JP2012051748A - Method for manufacturing conductive silicon carbide porous body - Google Patents

Method for manufacturing conductive silicon carbide porous body Download PDF

Info

Publication number
JP2012051748A
JP2012051748A JP2010194674A JP2010194674A JP2012051748A JP 2012051748 A JP2012051748 A JP 2012051748A JP 2010194674 A JP2010194674 A JP 2010194674A JP 2010194674 A JP2010194674 A JP 2010194674A JP 2012051748 A JP2012051748 A JP 2012051748A
Authority
JP
Japan
Prior art keywords
silicon carbide
oxidation treatment
specific resistance
heating
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010194674A
Other languages
Japanese (ja)
Other versions
JP5415382B2 (en
Inventor
Koji Tsuneyoshi
孝治 常吉
Osamu Takagi
修 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2010194674A priority Critical patent/JP5415382B2/en
Publication of JP2012051748A publication Critical patent/JP2012051748A/en
Application granted granted Critical
Publication of JP5415382B2 publication Critical patent/JP5415382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a conductive silicon carbide porous body which can easily adjust a specific resistance value in a wide range by a simple process.SOLUTION: The manufacturing method includes an oxidation treatment process in which a sintered compact of a porosity quality silicon carbide ceramics which has conductivity is heated under oxidizing atmosphere over a predetermined heat time by a predetermined heating temperature, and a silicon dioxide layer is formed on the surface of a silicon carbide particle, wherein the conductive silicon carbide porous body in which a specific resistance value is different is manufactured by changing the heating temperature and/or the heating time in the oxidation treatment process.

Description

本発明は、通電により発熱させる導電性炭化珪素質多孔体の製造方法に関するものである。   The present invention relates to a method for producing a conductive silicon carbide porous body that generates heat when energized.

炭化珪素は、熱伝導率が高いことに加えて熱膨張率が小さいことから、耐熱衝撃性に優れるため、炭化珪素質セラミックスの多孔体は、高温下で使用されるフィルタの基体として用いられている。また、高純度の炭化珪素は電気抵抗が高く絶縁体に近いが、導電性が付与された炭化珪素質セラミックスの多孔体は、通電により発熱させる自己発熱型のフィルタ基体として使用することが可能である。   Since silicon carbide has a high thermal conductivity and a low coefficient of thermal expansion, it has excellent thermal shock resistance. Therefore, a porous body of silicon carbide ceramics is used as a substrate for filters used at high temperatures. Yes. High-purity silicon carbide has high electrical resistance and is close to an insulator, but the porous body of silicon carbide-based ceramics with conductivity can be used as a self-heating type filter base that generates heat when energized. is there.

例えば、ディーゼルエンジンから排出されるガスに含まれる粒子状物質を捕集除去するディーゼルパティキュレートフィルタ(以下、「DPF」と称することがある)では、捕集された粒子状物質がある程度堆積した時点で、粒子状物質を燃焼させる再生処理が行われる。その際、通電によりフィルタ基体を自己発熱させて、粒子状物質を燃焼・除去すれば、外部加熱により粒子状物質を燃焼させる場合とは異なり、バーナーやヒーター等の加熱装置が不要となる。また、外部加熱の場合は、局所的な加熱によりフィルタ基体が溶損するおそれや、大きな温度勾配によってフィルタ基体に亀裂や割れが発生するおそれがあるところ、自己発熱型のフィルタ基体の場合は、そのようなおそれが少ないという利点も有している。   For example, in a diesel particulate filter (hereinafter sometimes referred to as “DPF”) that collects and removes particulate matter contained in gas discharged from a diesel engine, the collected particulate matter is accumulated to some extent. Thus, a regeneration process for burning the particulate matter is performed. At this time, if the filter base is self-heated by energization and the particulate matter is combusted and removed, unlike the case where the particulate matter is combusted by external heating, a heating device such as a burner or a heater becomes unnecessary. In the case of external heating, the filter base may be melted by local heating, or the filter base may be cracked or cracked by a large temperature gradient. In the case of a self-heating type filter base, There is also an advantage that such a fear is small.

ここで、炭化珪素に導電性を付与する方法としては、微量の不純物を添加することにより半導体とする方法が公知である。また、炭化珪素を除く炭化物、窒化物、ホウ化物、酸化物から選ばれる少なくとも一種の添加剤を炭化珪素に添加することにより、導電性を有すると共に粒子状物質の捕集に適した気孔を有するDPFを製造する「排気ガスフィルタの製造方法」が提案されている(特許文献1参照)。   Here, as a method of imparting conductivity to silicon carbide, a method of forming a semiconductor by adding a small amount of impurities is known. Further, by adding at least one additive selected from carbides, nitrides, borides, and oxides excluding silicon carbide to silicon carbide, it has conductivity and pores suitable for collecting particulate matter. An “exhaust gas filter manufacturing method” for manufacturing a DPF has been proposed (see Patent Document 1).

しかしながら、特許文献1の技術では、窒化アルミニウム、窒化チタン、二ホウ化チタンなどの添加剤を、炭化珪素100重量部に対して5〜15重量部と、多量に添加する必要があった。また、原料の炭化珪素粉末と添加剤とを水で混練するために、予め撥水性を有する樹脂で添加剤を被覆しておく工程が必要であり、製造工程が複雑で手間がかかるという問題があった。   However, in the technique of Patent Document 1, it is necessary to add a large amount of an additive such as aluminum nitride, titanium nitride, titanium diboride or the like at 5 to 15 parts by weight with respect to 100 parts by weight of silicon carbide. In addition, in order to knead the raw material silicon carbide powder and the additive with water, a process of coating the additive with a resin having water repellency in advance is necessary, and the manufacturing process is complicated and troublesome. there were.

また、特許文献1により製造された炭化珪素質多孔体の比抵抗値は10−2〜1Ω・cmと小さく、応用範囲が限定されると考えられた。これは、導電性の炭化珪素質セラミックスは、温度の上昇に伴って電気抵抗が減少するNTC特性を有するため、比抵抗値が小さい場合は、目的とする温度まで昇温させるための電流値が過大となるおそれがあるためである。 Moreover, the specific resistance value of the silicon carbide based porous material manufactured by Patent Document 1 is as small as 10 −2 to 1 Ω · cm, and it was considered that the application range is limited. This is because conductive silicon carbide ceramics have NTC characteristics in which the electrical resistance decreases as the temperature rises. Therefore, when the specific resistance value is small, the current value for raising the temperature to the target temperature is low. This is because it may become excessive.

加えて、実用的な炭化珪素質多孔体の製造について、比抵抗値をより広い範囲で調整できることが要請されている。これは、例えばDPFであれば、取付け対象の車体の大きさや構造によってDPFのサイズが規定されることにより、求められるフィルタ基体のサイズが極めて多種類となるためであり、これに伴い、再生処理の際に所定時間内で所定温度まで昇温させるために要請される比抵抗値も、多様となるためである。   In addition, it is required that the specific resistance value can be adjusted in a wider range for the production of a practical silicon carbide based porous material. This is because, for example, in the case of a DPF, since the size of the DPF is defined by the size and structure of the vehicle body to be attached, the required filter base sizes become extremely various. This is because the specific resistance value required for raising the temperature to a predetermined temperature within a predetermined time at this time also varies.

そこで、本発明は、上記の実情に鑑み、簡易な工程で、比抵抗値を広い範囲内で容易に調整することが可能な導電性炭化珪素質多孔体の製造方法の提供を、課題とするものである。   Therefore, in view of the above circumstances, an object of the present invention is to provide a method for producing a conductive silicon carbide based porous material capable of easily adjusting a specific resistance value within a wide range by a simple process. Is.

上記の課題を解決するため、本発明にかかる導電性炭化珪素質多孔体の製造方法は、「導電性を有する多孔質の炭化珪素質セラミックスの焼結体を、所定の加熱温度で所定の加熱時間にわたり酸化雰囲気下で加熱し、炭化珪素質粒子の表面に二酸化珪素層を形成させる酸化処理工程を具備し、該酸化処理工程における加熱温度及び/または加熱時間を変化させることにより、比抵抗値の異なる導電性炭化珪素質多孔体を製造する」ものである。   In order to solve the above-mentioned problem, the method for producing a conductive silicon carbide based porous material according to the present invention is described as follows: “Sintering a porous silicon carbide ceramic body having conductivity at a predetermined heating temperature. A specific resistance value is provided by heating in an oxidizing atmosphere for a period of time to form an oxidation treatment step for forming a silicon dioxide layer on the surface of the silicon carbide particles, and changing the heating temperature and / or the heating time in the oxidation treatment step. Of different conductive silicon carbide porous bodies ”.

