JP2012051963A - Discharging performance evaluation testing method for coal slag - Google Patents

Discharging performance evaluation testing method for coal slag Download PDF

Info

Publication number
JP2012051963A
JP2012051963A JP2010193548A JP2010193548A JP2012051963A JP 2012051963 A JP2012051963 A JP 2012051963A JP 2010193548 A JP2010193548 A JP 2010193548A JP 2010193548 A JP2010193548 A JP 2010193548A JP 2012051963 A JP2012051963 A JP 2012051963A
Authority
JP
Japan
Prior art keywords
slag
coal
heat
resistant container
molten slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010193548A
Other languages
Japanese (ja)
Other versions
JP5554182B2 (en
Inventor
Hirotake Oki
裕壮 沖
Saburo Hara
三郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2010193548A priority Critical patent/JP5554182B2/en
Publication of JP2012051963A publication Critical patent/JP2012051963A/en
Application granted granted Critical
Publication of JP5554182B2 publication Critical patent/JP5554182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate discharge of molten slag from a coal gasification furnace based on an actual situation.SOLUTION: The discharging performance evaluation testing method for coal slag includes heating a solid sample of coal slag obtained from a coal gasification furnace or adjusted by assuming the process in a heat-resistant container 1 to a temperature which is higher than a predetermined test temperature and at which the solid sample is completely melted and completely melting the solid sample (step S22), cooling the molten slag 2 in the heat-resistant container 1 to the test temperature (step S23) and making the molten slag flow from the heat-resistant container 1 and measuring and evaluating the flow amount of the molten slag (steps S24 and S25).

Description

本発明は、石炭スラグの排出性評価試験方法に関する。さらに詳しくは、本発明は、石炭スラグの固形試料を溶融させた後、自然落下させて評価を行う石炭スラグの排出性評価試験方法に関するものである。   The present invention relates to a coal slag emission evaluation test method. More specifically, the present invention relates to a coal slag discharge evaluation test method in which a solid sample of coal slag is melted and then allowed to drop spontaneously for evaluation.

高効率で環境性に優れた発電システムである石炭ガス化複合発電の中核をなす石炭ガス化炉では、発生した溶融スラグ(石炭スラグ)を確実に排出する必要がある。石炭ガス化炉で発生した溶融スラグの排出性はその粘性に強く影響を受け、粘性は石炭の成分に依存するため、溶融スラグの排出性は炭種毎に異なる。そのため、予め炭種毎にスラグの排出性を評価し、石炭ガス化炉に適した炭種を選択しておくことが重要である。特に、今後は石炭需要の増加が予測されており、限りある資源である石炭として今までよりも品位の低いものを使わざるを得ないこともあり、予め炭種毎にスラグの排出性を評価し、特定のガス化炉に利用可能な石炭種を見極めることがより一層重要となる。   In a coal gasification furnace that forms the core of coal gasification combined power generation, which is a highly efficient and environmentally friendly power generation system, it is necessary to reliably discharge the generated molten slag (coal slag). The discharge of molten slag generated in a coal gasifier is strongly influenced by its viscosity, and the viscosity depends on the components of the coal, so the discharge of molten slag differs for each coal type. Therefore, it is important to evaluate the slag discharge performance for each coal type in advance and select a coal type suitable for the coal gasification furnace. In particular, the demand for coal is expected to increase in the future, and it may be necessary to use low-grade coal as a limited resource, and we will evaluate slag emissions for each coal type in advance. However, it is even more important to identify the types of coal that can be used for a specific gasifier.

また、燃料として購入した石炭を石炭ガス化炉で使用する際には、炭種に応じた適正なガス化炉運転条件をみきわめることも重要であり、炉底温度を想定した炭種毎のスラグ排出性評価は必要な技術である。   In addition, when using coal purchased as fuel in a coal gasifier, it is also important to determine the appropriate gasifier operating conditions according to the coal type. Slag discharge evaluation is a necessary technology.

従来、石炭スラグの排出性をJISの石炭灰及びコークス灰の分析方法(JISM8815)に準じて評価することが考えられている。この方法は、石炭を空気中で灰化して得られた灰化灰(灰化試料)を成形した三角錐形の試験片をJISで規格された雰囲気ガス(CO/CO混合ガス)で満たされた炉内で加熱し、溶けて変形する様子を観察し、温度と形状変化との関係に基づき計測した「融点」または「溶流点」などからスラグの排出性を評価するものである。 Conventionally, it has been considered to evaluate coal slag discharge in accordance with JIS coal ash and coke ash analysis method (JISM8815). In this method, a triangular pyramid-shaped test piece formed of ash ash (ash sample) obtained by ashing coal in air is filled with an atmospheric gas (CO / CO 2 mixed gas) standardized by JIS. In this furnace, it is heated and melted and deformed, and the slag discharge is evaluated from the “melting point” or “melting point” measured based on the relationship between temperature and shape change.

石炭スラグの排出特性を評価する方法としては、これまでに高温回転粘度計を用い、灰化試料を坩堝内に入れて加熱溶融させた後に、一定の温度プログラムにそって降温しながらスラグを撹拌して計測した高温粘度とスラグ温度との関係(高温粘度特性)からスラグの排出性を評価する方法が提案されている(非特許文献1)。   As a method for evaluating the discharge characteristics of coal slag, a high-temperature rotational viscometer has been used so far, and after the ashed sample is placed in a crucible and heated and melted, the slag is stirred while the temperature is lowered according to a certain temperature program. A method of evaluating slag discharge from a relationship between high-temperature viscosity and slag temperature (high-temperature viscosity characteristics) measured in this way has been proposed (Non-Patent Document 1).

