can be manufactured with less contamination of impurities.

さらに、本発明のシリコンシードは、立設部分の基端部および上端部の断面が角形であり、さらに該立設部分を接続する連結部分の断面が角形である一方、該基端部および該上端部を除く立設部分の断面が多角形であるので、炉内に逆U字形のシリコンシードを形成する場合に、連結部分の接続が容易であると共に接続部分の接触面積が大きいので通電状態が良い。 Further, in the silicon seed of the present invention, the cross section of the base end portion and the upper end portion of the standing portion is square, and the cross section of the connecting portion connecting the standing portion is square, while the base end portion and the Since the cross-section of the standing part excluding the upper end is polygonal, when forming an inverted U-shaped silicon seed in the furnace, the connection part is easy to connect and the contact area of the connection part is large, so that the energized state Is good.

しかも、本発明のシリコンシードは立設部分が多角形断面に形成されているので、炉内の原料ガスの流れが良く、多結晶シリコンが均一に析出するので、多結晶シリコンロッド表面の長さ方向に縦筋が付くことがなく、高品質の多結晶シリコンを得ることができる。 Moreover, since the standing part of the silicon seed of the present invention is formed in a polygonal cross section, the flow of the source gas in the furnace is good and the polycrystalline silicon is deposited uniformly, so the length of the surface of the polycrystalline silicon rod There are no vertical stripes in the direction, and high-quality polycrystalline silicon can be obtained.

以下、本発明を具体的に説明する。
本発明の加工装置の一例を図1、図2に示す。図示するように、本発明の加工装置は、円盤状ないし円筒状の回転砥石10を有しており、回転砥石10は軸12によって駆動部13に連結されている。円盤状の回転砥石10はその厚さが棒状芯材の外径Lに対応して該外径よりもやや大きく形成されている。円筒状の回転砥石10はその筒長が棒状芯材の外径Lに対応して該外径よりもやや大きく形成されている。この回転砥石10の外周面に溝状の研磨部11が設けられている。この溝状研磨部11の深さ方向の具体的な形状は丸溝、多角形の溝、またはV字形の溝などにすることができる。丸溝は楕円形から真円まで任意の曲率を有する各種の湾曲形状にすることができる。また、多角形溝およびV形溝(多角形溝およびV形溝を含めて凹状角形溝と云う)の溝角度ないし溝深さは任意に設定することができる。上記溝部分(溝状研磨部)11は棒状芯材の外径Lに対応した溝径φを有している。
Hereinafter, the present invention will be specifically described.
An example of the processing apparatus of the present invention is shown in FIGS. As shown in the figure, the processing apparatus of the present invention has a disk-shaped or cylindrical rotating grindstone 10, and the rotating grindstone 10 is connected to a drive unit 13 by a shaft 12. The disc-shaped rotating grindstone 10 has a thickness slightly larger than the outer diameter corresponding to the outer diameter L of the rod-shaped core material. The cylindrical rotating grindstone 10 has a tube length slightly larger than the outer diameter corresponding to the outer diameter L of the rod-shaped core material. A groove-shaped polishing portion 11 is provided on the outer peripheral surface of the rotating grindstone 10. The specific shape in the depth direction of the groove-like polishing portion 11 can be a round groove, a polygonal groove, a V-shaped groove, or the like. The round groove can have various curved shapes having an arbitrary curvature from an ellipse to a perfect circle. Further, the groove angle or depth of the polygonal groove and the V-shaped groove (referred to as a concave rectangular groove including the polygonal groove and the V-shaped groove) can be arbitrarily set. The groove portion (groove-shaped polishing portion) 11 has a groove diameter φ corresponding to the outer diameter L of the rod-shaped core material.

この加工装置を用い、図2に示すように、回転砥石10の外周面に設けた溝部分11を棒状芯材20の側面に押し当てて研削することによって、該棒状芯材20の断面を上記溝部分11に従った形状に成形することができる。丸溝11を有する回転砥石10を用いた場合には、丸溝11の曲率によって、楕円形から真円まで各種の丸形断面を形成することができる。また、多角形溝やV形溝の凹状角形溝を有する回転砥石10を用いた場合には、芯材20の断面をこの凹状角形に対応する形状に成形することができる。 Using this processing apparatus, as shown in FIG. 2, the groove portion 11 provided on the outer peripheral surface of the rotating grindstone 10 is pressed against the side surface of the rod-shaped core material 20 to grind the cross section of the rod-shaped core material 20. It can be formed into a shape according to the groove portion 11. When the rotating grindstone 10 having the round groove 11 is used, various round cross-sections from an ellipse to a perfect circle can be formed by the curvature of the round groove 11. Further, when the rotary grindstone 10 having a polygonal groove or a V-shaped groove is used, the cross section of the core member 20 can be formed into a shape corresponding to the concave square.