本発明者らは、酸化処理によって意図的に炭化珪素質粒子の表面に二酸化珪素層を形成させることにより、導電性炭化珪素質多孔体の比抵抗値を変化させることができ、酸化処理工程を行う酸化雰囲気が同一であれば、加熱温度及び加熱時間の一方または双方を変化させることによって、比抵抗値を制御可能であることを見出し、本発明に至ったものである。   The inventors of the present invention can change the specific resistance value of the conductive silicon carbide based porous material by intentionally forming a silicon dioxide layer on the surface of the silicon carbide particles by the oxidation treatment, and the oxidation treatment step. When the oxidizing atmosphere to be performed is the same, the inventors have found that the specific resistance value can be controlled by changing one or both of the heating temperature and the heating time, and the present invention has been achieved.

従って、上記構成の本発明によれば、ある比抵抗値を有する多孔質の炭化珪素質セラミックスの焼結体を得るまでの工程は単一とし、付加的に酸化処理工程を行い、その際の加熱温度及び/または加熱温度を変化させるのみで、種々の比抵抗値を有する導電性炭化珪素質多孔体を製造することができる。   Therefore, according to the present invention having the above-described configuration, the process until obtaining a sintered body of porous silicon carbide ceramics having a specific resistance value is single, and an additional oxidation treatment process is performed. By merely changing the heating temperature and / or the heating temperature, conductive silicon carbide based porous materials having various specific resistance values can be produced.

従来技術のように、原料粉末に添加する添加剤の種類や添加量を調整することによって、炭化珪素質多孔体の比抵抗値を調整しようとすると、多種類の比抵抗値を有する導電性炭化珪素質多孔体が要請されるのに対応して、多種類の組成の原料を調製しなくてはならず、多大な労力を要すると共に経済性にも劣る。これに対し、本発明によれば、同一組成の原料から単一の焼結体を製造し、処理条件の異なる酸化処理工程を付加的に行うのみの簡易な方法で、広い範囲内で比抵抗値が相違する多種類の導電性炭化珪素質多孔体を製造することができる。   When the specific resistance value of the silicon carbide based porous material is adjusted by adjusting the type and amount of additive added to the raw material powder as in the prior art, the conductive carbonization having various types of specific resistance values. In response to the demand for a porous silicon material, it is necessary to prepare raw materials of various kinds of compositions, which requires a lot of labor and is inferior in economic efficiency. On the other hand, according to the present invention, a single sintered body is manufactured from raw materials having the same composition, and a specific resistance within a wide range can be obtained by simply performing an oxidation treatment process with different treatment conditions. Many types of conductive silicon carbide based porous materials having different values can be manufactured.

本発明にかかる導電性炭化珪素質多孔体の製造方法は、上記構成において、「前記加熱温度は900℃〜1300℃で、前記加熱時間は5時間〜40時間である」ものとすることができる。   The manufacturing method of the conductive silicon carbide based porous material according to the present invention may be configured such that “the heating temperature is 900 ° C. to 1300 ° C. and the heating time is 5 hours to 40 hours” in the above configuration. .

後述のように、900℃〜1300℃の加熱温度、5時間〜40時間の加熱時間で、通電により発熱させるフィルタ基体や触媒担体等として実用的な比抵抗値を有する導電性炭化珪素質多孔体を製造することができる。   As described later, a conductive silicon carbide based porous material having a practical specific resistance value as a filter base or a catalyst carrier that generates heat by energization at a heating temperature of 900 ° C. to 1300 ° C. for a heating time of 5 hours to 40 hours. Can be manufactured.

ここで、加熱温度が900℃より低い場合は、酸化反応が起こりにくく二酸化珪素層が形成されにくい。一方、加熱温度が1300℃より高くなると、酸化反応が急速に進行し、比抵抗値の制御が困難となる。また、酸化時間が5時間より短いと、比抵抗値に影響を及ぼすほど十分な二酸化珪素層が形成されにくい。一方、酸化時間が40時間より長いと、導電性炭化珪素質多孔体の製造効率が低く、経済性にも劣るため、実用的ではない。   Here, when the heating temperature is lower than 900 ° C., the oxidation reaction hardly occurs and the silicon dioxide layer is hardly formed. On the other hand, when the heating temperature is higher than 1300 ° C., the oxidation reaction proceeds rapidly, making it difficult to control the specific resistance value. If the oxidation time is shorter than 5 hours, it is difficult to form a silicon dioxide layer sufficient to affect the specific resistance value. On the other hand, if the oxidation time is longer than 40 hours, the production efficiency of the conductive silicon carbide porous body is low and the economy is inferior, which is not practical.

本発明にかかる導電性炭化珪素質多孔体の製造方法は、上記構成において、「前記焼結体は、窒化珪素粉末と炭素質物質とからなり珪素と炭素のモル比が0.5〜1.5である炭化珪素生成原料、及び、骨材としての炭化珪素粉末を含む混合原料を成形する成形工程と、 該成形工程で得られた成形体を、1800〜2300℃の非酸化雰囲気下で焼成する焼成工程とを経て製造される」ものとすることができる。   The method for producing a conductive silicon carbide based porous material according to the present invention has the above structure, wherein “the sintered body is composed of a silicon nitride powder and a carbonaceous material, and the molar ratio of silicon to carbon is 0.5 to 1. A forming step of forming a mixed raw material containing silicon carbide generating raw material 5 and silicon carbide powder as an aggregate, and a formed body obtained by the forming step is fired in a non-oxidizing atmosphere at 1800 to 2300 ° C. It is manufactured through a firing step.

上記構成の本発明では、焼結体は、いわゆる反応焼結により生成した炭化珪素質セラミックスである。ここで、反応生成させる炭化珪素の珪素源は「窒化珪素粉末」であり、炭素源は「炭素質物質」である。従って、化学量論的には珪素及び炭素のモル比(Si/C)が1のときに過不足なく炭化珪素が生成する。ここで、Si/Cが0.5より小さいと、残存する炭素分が多すぎ、粗大気孔の原因となると共に生成した炭化珪素の粒子成長が阻害される。一方、Si/Cが1.5より大きい場合は、炭化珪素の反応生成量が少なく、反応焼結が不十分となる。なお、Si/Cは0.8〜1.2であれば、珪素及び炭素の過剰分または不足分が少なく、より望ましい。   In the present invention configured as described above, the sintered body is a silicon carbide ceramic produced by so-called reaction sintering. Here, the silicon source of silicon carbide to be generated by reaction is “silicon nitride powder”, and the carbon source is “carbonaceous material”. Therefore, in terms of stoichiometry, when the molar ratio of silicon and carbon (Si / C) is 1, silicon carbide is generated without excess or deficiency. Here, if Si / C is smaller than 0.5, the remaining carbon content is too much, which causes coarse atmospheric pores and inhibits the growth of the generated silicon carbide particles. On the other hand, when Si / C is larger than 1.5, the reaction generation amount of silicon carbide is small, and the reaction sintering becomes insufficient. In addition, if Si / C is 0.8-1.2, there are few excess or deficiencies of silicon and carbon, and it is more desirable.

「炭素質物質」としては、黒鉛、石炭、コークス、木炭、カーボンブラックなどを使用可能である。また、導電性炭化珪素質多孔体をフィルタ基体として使用する場合は、「炭素質物質」として平均粒子径10μm〜50μmという粒径のものを用いれば、その消失跡にフィルタ基体として適した大きさの気孔が形成されるため、望ましい。また、平均粒子径10μm〜50μmという、比較的大きな粒径の炭素質物質を用いることにより、炭素源が微細な粒子である場合に比べて、炭化珪素の生成反応の開始は遅くなるものの、生成した炭化珪素がネック形成できるほどに粒子成長するのが早く、強固なネックを早期に形成させることができるため、高強度の多孔質焼結体を得ることができる。   As the “carbonaceous material”, graphite, coal, coke, charcoal, carbon black and the like can be used. In addition, when using a conductive silicon carbide porous material as a filter substrate, if a “carbonaceous material” having an average particle size of 10 μm to 50 μm is used, it is suitable for the disappearance trace as a filter substrate. This is desirable because of the formation of pores. In addition, by using a carbonaceous substance having a relatively large particle size of 10 μm to 50 μm in average particle size, the start of the reaction for generating silicon carbide is delayed as compared with the case where the carbon source is fine particles. Since the silicon carbide grows so fast that the neck can be formed and a strong neck can be formed at an early stage, a high-strength porous sintered body can be obtained.