また、スラグ流下試験装置を使用した評価方法の試行例も報告されている(非特許文献2)。スラグ流下試験装置を図5に示す。スラグ流下試験装置は、電気炉101内のアルミナ管102の内側に灰化試料103を入れた黒鉛坩堝104をセットし、灰化試料103をヒータ105で加熱し溶かして坩堝104から落下させてその重量を電子天秤106で計測するものである。坩堝104の下には落下したスラグを受けるステンレス製の容器107が設けられている。スラグ温度とスラグの流下量(重量)との関係からスラグの排出性を評価するものである。   Moreover, the trial example of the evaluation method using a slag flow test apparatus is also reported (nonpatent literature 2). The slag flow test apparatus is shown in FIG. In the slag flow test apparatus, a graphite crucible 104 in which an ashed sample 103 is placed inside an alumina tube 102 in an electric furnace 101 is set, and the ashed sample 103 is heated and melted by a heater 105 and dropped from the crucible 104. The weight is measured by the electronic balance 106. Under the crucible 104, a stainless steel container 107 for receiving the dropped slag is provided. Slag discharge is evaluated from the relationship between the slag temperature and the slag flow rate (weight).

H.J.Hurst et.al.,Fuel 78 (1999) 1831-1840H.J.Hurst et.al., Fuel 78 (1999) 1831-1840 新エネルギー・産業技術総合開発機構、共同研究先:バブコック日立株式会社 「平成16〜18年度成果報告書 多目的石炭ガス製造技術開発(支援・調査研究)成果報告書」 平成19年5月New Energy and Industrial Technology Development Organization, Joint Research Destination: Babcock-Hitachi Co., Ltd. “Fiscal 2004-2006 Results Report Multi-purpose Coal Gas Production Technology Development (Support / Survey Research) Results Report” May 2007

しかしながら、上記のJISに準じた評価方法およびスラグ流下試験装置を使用した評価方法は、いずれも石炭ガス化炉とはプロセスの異なる灰化試料を原料とする固形試料を加熱し溶かしながら評価するものであり、灰化試料が溶融し始めるときの特性に評価が大きく影響されることになる。即ち、灰化試料は融点の異なる複数種の鉱物の混合体であり、灰化試料中の融点の高い成分が溶け始める前に融点の低い成分が溶けて流出し始めるので、評価が融点の低い成分の影響を大きく受けることになり、試料全体が溶融した場合を正しく評価するのに不向きである。   However, both the evaluation method according to the above JIS and the evaluation method using the slag flow test equipment are evaluated by heating and melting a solid sample made of an ashed sample whose process is different from that of a coal gasifier. Therefore, the evaluation is greatly influenced by the characteristics when the ashed sample starts to melt. That is, the ashed sample is a mixture of a plurality of minerals having different melting points, and the components having a low melting point begin to melt before the components having a high melting point in the ash sample begin to melt, so the evaluation is low. It is greatly affected by the components and is not suitable for correctly evaluating the case where the entire sample is melted.

これに対し、実際の石炭ガス化炉ではスラグ排出口の温度は炉内温度よりも低く、石炭スラグの排出性が問題になるのは、炉内で完全に溶融されていたスラグがスラグ排出口に移動することで冷却され流動性が悪化する場面である。そのため、上記のJISに準じた評価方法及びスラグ流下試験装置を使用した評価方法では、実際の状況に即した評価を行うことができない。   On the other hand, in the actual coal gasification furnace, the temperature of the slag outlet is lower than the temperature in the furnace, and the exhaustability of coal slag becomes a problem because the slag completely melted in the furnace is slag outlet It is a scene where the fluidity deteriorates due to cooling by moving to. Therefore, the evaluation method according to the above JIS and the evaluation method using the slag flow test device cannot perform evaluation in accordance with the actual situation.

また、上記の高温粘度特性から排出量を評価する方法では、灰化試料を完全溶融する点では本特許と類似点があるが、温度をステップ状に十数点変化させ、計測のたびに試料内部の温度分布が均一となるまで一定時間保持し、さらに攪拌抵抗が安定するまで溶融スラグを撹拌し続ける必要があるため、温度保持時間が長時間に及ぶことはさけられない。そのため、耐熱容器の特性によっては、鉄分の多い炭種などでスラグ成分の比重分離を招いて実際の状況に即した評価を行うことができないことがある。   In addition, the method for evaluating the discharge amount from the high-temperature viscosity characteristics described above is similar to this patent in that the ashed sample is completely melted. However, the temperature is changed by a dozen points stepwise, and the sample is measured each time it is measured. Since it is necessary to hold the molten slag for a certain period of time until the internal temperature distribution becomes uniform and to further stir the molten slag until the stirring resistance becomes stable, the temperature holding time cannot be extended for a long time. Therefore, depending on the characteristics of the heat-resistant container, the specific gravity separation of the slag component may be caused by the coal type having a high iron content and the evaluation in accordance with the actual situation may not be performed.