具体的には、図2(A)〜(F)に示すように、回転砥石10の溝部分11を芯材20の側面に押し当てた状態で、芯材20の長手方向に沿って回転砥石10を移動させて芯材20の片側を加工する。次いで、図2(D)〜(F)に示すように、芯材20を反転させ、あるいは芯材20の反対側の側面に回転砥石10を移動させ、再び溝部分11を芯材20の側面に押し当てた状態で、芯材20の長手方向に沿って回転砥石10を移動させて芯材20の残り片側を加工する。なお、芯材20の片側を長手方向に沿って加工した後に、芯材20の残り片側を加工しても良い。このように芯材20の両側を加工して、丸形断面または多角形断面の芯材を得ることができる。 Specifically, as shown in FIGS. 2A to 2F, the rotating grindstone along the longitudinal direction of the core material 20 in a state where the groove portion 11 of the rotating grindstone 10 is pressed against the side surface of the core material 20. 10 is moved to process one side of the core material 20. Next, as shown in FIGS. 2D to 2F, the core member 20 is reversed, or the rotating grindstone 10 is moved to the side surface opposite to the core member 20, and the groove portion 11 is again connected to the side surface of the core member 20. In the state pressed against, the rotating grindstone 10 is moved along the longitudinal direction of the core material 20 to process the remaining one side of the core material 20. Note that after processing one side of the core material 20 along the longitudinal direction, the remaining one side of the core material 20 may be processed. Thus, the both sides of the core material 20 can be processed, and the core material of a round cross section or a polygonal cross section can be obtained.

本発明の加工装置ないし加工方法は、シーメンス法に基づく多結晶シリコンの製造に用いるシリコンシードの断面を加工する場合に特に有用である。シリコンシード用の加工装置は、回転砥石10の外周面に設けた溝状研磨部11はシリコンシード20の外径に対応する溝幅φを有している。溝部分の具体的な形状は上述のように丸溝、または多角形溝やV字溝のような凹状角形溝である。この溝部分11の材質はダイヤモンド、メタルレンジ、炭化ケイ素(SiC)、窒化ケイ素(SiN)が好ましい。回転砥石の溝部分を上記材質によって形成したものは、シリコンシードを加工する際に不純物の混入が少なく、高純度の多結晶シリコンを製造することができる。 The processing apparatus or processing method of the present invention is particularly useful when processing a cross section of a silicon seed used for manufacturing polycrystalline silicon based on the Siemens method. In the silicon seed processing apparatus, the groove-like polishing portion 11 provided on the outer peripheral surface of the rotating grindstone 10 has a groove width φ corresponding to the outer diameter of the silicon seed 20. The specific shape of the groove portion is a round groove as described above, or a concave square groove such as a polygonal groove or a V-shaped groove. The material of the groove portion 11 is preferably diamond, metal range, silicon carbide (SiC), or silicon nitride (SiN). In the case where the groove portion of the rotating grindstone is formed of the above-described material, there is little mixing of impurities when the silicon seed is processed, and high-purity polycrystalline silicon can be manufactured.

具体的には、例えば、多結晶シリコンから切り出されたシリコンシード20は一般に約8mm〜9mm角断面を有している。従って、加工装置の円盤状砥石は約10mm〜15mm厚さを有し、該砥石外周面の研磨溝11は上記シリコンシードの外径に対応した溝幅を有しており、溝部分の材質はダイヤモンド、メタルレンジ、炭化ケイ素(SiC)、窒化ケイ素(SiN)などによって形成されている。砥石外周面の溝11は例えば曲率4±0.2mmの丸溝、ないし例えば扁平率1.0〜1.3の楕円形の溝である。 Specifically, for example, the silicon seed 20 cut out from polycrystalline silicon generally has a cross section of about 8 mm to 9 mm. Accordingly, the disk-shaped grindstone of the processing apparatus has a thickness of about 10 mm to 15 mm, the polishing groove 11 on the outer peripheral surface of the grindstone has a groove width corresponding to the outer diameter of the silicon seed, and the material of the groove portion is It is formed of diamond, metal range, silicon carbide (SiC), silicon nitride (SiN) or the like. The groove 11 on the outer peripheral surface of the grindstone is, for example, a round groove having a curvature of 4 ± 0.2 mm, or an elliptical groove having a flatness of 1.0 to 1.3, for example.