骨材としての炭化珪素粉末の混合原料における割合が小さ過ぎる場合は、得られる焼結体の強度が低いものとなり易く、大き過ぎる場合はその分炭化珪素生成原料の割合が小さくなり、反応焼結が不十分となるおそれがある。そのため、骨材としての炭化珪素粉末の混合原料における割合は、60〜95質量%とすることが望ましい。   If the proportion of the silicon carbide powder as the aggregate in the mixed raw material is too small, the strength of the obtained sintered body tends to be low, and if it is too large, the proportion of the silicon carbide forming raw material is reduced accordingly, and reaction sintering May become insufficient. Therefore, the ratio of the silicon carbide powder as the aggregate in the mixed raw material is desirably 60 to 95% by mass.

「成形工程」における成形方法は特に限定されず、例えば、押出成形、乾式加圧成形、鋳込成形とすることができる。   The molding method in the “molding step” is not particularly limited, and can be, for example, extrusion molding, dry pressure molding, or cast molding.

「焼成工程」における「非酸化雰囲気」は、アルゴンやヘリウム等の不活性ガス雰囲気、或いは、真空雰囲気とすることができる。   The “non-oxidizing atmosphere” in the “baking step” can be an inert gas atmosphere such as argon or helium, or a vacuum atmosphere.

「焼成工程」の温度が低いと反応焼結が不十分となるおそれがあり、2350℃を超えると、生成した炭化珪素が昇華するおそれがあるところ、1800〜2300℃とすることにより、実用的な焼成時間で、十分な機械的強度の焼結体を得ることができる。   If the temperature of the “baking step” is low, reactive sintering may be insufficient, and if it exceeds 2350 ° C., the generated silicon carbide may be sublimated. A sintered body with sufficient mechanical strength can be obtained with a short firing time.

上記構成の本発明では、珪素源と炭素源とから炭化珪素を反応生成させて焼結体を得ており、珪素源として窒化珪素を用いている。そのため、窒化珪素の分解により生じた窒素は、生成した炭化珪素に不純物としてドープされ、n型半導体となる。すなわち、炭化珪素を生成させる原料である窒化珪素が、炭化珪素に導電性を付与するドーパントを兼ねているため、導電性を付与するための添加剤を特に添加することなく、導電性の炭化珪素質セラミックスの焼結体を得ることができる。加えて、炭化珪素を反応生成させる炭素源である炭素質物質の消失跡には気孔が形成されるため、造孔剤を特に添加することなく、多孔質の炭化珪素質セラミックスの焼結体を得ることができる。   In the present invention configured as described above, a sintered body is obtained by reacting and producing silicon carbide from a silicon source and a carbon source, and silicon nitride is used as the silicon source. Therefore, nitrogen generated by the decomposition of silicon nitride is doped as impurities in the generated silicon carbide to become an n-type semiconductor. That is, since silicon nitride, which is a raw material for generating silicon carbide, also serves as a dopant for imparting conductivity to silicon carbide, conductive silicon carbide is not particularly added without adding an additive for imparting conductivity. Sintered ceramics can be obtained. In addition, since pores are formed in the disappearance trace of the carbonaceous material that is a carbon source for reaction generation of silicon carbide, a porous silicon carbide based ceramic sintered body can be formed without adding a pore forming agent. Obtainable.

従って、「導電性を有する多孔質の炭化珪素質セラミックスの焼結体」自体が簡易に製造されるため、その後に付加する酸化処理工程で比抵抗値を調整する本発明は、導電性炭化珪素質多孔体の製造方法として極めて簡易である。   Therefore, since the “sintered porous silicon carbide ceramics having conductivity” itself is easily manufactured, the present invention in which the specific resistance value is adjusted in the oxidation treatment step added thereafter is the conductive silicon carbide This is a very simple method for producing a porous material.

以上のように、本発明の効果として、簡易な工程で、比抵抗値を広い範囲内で容易に調整することが可能な導電性炭化珪素質多孔体の製造方法を提供することができる。   As described above, as an effect of the present invention, it is possible to provide a method for producing a conductive silicon carbide based porous material capable of easily adjusting a specific resistance value within a wide range by a simple process.

酸化処理工程における条件(加熱温度、加熱時間)と酸素濃度との関係を示すグラフである。It is a graph which shows the relationship between the conditions (heating temperature, heating time) in an oxidation treatment process, and oxygen concentration. 酸素濃度と室温における比抵抗値との関係を示すグラフである。It is a graph which shows the relationship between oxygen concentration and the specific resistance value in room temperature. 温度を上昇させた際の電気抵抗値の変化を示すグラフである。It is a graph which shows the change of the electrical resistance value at the time of raising temperature. 温度が異なる場合について、酸素濃度に対する比抵抗値の関係を示すグラフである。It is a graph which shows the relationship of the specific resistance value with respect to oxygen concentration about the case where temperature differs. 酸素濃度と三点曲げ強度との関係を示すグラフである。It is a graph which shows the relationship between oxygen concentration and three-point bending strength. (a)試料14の試料表面、及び、(b)対照試料の試料表面の、SEM観察像及びEDX画像である。(A) SEM observation image and EDX image of sample surface of sample 14 and (b) sample surface of control sample. 試料14の破断面のSEM観察像及びEDX画像である。It is the SEM observation image and EDX image of the torn surface of the sample 14.

以下、本発明の一実施形態である導電性炭化珪素質多孔体の製造方法について説明する。本実施形態の導電性炭化珪素質多孔体の製造方法(以下、単に「製造方法」と称する)は、導電性を有する多孔質の炭化珪素質セラミックスの焼結体を、所定の加熱温度で所定の加熱時間にわたり酸化雰囲気下で加熱し、炭化珪素質粒子の表面に二酸化珪素層を形成させる酸化処理工程を具備し、酸化処理工程における加熱温度及び/または加熱時間を変化させることにより比抵抗値の異なる導電性炭化珪素質多孔体を製造する方法であり、加熱温度は900℃〜1300℃で、加熱時間は5時間〜40時間で変化させるものである。また、本実施形態の製造方法では、焼結体として、窒化珪素粉末と炭素質物質とからなり珪素と炭素のモル比が0.5〜1.5である炭化珪素生成原料、及び、骨材としての炭化珪素粉末を含む混合原料を成形する成形工程と、成形工程で得られた成形体を1800〜2300℃の非酸化雰囲気下で焼成する焼成工程とを経て製造されるものを使用する。   Hereinafter, the manufacturing method of the electroconductive silicon carbide porous body which is one Embodiment of this invention is demonstrated. The method for producing a conductive silicon carbide based porous material according to the present embodiment (hereinafter simply referred to as “manufacturing method”) is a method in which a sintered body of porous silicon carbide ceramics having conductivity is formed at a predetermined heating temperature. And a specific resistance value by changing the heating temperature and / or the heating time in the oxidation treatment step. In other words, the heating temperature is 900 ° C. to 1300 ° C., and the heating time is changed from 5 hours to 40 hours. Further, in the manufacturing method of the present embodiment, as a sintered body, a silicon carbide forming raw material composed of silicon nitride powder and a carbonaceous material and having a silicon to carbon molar ratio of 0.5 to 1.5, and an aggregate Used are a product produced through a molding step of molding a mixed raw material containing silicon carbide powder as a base and a firing step of firing the molded body obtained in the molding step in a non-oxidizing atmosphere at 1800 to 2300 ° C.