こうした石炭スラグの特性を輸入前に評価し、当該炭種の適合性を見極めた上で、購入炭仕様を検討できることが国内ユーザにとっては理想的であり、高温回転粘度計のような精密電子計測器によることなくJISの融点計測法のような電気炉をベースとした簡便かつ高精度な排出性評価法の開発が求められている。 It is ideal for domestic users to evaluate the characteristics of such coal slag before importing and determine the suitability of the coal type, and to consider the purchased coal specifications. Precision electronic measurement such as a high-temperature rotational viscometer There is a need for the development of a simple and highly accurate method for assessing dischargeability based on an electric furnace, such as the JIS melting point measurement method, without using a vessel.

本発明は、実際の状況に即して評価を簡便かつ高精度に行うことができる石炭スラグの排出性評価試験方法を提供することを目的とする。   An object of this invention is to provide the coal slag discharge | emission evaluation test method which can be evaluated simply and highly accurately according to an actual condition.

かかる目的を達成するために、請求項1記載の石炭スラグの排出性評価試験方法は、炭種によって異なる石炭ガス化炉からの石炭スラグ排出特性を、石炭スラグの固形試料を耐熱容器内で予め定められた試験温度よりも高く且つ完全に溶融させることができる温度にまで加熱して完全に溶融させた後、耐熱容器内で溶融スラグを試験温度にまで冷却し耐熱容器から流下させて流下量を計測し評価を行うものである。   In order to achieve this object, the coal slag emission evaluation test method according to claim 1 is characterized in that the coal slag emission characteristics from the coal gasifier differing depending on the coal type, and the solid sample of the coal slag is previously stored in a heat-resistant container. After heating to a temperature that is higher than the specified test temperature and capable of being completely melted, the melted slag is cooled to the test temperature in the heat-resistant container and then flows down from the heat-resistant container. Is measured and evaluated.

したがって、石炭ガス化炉内と同様に完全に溶融したスラグが冷却される過程におけるスラグの排出性を評価することができる。ここで、試験温度は石炭スラグの排出性を評価したい温度であり、特定のガス化炉の特定部位の実測ガス温度でも良いし、特定ガス化炉を想定した数値解析で得られた炉内特定部位のガス温度であっても良い。また、溶融スラグの耐熱容器からの流下量の計測は、耐熱容器に残っているスラグの量を計測しても良いし、耐熱容器から流下したスラグ量を計測しても良い。   Therefore, the slag discharge | emission property in the process in which the completely melt | dissolved slag is cooled similarly to the inside of a coal gasifier can be evaluated. Here, the test temperature is the temperature at which coal slag discharge is desired to be evaluated, and it may be the measured gas temperature of a specific part of a specific gasification furnace, or the in-furnace specification obtained by numerical analysis assuming a specific gasification furnace It may be the gas temperature of the part. Further, the amount of molten slag flowing from the heat-resistant container may be measured by measuring the amount of slag remaining in the heat-resistant container, or by measuring the amount of slag flowing from the heat-resistant container.

耐熱容器に排出口を設けて当該排出口から溶融スラグを流下させる場合には以下に注意せねばならない。溶融スラグの比重は石炭灰の組成によって大きく変わるため、特に灰中鉄分が多い炭種などでは、スラグ比重が大きく排出口を塞ぐ栓との比重の関係から栓に大きな浮力が作用し、排出口を意図的に開く前に栓が勝手に開いて溶融スラグが漏出することも考えられる。そこで、後述するように、栓に対して一定の加重を加えて漏れを防止することが有効である。   When a discharge port is provided in a heat-resistant container and molten slag flows down from the discharge port, the following must be noted. Since the specific gravity of molten slag varies greatly depending on the composition of coal ash, especially in coal types with a high iron content in ash, a large buoyancy acts on the plug due to the specific gravity of the plug that has a large slag specific gravity and plugs the outlet. It is also conceivable that the plug opens without permission and the molten slag leaks before it is intentionally opened. Therefore, as will be described later, it is effective to prevent leakage by applying a constant load to the stopper.

本発明で試料として用いる石炭スラグは、既設石炭ガス化炉で生成したスラグを入手できない場合には、空気中で燃焼生成した灰試料を還元・溶融・水砕処理した石炭スラグの固形試料を原料としてもかまわない。還元処理の方法としては、不活性雰囲気内で黒鉛坩堝に入れた灰化試料を加熱溶融させ、装置下部の水受けに落下・水砕してもよいし、安全な還元性ガス(例えば、0.1%(爆発限界4%以下)の水素を混入させた窒素ガスなど)雰囲気内で灰化試料を加熱溶融させ、装置下部の水受けに落下・水砕してもよい。   The coal slag used as a sample in the present invention is a raw material of a solid sample of coal slag obtained by reducing, melting, and granulating an ash sample produced by combustion in air when the slag produced in an existing coal gasifier cannot be obtained. It doesn't matter. As a method for the reduction treatment, an ashed sample placed in a graphite crucible in an inert atmosphere may be heated and melted, and dropped into a water receiver at the lower part of the apparatus, or may be granulated, or a safe reducing gas (for example, 0 The ashed sample may be heated and melted in an atmosphere (such as nitrogen gas mixed with 1% hydrogen (explosion limit 4% or less)), and dropped into a water receiver at the bottom of the apparatus.

請求項1記載の石炭スラグの排出性評価試験方法によれば、固形試料を一旦完全に溶融させた後、溶融スラグの温度を試験温度まで下げて評価を行うので、石炭ガス化炉から溶融スラグ(石炭スラグ)が実際に排出される場合の挙動を模擬することができ、実際の状況に即した評価を簡便かつ高精度に行うことができる。   According to the coal slag discharge evaluation test method according to claim 1, the solid sample is once completely melted, and then the evaluation is performed by lowering the temperature of the molten slag to the test temperature. The behavior when (coal slag) is actually discharged can be simulated, and the evaluation according to the actual situation can be performed easily and with high accuracy.