本発明によって加工したシリコンシードは、シーメンス法に基づく多結晶シリコンの製造に用いるシリコンシードであって、炉内に立設するシードの基端部および上端部の断面が角形であり、該基端部および上端部を除く立設部分の少なくとも上半分以上が丸形断面ないし多角形断面であることを特徴とするシリコンシードである。このような基端部およぶ上端部が角形断面であって、基端部と上端部を除く立設部分が丸形断面のシリコンシードは本発明の加工方法によって容易に得ることができる。 The silicon seed processed according to the present invention is a silicon seed used for the production of polycrystalline silicon based on the Siemens method, and the base end and the upper end of the seed standing in the furnace are square in cross section. A silicon seed characterized in that at least the upper half of the standing portion excluding the upper portion and the upper end portion has a round cross section or a polygon cross section. Such a silicon seed having a base end portion and an upper end portion having a square cross section and a standing portion excluding the base end portion and the upper end portion having a round cross section can be easily obtained by the processing method of the present invention.

本発明のシリコンシードの一例を図3に示す。図示するように、炉内に一対のシリコンシード30が立設されており、この立設部分30が連結部31によって接続され、逆U字形のシリコンシードが形成されている。上記連結部31の断面は角形であり、さらに立設部分30の基端部32および上端部33の断面は角形である。一方、該基端部32および上端部33を除く立設部分30は丸形断面ないし多角形断面に形成されている。 An example of the silicon seed of the present invention is shown in FIG. As shown in the figure, a pair of silicon seeds 30 are erected in the furnace, and the erected parts 30 are connected by a connecting portion 31 to form an inverted U-shaped silicon seed. The cross section of the connecting portion 31 is rectangular, and the cross sections of the proximal end portion 32 and the upper end portion 33 of the standing portion 30 are rectangular. On the other hand, the standing portion 30 excluding the base end portion 32 and the upper end portion 33 is formed in a round cross section or a polygon cross section.

本発明のシリコンシードは、連結部と立設部分の接続箇所が角形断面であるので、接続が容易であると共に接続部分の接触面積が大きいので通電状態が良い。一方、立設部分は丸形断面または多角形断面に形成されているので、炉内の原料ガスの流れが良く、多結晶シリコンが均一に析出するので、多結晶シリコンロッド表面の長さ方向に縦筋が付くことがなく、高品質の多結晶シリコンを得ることができる。 In the silicon seed of the present invention, since the connecting portion between the connecting portion and the standing portion has a rectangular cross section, the connection is easy and the contact area of the connecting portion is large, so that the energized state is good. On the other hand, since the standing portion is formed in a round cross section or a polygon cross section, the flow of the raw material gas in the furnace is good and the polycrystalline silicon is deposited uniformly, so that the length of the polycrystalline silicon rod surface is increased. High quality polycrystalline silicon can be obtained without vertical stripes.

従来の角形断面のシリコーンシード(比較例)と、本発明の丸形断面または楕円断面のシリコンシード(実施例1〜3)を用い、シーメンス法に基づいて多結晶シリコンを製造した。この結果を表1に示した。表示するように、従来の角形断面のシリコーンシードを用いた比較例では巻き込み発生率が極めて高く90%以上であるのに対して、本発明の丸形断面または楕円断面のシリコンシードを用いた実施例では巻き込み発生率は0%であり、多結晶シリコンロッド表面の長さ方向に縦筋が生じない。 Polycrystalline silicon was produced based on the Siemens method using a conventional silicone seed having a square cross section (comparative example) and a silicon seed having a round or elliptical cross section according to the present invention (Examples 1 to 3). The results are shown in Table 1. As shown, in the comparative example using the silicone seed of the conventional square cross section, the enrollment occurrence rate is extremely high and is 90% or more, while the implementation using the silicon seed of the round cross section or the elliptic cross section of the present invention. In the example, the entrainment rate is 0%, and no vertical streak occurs in the length direction of the surface of the polycrystalline silicon rod.

