JP2012052216A - Treatment method for copper smelting dust - Google Patents

Treatment method for copper smelting dust Download PDF

Info

Publication number
JP2012052216A
JP2012052216A JP2010207263A JP2010207263A JP2012052216A JP 2012052216 A JP2012052216 A JP 2012052216A JP 2010207263 A JP2010207263 A JP 2010207263A JP 2010207263 A JP2010207263 A JP 2010207263A JP 2012052216 A JP2012052216 A JP 2012052216A
Authority
JP
Japan
Prior art keywords
dust
smelting furnace
copper smelting
copper
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207263A
Other languages
Japanese (ja)
Inventor
Tatsuya Motomura
竜也 本村
Yasushi Senda
裕史 千田
Kazuhiro Hatano
和浩 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010207263A priority Critical patent/JP2012052216A/en
Publication of JP2012052216A publication Critical patent/JP2012052216A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture desired slag whose heavy metal concentration is low by collecting and recycling valuable metal such as lead or zinc from flash furnace dust generated in a flash furnace process, and selectively volatilizing lead and arsenic or the like, and charging treated dust to the flash furnace, thereby decreasing heavy metal such as lead and arsenic migrating to slag generated in the flash furnace.SOLUTION: The operation method of a flash furnace is characterized by adding reducing agent and chloride to flash furnace dust, and carrying out dry heat treatment in an inert gas atmosphere, and volatilizing heavy metals in the dust, and selectively volatilizing heavy metals other than copper, and charging the treated dust to the flash furnace.

Description

本発明は、銅製錬で発生する銅製錬ダストの処理方法に関する。例えば、自溶炉ダストから有価金属を回収する方法に関する。
具体的には自溶炉ダストに還元剤と塩化剤を添加して乾式熱処理することで、鉛、亜鉛、砒素等の重金属を揮発させる方法に関する。
また銅を揮発させずダスト中に残留させた状態で、鉛、亜鉛、砒素等の金属を選択的に揮発させ、該処理ダストを自溶炉へ繰り返すことで自溶炉スラグ中の鉛、砒素等の濃度を低減する方法に関する。
The present invention relates to a method for treating copper smelting dust generated in copper smelting. For example, the present invention relates to a method of recovering valuable metals from flash furnace dust.
Specifically, the present invention relates to a method of volatilizing heavy metals such as lead, zinc, and arsenic by adding a reducing agent and a chlorinating agent to the flash furnace dust and performing a dry heat treatment.
Moreover, lead, arsenic, and other metals such as lead, zinc, and arsenic are selectively volatilized in a state where copper is not volatilized and remains in the dust, and the treated dust is repeated in the flash smelting furnace to thereby lead and arsenic in the slag And the like.

自溶炉とは、銅製錬工程でのマット製錬に用いられる製錬炉をいう。自溶炉工程では、銅原料粒子と反応用ガスが連続的に炉内へ供給されて反応することで、銅マット、銅スラグ、SO主体の排ガスが生成する。当該工程においては未反応の原料粒子やマット、スラグの粒子が自溶炉ダストとして排ガス流に随伴され炉外へキャリーオーバーされる。
その発生比率は、自溶炉へ供給される原料に対して重量比で一般的に5〜10%程度とされている。炉外へキャリーオーバーされた自溶炉ダストは後工程の廃熱回収ボイラ、サイクロン、電気集塵機等で捕集される。
The flash smelting furnace refers to a smelting furnace used for mat smelting in a copper smelting process. In the flash smelting furnace step, the copper raw material particles and the reaction gas are continuously supplied into the furnace and reacted, thereby generating copper matte, copper slag, and SO 2 -based exhaust gas. In this process, unreacted raw material particles, mats and slag particles are carried over to the outside of the furnace along with the exhaust gas flow as flash furnace dust.
The generation ratio is generally about 5 to 10% by weight with respect to the raw material supplied to the flash furnace. The blast furnace dust carried over to the outside of the furnace is collected by a waste heat recovery boiler, a cyclone, an electric dust collector or the like in a later process.

この自溶炉ダストは銅、鉄主体で、鉛、亜鉛等の有価金属、砒素などが濃縮されており、このうち鉛、亜鉛をダストから回収することができれば資源となりうる。資源の有効活用という観点から鉛、亜鉛を回収し資源化することが望ましい。  This flash furnace dust is mainly composed of copper and iron, and is enriched with valuable metals such as lead and zinc, arsenic, etc. Among them, if lead and zinc can be recovered from the dust, it can be a resource. From the standpoint of effective use of resources, it is desirable to recover lead and zinc for recycling.

しかしながら、自溶炉ダストから乾式処理により鉛、亜鉛を選択的に回収する方法は確立されておらず、現状では自溶炉ダストは廃熱回収ボイラ、サイクロン、電気集塵機で捕集された後、そのまま自溶炉へ繰り返され、ダスト中の鉛、亜鉛の大半がスラグに含有された状態で廃棄される。    However, a method for selectively recovering lead and zinc from flash furnace dust by dry processing has not been established, and currently flash furnace dust is collected by a waste heat recovery boiler, cyclone, electric dust collector, It is repeated as it is to the flash smelting furnace, and most of the lead and zinc in the dust are discarded in the state of being contained in the slag.