また、石炭スラグの排出性評価試験方法では、空気中で生成した石炭灰ではなく、石炭ガス化炉で生成したスラグに近い、還元・水砕のスラグを用いることで、より石炭ガス化炉のスラグ排出に近い現象を対象にスラグ排出特性を評価することができる。   In addition, the coal slag emission evaluation test method uses reduction and granulated slag that is close to the slag generated in the coal gasifier instead of coal ash generated in the air. Slag discharge characteristics can be evaluated for phenomena close to slag discharge.

本発明の石炭スラグの排出性評価試験方法の実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the discharge | emission evaluation test method of the coal slag of this invention. 本発明の石炭スラグの排出性評価試験方法を実施する電気炉を示す概略図である。It is the schematic which shows the electric furnace which implements the discharge | emission evaluation test method of the coal slag of this invention. 耐熱容器から溶融スラグを流下させる様子を示し、(A)は排出口を閉じた状態の耐熱容器の断面図、(B)は排出口を開いた状態の耐熱容器の断面図である。A mode that molten slag flows down from a heat-resistant container is shown, (A) is sectional drawing of the heat-resistant container of the state which closed the discharge port, (B) is sectional drawing of the heat-resistant container of the state which opened the discharge port. 耐熱容器から溶融スラグを流下させる様子を示し、(A)は傾ける前の状態の耐熱容器の断面図、(B)は傾けた状態の耐熱容器の断面図である。FIG. 2 shows a state in which molten slag flows down from a heat-resistant container, (A) is a cross-sectional view of the heat-resistant container in a state before tilting, and (B) is a cross-sectional view of the heat-resistant container in an inclined state. 従来のスラグ流下試験装置の概略図である。It is the schematic of the conventional slag flow test apparatus.

以下、本発明の構成を図面に示す形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the form shown in the drawings.

図1〜図3に、本発明の石炭スラグの排出性評価試験方法の実施形態の一例を示す。石炭スラグの排出性評価試験方法(以下、単に排出性評価試験方法という)は、炭種によって異なる石炭ガス化炉からの石炭スラグ排出特性を、石炭スラグの固形試料を耐熱容器1内で予め定められている試験温度よりも高く且つ完全に溶融させることができる温度にまで加熱して完全に溶融させた後、耐熱容器1内で溶融スラグ2を試験温度にまで冷却し、耐熱容器1から流下させて流下量を計測し評価を行うものである。   1 to 3 show an example of an embodiment of the coal slag emission evaluation test method of the present invention. The coal slag emission test method (hereinafter simply referred to as the “emission evaluation test method”) determines the characteristics of coal slag emission from a coal gasifier depending on the type of coal, and determines a solid sample of coal slag in the heat-resistant container 1 in advance. After being heated to a temperature that is higher than the test temperature that can be completely melted and completely melted, the molten slag 2 is cooled to the test temperature in the heat-resistant container 1 and flows down from the heat-resistant container 1 In this way, the amount of flow is measured and evaluated.

本実施形態では、電気炉を使用して排出性評価試験を行う。試験に使用する電気炉3を図2に示す。圧力容器4内には反応管5を囲むようにしてヒータ6が設けられている。反応管5内のヒータ6に対向する位置には耐熱容器1を載せるステージ7が設けられている。ステージ7は支持管8によって下から支持されている。また、反応管5の下には例えば1室式のスラグ受け9が設けられている。スラグ受け9には冷却水が貯められている。   In the present embodiment, an exhaustability evaluation test is performed using an electric furnace. An electric furnace 3 used for the test is shown in FIG. A heater 6 is provided in the pressure vessel 4 so as to surround the reaction tube 5. A stage 7 on which the heat-resistant container 1 is placed is provided at a position facing the heater 6 in the reaction tube 5. The stage 7 is supported from below by a support tube 8. Also, for example, a single-chamber slag receiver 9 is provided under the reaction tube 5. The slag receiver 9 stores cooling water.

耐熱容器1はステージ7上に載せられて固定されている。耐熱容器1の底の中央には棒状の栓部材10によって塞がれる排出口11が設けられている。栓部材10には反応管5内に上から引き込まれているワイヤ12が接続されており、ワイヤ12を上方に引いて栓部材10を排出口11から引き抜くことで、排出口11を開いて溶融スラグ2を自然に流下させることができる。耐熱容器1として、例えば耐熱性に優れたアルミナ,シリカ等のセラミック製の坩堝が使用される。また、栓部材10も同様に、耐熱性に優れ、溶融スラグ2と反応し難いアルミナ,シリカ等のセラミック製のものが使用される。ただし、耐熱容器1および栓部材10の材料はこれらに限るものではなく、耐熱性に優れ、溶融スラグ2と反応し難いものであればその他の材料を使用しても良い。   The heat-resistant container 1 is mounted on the stage 7 and fixed. In the center of the bottom of the heat-resistant container 1, a discharge port 11 that is blocked by a rod-shaped plug member 10 is provided. A wire 12 drawn from above into the reaction tube 5 is connected to the plug member 10. By pulling the wire 12 upward and pulling out the plug member 10 from the discharge port 11, the discharge port 11 is opened and melted. The slag 2 can flow down naturally. As the heat-resistant container 1, for example, a ceramic crucible such as alumina or silica having excellent heat resistance is used. Similarly, the plug member 10 is made of ceramic such as alumina or silica which has excellent heat resistance and hardly reacts with the molten slag 2. However, the materials of the heat-resistant container 1 and the plug member 10 are not limited to these, and other materials may be used as long as they are excellent in heat resistance and hardly react with the molten slag 2.