Figure 2012056841
Figure 2012056841

本発明の加工装置の概略斜視図Schematic perspective view of the processing apparatus of the present invention 本発明の加工方法の工程図Process diagram of processing method of the present invention 本発明のシリコンシードの概略斜視図Schematic perspective view of the silicon seed of the present invention

10−回転砥石、11−溝部分、12−軸、13−駆動部、20−芯材(シリコンシード)、30−立設部分、31−連結部分、32−基端部、33−上端部。 10-rotary grindstone, 11-groove portion, 12-axis, 13-drive unit, 20-core material (silicon seed), 30-standing portion, 31-connection portion, 32-base end portion, 33-upper end portion.

Claims (4)

多結晶シリコンの製造に用いられ、炉内に逆U字形に立設されるシリコンシードであって、立設部分の基端部および上端部の断面が角形であり、さらに該立設部分を接続する連結部分の断面が角形である一方、該基端部および該上端部を除く立設部分の断面が多角形であることを特徴とするシリコンシード。 A silicon seed that is used in the manufacture of polycrystalline silicon and is erected in an inverted U shape in a furnace, and the cross section of the base end and upper end of the erected part is square, and the erected part is connected The silicon seed is characterized in that the cross-section of the connecting portion is square, while the cross-section of the standing portion excluding the base end and the upper end is polygonal. 多結晶シリコンの製造に用いられ、炉内に逆U字形に立設されるシリコンシードの製造方法であって、シリコンシードを形成する棒状芯材の外径に対応する溝幅の多角形の溝を外周面に有す回転砥石を用い、断面が角形の棒状芯材の側面に該回転砥石の多角形の溝を押し当てて長手方向に移動させて研削することによって該芯材を多角形断面に加工し、基端部および上端部を除く立設部分の断面が多角形であって、該基端部と該上端部および連結部分の断面が角形であるシリコンシードを製造する方法。 A method of manufacturing a silicon seed that is used for manufacturing polycrystalline silicon and is erected in an inverted U-shape in a furnace, and has a groove width corresponding to the outer diameter of a rod-shaped core material that forms the silicon seed. A polygonal cross section of the core material is obtained by pressing the polygonal groove of the rotary grindstone against the side surface of the rod-shaped core material having a square cross section and grinding it by moving in the longitudinal direction. A method of manufacturing a silicon seed in which the cross section of the standing portion excluding the base end portion and the upper end portion is polygonal, and the cross section of the base end portion, the upper end portion and the connecting portion is square. 回転砥石を有し、該回転砥石はその外周面に棒状芯材の外径に対応する溝幅の多角形の溝を外周面に備えており、該溝を棒状芯材の側面に押し当てて研削することによって、該棒状芯材の断面を多角形に成形することを特徴とする加工装置。 The rotary grindstone has a polygonal groove having a groove width corresponding to the outer diameter of the rod-shaped core material on the outer circumferential surface thereof, and the groove is pressed against the side surface of the rod-shaped core material. A processing apparatus, wherein the cross-section of the rod-shaped core material is formed into a polygon by grinding. 回転砥石の外周面に形成された溝状研磨部の材質がダイヤモンド、メタルレンジ、炭化ケイ素(SiC)、窒化ケイ素(SiN)であり、シリコンシードの断面を上記溝部分に対応する形状に加工する請求項3に記載する加工装置。 The material of the groove-shaped polishing portion formed on the outer peripheral surface of the rotating grindstone is diamond, metal range, silicon carbide (SiC), or silicon nitride (SiN), and the cross section of the silicon seed is processed into a shape corresponding to the groove portion. The processing apparatus according to claim 3.
JP2011228525A 2011-10-18 2011-10-18 Silicon seed, and processing method and processing apparatus of the same Pending JP2012056841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228525A JP2012056841A (en) 2011-10-18 2011-10-18 Silicon seed, and processing method and processing apparatus of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011228525A JP2012056841A (en) 2011-10-18 2011-10-18 Silicon seed, and processing method and processing apparatus of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005335250A Division JP4941631B2 (en) 2005-11-21 2005-11-21 Silicon seed and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2012056841A true JP2012056841A (en) 2012-03-22

