JP2012036318A - Thermosetting resin - Google Patents

Thermosetting resin Download PDF

Info

Publication number
JP2012036318A
JP2012036318A JP2010179216A JP2010179216A JP2012036318A JP 2012036318 A JP2012036318 A JP 2012036318A JP 2010179216 A JP2010179216 A JP 2010179216A JP 2010179216 A JP2010179216 A JP 2010179216A JP 2012036318 A JP2012036318 A JP 2012036318A
Authority
JP
Japan
Prior art keywords
resin
thermosetting resin
polybenzoxazine
group
diamines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179216A
Other languages
Japanese (ja)
Inventor
Tomoaki Butani
友章 部谷
Shinichi Tsujimoto
慎一 辻本
Ryunosuke Murakami
竜之介 村上
Masaji Yoshimura
正司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2010179216A priority Critical patent/JP2012036318A/en
Publication of JP2012036318A publication Critical patent/JP2012036318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin having a benzoxazine structure in the main chain and having excellent storage stability when dissolved in a solvent.SOLUTION: The thermosetting resin comprises a polybenzoxazine resin having a benzoxazine ring structure expressed by formula (1) in the main chain, in which reactive terminals are partially or wholly sealed. In formula (1), Arrepresents an aromatic group; Rrepresents an organic group; and n represents an integer of 2 or more. Further, the polybenzoxazine resin is produced by using, as raw materials, phenols having two hydroxyphenyl groups, diamines and aldehydes.

Description

本発明は、ポリベンゾオキサジン樹脂の反応性末端を封止した、溶媒に溶解した際の保存安定性に優れた熱硬化性樹脂に関する。   The present invention relates to a thermosetting resin having a reactive end of a polybenzoxazine resin sealed and excellent in storage stability when dissolved in a solvent.

現在、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂等の熱硬化性樹脂は、その熱硬化性という性質に基づき、耐水性、耐薬品性、耐熱性、機械強度、信頼性などに優れ、それぞれの特性に合った分野へ応用されている。最近、電子製品や自動車、航空機、建築部材等において、高性能化、高機能化が急速に進んでいる。それに伴い、それらに使用される熱硬化性樹脂においても、今までよりも、種々の特性や安定性、信頼性などの要求が高いものとなっている。   Currently, thermosetting resins such as epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, urethane resin are based on their thermosetting properties, water resistance, chemical resistance, heat resistance, mechanical strength. It has excellent reliability and is applied to fields that match each characteristic. In recent years, electronic products, automobiles, aircraft, building materials, and the like have been rapidly increasing in performance and functionality. Along with that, thermosetting resins used for them have higher requirements such as various characteristics, stability and reliability than before.

近年、ベンゾオキサジン環を有する樹脂は開環反応性を有しているため硬化時の発生ガスが無く、硬化収縮性が低く、その硬化物は、従来のフェノール樹脂の硬化物に比較して、耐熱性、難燃性を保持しているため、ベンゾオキサジン環を有する樹脂の開発が進められている。さらに開環反応後の硬化物では、熱膨張性、吸水性、誘電特性等に優れていることから、今後、電子材料、接着剤、FRPのマトリクス樹脂、精密機械部品等への利用が期待されている。   In recent years, since the resin having a benzoxazine ring has ring-opening reactivity, there is no generated gas at the time of curing, the curing shrinkage is low, and the cured product is compared with a cured product of a conventional phenol resin, Development of a resin having a benzoxazine ring is underway because it retains heat resistance and flame retardancy. Furthermore, the cured product after the ring-opening reaction is excellent in thermal expansion, water absorption, dielectric properties, etc., and is expected to be used for electronic materials, adhesives, FRP matrix resins, precision machine parts, etc. in the future. ing.

代表的な低分子量体のベンゾオキサジン化合物として、一般式(I)〜(III)に示すような化合物が提案されている(例えば、特許文献1、特許文献2、及び特許文献3参照。)。しかし、これらの低分子量体のベンゾオキサジン化合物の開環反応による硬化物は、従来のフェノール樹脂と比較して、寸法安定性に優れるものの、フェノール樹脂の硬化物と同様に非常に脆いという欠点がある。   As typical low molecular weight benzoxazine compounds, compounds represented by the general formulas (I) to (III) have been proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3). However, the cured product obtained by the ring-opening reaction of these low molecular weight benzoxazine compounds is excellent in dimensional stability as compared with the conventional phenol resin, but has the disadvantage that it is very brittle like the cured product of the phenol resin. is there.