固形試料として、評価対象となる石炭の石炭灰又は石炭スラグを固化させたものが使用される。なお、このように固形試料として石炭ガス化炉で実際に得られたものを使用する代わりに、実際に得られる固形試料を想定して調整した固形試料を使用しても良い。   As the solid sample, solidified coal ash or coal slag to be evaluated is used. In addition, you may use the solid sample adjusted supposing the solid sample actually obtained instead of using what was actually obtained with the coal gasification furnace as a solid sample in this way.

まず最初に、排出口11を塞いだ状態の耐熱容器1内に固体試料を所定量充填した後、この耐熱容器1を電気炉3の反応管5内のステージ7上に載せて固定する(前準備:ステップS21)。次に、電気炉3を稼働させて耐熱容器1内の固体試料を完全に溶融させる(ステップS22、図3(A))。即ち、完全に溶融する温度にまで固体試料を十分加熱する。この温度は試験温度よりも高い温度である。溶融スラグ2はこの温度に一定時間、例えば10分〜15分程度保持される。   First, after filling a predetermined amount of a solid sample in the heat-resistant container 1 with the discharge port 11 closed, the heat-resistant container 1 is placed on the stage 7 in the reaction tube 5 of the electric furnace 3 and fixed (front) Preparation: Step S21). Next, the electric furnace 3 is operated to completely melt the solid sample in the heat-resistant container 1 (step S22, FIG. 3A). That is, the solid sample is sufficiently heated to a temperature at which it completely melts. This temperature is higher than the test temperature. The molten slag 2 is held at this temperature for a certain time, for example, about 10 to 15 minutes.

ステップS23では、ヒータ6の出力を低下させて又はヒータ6のスイッチを切って耐熱容器1内の溶融スラグ2の温度を試験温度にまで下げる。ここで、試験温度は石炭スラグ(溶融スラグ2)の排出性を評価したい温度であり、評価対象の石炭を使用しようとする石炭ガス化炉のスラグ排出部あるいはスラグ排出部外近傍付近のガス温度等が設定される。溶融スラグ2の温度が試験温度にまで下がった後、溶融スラグ2は試験温度に一定時間例えば10分〜15分程度保持される。この時間の適正値は耐熱容器の容量と試料量、電気炉の加熱能力によって変化する。   In step S23, the output of the heater 6 is reduced or the heater 6 is turned off to lower the temperature of the molten slag 2 in the heat-resistant container 1 to the test temperature. Here, the test temperature is a temperature at which it is desired to evaluate the dischargeability of coal slag (molten slag 2), and the gas temperature in the vicinity of the slag discharge part of the coal gasification furnace or the vicinity outside the slag discharge part that uses the evaluation target coal. Etc. are set. After the temperature of the molten slag 2 falls to the test temperature, the molten slag 2 is held at the test temperature for a certain time, for example, about 10 minutes to 15 minutes. The appropriate value for this time varies depending on the capacity of the heat-resistant container, the amount of sample, and the heating capacity of the electric furnace.

次に、栓部材10を引き抜いて耐熱容器1の排出口11を開き、溶融スラグ2を自然に流下させる(ステップS24、図3(B))。溶融スラグ2はその粘性等に応じたスピードで排出口11から流下する。この状態で一定時間例えば10分〜15分程度放置され定常となるのを待つ。耐熱容器1から流下した溶融スラグ2はスラグ受け9によって受け止められ、スラグ受け9内の冷却水によって冷却される。   Next, the plug member 10 is pulled out to open the discharge port 11 of the heat-resistant container 1, and the molten slag 2 is allowed to flow naturally (step S24, FIG. 3B). The molten slag 2 flows down from the discharge port 11 at a speed according to the viscosity and the like. In this state, the device is left for a certain time, for example, about 10 to 15 minutes, and waits for a steady state. The molten slag 2 flowing down from the heat-resistant container 1 is received by the slag receiver 9 and cooled by the cooling water in the slag receiver 9.

耐熱容器1内の溶融スラグ2が定常となった後、スラグ受け9から冷却固化されたスラグを回収し、溶融スラグ2の流下量を測定する(ステップS25)。本実施形態では、スラグ受け9から回収したスラグの重量を計測して溶融スラグ2の流下量を算出する(流下量=耐熱容器1への固形試料の充填量−スラグ受け9からのスラグ回収量)。そして、算出した流下量から、固形試料の炭種の試験温度におけるスラグ排出性を評価する。例えば、スラグの流下量が多いほど排出性が良いと評価する。   After the molten slag 2 in the heat-resistant container 1 becomes steady, the cooled and solidified slag is recovered from the slag receiver 9, and the flow amount of the molten slag 2 is measured (step S25). In this embodiment, the weight of the slag collected from the slag receiver 9 is measured to calculate the flow amount of the molten slag 2 (flow amount = filling amount of the solid sample into the heat-resistant container 1−slag recovery amount from the slag receiver 9. ). And the slag discharge | emission property in the test temperature of the charcoal type of a solid sample is evaluated from the calculated flow-down amount. For example, it is evaluated that the larger the amount of slag flowing, the better the discharge.