また自溶炉ダストをそのまま繰り返すとダスト中の鉛、砒素の大半が自溶炉スラグへ移行し、スラグ中の鉛、砒素濃度を上昇させることになる。    If the flash furnace dust is repeated as it is, most of the lead and arsenic in the dust move to the flash furnace slag, and the concentration of lead and arsenic in the slag increases.

一方、自溶炉ダスト中には、自溶炉での処理原料の組成に依存するが15〜20%程度の銅が含まれており、銅分についてはそのまま自溶炉へ繰り返して銅マットとすることが望ましい。    On the other hand, the flash furnace dust contains about 15 to 20% copper depending on the composition of the processing raw material in the flash furnace, and the copper content is repeated as it is to the flash furnace and the copper mat. It is desirable to do.

また、特開2008−95127号(特許文献1)の如く、硫化銅精鉱を原料とする銅製錬において、熔錬炉スラグからマット相を分離して得られる、亜鉛、鉛及びヒ素を含む溶融スラグに、
金属銅を添加し、該スラグの酸素分圧を次式に示す範囲に制御しながら、1150〜1450℃の温度で攪拌して、亜鉛及び鉛を揮発分離するとともに、スラグ相、及びヒ素を含む金属銅相を形成し、その後該金属銅相を分離することを特徴とする銅製錬熔錬炉スラグの浄化方法。
10−8.5>Po>10−11.0
(但し、式中、Poはatm単位によるスラグ中の酸素分圧を表し、かつ1400℃の温度基準に換算したものである。)
この方法では、溶融スラグを対象としており処理する量が極めて多く、効率的でない。
特開2008−95127号 銅製錬熔錬炉スラグの浄化方法 出願人 住友金属鉱山
Further, as disclosed in Japanese Patent Application Laid-Open No. 2008-95127 (Patent Document 1), in copper smelting using copper sulfide concentrate as a raw material, a melt containing zinc, lead and arsenic obtained by separating the mat phase from the smelting furnace slag To the slag,
While adding metallic copper and controlling the oxygen partial pressure of the slag to the range shown in the following formula, the mixture is stirred at a temperature of 1150 to 1450 ° C. to volatilize and separate zinc and lead, and also contains a slag phase and arsenic. A method for purifying a copper smelting smelting furnace slag, comprising forming a metallic copper phase and then separating the metallic copper phase.
10 −8.5 > Po 2 > 10 −11.0
(However, in the formula, Po 2 represents the partial pressure of oxygen in the slag in units of atm and is converted to a temperature reference of 1400 ° C.)
This method is intended for molten slag, and the amount to be processed is very large, which is not efficient.
JP 2008-95127 A Method for Purifying Copper Smelting Furnace Slag Applicant Sumitomo Metal Mining

そこで、本発明においては、自溶炉ダストから鉛、亜鉛等を予め揮発回収し、銅は揮発させずにダスト中に残留させて自溶炉原料とし、効率的に銅を回収し、鉛等の不純物の少ないスラグを自溶炉において製造することを目的とする。    Therefore, in the present invention, lead, zinc, and the like are volatilized and recovered from the flash furnace dust in advance, and copper is not volatilized and remains in the dust as a flash furnace raw material. It aims at manufacturing slag with few impurities in a flash furnace.

そこで以下の発明をなした。
(1)銅製錬ダストに還元剤、塩化物を添加して不活性ガス雰囲気で乾式熱処理し、ダスト中の重金属を選択的に揮発させ、銅を揮発させずに、該処理ダストを銅製錬炉へ投入する銅製錬炉の操業方法。
(2)上記(1)記載の重金属が、鉛、亜鉛、砒素の1種以上である銅製錬炉の操業方法。
(3)上記(1)から(2)の何れかに記載の乾式熱処理温度が、500から1000℃である銅製錬炉の操業方法。
(4)上記(1)から(3)の何れかに記載の乾式熱処理温度が、700から800℃である銅製錬炉の操業方法。
(5)上記(1)から(4)の何れかに記載の塩化剤を重量比で銅製錬ダスト10に対して、1から3の比率で添加する銅製錬炉の操業方法。
Therefore, the following invention was made.
(1) A reductant and chloride are added to copper smelting dust and dry heat treatment is performed in an inert gas atmosphere to selectively volatilize heavy metals in the dust, and the treated dust is removed from the copper smelting furnace without volatilizing copper. How to operate a copper smelting furnace
(2) A method for operating a copper smelting furnace, wherein the heavy metal described in (1) is one or more of lead, zinc, and arsenic.
(3) A method for operating a copper smelting furnace, wherein the dry heat treatment temperature according to any one of (1) to (2) is 500 to 1000 ° C.
(4) A method for operating a copper smelting furnace, wherein the dry heat treatment temperature according to any one of (1) to (3) is 700 to 800 ° C.
(5) A method for operating a copper smelting furnace, wherein the chlorinating agent according to any one of (1) to (4) above is added at a weight ratio of 1 to 3 with respect to the copper smelting dust 10.