Figure 2012036318
Figure 2012036318

Figure 2012036318
Figure 2012036318

Figure 2012036318
Figure 2012036318

このため、ヒドロキシフェニル基を二つ有するフェノール類、ジアミン類及びホルムアルデヒド等から合成される主鎖にベンゾオキサジン環構造を有するポリベンゾオキサジン樹脂が提案されている(例えば、特許文献4及び非特許文献1参照。)。低分子量体のベンゾオキサジン化合物と比較して、これらのポリベンゾオキサジン樹脂は硬化物の脆さが改善され、さらに耐熱性、難燃性、熱膨張率、引張強度、フィルム成形能等に優れていることが示されている。   For this reason, polybenzoxazine resins having a benzoxazine ring structure in the main chain synthesized from phenols having two hydroxyphenyl groups, diamines and formaldehyde have been proposed (for example, Patent Document 4 and Non-Patent Documents). 1). Compared with low-molecular-weight benzoxazine compounds, these polybenzoxazine resins have improved brittleness of cured products, and are excellent in heat resistance, flame retardancy, thermal expansion coefficient, tensile strength, film moldability, etc. It has been shown that

特開昭49−47378号公報JP 49-47378 A 特開平2−69567号公報JP-A-2-69567 特開平4−227922号公報JP-A-4-227922 特開2003−64180号公報JP 2003-64180 A

「高分子 57巻 8月号(2008年)」、社団法人 高分子学会発行、2008年8月1日、p.625−628“Polymer 57, August (2008)”, published by The Society of Polymer Science, Japan, August 1, 2008, p. 625-628

しかしながら、特許文献4及び非特許文献1記載のポリベンゾオキサジン樹脂は、溶媒に溶解した際の保存安定性が悪く、早期にゲル化してしまう。特にトルエン、キシレン等の非極性溶媒やクロロホルム等のハロゲン系溶媒に溶解させた溶液状態での保存安定性が悪く、中でもクロロホルム等のハロゲン系溶媒が非常にゲル化の進行が早い。この理由としては、ポリベンゾオキサジン樹脂の末端が、反応性の高いアミノ基やアミノメチロール基、あるいはベンゾオキサジン環の開環促進効果があるフェノール性水酸基が存在することによるものと考えられる。
本発明は、溶媒に溶解した際の保存安定性に優れた、ベンゾオキサジン環構造を主鎖中に有する熱硬化性樹脂を提供することを目的とする。
However, the polybenzoxazine resins described in Patent Document 4 and Non-Patent Document 1 have poor storage stability when dissolved in a solvent, and gel early. In particular, the storage stability in a solution state dissolved in a nonpolar solvent such as toluene or xylene or a halogen-based solvent such as chloroform is poor, and in particular, a halogen-based solvent such as chloroform proceeds very rapidly. The reason for this is considered to be that the terminal of the polybenzoxazine resin is a highly reactive amino group, aminomethylol group, or phenolic hydroxyl group that has an effect of promoting the opening of the benzoxazine ring.
An object of the present invention is to provide a thermosetting resin having a benzoxazine ring structure in the main chain, which is excellent in storage stability when dissolved in a solvent.

本発明は、以下の構成を有する。
[1]下記式(1)で表わされるベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂の反応性末端の一部または全部を封止した熱硬化性樹脂。
(式(1)において、Arは芳香族基を示し、Rは有機基を示し、nは2以上の整数を示す。)
The present invention has the following configuration.
[1] A thermosetting resin in which a part or all of the reactive ends of a polybenzoxazine resin having a benzoxazine ring structure represented by the following formula (1) in the main chain is sealed.
(In Formula (1), Ar 1 represents an aromatic group, R 1 represents an organic group, and n represents an integer of 2 or more.)

Figure 2012036318
Figure 2012036318

[2]前記ポリベンゾオキサジン樹脂が、ヒドロキシフェニル基を二つ有するフェノール類と、ジアミン類と、アルデヒド類とを原料として用いて製造したことを特徴とする[1]に記載の熱硬化性樹脂。   [2] The thermosetting resin according to [1], wherein the polybenzoxazine resin is produced using phenols having two hydroxyphenyl groups, diamines, and aldehydes as raw materials. .