より詳細に説明すると、本実施形態の成形工程では、単一の方向に延びて列設された隔壁により区画された複数のセルを備えるハニカム構造の成形体を成形する。具体的には、窒化珪素粉末と炭素質物質とからなる炭化珪素生成原料、及び、骨材としての炭化珪素粉末の混合原料に、メチルセルロース等の有機バインダー等の添加剤を添加し、水と混合・混錬して混錬物とし、これを押出成形することにより、ハニカム構造の成形体を得る。なお、本実施形態では、炭素質物質として平均粒子径(直径)が10μm〜50μmのものを使用する。   More specifically, in the forming step of the present embodiment, a formed body having a honeycomb structure including a plurality of cells extending in a single direction and partitioned by partition walls is formed. Specifically, an additive such as an organic binder such as methylcellulose is added to a silicon carbide production raw material composed of silicon nitride powder and a carbonaceous material, and a mixed raw material of silicon carbide powder as an aggregate, and mixed with water. -A kneaded product is obtained by kneading and extrusion molding to obtain a honeycomb structured product. In the present embodiment, a carbonaceous material having an average particle diameter (diameter) of 10 μm to 50 μm is used.

この成形工程の後に、成形体を乾燥する乾燥工程を行ってもよい。このような乾燥工程は、調温調湿槽内での送風乾燥、外部加熱乾燥、マイクロ波照射による内部加熱乾燥等により行うことができる。なお、導電性炭化珪素質多孔体を、DPFの基体として使用する場合は、ハニカム構造の成形体について、一方向に開放したセルと他方向に開放したセルとが交互となるようにセルの一端を封止する封止工程を設ける。この封止工程は、成形工程と乾燥工程との間、或いは乾燥工程の後に設けることができる。   You may perform the drying process which dries a molded object after this shaping | molding process. Such a drying process can be performed by air drying in a temperature-controlled humidity control tank, external heating drying, internal heating drying by microwave irradiation, or the like. When the conductive silicon carbide based porous material is used as the DPF substrate, one end of the cell is formed so that the cells opened in one direction and the cells opened in the other direction are alternately arranged in the honeycomb structure formed body. A sealing step for sealing is provided. This sealing step can be provided between the molding step and the drying step or after the drying step.

焼成工程では、加熱炉を非酸化雰囲気として、成形体に熱衝撃を与えない速度で昇温し、1800〜2300℃の所定の焼成温度で一定時間保持する。焼成時間は、成形体のサイズにもよるが、例えば、10分〜3時間とすることができる。この焼成工程において、珪素源の窒化珪素と炭素源の炭素質物質とが反応して炭化珪素が生成し、骨材としての炭化珪素を取り囲むように反応焼結する。   In the firing step, the heating furnace is set to a non-oxidizing atmosphere, the temperature is raised at a speed that does not give a thermal shock to the molded body, and the temperature is maintained at a predetermined firing temperature of 1800 to 2300 ° C. for a certain time. The firing time may be, for example, 10 minutes to 3 hours, although it depends on the size of the molded body. In this firing step, silicon nitride as a silicon source and a carbonaceous material as a carbon source react to form silicon carbide, and reactive sintering is performed so as to surround the silicon carbide as an aggregate.

これと同時に、炭化珪素の生成反応に使用された炭素質物質の消失跡に、気孔が形成される。そして、更に、ネック形成できるほどに炭化珪素の粒子が成長し、粒子間に形成されたネックが更に成長する。ここで、本実施形態では平均粒子径が10μm〜50μmと大きい炭素質物質を使用しているため、その消失跡に形成された気孔は、炭化珪素の粒子成長及びネック成長によっても塞がることがなく、フィルタ基体として適した大きさの気孔が形成される。   At the same time, pores are formed in the disappearance trace of the carbonaceous material used in the reaction for generating silicon carbide. Further, silicon carbide particles grow to such an extent that necks can be formed, and necks formed between the particles further grow. Here, in this embodiment, since a carbonaceous substance having a large average particle diameter of 10 μm to 50 μm is used, the pores formed in the disappearance trace are not blocked by the silicon carbide particle growth and neck growth. A pore having a size suitable as a filter substrate is formed.

また、焼成工程では、炭化珪素の反応焼結、及び気孔の形成と同時に、窒化珪素の分解により生じた窒素が炭化珪素中に固溶し、純度が高ければ絶縁体である炭化珪素がn型半導体となる。このとき、窒素は、骨材としての炭化珪素より、反応焼結によってその周囲に新たに生成された炭化珪素、及び、炭化珪素の粒子間に成長するネック部分に、主に固溶すると考えられる。所定の焼成温度で所定時間保持した後は、熱衝撃を与えない速度で降温する。   Further, in the firing step, simultaneously with reactive sintering of silicon carbide and formation of pores, nitrogen generated by decomposition of silicon nitride is dissolved in silicon carbide, and if the purity is high, silicon carbide which is an insulator is n-type. Become a semiconductor. At this time, it is considered that nitrogen is mainly solid-solved from silicon carbide as an aggregate into silicon carbide newly generated around the silicon carbide by reactive sintering and a neck portion that grows between silicon carbide particles. . After holding at a predetermined firing temperature for a predetermined time, the temperature is lowered at a speed that does not give a thermal shock.

酸化処理工程は、焼成工程を経て得られた焼結体について行う。この酸化処理工程では、空気雰囲気など酸素ガスを含む酸化雰囲気とした加熱炉に焼結体を収容し、所定の加熱温度で所定の加熱時間にわたり保持する。ここで、加熱温度及び加熱時間は、導電性炭化珪素質多孔体の用途やサイズ等により要請される比抵抗値に応じて調整するが、詳細は後述する。この酸化処理工程において、炭化珪素の粒子の表面では、以下のように炭化珪素が酸素と反応して、二酸化珪素の層が生成する。その結果、導電性の炭化珪素における導電経路が二酸化珪素層によって制限され、比抵抗値が増加すると考えられる。
SiC + 2O → SiO + CO
An oxidation treatment process is performed about the sintered compact obtained through the baking process. In this oxidation treatment step, the sintered body is accommodated in a heating furnace having an oxidizing atmosphere containing oxygen gas such as an air atmosphere and held at a predetermined heating temperature for a predetermined heating time. Here, the heating temperature and the heating time are adjusted according to the specific resistance value required depending on the use, size, and the like of the conductive silicon carbide based porous material, and details will be described later. In this oxidation treatment step, on the surface of the silicon carbide particles, silicon carbide reacts with oxygen as follows to form a silicon dioxide layer. As a result, it is considered that the conductive path in the conductive silicon carbide is limited by the silicon dioxide layer, and the specific resistance value increases.
SiC + 2O 2 → SiO 2 + CO 2

なお、酸化処理工程の前に、焼成工程において炭化珪素の生成反応に使用されずに残留するおそれのある炭素質物質を燃焼除去する目的で、脱炭工程を設けることができる。この脱炭工程は、酸化雰囲気下において650℃〜850℃で1時間〜3時間程度保持することにより行うことができる。この程度の温度及び保持時間であれば、脱炭工程では炭化珪素の酸化はほとんど生じない。   In addition, before the oxidation treatment step, a decarburization step can be provided for the purpose of burning and removing carbonaceous substances that may remain without being used in the silicon carbide formation reaction in the firing step. This decarburization process can be performed by holding at 650 ° C. to 850 ° C. for about 1 hour to 3 hours in an oxidizing atmosphere. If the temperature and the holding time are about this level, silicon carbide is hardly oxidized in the decarburization step.

次に、具体的な実施例について説明する。表1に示す組成の混合原料に、バインダーとしてメチルセルロース、潤滑剤としてオレイン酸、ポリオキシアルキレン系化合物(日油製、ユニルーブ(登録商標))を添加し、水を加えて混練して混練物を得た。この混練物を押出成形し、サイズ35mm×35mm×高さ150mm、セル密度300cpsi、隔壁の壁厚0.25mmのハニカム構造の成形体を作製した(成形工程)。   Next, specific examples will be described. To the mixed raw material having the composition shown in Table 1, methyl cellulose as a binder, oleic acid and a polyoxyalkylene compound (manufactured by NOF Corporation, Unilube (registered trademark)) as a lubricant are added, and kneaded by adding water and kneading. Obtained. This kneaded product was extrusion-molded to produce a formed body having a honeycomb structure having a size of 35 mm × 35 mm × height of 150 mm, a cell density of 300 cpsi, and a partition wall thickness of 0.25 mm (molding step).