Family

ID=46054370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228525A Pending JP2012056841A (en) 2011-10-18 2011-10-18 Silicon seed, and processing method and processing apparatus of the same

Country Status (1)

Country Link
JP (1) JP2012056841A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125358A (en) * 2012-12-25 2014-07-07 Mitsubishi Materials Corp Production method of seed for manufacturing polycrystalline silicon
WO2016171018A1 (en) * 2015-04-20 2016-10-27 株式会社Tkx Method for producing fine silicon powder, and method for producing fine silicon nitride powder
CN110539211A (en) * 2019-09-04 2019-12-06 内蒙古中环光伏材料有限公司 Large-size monocrystalline silicon square rod grinding method
CN111005070A (en) * 2019-12-31 2020-04-14 亚洲硅业(青海)股份有限公司 П silicon core pulling device, П silicon core pulling method and П silicon core

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281009A (en) * 1985-06-05 1986-12-11 Koujiyundo Silicon Kk Apparatus for producing polycrystal silicon
JP2000301462A (en) * 1999-04-23 2000-10-31 Okamoto Machine Tool Works Ltd Combined grinding wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281009A (en) * 1985-06-05 1986-12-11 Koujiyundo Silicon Kk Apparatus for producing polycrystal silicon
JP2000301462A (en) * 1999-04-23 2000-10-31 Okamoto Machine Tool Works Ltd Combined grinding wheel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125358A (en) * 2012-12-25 2014-07-07 Mitsubishi Materials Corp Production method of seed for manufacturing polycrystalline silicon
WO2016171018A1 (en) * 2015-04-20 2016-10-27 株式会社Tkx Method for producing fine silicon powder, and method for producing fine silicon nitride powder
JP6077193B1 (en) * 2015-04-20 2017-02-08 株式会社Tkx Method for producing silicon fine powder and method for producing silicon nitride fine powder
CN110539211A (en) * 2019-09-04 2019-12-06 内蒙古中环光伏材料有限公司 Large-size monocrystalline silicon square rod grinding method
CN111005070A (en) * 2019-12-31 2020-04-14 亚洲硅业(青海)股份有限公司 П silicon core pulling device, П silicon core pulling method and П silicon core
CN111005070B (en) * 2019-12-31 2020-12-15 亚洲硅业(青海)股份有限公司 II-shaped silicon core drawing device, II-shaped silicon core drawing method and II-shaped silicon core

Similar Documents

Publication Publication Date Title
JP4941631B2 (en) Silicon seed and manufacturing method thereof
JP2012056841A (en) Silicon seed, and processing method and processing apparatus of the same
EP3216760B1 (en) Core wire holder and method for producing silicon
KR102106424B1 (en) Diamond substrate and diamond substrate manufacturing method
CN109563642B (en) Conductive C-plane GaN substrate
US9150420B2 (en) Conical graphite electrode with raised edge
WO2013073216A1 (en) Silicon carbide substrate, semiconductor device and methods for producing same
JPH09306980A (en) Vertical wafer boat
JP2009279704A5 (en)
JP5418621B2 (en) Diamond single crystal substrate
WO2014034841A1 (en) Method for cutting high-hardness material by multi-wire saw
JP3819252B2 (en) Seed holding electrode
JP5003442B2 (en) Method for producing diamond single crystal substrate
CN107059135B (en) The manufacturing method of silicon carbide substrate
WO2012176755A1 (en) Method for producing silicon carbide substrate
JP7061982B2 (en) Silicon core wire
JP6399171B2 (en) Silicon member and method for manufacturing silicon member
CN110291040B (en) Method for manufacturing polycrystalline silicon
JP5868301B2 (en) Polycrystalline silicon production equipment
JP6322159B2 (en) Wafer boat and manufacturing method thereof
JP6394124B2 (en) Method for producing crucible and single crystal
CN117438391B (en) High-thermal-conductivity 3C-SiC polycrystalline substrate and preparation method thereof
JP6290698B2 (en) Polycrystalline silicon rod heating / quenching mounting table and method for producing pulverized polycrystalline silicon using the same
Morozova Investigation of the properties of non-metal nitride powders after hydrogen-thermal processing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131127