(6)上記(1)から(5)の何れかに記載の還元剤を重量比で銅製錬ダスト10に対して、2から3の比率で添加する銅製錬炉の操業方法。
(7)上記(1)から(6)の何れかに記載のダスト処理プロセスを、連続操業する銅製錬炉操業に併せた連続ダスト処理プロセスとし、該処理ダストを連続的に銅製錬炉に繰り返す銅製錬炉の操業方法。
(8)上記(1)から(7)の何れかに記載の連続的に発生する銅製錬炉ダストと塩化剤、還元剤をケージミル及び又はオートフォールミルを用いて連続的に混合し、乾式熱処理にロータリーキルン等を用いる銅製錬炉の操業方法。
(9)上記(1)から(8)の何れかに記載の銅製錬炉が、自溶炉である銅製錬炉の操業方法。
(6) A method for operating a copper smelting furnace, wherein the reducing agent according to any one of (1) to (5) is added at a ratio of 2 to 3 with respect to the copper smelting dust 10 by weight.
(7) The dust treatment process according to any one of (1) to (6) above is a continuous dust treatment process combined with a copper smelting furnace operation, and the treated dust is continuously repeated in the copper smelting furnace. How to operate a copper smelting furnace.
(8) Continuously mixing the copper smelting furnace dust generated in any one of (1) to (7) above with a chlorinating agent and a reducing agent using a cage mill and / or an autofall mill, and dry heat treatment Operation method of copper smelting furnace using rotary kiln etc.
(9) A method for operating a copper smelting furnace, wherein the copper smelting furnace according to any one of (1) to (8) is a flash smelting furnace.

本発明の効果Effects of the present invention

本発明によると、
(1)銅製錬炉工程から発生する重金属が濃縮したダストを乾式熱処理することで鉛、亜鉛を揮発回収することができ資源の有効利用が可能となる。
(2)また銅製錬ダスト中に銅を残留させた状態で鉛、砒素を選択的に揮発させ、銅分を含むダストは銅製錬炉へ繰り返し、銅マットとすることが可能となる。
(3)これにより、銅製錬炉スラグ中の鉛、砒素濃度の低減が可能となる。
According to the present invention,
(1) By conducting dry heat treatment of the dust enriched in heavy metals generated from the copper smelting furnace process, lead and zinc can be volatilized and recovered, and resources can be used effectively.
(2) It is possible to selectively volatilize lead and arsenic in a state where copper remains in the copper smelting dust, and the dust containing copper is repeatedly sent to the copper smelting furnace to form a copper mat.
(3) Thereby, the lead and arsenic concentration in the copper smelting furnace slag can be reduced.

本発明の一態様である処理フローを示す。The processing flow which is 1 aspect of this invention is shown. 本発明の一態様である実験装置を示す。1 shows an experimental apparatus which is one embodiment of the present invention. 本発明における一態様である乾式熱処理温度(加熱温度)と、塩化剤及び還元剤(木炭)を重量比で自溶炉ダスト10に対して1.5:1.0の比率で添加した場合の金属ごとの揮発率の関係を示す。The dry heat treatment temperature (heating temperature) which is one aspect of the present invention, and a chlorinating agent and a reducing agent (charcoal) are added at a weight ratio of 1.5: 1.0 to the flash furnace dust 10. The relationship of the volatilization rate for every metal is shown. 本発明の一態様である塩化剤の添加量と揮発率の関係を示す。The relationship between the addition amount of a chlorinating agent which is one embodiment of the present invention and the volatility is shown. 本発明の一態様である還元剤(木炭)の添加量と揮発率の関係を示す。The relationship between the addition amount of the reducing agent (charcoal) which is 1 aspect of this invention, and a volatilization rate is shown. 本発明における一態様である乾式熱処理温度(加熱温度)と、塩化剤及び還元剤(木炭)を重量比でダスト10に対して1.5:2.0の比率で添加した場合の金属ごとの揮発率の関係を示す。The dry heat treatment temperature (heating temperature) which is one aspect of the present invention, and a chlorinating agent and a reducing agent (charcoal) added to the dust 10 at a weight ratio of 1.5: 2.0 for each metal. The relationship of volatility is shown. 本発明の一態様である還元剤(コークス)の添加量と揮発率の関係を示す。The relationship between the addition amount of the reducing agent (coke) which is 1 aspect of this invention, and a volatilization rate is shown. 本発明における一態様である処理時間と、塩化剤及び還元剤(木炭)を重量比でダスト10に対して1.5:2.0の比率で添加した場合の金属ごとの揮発率の関係を示す。The relationship between the treatment time, which is one aspect of the present invention, and the volatilization rate for each metal when a chlorinating agent and a reducing agent (charcoal) are added at a weight ratio of 1.5: 2.0 to dust 10. Show.