Figure 2012051748
Figure 2012051748

得られた成形体を乾燥させた後(乾燥工程)、非酸化雰囲気下で2100℃,10分間焼成することにより反応焼結させ、ハニカム構造の焼結体(導電性を有する多孔質の炭化珪素質セラミックスの焼結体)を得た(焼成工程)。その後、空気雰囲気下において850℃で1時間加熱し、未反応分として残存するおそれのある炭素質物質の除去を行った(脱炭工程)。   After drying the obtained molded body (drying step), it was subjected to reactive sintering by firing at 2100 ° C. for 10 minutes in a non-oxidizing atmosphere to obtain a honeycomb-structured sintered body (porous silicon carbide having conductivity) (Sintered ceramic) was obtained (firing step). Then, it heated at 850 degreeC in the air atmosphere for 1 hour, and the carbonaceous substance which may remain | survive as an unreacted part was removed (decarburization process).

上記の工程を経た焼結体の試料1〜試料14について、表2に示す加熱温度及び加熱時間で、空気雰囲気下で酸化処理を行った(酸化処理工程)。各試料について酸化処理の前後で質量を測定し、酸化処理により増加した質量((酸化処理後の質量)−(酸化処理前の質量))から、酸化処理により増加した酸素濃度(質量%)を以下のように算出した。
酸化処理により増加した酸素濃度(質量%)=(酸化処理により増加した酸素の質量)/(酸化処理後の焼結体の質量)×100
ここで、(酸化処理により増加した酸素の質量)=(酸化処理により増加した焼結体の質量)×(酸素の分子量/((二酸化珪素の分子量)−(炭化珪素の分子量))
About the sintered compact sample 1-sample 14 which passed through said process, the oxidation process was performed in the air atmosphere with the heating temperature and the heating time which are shown in Table 2 (oxidation process process). For each sample, the mass was measured before and after the oxidation treatment. From the mass increased by the oxidation treatment ((mass after the oxidation treatment) − (mass before the oxidation treatment)), the oxygen concentration (mass%) increased by the oxidation treatment was calculated. Calculation was performed as follows.
Oxygen concentration increased by oxidation treatment (mass%) = (mass of oxygen increased by oxidation treatment) / (mass of sintered body after oxidation treatment) × 100
Here, (mass of oxygen increased by oxidation treatment) = (mass of sintered body increased by oxidation treatment) × (molecular weight of oxygen / ((molecular weight of silicon dioxide) − (molecular weight of silicon carbide))

また、酸化処理を行っていない焼結体における酸素濃度を、JIS R1616の酸素定量方法(不活性ガス融解−赤外線吸収法)に則り測定したところ、0.3質量%であった。そこで、酸化処理後の焼結体における酸素濃度(質量%)を以下のように算出した。
酸化処理後の焼結体における酸素濃度(質量%)=((酸化処理により増加した酸素の質量)+(酸化処理前の焼結体の質量)×0.3/100)/(酸化処理後の焼結体の質量)×100
Further, the oxygen concentration in the sintered body not subjected to the oxidation treatment was measured in accordance with the oxygen determination method (inert gas melting-infrared absorption method) of JIS R1616 and found to be 0.3% by mass. Therefore, the oxygen concentration (mass%) in the sintered body after the oxidation treatment was calculated as follows.
Oxygen concentration (mass%) in the sintered body after oxidation treatment = ((mass of oxygen increased by oxidation treatment) + (mass of sintered body before oxidation treatment) × 0.3 / 100) / (after oxidation treatment) Mass of sintered body) × 100

更に、酸化処理後の各試料の両端に、長軸方向に10cmの距離をあけて1cm幅に銀ペーストを焼き付けて電極とし、二つの電極間の電気抵抗をテスターで測定して、室温における比抵抗値を求めた。   Further, a silver paste was baked to a width of 1 cm at a distance of 10 cm in the major axis direction at both ends of each sample after the oxidation treatment to form an electrode, and the electrical resistance between the two electrodes was measured with a tester to compare the ratio at room temperature The resistance value was determined.

各試料について、酸化処理前後の焼結体の質量、酸化処理により増加した酸素濃度(質量%)、酸化処理後の焼結体における酸素濃度(質量%)、及び、室温における比抵抗値(Ω・cm)を表2にまとめて示す。   For each sample, the mass of the sintered body before and after the oxidation treatment, the oxygen concentration (mass%) increased by the oxidation treatment, the oxygen concentration (mass%) in the sintered body after the oxidation treatment, and the resistivity at room temperature (Ω) -Cm) is summarized in Table 2.

Figure 2012051748
Figure 2012051748

上記の結果をもとに、酸化処理工程における加熱温度に対して、酸化処理により増加した酸素濃度(質量%)をプロットしたグラフを図1に示す。なお、図1では、第二Y軸を、酸化処理後の焼結体における酸素濃度(質量%)としている。以下では、酸化処理により増加した酸素濃度(質量%)、及び、酸化処理後の焼結体における酸素濃度(質量%)を区別する必要がない場合は、単に「酸素濃度」と称することがある。また、酸化処理後の焼結体が、本発明の「導電性炭化珪素質多孔体」に相当する。   Based on the above results, a graph in which the oxygen concentration (mass%) increased by the oxidation treatment is plotted with respect to the heating temperature in the oxidation treatment step is shown in FIG. In FIG. 1, the second Y axis is the oxygen concentration (mass%) in the sintered body after the oxidation treatment. Below, when it is not necessary to distinguish the oxygen concentration (mass%) increased by the oxidation treatment and the oxygen concentration (mass%) in the sintered body after the oxidation treatment, they may be simply referred to as “oxygen concentration”. . Further, the sintered body after the oxidation treatment corresponds to the “conductive silicon carbide based porous material” of the present invention.

図1から明らかなように、加熱時間が5時間及び40時間の何れにおいても、加熱温度が高いほど酸素濃度は増加し、その増加曲線は、滑らかに湾曲し下向きに凸となる曲線を描いた。また、加熱時間が40時間の場合は、加熱温度が同一であっても加熱時間が5時間の場合より酸素濃度が高く、その差は加熱温度が高くなるほど大きくなった。また、これらの結果から、5時間と40時間との間の加熱時間の場合は、加熱時間が5時間の曲線と加熱時間が40時間の曲線との間で、同様な曲線を描くように加熱温度に伴って酸素濃度が増加すると考えられた。   As is apparent from FIG. 1, the oxygen concentration increases as the heating temperature is higher at both the heating time of 5 hours and 40 hours, and the increase curve draws a curve that curves smoothly and convex downward. . In addition, when the heating time was 40 hours, the oxygen concentration was higher than when the heating time was 5 hours even when the heating temperature was the same, and the difference became larger as the heating temperature was higher. Also, from these results, in the case of a heating time between 5 hours and 40 hours, heating is performed so that a similar curve is drawn between the curve with a heating time of 5 hours and the curve with a heating time of 40 hours. It was thought that oxygen concentration increased with temperature.

そして、酸化処理工程において加熱温度を900℃〜1300℃、加熱時間を5時間〜40時間の間で変化させることにより、酸素濃度を0.1質量%〜4.5質量%の範囲で増加させることができ、酸化処理後の焼結体における酸素濃度として0.4質量%〜4.8質量%の範囲で酸素濃度を調整することができる。この場合、加熱時間を一定として加熱温度を変化させることにより、或いは、加熱温度を一定として加熱時間を変化させることにより、また或いは、加熱時間と加熱温度の双方を変化させることにより、酸素濃度を上記範囲内の所望の値に調整可能であると考えられた。   In the oxidation treatment step, the oxygen concentration is increased in the range of 0.1% by mass to 4.5% by mass by changing the heating temperature from 900 ° C. to 1300 ° C. and the heating time from 5 hours to 40 hours. The oxygen concentration in the sintered body after the oxidation treatment can be adjusted in the range of 0.4% by mass to 4.8% by mass. In this case, the oxygen concentration can be changed by changing the heating temperature with a constant heating time, by changing the heating time with a constant heating temperature, or by changing both the heating time and the heating temperature. It was thought that it could be adjusted to a desired value within the above range.

次に、酸化処理により増加した酸素濃度(質量%)に対して、室温における比抵抗値(Ω・cm)をプロットしたグラフを図2に示す。なお、図2では、第二X軸を、酸化処理後の焼結体における酸素濃度(質量%)としている。図2から明らかなように、室温における比抵抗値は、酸素濃度の増加に伴って直線を描くように増加した。そして、上記の酸素濃度の範囲で比抵抗値は5Ω・cm〜20Ω・cmの範囲であり、通電により発熱させるフィルタ基体等に使用する導電性炭化珪素質多孔体として実用的な値であった。   Next, FIG. 2 shows a graph in which the specific resistance value (Ω · cm) at room temperature is plotted against the oxygen concentration (mass%) increased by the oxidation treatment. In FIG. 2, the second X axis is the oxygen concentration (mass%) in the sintered body after the oxidation treatment. As is clear from FIG. 2, the specific resistance value at room temperature increased in a straight line as the oxygen concentration increased. The specific resistance value in the above oxygen concentration range is in the range of 5 Ω · cm to 20 Ω · cm, which is a practical value for a conductive silicon carbide based porous material used for a filter base that generates heat when energized. .