本発明では、固形試料を一旦完全に溶融させた後、試験温度にまで下げて評価を行うので、石炭ガス化炉から溶融スラグ2が実際に排出される場合の挙動を模擬して評価を行うことができる。そのため、実際の状況に即した評価を行うことができ、ガス化炉に対する炭種適合性を精度良く且つ簡便に評価することができる。   In the present invention, since the solid sample is once completely melted and then evaluated by lowering the temperature to the test temperature, the evaluation is performed by simulating the behavior when the molten slag 2 is actually discharged from the coal gasification furnace. be able to. Therefore, it is possible to perform evaluation in accordance with the actual situation, and it is possible to accurately and easily evaluate the coal type compatibility with the gasifier.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、耐熱容器1の排出口11を栓部材10によって栓をすることで塞ぎ、栓部材10を引き抜くことで排出口11を開くようにしていたが、必ずしもこの構成に限るものではなく、他の手段によって排出口11を開閉するようにしても良い。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above description, the discharge port 11 of the heat-resistant container 1 is closed by plugging with the plug member 10, and the discharge port 11 is opened by pulling out the plug member 10. Instead, the outlet 11 may be opened and closed by other means.

また、例えば、栓部材10が溶融スラグ2に浮いて排出口11から抜けてしまう虞がある場合等には、栓部材10に炭種に応じて定められる抜け止め荷重をかけることが好ましい。即ち、固形試料(溶融スラグ2)は燃焼前の石炭の種類によって組成が異なり、その密度も異なる。例えば、鉄分を多く含むスラグの場合、密度が大きく、高温耐熱材料である高純度アルミナよりもかなり重くなる。したがって、未溶融の粒状物としてのスラグに対しては自重だけで栓ができたアルミナ製の栓部材10であっても、溶融後のスラグ中では浮力に負けて浮いてしまい、栓が抜けてしまうことも考えられる。このように栓部材10抜ける虞がある場合には、栓部材10に抜け止め荷重をかけることで栓が外れてしまうのを防止することができる。抜け止め荷重のかけ方としては、例えば、栓部材10の上に錘をのせる方法、栓部材10の上に連結された長いシャフトに対して炉外から油圧・空気圧のシリンダなどで圧力をかける方法等がある。   For example, when there is a possibility that the plug member 10 floats on the molten slag 2 and comes out of the discharge port 11, it is preferable to apply a retaining load determined according to the type of carbon to the plug member 10. That is, the solid sample (molten slag 2) has a different composition and a different density depending on the type of coal before combustion. For example, a slag containing a large amount of iron has a high density and is considerably heavier than high-purity alumina, which is a high temperature heat resistant material. Therefore, even if it is the plug member 10 made of alumina that can be plugged only by its own weight against the slag as an unmelted granular material, it floats against buoyancy in the molten slag, and the plug comes off. It can also be considered. Thus, when there is a possibility that the stopper member 10 may come off, it is possible to prevent the stopper from being removed by applying a retaining load to the stopper member 10. As a method for applying the retaining load, for example, a method of placing a weight on the plug member 10, and applying a pressure to the long shaft connected to the plug member 10 from outside the furnace with a hydraulic / pneumatic cylinder or the like. There are methods.

また、上述の説明では、栓部材10にワイヤ12を接続し、ワイヤ12を上に引っ張ることで栓部材10を排出口11から引き抜くようにしていたが、栓部材10を引き抜く、即ち排出口11を開く手段はこれに限るものではない。例えば、栓部材10を排出口11の直径よりやや大きな球状とし、これを排出口11に通したワイヤで捕縛し、排出口11を下から塞ぐように配置してワイヤで上向きに引き上げる形をとっておき、排出時にワイヤの張力をゆるめて排出口11を開放することも可能である。   In the above description, the wire 12 is connected to the plug member 10 and the plug member 10 is pulled out from the discharge port 11 by pulling the wire 12 upward. However, the plug member 10 is pulled out, that is, the discharge port 11. The means for opening is not limited to this. For example, the plug member 10 has a spherical shape that is slightly larger than the diameter of the discharge port 11, is trapped with a wire that passes through the discharge port 11, is placed so as to close the discharge port 11 from below, and is lifted upward with a wire. It is also possible to release the outlet 11 by loosening the tension of the wire at the time of discharging.

また、上述の説明では、スラグ受け9から回収したスラグ量(重量)を計測して溶融スラグ2の流下量を算出するようにしていたが、耐熱容器1内のスラグ残留量を計測して溶融スラグ2の流下量を算出しても良い(流下量=耐熱容器1への固形試料の充填量−耐熱容器1内のスラグ残留量)。この場合、スラグが残存する耐熱容器1の重量を計測し、耐熱容器1への固形試料の充填量と耐熱容器1の重量との合計値から引くことで、耐熱容器1内のスラグ残存量を算出することができる(耐熱容器1内のスラグ残存量=(耐熱容器1への固形試料の充填量+耐熱容器1の重量)−スラグが残存する耐熱容器1の重量)。   In the above description, the slag amount (weight) collected from the slag receiver 9 is measured to calculate the flow amount of the molten slag 2, but the residual amount of slag in the heat-resistant container 1 is measured and melted. The flow amount of the slag 2 may be calculated (flow amount = filling amount of the solid sample in the heat resistant container 1−slag remaining amount in the heat resistant container 1). In this case, the weight of the heat-resistant container 1 in which the slag remains is measured, and the residual amount of slag in the heat-resistant container 1 is obtained by subtracting from the total amount of the solid sample filled in the heat-resistant container 1 and the weight of the heat-resistant container 1. (Slag remaining amount in heat-resistant container 1 = (filling amount of solid sample in heat-resistant container 1 + weight of heat-resistant container 1) −weight of heat-resistant container 1 in which slag remains).