発明を実施するため最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明の処理対象は、銅製錬法に於いて発生するダストである。銅製錬法には、MI法、自溶炉法、反射炉法等を含む。
図1に、本発明の一態様である処理フローを示す。
前記のダストの成分は、銅15.0から20.0mass%、鉛0.4から0.8mass%、亜鉛0.6から1.0mass%、ヒ素1.5から2.5mass%、イオウ10.0から15.0mass%、内硫酸塩のイオウは、9.0から15.0mass%含むものである。
本発明に於いては、銅製錬炉ダストに還元剤、塩化剤を添加し、不活性ガス雰囲気で乾式熱処理する。
塩化剤の好ましい添加量は、重量比で前記ダスト10に対して、1から3である。
これは、銅を残留させ、鉛、亜鉛、ヒ素等を予め除去するためである。塩化剤は、例えば、塩化カルシウム、塩化ナトリウム、塩化カリウム等により添加される。 塩化剤を添加して熱処理することで、硫酸塩の熱分解により生成した酸化物、或いはダスト中に元々酸化物として存在する重金属を下記の還元剤により、還元し、塩化物として揮発させることが容易となる。
還元剤の好ましい添加量は、重量比で前記ダスト10に対して、2から3である。
これは、銅を残留させ、鉛、亜鉛、ヒ素等を予め除去するためである。
還元剤は、コークス、木炭、樹脂等炭素含有物である。特に、コークスよりも木炭の方がより還元性が良い。鉛は、90%以上、ヒ素、亜鉛等が40%以上除去できるためである。
また、添加する還元剤、塩化物の量を調整することで、重金属の揮発挙動を制御できる。
前記ダストに、還元剤、塩化物を添加後、混合装置に投入し、粉砕、混合する。混合装置としては、ケージミル及び又はオートフォールミル等が使用される。これにより、均一に還元剤、塩化物をダスト中に分散するためである。
The object of treatment of the present invention is dust generated in the copper smelting method. The copper smelting method includes MI method, flash furnace method, reflection furnace method and the like.
FIG. 1 shows a processing flow which is one embodiment of the present invention.
The dust components are copper 15.0 to 20.0 mass%, lead 0.4 to 0.8 mass%, zinc 0.6 to 1.0 mass%, arsenic 1.5 to 2.5 mass%, sulfur 10. From 0 to 15.0 mass%, sulfur of the inner sulfate is contained from 9.0 to 15.0 mass%.
In the present invention, a reducing agent and a chlorinating agent are added to copper smelting furnace dust, and dry heat treatment is performed in an inert gas atmosphere.
A preferable addition amount of the chlorinating agent is 1 to 3 with respect to the dust 10 in weight ratio.
This is because copper is left and lead, zinc, arsenic and the like are removed in advance. The chlorinating agent is added by, for example, calcium chloride, sodium chloride, potassium chloride or the like. By adding a chlorinating agent and heat-treating it, it is possible to reduce oxides generated by thermal decomposition of sulfates or heavy metals originally present as oxides in dust with the following reducing agents and volatilize them as chlorides. It becomes easy.
A preferable addition amount of the reducing agent is 2 to 3 with respect to the dust 10 in weight ratio.
This is because copper is left and lead, zinc, arsenic and the like are removed in advance.
The reducing agent is a carbon-containing material such as coke, charcoal or resin. In particular, charcoal is more reducible than coke. This is because 90% or more of lead and 40% or more of arsenic, zinc and the like can be removed.
Moreover, the volatilization behavior of heavy metals can be controlled by adjusting the amount of reducing agent and chloride added.
After adding a reducing agent and chloride to the dust, it is put into a mixing device, pulverized and mixed. As a mixing device, a cage mill and / or an auto fall mill are used. This is because the reducing agent and chloride are uniformly dispersed in the dust.

前記混合装置により混合後、乾式熱処理を行う。 乾式熱処理の温度は、500から1000℃が望ましいが、より好ましくは、750から800℃である。 これは、銅を残留させ、鉛、亜鉛、ヒ素を予め除去するためである。
処理時間は、30分から2.0時間程度である。より好ましくは、1時間以上である。
乾式熱処理装置としては、ロータリーキルン等が用いられる。
乾式熱処理における揮発物質のキャリアガスとしては、不活性ガスを用いることが好ましい。
例えば、自溶炉ダスト中の鉛、亜鉛等の重金属は大半が硫酸塩、酸化物として存在している。乾式高温熱処理することで硫酸塩が分解されSOが分離して酸化物となる。
酸化物となった重金属は添加される還元剤により還元され、塩化剤と反応しやすい状態となり、主に塩化物としてダストから揮発分離される。
After mixing by the mixing apparatus, dry heat treatment is performed. The temperature of the dry heat treatment is desirably 500 to 1000 ° C., more preferably 750 to 800 ° C. This is to leave copper and to remove lead, zinc, and arsenic in advance.
The processing time is about 30 minutes to 2.0 hours. More preferably, it is 1 hour or more.
A rotary kiln or the like is used as the dry heat treatment apparatus.
As a volatile substance carrier gas in the dry heat treatment, an inert gas is preferably used.
For example, most of heavy metals such as lead and zinc in flash furnace dust exist as sulfates and oxides. By the dry high temperature heat treatment, the sulfate is decomposed and SO 3 is separated to become an oxide.
The heavy metal that has become an oxide is reduced by the reducing agent to be added, and is easily reacted with the chlorinating agent, and is volatilized and separated from dust mainly as chloride.

なお、自溶炉ダスト中各元素の存在形態はその他元素との複合化合物として存在、或いはその他元素と共存していることが影響し、純物質について調査されたデータベース通りの揮発挙動を示すことは少ない。現に本発明においてもデータベース通りの重金属揮発条件が当てはまらず、自溶炉ダストに対する本発明特有の処理条件において各重金属の揮発が確認された。
揮発した重金属は、バグフィルター、電気集塵機等により回収される。
乾式熱処理後のダストは、銅製錬炉例えば、自溶炉等に銅精鉱等と共に、投入される。
本発明に於いては、銅製錬炉のダストを予め処理しているため鉛、ヒ素がスラグに移行する量が減り、得られるスラグ中の鉛、ヒ素の品位が極めて少なく好ましいスラグが得られる。また銅分は、マットへ他は主にスラグへ移行する。
例えば、自溶炉でのスラグ品位は、鉛が0.12mass%から、0.09mass%、ヒ素0.16mass%から、0.13mass%に低減した。
In addition, the existence form of each element in flash furnace dust exists as a compound compound with other elements or coexists with other elements, and it shows volatilization behavior according to the database investigated for pure substances. Few. Actually, even in the present invention, the heavy metal volatilization conditions according to the database were not applied, and the volatilization of each heavy metal was confirmed under the processing conditions specific to the present invention for the flash furnace dust.
Volatilized heavy metals are collected by a bag filter, an electric dust collector or the like.
The dust after the dry heat treatment is put into a copper smelting furnace such as a flash smelting furnace together with copper concentrate.
In the present invention, since the dust of the copper smelting furnace is pretreated, the amount of lead and arsenic transferred to the slag is reduced, and the quality of lead and arsenic in the obtained slag is extremely small, and a preferable slag is obtained. In addition, the copper content is transferred to the mat and the rest mainly to the slag.
For example, the slag quality in the flash furnace decreased from 0.12 mass% for lead to 0.09 mass% and 0.16 mass% for arsenic to 0.13 mass%.

以下、本発明を実施例により具体的に説明する。
本発明での実施例で使用したダストの組成は、鉛0.6mass%、亜鉛0.8mass%、ヒ素2.2mass%、銅18.0mass%、イオウ13.0mass%、硫酸塩のイオウ12.0mass%である。
本発明では揮発物質のキャリアガスとして不活性ガスを用いた。酸化物を還元雰囲気で処理するため不活性ガスを用いることが好ましい。
本発明では不活性ガスとして窒素を連続的に処理炉へ供給し、揮発物のキャリアガスとした。
還元剤として、木炭とコークスを用いて試験を実施した。還元剤の添加量を調整することで各元素の揮発挙動に及ぼす影響について調査した。
塩化剤としては、塩化カルシウムを用いた。
Hereinafter, the present invention will be specifically described by way of examples.
The composition of the dust used in the examples of the present invention is as follows: lead 0.6 mass%, zinc 0.8 mass%, arsenic 2.2 mass%, copper 18.0 mass%, sulfur 13.0 mass%, sulfate sulfur 12. 0 mass%.
In the present invention, an inert gas is used as a carrier gas for volatile substances. An inert gas is preferably used to treat the oxide in a reducing atmosphere.
In the present invention, nitrogen is continuously supplied as an inert gas to the processing furnace to form a volatile carrier gas.
The test was conducted using charcoal and coke as reducing agents. The effect on the volatilization behavior of each element was investigated by adjusting the amount of reducing agent added.
As the chlorinating agent, calcium chloride was used.

処理条件として、処理温度500℃〜1000℃、処理時間10〜60分の範囲で試験を実施し、各元素の揮発挙動に及ぼす影響を調査した。  As treatment conditions, tests were performed in a treatment temperature range of 500 ° C. to 1000 ° C. and a treatment time of 10 to 60 minutes, and the influence of each element on the volatilization behavior was investigated.

処理前後のダスト重量変化と各元素濃度変化から、各元素の揮発率を算出した。 なお、使用するダスト、還元剤、塩化剤は事前に90℃に設定した乾燥機内で乾燥させた後、試験に使用した。  The volatilization rate of each element was calculated from the change in dust weight before and after treatment and the change in concentration of each element. The dust, reducing agent, and chlorinating agent used were dried in a dryer set at 90 ° C. in advance and then used for the test.

実験は図2の装置を用い、実操業中の自溶炉から発生したダストに還元剤(木炭又はコークス)、塩化カルシウムを混合して加熱処理した。揮発物質のキャリアガスとして窒素を毎分1リットル流し、排ガスは洗気ビンを経由しガス洗浄設備へと導入した。  In the experiment, the apparatus shown in FIG. 2 was used, and heat treatment was performed by mixing a reducing agent (charcoal or coke) and calcium chloride into dust generated from a flash furnace during actual operation. Nitrogen was flowed at a rate of 1 liter per minute as a carrier gas for volatile substances, and the exhaust gas was introduced into a gas cleaning facility via a cleaning bottle.

図3に処理温度を変化させた場合の各元素の揮発率を示す。
ダスト、塩化剤、還元剤の混合比率を重量比で10.0:1.5:1.0に固定し、処理温度を500から1000℃まで8水準で変化させた。処理時間は1時間とし、還元剤は木炭(炭素80mass%含有)を使用した。なお、3種類の市販木炭で試験を実施したが、各元素の揮発挙動に差は生じなかった。
この結果から、処理温度は、800から1000℃が好ましい。
銅の揮発が少なく、他の金属である鉛、亜鉛、ヒ素の揮発が多いからである。
FIG. 3 shows the volatilization rate of each element when the processing temperature is changed.
The mixing ratio of dust, chlorinating agent and reducing agent was fixed at 10.0: 1.5: 1.0 by weight ratio, and the treatment temperature was changed from 500 to 1000 ° C. at 8 levels. The treatment time was 1 hour, and the reducing agent was charcoal (containing 80 mass% carbon). In addition, although the test was implemented with three types of commercial charcoal, there was no difference in the volatilization behavior of each element.
From this result, the processing temperature is preferably 800 to 1000 ° C.
This is because there is little volatilization of copper and much volatilization of other metals such as lead, zinc and arsenic.

図4に塩化剤の添加量を変化させた場合の各元素の揮発率を示す。
ダスト、還元剤の混合比率を重量比で10:1に固定し、塩化剤の添加量を重量比で0から3まで5水準で変化させた。処理時間は1時間、処理温度は750℃とした。還元剤は木炭を使用した。
この結果から、塩化剤の量は、重量比でダスト10に対して、で1から3が好ましい。 銅の揮発が少なく、他の金属である鉛、亜鉛、ヒ素の揮発が多いからである。
FIG. 4 shows the volatilization rate of each element when the addition amount of the chlorinating agent is changed.
The mixing ratio of dust and reducing agent was fixed at a weight ratio of 10: 1, and the addition amount of the chlorinating agent was changed in five levels from 0 to 3 by weight ratio. The treatment time was 1 hour and the treatment temperature was 750 ° C. Charcoal was used as the reducing agent.
From this result, the amount of the chlorinating agent is preferably 1 to 3 with respect to the dust 10 by weight. This is because there is little volatilization of copper and much volatilization of other metals such as lead, zinc and arsenic.

図5に還元剤の添加量を変更させた場合の各元素の揮発率を示す。
ダスト、塩化剤の混合比率は重量比で10.0:1.5に固定し、還元剤の添加量を0.3から3.0まで7水準で変化させた。 処理時間は1時間、処理温度は750℃とした。還元剤は木炭を使用した。
この結果から、還元剤の量は、ダストに対して、2から3が好ましい。 銅の揮発が少なく、他の金属である鉛、亜鉛、ヒ素の揮発が多いからである。
FIG. 5 shows the volatilization rate of each element when the addition amount of the reducing agent is changed.
The mixing ratio of the dust and the chlorinating agent was fixed at 10.0: 1.5 by weight, and the addition amount of the reducing agent was changed in 7 levels from 0.3 to 3.0. The treatment time was 1 hour and the treatment temperature was 750 ° C. Charcoal was used as the reducing agent.
From this result, the amount of the reducing agent is preferably 2 to 3 with respect to the dust. This is because there is little volatilization of copper and much volatilization of other metals such as lead, zinc and arsenic.

図6に処理温度を変化させた場合の各元素の揮発率を示す。
ダスト、塩化剤、還元剤の混合比率を重量比で10.0:1.5:2.0に固定し、処理時間は1時間とした。還元剤として木炭を使用した。
この結果から、還元剤が木炭の場合は、ダストに対して、2の比率で添加した場合、処理温度は、750℃以上が好ましい。 銅の揮発が少なく、他の金属である鉛、亜鉛、ヒ素の揮発が多いからである。
FIG. 6 shows the volatilization rate of each element when the processing temperature is changed.
The mixing ratio of dust, chlorinating agent and reducing agent was fixed at 10.0: 1.5: 2.0 by weight, and the treatment time was 1 hour. Charcoal was used as a reducing agent.
From this result, when the reducing agent is charcoal, the treatment temperature is preferably 750 ° C. or higher when added at a ratio of 2 to the dust. This is because there is little volatilization of copper and much volatilization of other metals such as lead, zinc and arsenic.

図7に還元剤としてコークスを用いた場合の各元素の揮発率を示す。
ダスト、塩化剤の混合比率は重量比で10.0:1.5に固定し、還元剤の添加量を重量比で0から4まで3水準で変化させた。 処理時間は1時間、処理温度は750℃とした。 コークスは、JX日鉱日石エネルギー株式会社製LSFコークスを用いた。
この結果から、還元剤がコークスの場合は、ダストに対して、2から3の重量比で添加することが好ましい。 銅の揮発が少なく、他の金属である鉛、亜鉛、ヒ素の揮発が多いからである。
FIG. 7 shows the volatilization rate of each element when coke is used as the reducing agent.
The mixing ratio of dust and chlorinating agent was fixed at 10.0: 1.5 by weight, and the amount of reducing agent added was changed in three levels from 0 to 4 by weight. The treatment time was 1 hour and the treatment temperature was 750 ° C. The coke used was LSF coke manufactured by JX Nippon Oil & Energy Corporation.
From this result, when the reducing agent is coke, it is preferably added in a weight ratio of 2 to 3 with respect to the dust. This is because there is little volatilization of copper and much volatilization of other metals such as lead, zinc and arsenic.

図8に処理時間を変化させた場合の各元素の揮発率を示す。
ダスト、塩化剤、還元剤の混合比率は重量比で10.0:1.5:2.0に固定し、処理時間を10から60分まで5水準で変化させた。処理温度は750℃とし、還元剤は木炭を用いた。
この結果から、処理時間は、1時間以上が好ましい。 銅の揮発が少なく、他の金属である鉛、亜鉛、ヒ素の揮発が多いからである。
FIG. 8 shows the volatilization rate of each element when the processing time is changed.
The mixing ratio of dust, chlorinating agent and reducing agent was fixed at 10.0: 1.5: 2.0 by weight, and the treatment time was changed from 5 to 10 minutes from 10 to 60 minutes. The treatment temperature was 750 ° C. and the reducing agent was charcoal.
From this result, the treatment time is preferably 1 hour or more. This is because there is little volatilization of copper and much volatilization of other metals such as lead, zinc and arsenic.

以上の結果から、ダスト、塩化剤、還元剤(木炭、コークス)の混合比率、処理温度、処理時間を調整することで重金属の揮発を制御することが可能となる。例えば銅を揮発させず、鉛を80%近く揮発させるためには、ダスト、塩化剤、還元剤の混合比率を重量比で10.0:1.5:2.0とし、750℃で45分間程度処理すればよいことがわかる。  From the above results, it is possible to control the volatilization of heavy metals by adjusting the mixing ratio of dust, chlorinating agent and reducing agent (charcoal, coke), treatment temperature, and treatment time. For example, in order to volatilize lead by nearly 80% without volatilizing copper, the mixing ratio of dust, chlorinating agent and reducing agent is 10.0: 1.5: 2.0 by weight and 750 ° C. for 45 minutes. It can be seen that the processing should be performed to some extent.

(具体的な実施例)
実操業においては、以下のような操業結果となった。
自溶炉ダスト10に対し、重量比で塩化カルシウム1.5、木炭2.0をケージミルで混合した。 ロータリーキルンで750℃熱処理した。 処理済ダストを気流輸送により自溶炉原料供給装置まで輸送した。
銅精鉱160t、溶剤20t、その他原料20tと共に、自溶炉ダストに前記添加剤を加えて処理した処理物10tを混合し、合計毎時210tの製錬原料として自溶炉へ供給した。
その結果、自溶炉のスラグ品位は、鉛が0.12mass%から0.09mass%、ヒ素0.16mass%から0.13mass%に低減した。
(Specific examples)
The actual operation results were as follows.
Calcium chloride 1.5 and charcoal 2.0 were mixed with a flash mill dust 10 by a cage mill in a weight ratio. It heat-processed at 750 degreeC with the rotary kiln. The treated dust was transported to the flash furnace raw material supply device by airflow transportation.
The processed material 10t which added the said additive to the flash blast furnace dust and was processed with the copper concentrate 160t, the solvent 20t, and other raw materials 20t was mixed, and it supplied to the flash smelting furnace as a smelting raw material of 210 tons per hour in total.
As a result, the slag quality of the flash smelting furnace was reduced from 0.12 mass% to 0.09 mass% for lead and from 0.16 mass% to 0.13 mass% for arsenic.

Claims (9)

銅製錬ダストに還元剤、塩化物を添加して不活性ガス雰囲気で乾式熱処理し、ダスト中の重金属を揮発させ、銅を揮発させずに、その他重金属を選択的に揮発させ、該処理ダストを銅製錬炉へ投入することを特徴とする銅製錬炉の操業方法。    Add a reducing agent and chloride to the copper smelting dust and dry heat-treat in an inert gas atmosphere to volatilize the heavy metals in the dust, selectively volatilize other heavy metals without volatilizing the copper, A method of operating a copper smelting furnace, characterized by being put into a copper smelting furnace. 請求項1記載の重金属が、鉛、亜鉛、砒素の1種以上であることを特徴とする銅製錬炉の操業方法。  The method for operating a copper smelting furnace, wherein the heavy metal according to claim 1 is one or more of lead, zinc, and arsenic. 請求項1から2の何れかに記載の乾式熱処理温度が、500から1000℃であることを特徴とする銅製錬炉の操業方法。  The method for operating a copper smelting furnace, wherein the dry heat treatment temperature according to any one of claims 1 to 2 is 500 to 1000 ° C. 請求項1から3の何れかに記載の乾式熱処理温度が、700から800℃であることを特徴とする銅製錬炉の操業方法。  The method for operating a copper smelting furnace, wherein the dry heat treatment temperature according to any one of claims 1 to 3 is 700 to 800 ° C. 請求項1から4の何れかに記載の塩化剤を重量比で銅製錬ダスト10に対して、1から3の比率で添加することを特徴とする銅製錬炉の操業方法。  A method for operating a copper smelting furnace, wherein the chlorinating agent according to any one of claims 1 to 4 is added at a weight ratio of 1 to 3 with respect to the copper smelting dust 10. 請求項1から5の何れかに記載の還元剤を重量比で銅製錬ダスト10に対して、2から3の比率で添加することを特徴とする銅製錬炉の操業方法。  A method for operating a copper smelting furnace, wherein the reducing agent according to any one of claims 1 to 5 is added at a weight ratio of 2 to 3 with respect to the copper smelting dust 10. 請求項1から6の何れかに記載のダスト処理プロセスを、連続操業する銅製錬炉操業に併せた連続ダスト処理プロセスとし、該処理ダストを連続的に銅製錬炉に繰り返すことを特徴とする銅製錬炉の操業方法。  A dust treatment process according to any one of claims 1 to 6, wherein the dust treatment process is a continuous dust treatment process combined with a copper smelting furnace that operates continuously, and the treated dust is continuously repeated in a copper smelting furnace. How to operate the smelting furnace. 請求項1から7の何れかに記載の連続的に発生する銅製錬炉ダストと塩化剤、還元剤をケージミル及び又はオートフォールミルを用いて連続的に混合し、乾式熱処理にロータリーキルン等を用いることを特徴とする銅製錬炉の操業方法。  The continuously generated copper smelting furnace dust according to any one of claims 1 to 7, a chlorinating agent and a reducing agent are continuously mixed using a cage mill and / or an autofall mill, and a rotary kiln or the like is used for dry heat treatment. A method for operating a copper smelting furnace. 請求項1から8の何れかに記載の銅製錬炉が、自溶炉であることを特徴とする銅製錬炉の操業方法。The method for operating a copper smelting furnace, wherein the copper smelting furnace according to any one of claims 1 to 8 is a flash smelting furnace.
JP2010207263A 2010-08-31 2010-08-31 Treatment method for copper smelting dust Pending JP2012052216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207263A JP2012052216A (en) 2010-08-31 2010-08-31 Treatment method for copper smelting dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207263A JP2012052216A (en) 2010-08-31 2010-08-31 Treatment method for copper smelting dust