以上の結果より、焼結体における酸素濃度を変化させることにより、室温における比抵抗値を酸素濃度の一次関数として変化させることができ、焼結体における酸素濃度は、酸化処理工程における加熱温度及び/または加熱時間によって調整することができる。すなわち、酸化処理工程の条件設定によって、酸素濃度を0.1質量%〜4.5質量%の範囲で増加させることにより、導電性炭化珪素質多孔体の比抵抗値を、5Ω・cm〜20Ω・cmという広い範囲内で制御することができる。   From the above results, by changing the oxygen concentration in the sintered body, the specific resistance value at room temperature can be changed as a linear function of the oxygen concentration. The oxygen concentration in the sintered body is determined by the heating temperature and the oxidation treatment step. / Or can be adjusted by the heating time. That is, the specific resistance value of the conductive silicon carbide based porous material is increased from 5Ω · cm to 20Ω by increasing the oxygen concentration in the range of 0.1% by mass to 4.5% by mass by setting the conditions for the oxidation treatment step. -It can be controlled within a wide range of cm.

次に、酸素濃度の異なる試料5,13,14について、昇温に伴う比抵抗値の変化を測定した結果を図3に示す。測定は、上記の二つの電極を使用して各試料に通電し、熱電対の指示温度が所定の温度に達した時点で、電圧及び電流を測定することにより行った。図3から、何れの試料においても、温度上昇に伴って滑らかに湾曲し下向きに凸となる曲線を描くように、比抵抗値は低下した。また、比抵抗値が減少する度合いは酸化濃度が高いほど大きいものであった。すなわち、各試料間の比抵抗値の差は温度上昇に伴って小さくなるが、温度が400℃近くに達するまでは各試料間の比抵抗値に差がある。一般的に、導電性炭化珪素質多孔体を揮発性有機化合物(VOC)分解装置の発熱体、或いは、加熱により触媒を活性化させる触媒担体として使用する場合は、200〜300℃まで加熱させる。従って、酸化処理によって二酸化珪素層を形成させることにより、約400℃に上昇するまで比抵抗値が異なる種々の導電性炭化珪素質多孔体を製造できる本実施形態の製造方法は、かかる用途の導電性炭化珪素質多孔体の製造方法として実用的である。   Next, FIG. 3 shows the result of measuring the change in specific resistance value with the temperature rise for samples 5, 13, and 14 having different oxygen concentrations. The measurement was performed by energizing each sample using the two electrodes described above, and measuring the voltage and current when the indicated temperature of the thermocouple reached a predetermined temperature. From FIG. 3, the specific resistance value decreased for all the samples so as to draw a curve that smoothly curved and convex downward with increasing temperature. Further, the degree of decrease in the specific resistance value was greater as the oxidation concentration was higher. That is, the difference in specific resistance value between samples decreases with increasing temperature, but there is a difference in specific resistance value between samples until the temperature reaches nearly 400 ° C. In general, when the conductive silicon carbide based porous material is used as a heating element of a volatile organic compound (VOC) decomposition apparatus or a catalyst carrier that activates a catalyst by heating, the porous material is heated to 200 to 300 ° C. Therefore, by forming the silicon dioxide layer by oxidation treatment, various conductive silicon carbide based porous bodies having different specific resistance values up to about 400 ° C. can be manufactured by the manufacturing method of this embodiment. This is practical as a method for producing a porous silicon carbide porous body.

また、導電性炭化珪素質多孔体をDPFの基体として使用する場合、堆積した粒子状物質を燃焼除去する再生処理に際しては、通常は500〜700℃まで加熱する必要があるが、触媒を担持させれば加熱温度を400〜500℃程度まで低下させることが可能である。従って、酸化処理によって二酸化珪素層を形成させることにより、約400℃に上昇するまで比抵抗値が異なる種々の導電性炭化珪素質多孔体を製造できる本実施形態の製造方法は、自己発熱型のDPFの基体としての導電性炭化珪素質多孔体の製造方法としても有用である。   When a conductive silicon carbide based porous material is used as a DPF substrate, it is usually necessary to heat to 500 to 700 ° C. during the regeneration process for burning and removing the deposited particulate matter. If it is possible, the heating temperature can be lowered to about 400-500 ° C. Therefore, the manufacturing method of this embodiment, which can manufacture various conductive silicon carbide based porous bodies having different specific resistance values until the temperature rises to about 400 ° C. by forming a silicon dioxide layer by oxidation treatment, is a self-heating type. It is also useful as a method for producing a conductive silicon carbide based porous material as a DPF substrate.

具体的には、導電性の制御された導電性炭化珪素質多孔体は、次のように製造することができる。まず、上記で図3を用いて説明した測定結果において、酸素濃度の異なる試料それぞれについて、温度上昇に伴う比抵抗値の変化を示す曲線の近似式を求める。求めた近似式を図3のグラフ内に示す。この近似式を用いて、ある温度のときの比抵抗値を計算することができる。そして、酸素濃度の異なる試料について、同一温度のときの比抵抗値を算出することにより、図4に示すように、ある温度のときの酸素濃度に対する比抵抗値の関係を知ることができる。   Specifically, the conductive silicon carbide based porous body whose conductivity is controlled can be manufactured as follows. First, in the measurement results described above with reference to FIG. 3, an approximate expression of a curve indicating a change in specific resistance value accompanying a temperature rise is obtained for each sample having a different oxygen concentration. The obtained approximate expression is shown in the graph of FIG. Using this approximate expression, the specific resistance value at a certain temperature can be calculated. Then, by calculating the specific resistance value at the same temperature for samples having different oxygen concentrations, the relationship of the specific resistance value to the oxygen concentration at a certain temperature can be known as shown in FIG.

そこで、例えば、温度100℃のときの比抵抗値が0.3Ω・cmである導電性炭化珪素質多孔体を製造したい場合は、図4に一点鎖線で示したように、酸化処理によって酸化濃度を2.5質量%増加させ、酸化処理後の焼結体の酸素濃度を2.8質量%とすればよいことが分かる。そして、そのために必要な酸化処理条件は、図1で例示した酸化処理工程における条件(加熱温度、加熱時間)と酸素濃度との関係を示すグラフから読み取ることができる。すなわち、図1から、一点鎖線で示すように、酸化処理によって酸化濃度を2.5質量%増加させて酸化処理後の焼結体の酸素濃度を2.8質量%とするには、加熱時間が40時間の場合は加熱温度を1100℃とすればよく、加熱時間が5時間の場合は加熱温度を1300℃とすればよいことが分かる。   Therefore, for example, when it is desired to manufacture a conductive silicon carbide based porous material having a specific resistance value of 0.3 Ω · cm at a temperature of 100 ° C., as shown by a one-dot chain line in FIG. Is increased by 2.5 mass%, and the oxygen concentration of the sintered body after the oxidation treatment is 2.8 mass%. And the oxidation process conditions required for that can be read from the graph which shows the relationship between the conditions (heating temperature, heating time) in the oxidation process illustrated in FIG. 1, and oxygen concentration. That is, as shown by a one-dot chain line from FIG. 1, the heating time is required to increase the oxidation concentration by 2.5% by mass by the oxidation treatment so that the oxygen concentration of the sintered body after the oxidation treatment is 2.8% by mass. When the heating time is 40 hours, the heating temperature may be 1100 ° C., and when the heating time is 5 hours, the heating temperature may be 1300 ° C.

なお、一般的に抵抗発熱させるセラミックス発熱体は、抵抗値が初期値の4倍に達したときが使用限界であると言われている。炭化珪素の場合は、例示した用途における使用温度範囲では、上述したように温度の上昇に伴って電気抵抗が減少するNTC特性を有するため、より高い抵抗値まで使用可能である。しかしながら、使用に伴って酸化反応は徐々に粒子内部まで進行して、比抵抗値は増加する。そのため、導電性炭化珪素質多孔体の使用期間の長期化を主眼とする場合は、酸化処理工程における酸化の程度をある程度に留めておくことが望ましく、例えば、室温における比抵抗値の初期値が、酸化処理を行わない焼結体の室温における比抵抗値の4倍を超えない範囲とする。本実施例の試料と酸化処理を行わない以外は同一の方法で製造された焼結体の室温における比抵抗値は、平均値で約4Ω・cmであった。従って、導電性炭化珪素質多孔体の使用期間の長期化を主眼とする場合は、酸化処理後の焼結体の室温における比抵抗値を16Ω・cmを超えない範囲とするのが望ましい。そして、比抵抗値をこの範囲とするためには、酸化処理によって増加させる酸素濃度を3.4質量%を超えない範囲とし、酸化処理後の焼結体における酸素濃度を3.7質量%を超えない範囲とすればよいことを、図2(二点鎖線)から読み取ることができる。   In general, it is said that a ceramic heating element that generates heat by resistance has a use limit when the resistance value reaches four times the initial value. In the case of silicon carbide, the use temperature range in the exemplified application has NTC characteristics in which the electrical resistance decreases as the temperature rises as described above, and thus can be used up to a higher resistance value. However, with use, the oxidation reaction gradually proceeds to the inside of the particles, and the specific resistance value increases. Therefore, when the main purpose is to extend the period of use of the conductive silicon carbide based porous material, it is desirable to keep the degree of oxidation in the oxidation treatment process to some extent. For example, the initial value of the specific resistance value at room temperature is The sintered body not subjected to the oxidation treatment is in a range not exceeding 4 times the specific resistance value at room temperature. The specific resistance value at room temperature of the sintered body produced by the same method except that the oxidation treatment of the sample of this example was not performed was about 4 Ω · cm on average. Accordingly, when the main purpose is to extend the period of use of the conductive silicon carbide based porous material, it is desirable that the specific resistance value at room temperature of the sintered body after the oxidation treatment is within a range not exceeding 16 Ω · cm. In order to set the specific resistance value within this range, the oxygen concentration increased by the oxidation treatment is set to a range not exceeding 3.4 mass%, and the oxygen concentration in the sintered body after the oxidation treatment is set to 3.7 mass%. It can be read from FIG. 2 (two-dot chain line) that the range should not be exceeded.

試料1〜4,7〜10,12について、三点曲げ強度を測定した結果を図5に示す。ここで、三点曲げ強度の測定には、上述の焼結体(サイズ35mm×35mm×高さ150mm、セル密度300cpsi、隔壁の壁厚0.25mmの成形体を2100℃,10分間焼成したもの)を、切断することなく一つの試験片として使用した。また、測定方法は、JIS R1601に準拠し、支点間距離10cm、クロスヘッドスピード1mm/minの条件下で、室温にて測定した。図5から分かるように、比抵抗値を制御する目的で酸素濃度を増加させることにより、三点曲げ強度が増加する効果を、付随的に得ることができる。   The results of measuring the three-point bending strength for Samples 1 to 4, 7 to 10 and 12 are shown in FIG. Here, for the measurement of the three-point bending strength, the above-mentioned sintered body (size 35 mm × 35 mm × height 150 mm, cell density 300 cpsi, partition wall thickness 0.25 mm molded body fired at 2100 ° C. for 10 minutes. ) Was used as one specimen without cutting. Moreover, the measuring method was based on JISR1601, and measured at room temperature on the conditions of the distance between fulcrums of 10 cm, and the crosshead speed of 1 mm / min. As can be seen from FIG. 5, the effect of increasing the three-point bending strength can be incidentally obtained by increasing the oxygen concentration for the purpose of controlling the specific resistance value.

次に、試料14(加熱温度1200℃,加熱時間40時間)について、走査型電子顕微鏡(日本電子株式会社製、JXA−840型)による観察(SEM観察)、及び、エネルギー分散型X線分析装置(日本電子株式会社製,JED−2200型)による元素分析(EDX分析)を行った結果を、酸化処理を行わない対照試料と対比して図6及び図7に示す。ここで、元素分析については、図6では酸素についての結果を、図7では珪素及び酸素についての結果を示す。   Next, with respect to the sample 14 (heating temperature 1200 ° C., heating time 40 hours), observation (SEM observation) with a scanning electron microscope (manufactured by JEOL Ltd., JXA-840 type), and energy dispersive X-ray analyzer The results of elemental analysis (EDX analysis) by JEOL Ltd. (JED-2200 type) are shown in FIGS. 6 and 7 in comparison with a control sample that is not subjected to oxidation treatment. Here, regarding elemental analysis, FIG. 6 shows the results for oxygen, and FIG. 7 shows the results for silicon and oxygen.

試料表面のSEM観察像及びEDX画像を、試料14(図6(a))と対照試料(図6(b))とで比較すると、試料14では粒子の形状に一致して酸素が分布しているのが明らかであるのに対し、対照試料のEDX画像では酸素元素の分布は見られない。このことより、酸化処理工程を経ることによって、二酸化珪素層が生成していることが分かる。   When the SEM observation image and EDX image of the sample surface are compared between the sample 14 (FIG. 6 (a)) and the control sample (FIG. 6 (b)), oxygen is distributed in the sample 14 in accordance with the particle shape. It is clear that there is no oxygen element distribution in the EDX image of the control sample. From this, it can be seen that the silicon dioxide layer is formed through the oxidation treatment step.

また、試料14の破断面について、SEM観察像及びEDX画像を図7に示す。図7より、破断面に表れる粒子の内部には酸素は存在せず、酸素は粒子の表面に沿ってのみ分布していることが明らかである。従って、酸化処理によって、二酸化珪素層は炭化珪素質粒子の表面に生成していることが確認された。   Further, an SEM observation image and an EDX image of the fracture surface of the sample 14 are shown in FIG. From FIG. 7, it is clear that oxygen does not exist inside the particles appearing on the fracture surface, and oxygen is distributed only along the surface of the particles. Therefore, it was confirmed that the silicon dioxide layer was formed on the surface of the silicon carbide particles by the oxidation treatment.

以上のように、本実施形態の製造方法によれば、酸化処理工程で炭化珪素質粒子の表面に二酸化珪素層を形成することにより、酸素濃度に応じて比抵抗値が異なる種々の導電性炭化珪素質多孔体を製造することができる。また、酸化処理工程における加熱温度を900℃〜1300℃の範囲で、加熱時間を5時間から40時間の範囲で変化させることにより、室温における比抵抗値を5〜20Ω・cmという広い範囲で制御することが可能である。   As described above, according to the manufacturing method of the present embodiment, by forming a silicon dioxide layer on the surface of the silicon carbide particles in the oxidation treatment step, various conductive carbonizations having different specific resistance values depending on the oxygen concentration. A siliceous porous body can be produced. In addition, by changing the heating temperature in the oxidation treatment step in the range of 900 ° C. to 1300 ° C. and the heating time in the range of 5 hours to 40 hours, the specific resistance value at room temperature is controlled in a wide range of 5 to 20 Ω · cm. Is possible.

また、本実施形態の製造方法では、酸化処理を施す焼結体として、窒化珪素を窒素源として炭素源と反応焼結させた炭化珪素質焼結体を使用している。そのため、もともと導電性を付与するために添加剤を添加する必要がなく、加えて、酸化処理工程を付加することによって、添加剤によらずに比抵抗値を変化させることができる。これにより、導電性炭化珪素質多孔体の製造工程が、全体として極めて簡易である。   Further, in the manufacturing method of the present embodiment, a silicon carbide based sintered body obtained by reactively sintering silicon nitride as a nitrogen source and a carbon source is used as the sintered body to be oxidized. Therefore, it is not necessary to add an additive in order to impart conductivity, and in addition, by adding an oxidation treatment step, the specific resistance value can be changed without depending on the additive. Thereby, the manufacturing process of the conductive silicon carbide based porous material is extremely simple as a whole.

以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。   The present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements can be made without departing from the scope of the present invention as described below. And design changes are possible.

例えば、本発明の製造方法により製造される導電性炭化珪素質多孔体は、ディーゼルエンジンから排出されるガスを浄化する自己発熱型のDPFの基体として使用できる他、その他の内燃機関や蒸気タービン等で排ガスの浄化に使用される自己発熱型フィルタの基体、加熱により触媒を活性化させる触媒担体、或いは、ハニカム構造とした場合のセルまたは連続気孔中を流通する流体を加熱する加熱装置の基体として、使用することが可能である。   For example, the conductive silicon carbide based porous material manufactured by the manufacturing method of the present invention can be used as a base of a self-heating DPF that purifies gas discharged from a diesel engine, as well as other internal combustion engines, steam turbines, etc. As a substrate of a self-heating filter used for purification of exhaust gas, a catalyst carrier that activates a catalyst by heating, or a substrate of a heating device that heats a fluid flowing in cells or continuous pores in the case of a honeycomb structure Can be used.

特許第3431670号公報Japanese Patent No. 3431670

Claims (3)

導電性を有する多孔質の炭化珪素質セラミックスの焼結体を、所定の加熱温度で所定の加熱時間にわたり酸化雰囲気下で加熱し、炭化珪素質粒子の表面に二酸化珪素層を形成させる酸化処理工程を具備し、
該酸化処理工程における加熱温度及び/または加熱時間を変化させることにより、比抵抗値の異なる導電性炭化珪素質多孔体を製造する
ことを特徴とする導電性炭化珪素質多孔体の製造方法。
An oxidation treatment step of forming a silicon dioxide layer on the surface of silicon carbide particles by heating a porous sintered body of porous silicon carbide ceramics having a conductivity at a predetermined heating temperature in an oxidizing atmosphere for a predetermined heating time. Comprising
A method for producing a conductive silicon carbide based porous material, comprising producing conductive silicon carbide based porous materials having different specific resistance values by changing a heating temperature and / or a heating time in the oxidation treatment step.
前記加熱温度は900℃〜1300℃で、前記加熱時間は5時間〜40時間であることを特徴とする請求項1に記載の導電性炭化珪素質多孔体の製造方法。   The method for producing a conductive silicon carbide based porous material according to claim 1, wherein the heating temperature is 900 ° C to 1300 ° C, and the heating time is 5 hours to 40 hours. 前記焼結体は、
窒化珪素粉末と炭素質物質とからなり珪素と炭素のモル比が0.5〜1.5である炭化珪素生成原料、及び、骨材としての炭化珪素粉末を含む混合原料を成形する成形工程と、
該成形工程で得られた成形体を、1800〜2300℃の非酸化雰囲気下で焼成する焼成工程とを経て製造される
ことを特徴とする請求項1または請求項2に記載の導電性炭化珪素質多孔体の製造方法。
The sintered body is
A forming step of forming a silicon carbide forming raw material comprising silicon nitride powder and a carbonaceous material and having a silicon to carbon molar ratio of 0.5 to 1.5, and a mixed raw material containing silicon carbide powder as an aggregate; ,
3. The conductive silicon carbide according to claim 1, wherein the conductive silicon carbide is produced through a firing step of firing the molded body obtained in the molding step in a non-oxidizing atmosphere at 1800 to 2300 ° C. 4. Of manufacturing porous material.
JP2010194674A 2010-08-31 2010-08-31 Method for producing conductive silicon carbide based porous material Active JP5415382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194674A JP5415382B2 (en) 2010-08-31 2010-08-31 Method for producing conductive silicon carbide based porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194674A JP5415382B2 (en) 2010-08-31 2010-08-31 Method for producing conductive silicon carbide based porous material

Publications (2)

Publication Number Publication Date
JP2012051748A true JP2012051748A (en) 2012-03-15
JP5415382B2 JP5415382B2 (en) 2014-02-12

Family

ID=45905551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194674A Active JP5415382B2 (en) 2010-08-31 2010-08-31 Method for producing conductive silicon carbide based porous material

Country Status (1)

Country Link
JP (1) JP5415382B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051749A (en) * 2010-08-31 2012-03-15 Tokyo Yogyo Co Ltd Porous quality silicon carbide ceramic sintered compact having conductivity
CN105155251A (en) * 2015-09-05 2015-12-16 苏州宏久航空防热材料科技有限公司 Preparation method for silicon carbide fiber with porous alumina coating
KR20180123841A (en) * 2017-05-10 2018-11-20 엘지전자 주식회사 A composition for carbon composite and a carbon heater manufactured by using the same
CN108934087A (en) * 2017-05-26 2018-12-04 Lg电子株式会社 Carbon heating body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971466A (en) * 1995-09-06 1997-03-18 Denki Kagaku Kogyo Kk Silicone-carbide honeycomb structure and its production
JPH10228973A (en) * 1997-02-14 1998-08-25 Tokai Konetsu Kogyo Co Ltd Method for adjusting resistance of porous silicon carbide heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971466A (en) * 1995-09-06 1997-03-18 Denki Kagaku Kogyo Kk Silicone-carbide honeycomb structure and its production
JPH10228973A (en) * 1997-02-14 1998-08-25 Tokai Konetsu Kogyo Co Ltd Method for adjusting resistance of porous silicon carbide heater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051749A (en) * 2010-08-31 2012-03-15 Tokyo Yogyo Co Ltd Porous quality silicon carbide ceramic sintered compact having conductivity
CN105155251A (en) * 2015-09-05 2015-12-16 苏州宏久航空防热材料科技有限公司 Preparation method for silicon carbide fiber with porous alumina coating
KR20180123841A (en) * 2017-05-10 2018-11-20 엘지전자 주식회사 A composition for carbon composite and a carbon heater manufactured by using the same
KR102137032B1 (en) * 2017-05-10 2020-07-23 엘지전자 주식회사 A composition for carbon composite and a carbon heater manufactured by using the same
US11097985B2 (en) 2017-05-10 2021-08-24 Lg Electronics Inc. Carbon composite composition and carbon heater manufactured using the same
CN108934087A (en) * 2017-05-26 2018-12-04 Lg电子株式会社 Carbon heating body
KR20180129446A (en) * 2017-05-26 2018-12-05 엘지전자 주식회사 A carbon heating element
EP3425997A3 (en) * 2017-05-26 2019-03-20 LG Electronics Inc. Carbon heating element and manufacturing method for the same
KR102004035B1 (en) * 2017-05-26 2019-07-25 엘지전자 주식회사 A carbon heating element
US11096249B2 (en) 2017-05-26 2021-08-17 Lg Electronics Inc. Carbon heating element and method for manufacturing a carbon heating element
CN108934087B (en) * 2017-05-26 2022-06-14 Lg电子株式会社 Carbon heating element

Also Published As

Publication number Publication date
JP5415382B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
US5733352A (en) Honeycomb structure, process for its production, its use and heating apparatus
CN101146742B (en) Silicon carbide-containing particle, method of manufacturing a silicon carbide-based sintered object, silicon carbide-based sintered object, and filter
JP5054460B2 (en) Method for manufacturing honeycomb structure and raw material composition for honeycomb fired body
US10350532B2 (en) Porous alpha-SiC-containing shaped body having a contiguous open pore structure
JP4246802B2 (en) Honeycomb structure, manufacturing method and use thereof, and heating device
JPWO2007015550A1 (en) Silicon carbide firing jig and method for producing porous silicon carbide body
WO2012105478A1 (en) Silicon carbide material, honeycomb structure and electric-heating type catalyst carrier
JP5415382B2 (en) Method for producing conductive silicon carbide based porous material
JP4980299B2 (en) Silicon carbide based porous material
JP4991636B2 (en) Method for producing silicon carbide based porous material
CN103140455B (en) Silicon carbide ceramic and honeycomb structure
JP5208900B2 (en) Process for producing conductive silicon carbide based porous material for diesel particulate filter
JP5539815B2 (en) Porous silicon carbide ceramic sintered body having conductivity
Das et al. Influence of clay content on microstructure and flexural strength of in situ reaction bonded porous SiC ceramics
JP2000016872A (en) Porous silicon carbide sintered body and its production
JP5350426B2 (en) Method for producing conductive ceramic sintered body
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP4111676B2 (en) Method for producing porous silicon carbide sintered body
JP2012072042A (en) Method for manufacturing conductive silicon carbide honeycomb structure
JP2012072041A (en) Conductive honeycomb structure
JP5643575B2 (en) Method for producing silicon carbide porous body
JP4041879B2 (en) Ceramic porous body and method for producing the same
JP4468541B2 (en) Method for producing recrystallized SiC
JP5281666B2 (en) Conductive ceramic sintered body
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250