また、上述の説明では、計測した溶融スラグ2の流下量をそのまま評価したが、流下量を流下のスピードに変換して評価を行っても良い。即ち、上述の説明では耐熱容器1内の溶融スラグ2が定常になるまでの流下量(総量)に基づいて評価を行っていたが、所定時間(定常になるまでの時間よりも短い時間)内における流下量(単位時間当たりの流下量=流下スピード)に基づいて評価を行っても良い。例えば、溶融スラグ2の流下スピードが速いほど排出性が良いと評価する。   In the above description, the measured flow amount of the molten slag 2 is evaluated as it is, but the evaluation may be performed by converting the flow amount into the flow speed. That is, in the above description, the evaluation was performed based on the amount of flow (total amount) until the molten slag 2 in the heat-resistant container 1 becomes steady, but within a predetermined time (a time shorter than the time until it becomes steady). Evaluation may be performed based on the amount of flow at (flow amount per unit time = flow speed). For example, it is evaluated that the higher the flow speed of the molten slag 2 is, the better the dischargeability is.

また、溶融スラグ2の流下量(総量)と流下スピードの両方に基づいて評価しても良い。例えば、総量が多く且つ流下スピードが速いほど排出性が良いと評価し、総量が少なく且つ流下スピードが遅いほど排出性が悪いと評価する。   Moreover, you may evaluate based on both the flow-down amount (total amount) of the molten slag 2, and the flow-down speed. For example, it is evaluated that the larger the total amount and the lower the flow speed, the better the discharge performance, and the lower the total amount and the lower the flow speed, the lower the discharge performance.

また、上述の説明では、固形試料の加熱に電気炉3を使用していたが、電気炉3以外の加熱手段を使用しても良い。   In the above description, the electric furnace 3 is used for heating the solid sample, but a heating means other than the electric furnace 3 may be used.

また、上述の説明では、耐熱容器1の底に孔(排出口11)を設け、孔から溶融スラグ2を自然に流下させるようにしていたが、必ずしもこの構成に限るものではない。例えば、耐熱容器1を傾けることで溶融スラグ2を流下させるようにしても良い。この場合の例を、図4に示す。耐熱容器1は周壁の上端開口近傍を貫通するシャフト13によって反応管5に回転可能に支持されている。また、周壁の上端開口近傍のシャフト13から最も離れた位置にはワイヤ14が接続されている(図4(A))。ワイヤ14を引き上げることで耐熱容器1をシャフト13まわりに回転させて傾け、耐熱容器1内の溶融スラグ2を流下させることができる(図4(B))。   In the above description, a hole (discharge port 11) is provided in the bottom of the heat-resistant container 1 so that the molten slag 2 flows down naturally from the hole. However, the present invention is not necessarily limited to this configuration. For example, the molten slag 2 may flow down by tilting the heat-resistant container 1. An example of this case is shown in FIG. The heat-resistant container 1 is rotatably supported by the reaction tube 5 by a shaft 13 that passes through the vicinity of the upper end opening of the peripheral wall. Further, a wire 14 is connected to a position farthest from the shaft 13 in the vicinity of the upper end opening of the peripheral wall (FIG. 4A). By pulling up the wire 14, the heat-resistant container 1 can be rotated around the shaft 13 and tilted to flow down the molten slag 2 in the heat-resistant container 1 (FIG. 4B).

また、上述の説明ではスラグ受け9として1室式のものを使用したが、例えば、耐熱容器1からの溶融スラグ2の流下を意図的に開始させる前に、排出口11からの漏れ等によって意図しない流下が生じる場合等には2室式のスラグ受け9を使用しても良い。即ち、試験温度に冷却する前に耐熱容器1から漏れた溶融スラグ2(意図しない流下による溶融スラグ2)を、試験温度にまで冷却した後に耐熱容器1から流下させた溶融スラグ2(意図した流下による溶融スラグ2)とは区別して回収するようにしても良い。例えば、意図しない流下による溶融スラグ2と意図した流下による溶融スラグ2とをスラグ受け9の別々の室で受けるようにし、両者を区別して回収するようにしても良い。両者を区別して回収することで、意図した流下による溶融スラグ2を正確に計測することができ、試験温度での流下量(総量)や流下スピードを正確に算出することができる。   Further, in the above description, the one-chamber type is used as the slag receiver 9, but, for example, before the flow of the molten slag 2 from the heat-resistant container 1 is intentionally started, the slag receiver 9 is intentionally caused by leakage from the discharge port 11 or the like. In the case where a flow does not occur, a two-chamber slag receiver 9 may be used. That is, the molten slag 2 leaked from the heat-resistant container 1 before cooling to the test temperature (molten slag 2 caused by unintended flow) is cooled to the test temperature and then flowed down from the heat-resistant container 1 (intended flow) It may be recovered separately from the molten slag 2). For example, the molten slag 2 caused by unintended flow and the molten slag 2 caused by an intended flow may be received in separate chambers of the slag receiver 9, and the two may be collected separately. By recovering the two separately, the molten slag 2 due to the intended flow can be accurately measured, and the flow amount (total amount) and flow speed at the test temperature can be accurately calculated.