Publications (1)

Publication Number Publication Date
JP2012052216A true JP2012052216A (en) 2012-03-15

Family

ID=45905855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207263A Pending JP2012052216A (en) 2010-08-31 2010-08-31 Treatment method for copper smelting dust

Country Status (1)

Country Link
JP (1) JP2012052216A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221216A (en) * 2012-04-16 2013-10-28 Yanggu Xiangguang Copper Co Ltd Method for directly producing blister copper from copper concentrate
CN104846207A (en) * 2015-05-07 2015-08-19 昆明冶金研究院 Method for efficiently recycling valuable metal in copper dross
JP2016533431A (en) * 2013-10-02 2016-10-27 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy Method for removing arsenic and / or antimony from smoke
CN106086461A (en) * 2016-08-18 2016-11-09 紫金矿业集团股份有限公司 A kind of method of Copper making process slag making arsenic removal
CN106834708A (en) * 2016-12-21 2017-06-13 中南大学 A kind of integrated conduct method of arsenic-containing smoke dust
CN108165755A (en) * 2017-12-26 2018-06-15 中国恩菲工程技术有限公司 Copper weld pool slag for comprehensive recovery method
CN115679109A (en) * 2022-11-14 2023-02-03 中南大学 Method for selectively recovering heavy metals in copper smelting smoke dust

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257432A (en) * 1985-05-08 1986-11-14 Sumitomo Metal Mining Co Ltd Separation and recovery of impurity from copper
JP2006131962A (en) * 2004-11-08 2006-05-25 Sintokogio Ltd Method for separating and recovering heavy metal contained in molten flying ash

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257432A (en) * 1985-05-08 1986-11-14 Sumitomo Metal Mining Co Ltd Separation and recovery of impurity from copper
JP2006131962A (en) * 2004-11-08 2006-05-25 Sintokogio Ltd Method for separating and recovering heavy metal contained in molten flying ash

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221216A (en) * 2012-04-16 2013-10-28 Yanggu Xiangguang Copper Co Ltd Method for directly producing blister copper from copper concentrate
US8771396B2 (en) 2012-04-16 2014-07-08 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
JP2016533431A (en) * 2013-10-02 2016-10-27 オウトテック (フィンランド) オサケ ユキチュアOutotec (Finland) Oy Method for removing arsenic and / or antimony from smoke
US10081848B2 (en) 2013-10-02 2018-09-25 Outotec (Finland) Oy Method and plant for removing arsenic and/or antimony from flue dusts
CN104846207A (en) * 2015-05-07 2015-08-19 昆明冶金研究院 Method for efficiently recycling valuable metal in copper dross
CN106086461A (en) * 2016-08-18 2016-11-09 紫金矿业集团股份有限公司 A kind of method of Copper making process slag making arsenic removal
CN106834708A (en) * 2016-12-21 2017-06-13 中南大学 A kind of integrated conduct method of arsenic-containing smoke dust
CN108165755A (en) * 2017-12-26 2018-06-15 中国恩菲工程技术有限公司 Copper weld pool slag for comprehensive recovery method
CN115679109A (en) * 2022-11-14 2023-02-03 中南大学 Method for selectively recovering heavy metals in copper smelting smoke dust
CN115679109B (en) * 2022-11-14 2024-04-09 中南大学 Method for selectively recycling heavy metals in copper smelting smoke dust

Similar Documents

Publication Publication Date Title
JP2012052216A (en) Treatment method for copper smelting dust
TW200907072A (en) A method for recycling residues having an elevated content of zinc and sulfates
JP5862305B2 (en) Smoke ash treatment method
WO2014136890A1 (en) Method for treating titanium-containing feedstock
JP5397021B2 (en) Reduced iron production method
EP3052665B1 (en) Method and plant for removing arsenic and/or antimony from flue dusts
CN102242253A (en) Method for treating poor-tin middling ore and recovering iron-making raw material
KR101493965B1 (en) Process for recovering iron and zinc from iron and zinc-bearing waste
EA013690B1 (en) Separation of metal values in zinc leaching residues
CN1214740A (en) Method and apparatus for treating ironmaking dust
US20040261577A1 (en) Mechanical separation of volatile metals at high temperatures
JP5742360B2 (en) Operation method of rotary kiln for steel dust reduction roasting
JP3516854B2 (en) Steelmaking furnace dust treatment method and dust pellets
JP7151404B2 (en) Method for producing zinc oxide ore
Wang et al. Tin recovery from a low-grade tin middling with high Si content and low Fe content by reduction—sulfurization roasting with anthracite coal
JP2009256741A (en) Method of recovering valuable metal from waste battery
CN206986256U (en) A kind of system for handling utilising zinc containing waste residue
JP2003147450A (en) Method of producing rude zinc oxide powder
JP5532823B2 (en) Method for recovering valuable metals from waste batteries
JP2009167469A (en) Method for treating copper-containing dross
JP2016191120A (en) Non-ferrous smelting slag treatment method
CN115354155B (en) System and method for microwave dearsenification of arsenic-containing material
CN107326189A (en) A kind of system and method for handling utilising zinc containing waste residue
JP7110128B2 (en) Method for removing mercury in smoke washing wastewater
CN109385534B (en) Method for treating dust containing zinc and alkali metal halides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126