[3]前記反応性末端の封止方法が、アセチル化、ベンゾイル化、メチル化、ベンジル化、tert−ブチル化、p−メトキシベンジル化、トリメチルシリル化、トリエチルシリル化、メトキシメチル化、メトキシエトキシメチル化からなる群から選択される1種以上の反応である[1]または[2]記載の熱硬化性樹脂。   [3] The reactive terminal sealing method is acetylation, benzoylation, methylation, benzylation, tert-butylation, p-methoxybenzylation, trimethylsilylation, triethylsilylation, methoxymethylation, methoxyethoxymethyl. The thermosetting resin according to [1] or [2], which is one or more reactions selected from the group consisting of:

本発明によれば、ベンゾオキサジン環構造を主鎖中に有し、溶媒に溶解した際の保存安定性に優れた熱硬化性樹脂が提供される。   According to the present invention, there is provided a thermosetting resin having a benzoxazine ring structure in the main chain and having excellent storage stability when dissolved in a solvent.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る熱硬化性樹脂は、上記式(1)で表わされるベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂の反応性末端を封止することにより得られる。
まずは上記ポリベンゾオキサジン樹脂について説明する。
上記ポリベンゾオキサジン樹脂は、ヒドロキシフェニル基を二つ有するフェノール類とジアミン類とアルデヒド類とを有機溶媒中において反応させ、製造するものである。
The thermosetting resin according to the present invention is obtained by sealing the reactive terminal of a polybenzoxazine resin having a benzoxazine ring structure represented by the above formula (1) in the main chain.
First, the polybenzoxazine resin will be described.
The polybenzoxazine resin is produced by reacting phenols having two hydroxyphenyl groups, diamines and aldehydes in an organic solvent.

上記ヒドロキシフェニル基を二つ有するフェノール類は、下記式(2)で表され、ヒドロキシフェニル基の水酸基と結合する炭素に対して、少なくとも一方のオルソ位に置換可能な水素を有するものであれば、特に限定されない。(式(2)において、Arは芳香族基を示す。)
ヒドロキシフェニル基を二つ有するフェノール類としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールE、ビスフェノールZ、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ビフェノール、4,4’−ジヒドロキシベンゾフェノン、4,4’−[1,3−フェニレンビス(1−メチル−エチリデン)]ビスフェノール(三井化学ファイン製「ビスフェノールM」)、4,4’−[1,4−フェニレンビス(1−メチル−エチリデン)]ビスフェノール(三井化学ファイン製「ビスフェノールP」)等が挙げられ、中でも、ビスフェノールA、ビスフェノールFが安価であることから好ましい。これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
The phenols having two hydroxyphenyl groups are represented by the following formula (2) and have a hydrogen that can be substituted in at least one ortho position with respect to carbon bonded to the hydroxyl group of the hydroxyphenyl group. There is no particular limitation. (In Formula (2), Ar 1 represents an aromatic group.)
Examples of phenols having two hydroxyphenyl groups include bisphenol A, bisphenol F, bisphenol S, bisphenol E, bisphenol Z, 4,4′-dihydroxydiphenyl ether, 4,4′-biphenol, 4,4′-dihydroxybenzophenone, 4,4 ′-[1,3-phenylenebis (1-methyl-ethylidene)] bisphenol (“Bisphenol M” manufactured by Mitsui Chemicals Fine), 4,4 ′-[1,4-phenylenebis (1-methyl-ethylidene) )] Bisphenol (“Bisphenol P” manufactured by Mitsui Chemicals Fine) and the like, among which bisphenol A and bisphenol F are preferable because they are inexpensive. These may be used individually by 1 type and may be used in combination of 2 or more type.

Figure 2012036318
Figure 2012036318

上記ジアミン類は、下記式(3)で表され、芳香族ジアミン、脂肪族ジアミン、脂環式ジアミン等、両末端にアミノ基を有するものであれば、特に限定されない。(式(3)において、Rは有機基を示す。)
芳香族ジアミンとしては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、4,4’−[1,4−フェニレンビス(1−メチル−エチリデン)]ビスアニリン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン等が挙げられ、中でも、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテルが安価であることから好ましい。
また、脂肪族ジアミンとしては、エチレンジアミン、1,3−プロパンジアミン、1,4−ブタンジアミン、1,5−ペンタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,11−ウンデカンジアミン、1,12−ドデカンジアミン、1,18−オクタデカンジアミン等が挙げられ、中でも、エチレンジアミン、1,3−プロパンジアミン、1,6−ヘキサンジアミンが安価であることから好ましい。
さらに、その他のジアミン類として、脂環式ジアミン、不飽和や分岐した炭化水素基を持つジアミン等も使用することができる。脂環式ジアミンとしては、1,4−シクロヘキサンジアミン、1,3−シクロヘキサンジアミン、1,4−ビス(アミノメチル)シクロヘキサン、1,3−ビス(アミノメチル)シクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)、イソホロンジアミン、1,3−ジアミノアダマンタン、ノルボルナンジアミン等が挙げられる。
これらジアミン類は1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらのジアミン類の種類の組み合わせや配合割合等により、種々の物性を変化させることができる。例えば、芳香族ジアミンや脂環式ジアミンの配合割合を増加させると、硬化物の耐熱性を向上させることができ、脂環式ジアミンの配合割合を増加させると硬化物の透明性が向上し、直鎖脂肪族ジアミンの配合割合を増加させると硬化物の可とう性を向上させることができる。したがって、各種用途における要求特性に合わせたポリベンゾオキサジン樹脂を製造することが可能である。
The diamines are not particularly limited as long as they are represented by the following formula (3) and have amino groups at both ends, such as aromatic diamines, aliphatic diamines, and alicyclic diamines. (In Formula (3), R 1 represents an organic group.)
As aromatic diamines, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 4,4 ′-[1,4 -Phenylenebis (1-methyl-ethylidene)] bisaniline, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene and the like, among others, 4,4′- Diaminodiphenylmethane and 4,4′-diaminodiphenyl ether are preferred because they are inexpensive.
Examples of the aliphatic diamine include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,8-octanediamine, and 1,10-decane. Examples include diamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,18-octadecanediamine and the like. Among them, ethylenediamine, 1,3-propanediamine, and 1,6-hexanediamine are inexpensive. preferable.
Furthermore, as other diamines, alicyclic diamines, diamines having unsaturated or branched hydrocarbon groups, and the like can also be used. Examples of the alicyclic diamine include 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane, 4,4′-methylenebis ( Cyclohexylamine), 4,4′-methylenebis (2-methylcyclohexylamine), isophoronediamine, 1,3-diaminoadamantane, norbornanediamine, and the like.
These diamines may be used individually by 1 type, and may be used in combination of 2 or more type.
Various physical properties can be changed depending on the combination of the types of these diamines, the blending ratio, and the like. For example, increasing the blending ratio of aromatic diamine or alicyclic diamine can improve the heat resistance of the cured product, and increasing the blending ratio of alicyclic diamine improves the transparency of the cured product, Increasing the blending ratio of the linear aliphatic diamine can improve the flexibility of the cured product. Therefore, it is possible to produce a polybenzoxazine resin that meets the required characteristics in various applications.

Figure 2012036318
Figure 2012036318

上記アルデヒド類としては、特に限定されるものではないが、例えば、アセトアルデヒド、ホルムアルデヒド等が挙げられ、これらは1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。該ホルムアルデヒドとしては、パラホルムアルデヒドやホルムアルデヒドの水溶液が挙げられるが、合成のしやすさから、ホルムアルデヒドの水溶液が好ましい。   Although it does not specifically limit as said aldehydes, For example, acetaldehyde, formaldehyde, etc. are mentioned, These may be used individually by 1 type and may be used in combination of 2 or more type. . Examples of the formaldehyde include paraformaldehyde and an aqueous solution of formaldehyde, but an aqueous solution of formaldehyde is preferable because of ease of synthesis.

上記反応工程における、反応温度、反応時間については特に限定されないが、通常、有機溶媒中、25〜120℃の範囲で数十分〜数時間反応させ、有機溶媒除去工程を行うことによりポリベンゾオキサジン樹脂を得ることができる。
ベンゾオキサジン環の生成を向上させ、ベンゾオキサジン環の開環反応を抑制させるという観点から、反応温度は50〜90℃、反応時間は1〜10時間であることが好ましい。
The reaction temperature and reaction time in the above reaction step are not particularly limited. Usually, polybenzoxazine is reacted in an organic solvent in the range of 25 to 120 ° C. for several tens of minutes to several hours, and the organic solvent removal step is performed. A resin can be obtained.
From the viewpoint of improving the formation of the benzoxazine ring and suppressing the ring-opening reaction of the benzoxazine ring, the reaction temperature is preferably 50 to 90 ° C. and the reaction time is preferably 1 to 10 hours.

また、使用する有機溶媒についても特に限定されるものではないが、原料のヒドロキシフェニル基を二つ有するフェノール類やジアミン類および生成物である重合体に対して溶解性の良好なものが好ましい。このような溶媒として、例えば、クロロホルム、ジクロロメタン等のハロゲン系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、キシレン、トルエン等の芳香族系溶媒、等が挙げられる。   Further, the organic solvent to be used is not particularly limited, but those having good solubility with respect to the starting polymer such as phenols and diamines having two hydroxyphenyl groups and the product polymer are preferable. Examples of such a solvent include halogen solvents such as chloroform and dichloromethane, ether solvents such as tetrahydrofuran and dioxane, aromatic solvents such as xylene and toluene, and the like.

このようにして得られた上記ポリベンゾオキサジン樹脂の反応性末端の封止工程について説明する。   The step of sealing the reactive end of the polybenzoxazine resin thus obtained will be described.

反応性末端の封止工程において、反応溶液中でそのまま封止する方法と、反応溶液を一度メタノール等の貧溶媒に投入することにより、樹脂成分を析出させて、これをろ過、乾燥させることにより固液分離し、再溶解後に封止する方法のいずれかで実施される。固形化せず反応溶液中で封止させる場合は、ジヒドロキシフェニル基を二つ有するフェノール類等の未反応原料を除去するため、塩基性水溶液で洗浄しておくことが有効である。   In the reactive terminal sealing step, the method of sealing as it is in the reaction solution, and the reaction solution is once poured into a poor solvent such as methanol to precipitate the resin component, which is filtered and dried. It is carried out by any of the methods of solid-liquid separation and sealing after re-dissolution. When sealing in a reaction solution without solidifying, it is effective to wash with a basic aqueous solution in order to remove unreacted raw materials such as phenols having two dihydroxyphenyl groups.

塩基性水溶液で洗浄する場合の塩基性化合物としては、特に限定されるものではないが、例えば、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられる。   The basic compound for washing with a basic aqueous solution is not particularly limited, and examples thereof include sodium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, and calcium hydroxide.

反応性末端の封止方法としては、水酸基、アミノ基等の反応性の高い官能基を反応性の低い保護基に変換する方法を利用する。水酸基、アミノ基等の反応性の高い官能基を反応性の低い保護基に変換することができる方法であれば、特に限定されるものではないが、アセチル化、ベンゾイル化、メチル化、ベンジル化、tert−ブチル化、p−メトキシベンジル化、トリメチルシリル化、トリエチルシリル化、メトキシメチル化、メトキシエトキシメチル化が好ましい。これらの封止方法は1種を選択しても、2種以上を組み合わせて選択しても良い。   As a method for sealing the reactive terminal, a method of converting a highly reactive functional group such as a hydroxyl group or an amino group into a protecting group having a low reactivity is used. The method is not particularly limited as long as it is a method capable of converting a highly reactive functional group such as a hydroxyl group or an amino group into a protective group having low reactivity, but acetylation, benzoylation, methylation, benzylation, and the like. Tert-butylation, p-methoxybenzylation, trimethylsilylation, triethylsilylation, methoxymethylation, methoxyethoxymethylation are preferred. These sealing methods may be selected from one type or a combination of two or more types.

このようにして得られた本発明の熱硬化性樹脂は、反応性末端が封止されているため、溶液状態におけるゲル化を防止することができ、溶媒に溶解した際の保存安定性に優れる。
また、反応性末端を封止する割合は、特に範囲指定されるものではなく、反応性末端の一部が封止されるだけでも、未封止の樹脂と比較して溶媒に溶解した際の保存安定性は向上し、封止割合が高いほど溶媒に溶解した際の保存安定性は向上する。
Since the thermosetting resin of the present invention thus obtained has a reactive end sealed, gelation in a solution state can be prevented, and the storage stability when dissolved in a solvent is excellent. .
In addition, the ratio for sealing the reactive terminal is not particularly specified, and even when only a part of the reactive terminal is sealed, the ratio at the time of dissolving in the solvent compared to the unsealed resin The storage stability is improved, and the higher the sealing ratio, the better the storage stability when dissolved in a solvent.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited at all by these Examples.

(ポリベンゾオキサジン樹脂(A−1)の合成)
クロロホルム中に、ビスフェノールA34.2g(0.15mol)、4,4’−ジアミノジフェニルメタン19.8g(0.10mol)、1,6−ヘキサンジアミン5.8g(0.05mol)を投入し、50℃に昇温した。50%ホルムアルデヒド水溶液36.0g(0.60mol)を滴下した後、30分間攪拌した。その後、さらに昇温して還流下で7時間反応させた。反応終了後、反応溶液を多量のメタノールに投じて反応物を析出させた。その後、ろ別により反応物を分離して、メタノールで洗浄し、40℃で減圧乾燥することによりポリベンゾオキサジン樹脂(A−1)を得た。GPCによる重量平均分子量は、標準ポリスチレン換算で12,000であった。
(Synthesis of polybenzoxazine resin (A-1))
Into chloroform, 34.2 g (0.15 mol) of bisphenol A, 19.8 g (0.10 mol) of 4,4′-diaminodiphenylmethane, and 5.8 g (0.05 mol) of 1,6-hexanediamine were charged at 50 ° C. The temperature was raised to. After dropping 36.0 g (0.60 mol) of 50% aqueous formaldehyde solution, the mixture was stirred for 30 minutes. Thereafter, the temperature was further raised and the reaction was carried out under reflux for 7 hours. After completion of the reaction, the reaction solution was poured into a large amount of methanol to precipitate the reaction product. Thereafter, the reaction product was separated by filtration, washed with methanol, and dried under reduced pressure at 40 ° C. to obtain a polybenzoxazine resin (A-1). The weight average molecular weight by GPC was 12,000 in terms of standard polystyrene.

[実施例1]
(ポリベンゾオキサジン樹脂(A−1)のアセチル化)
ポリベンゾオキサジン樹脂(A−1)20gをピリジン70gに溶解させ、さらに無水酢酸10gを添加し、室温で12時間攪拌した。この溶液を多量のメタノールに投じて反応物を析出させた。その後、ろ別により反応物を分離して、メタノールで洗浄し、40℃で減圧乾燥することにより、熱硬化性樹脂を得た。得られた熱硬化性樹脂を13C−NMRにて測定したところ、169ppm付近にアセチル基由来のカルボニル炭素のピークが検出されたことから、アセチル化されていること確認した。
[Example 1]
(Acetylation of polybenzoxazine resin (A-1))
20 g of polybenzoxazine resin (A-1) was dissolved in 70 g of pyridine, 10 g of acetic anhydride was further added, and the mixture was stirred at room temperature for 12 hours. This solution was poured into a large amount of methanol to precipitate the reaction product. Thereafter, the reaction product was separated by filtration, washed with methanol, and dried under reduced pressure at 40 ° C. to obtain a thermosetting resin. When the obtained thermosetting resin was measured by 13C-NMR, it was confirmed that acetylation was observed because a peak of carbonyl carbon derived from an acetyl group was detected in the vicinity of 169 ppm.

[実施例2]
(ポリベンゾオキサジン樹脂(A−1)のベンジル化)
ポリベンゾオキサジン樹脂(A−1)20g、ベンジルクロライド10g、テトラブチルアンモニウムブロマイド0.2gをクロロホルム80gに溶解させた後、80℃に昇温する。この溶液に49%水酸化ナトリウム水溶液10gを滴下し、80℃で4時間攪拌した。次に、この溶液を10%塩酸水溶液で中和した後、多量のメタノールに投じて反応物を析出させた。その後、ろ別により反応物を分離して、メタノールで洗浄し、40℃で減圧乾燥することにより、熱硬化性樹脂を得た。得られた熱硬化性樹脂を13C−NMRにて測定したところ、50ppmおよび70ppm付近にベンジル基由来のメチレン炭素のピークが検出されたことから、樹脂がベンジル化されていること確認した。
[Example 2]
(Benzylation of polybenzoxazine resin (A-1))
After dissolving 20 g of polybenzoxazine resin (A-1), 10 g of benzyl chloride, and 0.2 g of tetrabutylammonium bromide in 80 g of chloroform, the temperature is raised to 80 ° C. To this solution, 10 g of a 49% aqueous sodium hydroxide solution was added dropwise and stirred at 80 ° C. for 4 hours. Next, this solution was neutralized with a 10% aqueous hydrochloric acid solution, and then poured into a large amount of methanol to precipitate a reaction product. Thereafter, the reaction product was separated by filtration, washed with methanol, and dried under reduced pressure at 40 ° C. to obtain a thermosetting resin. When the obtained thermosetting resin was measured by 13C-NMR, the peak of methylene carbon derived from a benzyl group was detected in the vicinity of 50 ppm and 70 ppm, and it was confirmed that the resin was benzylated.

[比較例1]
上記に示したポリベンゾオキサジン樹脂(A−1)を比較用の熱硬化性樹脂とした。
[Comparative Example 1]
The polybenzoxazine resin (A-1) shown above was used as a comparative thermosetting resin.

実施例1、実施例2および比較例1で得られた熱硬化性樹脂について、それぞれ溶媒に溶解した際の保存安定性の評価を行った。   The thermosetting resins obtained in Example 1, Example 2 and Comparative Example 1 were evaluated for storage stability when dissolved in a solvent.

[保存安定性の評価]
熱硬化性樹脂1gとクロロホルム3gを直径10mmの試験管に入れて溶解させ、25質量%の溶液を作製した。その後、試験管を密閉し、25℃の条件下にて静置した。1日ごとに試験管を逆さにして1分経過後、液がたれてこない状態になった日数を、表1に示した。
なお、日数が長いほど、溶媒に溶解した際の保存安定性が良好なことを示す。
[Evaluation of storage stability]
1 g of thermosetting resin and 3 g of chloroform were put into a test tube having a diameter of 10 mm and dissolved to prepare a 25% by mass solution. Thereafter, the test tube was sealed and allowed to stand at 25 ° C. Table 1 shows the number of days in which the test tube was inverted every day and the liquid did not sag after 1 minute.
The longer the number of days, the better the storage stability when dissolved in a solvent.

Figure 2012036318
Figure 2012036318

表1より、反応性末端が封止された本発明の熱硬化性樹脂である実施例1及び2は10日経過した状態でも流動性が有り、保存安定性が良い。
一方反応性末端が封止されていない比較例1では3日経過した時点で流動性が無くなり、保存安定性が悪い。
From Table 1, Examples 1 and 2, which are thermosetting resins of the present invention with the reactive ends sealed, have fluidity even after 10 days and have good storage stability.
On the other hand, in Comparative Example 1 in which the reactive terminal is not sealed, the fluidity is lost after 3 days and the storage stability is poor.

Claims (3)

下記式(1)で表わされるベンゾオキサジン環構造を主鎖中に有するポリベンゾオキサジン樹脂の反応性末端の一部または全部を封止した熱硬化性樹脂。
(式(1)において、Arは芳香族基を示し、Rは有機基を示し、nは2以上の整数を示す。)
Figure 2012036318
A thermosetting resin in which a part or all of reactive ends of a polybenzoxazine resin having a benzoxazine ring structure represented by the following formula (1) in the main chain is sealed.
(In Formula (1), Ar 1 represents an aromatic group, R 1 represents an organic group, and n represents an integer of 2 or more.)
Figure 2012036318
前記ポリベンゾオキサジン樹脂が、ヒドロキシフェニル基を二つ有するフェノール類と、ジアミン類と、アルデヒド類とを原料として用いて製造したことを特徴とする請求項1記載の熱硬化性樹脂。   The thermosetting resin according to claim 1, wherein the polybenzoxazine resin is produced using phenols having two hydroxyphenyl groups, diamines, and aldehydes as raw materials. 前記反応性末端の封止方法が、アセチル化、ベンゾイル化、メチル化、ベンジル化、tert−ブチル化、p−メトキシベンジル化、トリメチルシリル化、トリエチルシリル化、メトキシメチル化、メトキシエトキシメチル化からなる群から選択される1種以上の反応である、請求項1または2記載の熱硬化性樹脂。   The reactive terminal sealing method comprises acetylation, benzoylation, methylation, benzylation, tert-butylation, p-methoxybenzylation, trimethylsilylation, triethylsilylation, methoxymethylation, methoxyethoxymethylation The thermosetting resin according to claim 1, wherein the thermosetting resin is at least one reaction selected from the group.
JP2010179216A 2010-08-10 2010-08-10 Thermosetting resin Pending JP2012036318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179216A JP2012036318A (en) 2010-08-10 2010-08-10 Thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179216A JP2012036318A (en) 2010-08-10 2010-08-10 Thermosetting resin

Publications (1)

Publication Number Publication Date
JP2012036318A true JP2012036318A (en) 2012-02-23

Family

ID=45848654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179216A Pending JP2012036318A (en) 2010-08-10 2010-08-10 Thermosetting resin

Country Status (1)

Country Link
JP (1) JP2012036318A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183679A1 (en) * 2012-06-05 2013-12-12 日産化学工業株式会社 Adhesive composition or underfill composition
CN103951808A (en) * 2014-01-21 2014-07-30 哈尔滨理工大学 Water-soluble benzoxazine resin and preparation method thereof
WO2018105743A1 (en) 2016-12-09 2018-06-14 Jxtgエネルギー株式会社 Curing resin composition, cured product of, and curing method for, curing resin composition, and semiconductor device
KR20190003590A (en) 2016-04-28 2019-01-09 제이엑스티지 에네루기 가부시키가이샤 Composition for curing resin and its cured product
WO2019083004A1 (en) 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
WO2019083002A1 (en) 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
WO2019083003A1 (en) 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
KR20210102281A (en) 2018-12-10 2021-08-19 에네오스 가부시키가이샤 A composition for a cured resin, a cured product of the composition, a method for manufacturing the composition and the cured product, and a semiconductor device
US11560465B2 (en) 2017-03-31 2023-01-24 Eneos Corporation Composition for curable resin, cured product of said composition, method of producing said composition and said cured product, and semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013183679A1 (en) * 2012-06-05 2016-02-01 日産化学工業株式会社 Adhesive composition or underfill composition
WO2013183679A1 (en) * 2012-06-05 2013-12-12 日産化学工業株式会社 Adhesive composition or underfill composition
CN103951808A (en) * 2014-01-21 2014-07-30 哈尔滨理工大学 Water-soluble benzoxazine resin and preparation method thereof
KR20190003590A (en) 2016-04-28 2019-01-09 제이엑스티지 에네루기 가부시키가이샤 Composition for curing resin and its cured product
KR20190084348A (en) 2016-12-09 2019-07-16 제이엑스티지 에네루기 가부시키가이샤 A composition for a curing resin, a cured product of the composition for the cured resin, a curing method, and a semiconductor device
WO2018105743A1 (en) 2016-12-09 2018-06-14 Jxtgエネルギー株式会社 Curing resin composition, cured product of, and curing method for, curing resin composition, and semiconductor device
US11560465B2 (en) 2017-03-31 2023-01-24 Eneos Corporation Composition for curable resin, cured product of said composition, method of producing said composition and said cured product, and semiconductor device
WO2019083004A1 (en) 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
WO2019083002A1 (en) 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
WO2019083003A1 (en) 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
KR20200070275A (en) 2017-10-27 2020-06-17 제이엑스티지 에네루기 가부시키가이샤 Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
KR20200070276A (en) 2017-10-27 2020-06-17 제이엑스티지 에네루기 가부시키가이샤 Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
KR20200070274A (en) 2017-10-27 2020-06-17 제이엑스티지 에네루기 가부시키가이샤 Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
US11578166B2 (en) 2017-10-27 2023-02-14 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
US11584824B2 (en) 2017-10-27 2023-02-21 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
US11897998B2 (en) 2017-10-27 2024-02-13 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
KR20210102281A (en) 2018-12-10 2021-08-19 에네오스 가부시키가이샤 A composition for a cured resin, a cured product of the composition, a method for manufacturing the composition and the cured product, and a semiconductor device

Similar Documents

Publication Publication Date Title
JP2012036318A (en) Thermosetting resin
JP2008291070A (en) Manufacturing method for thermosetting resin, and thermosetting resin
US8026335B2 (en) Baked resin product and electronic device comprising the same
JPWO2014065152A1 (en) Epoxy resin composition, method for producing cured epoxy resin, and semiconductor device
JP2007154018A (en) Thermosetting resin, its manufacturing method, thermosetting composition containing the resin, molded product obtained therefrom and electronic equipment containing the molded product
Roig et al. Synthesis and characterization of new bio-based poly (acylhydrazone) vanillin vitrimers
JP5754662B2 (en) Self-extinguishing epoxy resin for epoxy molding compound and its production method, epoxy resin composition for epoxy molding compound
JP2013043950A (en) Thermosetting resin for low dielectric material
JP5049408B2 (en) Thermosetting resin composition having benzoxazine ring, method for producing the same, molded product and cured product
JP2009084391A (en) Method for producing thermosetting resin having dihydrobenzoxazine ring structure
JP2007146070A (en) Thermosetting resin, method for producing the same, thermosetting composition containing the resin, molded article obtained from the same, and electronic equipment containing the molded article
JP2003012747A (en) Acetynyl group-containing curable resin
JP2004010839A (en) Thermosetting resin having benzoxazine structure, resin composition and cured material
JP4956402B2 (en) Method for producing thermosetting resin having dihydrobenzoxazine ring structure
CN104327105B (en) The synthesis of carborane benzoxazine resins and curing
JP2007106800A (en) Thermosetting resin, thermosetting composition containing the same and molded article obtained therefrom
JP2007045862A (en) Polymer and thermosetting composition using the same
JP2017115035A (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JP6423316B2 (en) New aldehyde-containing resin
Huang et al. Synthesis and properties of multiarm star hydroxyl-terminated polyesters for two-component polyurethane coatings
JP2009084439A (en) Method for producing thermosetting resin having benzoxazine ring structure
JP2007217650A (en) Production method of thermosetting resin, thermosetting resin, thermosetting composition comprising the same, molded article, cured article, cured molded article, and electronic apparatus comprising them
JP2012072319A (en) Method for producing thermosetting resin having benzoxazine ring, and thermosetting resin having benzoxazine ring
CN109311800B (en) Polycyclic aromatic aminophenol compound, resin composition, method for producing same, and cured product
JPH04255714A (en) Polyfunctional epoxy resin and its production