1 耐熱容器
2 溶融スラグ
1 Heat-resistant container 2 Molten slag

Claims (1)

炭種によって異なる石炭ガス化炉からの石炭スラグ排出特性を、石炭スラグの固形試料を耐熱容器内で予め定められた試験温度よりも高く且つ完全に溶融させることができる温度にまで加熱して完全に溶融させた後、前記耐熱容器内で溶融スラグを前記試験温度にまで冷却し前記耐熱容器から流下させて流下量を計測し評価を行うことを特徴とする石炭スラグの排出性評価試験方法。   The coal slag discharge characteristics from different coal gasifiers depending on the coal type are fully heated by heating the solid sample of coal slag to a temperature that is higher than the predetermined test temperature in the heat-resistant container and can be completely melted. And then cooling the molten slag to the test temperature in the heat-resistant container, allowing the molten slag to flow down from the heat-resistant container, measuring the amount of flow, and performing an evaluation.
JP2010193548A 2010-08-31 2010-08-31 Coal slag emission evaluation test method Expired - Fee Related JP5554182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193548A JP5554182B2 (en) 2010-08-31 2010-08-31 Coal slag emission evaluation test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193548A JP5554182B2 (en) 2010-08-31 2010-08-31 Coal slag emission evaluation test method

Publications (2)

Publication Number Publication Date
JP2012051963A true JP2012051963A (en) 2012-03-15
JP5554182B2 JP5554182B2 (en) 2014-07-23

Family

ID=45905675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193548A Expired - Fee Related JP5554182B2 (en) 2010-08-31 2010-08-31 Coal slag emission evaluation test method

Country Status (1)

Country Link
JP (1) JP5554182B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037691A1 (en) * 2011-09-14 2013-03-21 Thyssenkrupp Uhde Gmbh Method and device for investigating the flow properties and the viscosity of liquid substances, particularly at temperatures of 1000°c and more
KR101506072B1 (en) * 2013-01-14 2015-03-25 현대중공업 주식회사 Slag viscosity measuring apparatus using the change of weight
US11458533B2 (en) * 2019-09-04 2022-10-04 National Central University Measuring device and method of physical property measuring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116036A (en) * 1982-12-23 1984-07-04 Fuji Electric Corp Res & Dev Ltd Measuring device of viscosity of high-temperature melt
JPH0547400Y2 (en) * 1989-08-29 1993-12-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116036A (en) * 1982-12-23 1984-07-04 Fuji Electric Corp Res & Dev Ltd Measuring device of viscosity of high-temperature melt
JPH0547400Y2 (en) * 1989-08-29 1993-12-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037691A1 (en) * 2011-09-14 2013-03-21 Thyssenkrupp Uhde Gmbh Method and device for investigating the flow properties and the viscosity of liquid substances, particularly at temperatures of 1000°c and more
KR101506072B1 (en) * 2013-01-14 2015-03-25 현대중공업 주식회사 Slag viscosity measuring apparatus using the change of weight
US11458533B2 (en) * 2019-09-04 2022-10-04 National Central University Measuring device and method of physical property measuring

Also Published As

Publication number Publication date
JP5554182B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
CN101936979B (en) Strength determination method and device for reacted blast furnace coke
JP5554182B2 (en) Coal slag emission evaluation test method
BRPI0514874B1 (en) METHOD FOR FOAMING SCORIA FORMED IN AN ELECTRIC BOW
CN102928455B (en) Method for detecting high-temperature metallurgical performance of coke
Yan et al. Improved prediction of critical-viscosity temperature by fusion behavior of coal ash
Sunahara et al. Effect of high Al2O3 slag on the blast furnace operations
CN102455308B (en) Lump coal pyrolysis experimental method for melting gasification furnace
BRPI0818372B1 (en) SELF-FUNDING HIGH-OVEN PELLETS AND METHOD FOR MAKING THE SAME
CN102353619B (en) Needle penetration measurement device and method for characterizing rheological behaviour of high-viscosity solid fuel ash
CN102071272A (en) Method for blowing out blast furnace
CN102213548A (en) Molten drop furnace for measuring molten drop point of iron ore
CN102308191A (en) Temperature measuring device
CN109298016A (en) A kind of analog blast furnace cupola well coagulates the experimental provision of iron layer
CN101743330B (en) Process for producing molten iron
Dai et al. The role of residual carbon on fusibility and flow properties of rice straw ash
CN103063537A (en) Method for measuring melting speed of continuous casting covering slag
Ducret et al. Liquidus temperatures and viscosities of FeO‐Fe2O3‐SiO2‐CaO‐MgO slags at compositions relevant to nickel matte smelting
CN203414382U (en) Device for testing high-temperature fluid ability of iron ore powder
CN105842065A (en) Method for evaluating after-reaction strength of metallurgical coke
Plešingerová et al. Analysis of deposits from combustion chamber of boiler for dendromass
CN204214800U (en) A kind of covering slag burn-off rate proving installation
BRPI0917899B1 (en) METHOD FOR THE PRODUCTION OF AN IRON ALLOY IN AN ELECTRIC ARC OVEN
CN106706494A (en) Determination method of material column liquid permeability index in COREX smelter-gasifier
JP2014142337A (en) Reactor simulating blast furnace fusion zone
CN107643242A (en) A kind of evaluation method and device of blast furnace stock column liquid permeability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees