WO2019208347A1 - Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these - Google Patents

Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these Download PDF

Info

Publication number
WO2019208347A1
WO2019208347A1 PCT/JP2019/016403 JP2019016403W WO2019208347A1 WO 2019208347 A1 WO2019208347 A1 WO 2019208347A1 JP 2019016403 W JP2019016403 W JP 2019016403W WO 2019208347 A1 WO2019208347 A1 WO 2019208347A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
secondary battery
state secondary
sheet
Prior art date
Application number
PCT/JP2019/016403
Other languages
French (fr)
Japanese (ja)
Inventor
昭人 福永
信 小澤
山本 健一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020516262A priority Critical patent/JP7014900B2/en
Publication of WO2019208347A1 publication Critical patent/WO2019208347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte-containing sheet, an electrode sheet for an all-solid-state secondary battery, an all-solid-state secondary battery, an electronic device and an electric vehicle, and methods for producing these.
  • a lithium ion secondary battery is a storage battery that includes a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required. Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention.
  • the all-solid-state secondary battery is composed of a solid anode, electrolyte, and cathode, which can greatly improve safety and reliability, which is a problem for batteries using organic electrolytes, and can also extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a laminated structure in which electrodes and an electrolyte are directly arranged in series. Therefore, the energy density can be increased as compared with the secondary battery using the organic electrolyte, and application to various electronic devices, electric vehicles, large-sized storage batteries, and the like is expected.
  • Patent Document 1 discloses that at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer has a specific inorganic solid electrolyte, an average diameter of 0.001 to 1 ⁇ m, and an average length. All solid state secondary batteries containing fibers with an average length of 0.1 to 150 ⁇ m, an average length to average diameter of 10 to 100,000, and an electrical conductivity of 1 ⁇ 10 ⁇ 6 S / m or less are described. Has been.
  • This all-solid-state secondary battery has low resistance and excellent cycle characteristics.
  • Patent Document 2 in an all-solid-state secondary battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer, spherical carbon and fibrous materials are added to the positive electrode active material layer as a conductive additive for the positive electrode active material.
  • An all solid state secondary battery containing carbon in combination is described. This all-solid-state secondary battery can reduce the resistance of the positive electrode active material layer even if fibrous carbon is used as a conductive additive.
  • the solid electrolyte layer and the electrode active material layer constituting the all solid state secondary battery include It is desirable to be able to handle without using a support. Furthermore, from the viewpoint of suitability for production, these solid electrolyte layer and electrode active material layer need to withstand winding of a large curvature when wound into a roll. Therefore, improvement in flexibility is also desired.
  • the present invention is a solid electrolyte-containing sheet that is excellent in flexibility and can be used as a self-supporting film, and can be used as a constituent member to realize an all-solid-state secondary battery having an excellent battery voltage. It is an object to provide an electrolyte-containing sheet.
  • the present invention also provides an electrode sheet for an all-solid-state secondary battery having the above-described solid electrolyte-containing sheet, an all-solid-state secondary battery having the electrode sheet for an all-solid-state secondary battery, and the all-solid-state secondary battery. It is an object to provide an electronic device and an electric vehicle that are provided.
  • this invention makes it a subject to provide the manufacturing method of each of the said solid electrolyte containing sheet
  • the present inventors made extensive studies in view of the above problems. As a result, it has a solid electrolyte-containing layer containing a fiber having a specific average diameter and a specific average length, and an inorganic solid electrolyte. Further, the thickness of the average length and the solid electrolyte-containing layer is specified. The present inventors have found that the above problems can be solved by satisfying the relationship. The present invention has been further studied based on these findings and has been completed.
  • ⁇ 3> The solid electrolyte-containing sheet according to ⁇ 1> or ⁇ 2>, wherein the fiber is an electrospun fiber.
  • ⁇ 4> The solid electrolyte-containing sheet according to any one of ⁇ 1> to ⁇ 3>, which contains a binder.
  • ⁇ 5> The solid electrolyte-containing sheet according to any one of ⁇ 1> to ⁇ 4>, which is a self-supporting film.
  • An electrode sheet for an all-solid-state secondary battery comprising the solid electrolyte-containing sheet according to any one of ⁇ 1> to ⁇ 5> and an electrode active material layer.
  • the all-solid-state secondary battery which has an electrode sheet for all-solid-state secondary batteries as described in ⁇ 6>.
  • ⁇ 8> ⁇ 7>
  • Electronic equipment having the all-solid-state secondary battery described in ⁇ 7>.
  • ⁇ 9> An electric vehicle having the all solid state secondary battery according to ⁇ 7>.
  • ⁇ 10> ⁇ 1> including a step of casting a solid electrolyte composition including a fiber having an average diameter d of 0.1 to 2 ⁇ m and an average length L of 0.2 to 50 mm, an inorganic solid electrolyte, and a dispersion medium.
  • ⁇ 11> A step of applying a dry powder of an inorganic solid electrolyte to a non-woven fabric of fibers having an average diameter d of 0.1 to 2 ⁇ m and an average length L of 0.2 to 50 mm; and the inorganic solid electrolyte and a dispersion medium on the non-woven fabric Any one of ⁇ 1> to ⁇ 5>, including a step of applying a solid electrolyte composition containing a solid electrolyte composition, or a step of impregnating the nonwoven fabric with a solid electrolyte composition containing an inorganic solid electrolyte and a dispersion medium The manufacturing method of the solid electrolyte containing sheet of description.
  • a fiber nonwoven fabric having an average diameter d of 0.1 to 2 ⁇ m and an average length L of 0.2 to 50 mm is present in the same system (in the liquid phase) when the inorganic solid electrolyte is liquid-phase synthesized.
  • a solid electrolyte-containing sheet is obtained by the method for producing a solid electrolyte-containing sheet according to any one of ⁇ 10> to ⁇ 13>, and an electrode sheet for an all-solid-state secondary battery is produced using the solid electrolyte-containing sheet.
  • the manufacturing method of the electrode sheet for all-solid-state secondary batteries including this.
  • An electrode sheet for an all-solid-state secondary battery is obtained by the method for producing an electrode sheet for an all-solid-state secondary battery described in ⁇ 14>, and an all-solid-state secondary battery is manufactured using this electrode sheet for an all-solid-state secondary battery.
  • the manufacturing method of the all-solid-state secondary battery including this.
  • the manufacturing method of an electronic device including obtaining an all-solid-state secondary battery by the manufacturing method of the all-solid-state secondary battery as described in ⁇ 15>, and incorporating this all-solid-state secondary battery in an electronic device.
  • a method for producing an electric vehicle comprising: obtaining an all solid state secondary battery by the method for producing an all solid state secondary battery according to ⁇ 15>; and incorporating the all solid state secondary battery into an electric vehicle.
  • the solid electrolyte-containing sheet of the present invention is excellent in flexibility and can be a self-supporting film. By using this solid electrolyte-containing sheet as a constituent member, an all-solid secondary battery having an excellent battery voltage is realized. be able to. According to the present invention, an electrode sheet for an all-solid-state secondary battery having the above-described solid electrolyte-containing sheet, an all-solid-state secondary battery having the electrode sheet for an all-solid-state secondary battery, and the all-solid-state secondary battery are provided. An electronic device and an electric vehicle can be provided.
  • the above-described solid electrolyte-containing sheet, all-solid secondary A battery electrode sheet, an all-solid secondary battery, an electronic device, and an electric vehicle can be obtained.
  • FIG. 1 is a longitudinal sectional view schematically showing a transfer sheet having a solid electrolyte-containing sheet of the present invention. It is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery which concerns on preferable embodiment of this invention.
  • the solid electrolyte-containing sheet can be ⁇ self-supporting membrane '' means that the solid electrolyte-containing sheet passes the self-supporting membrane property test described in Examples below without using a support. means.
  • the solid electrolyte layer usually does not contain an active material, but may contain an active material as long as it does not impair the effects of the present invention and does not function as an active material layer.
  • “transfer” means that the solid electrolyte-containing sheet and the electrode active material layer are brought into contact with the solid electrolyte layer formed on the release film (support) and the electrode active material layer. This means that the solid electrolyte layer is transferred on the electrode active material layer.
  • the solid electrolyte-containing sheet of the present invention can also be a sheet for transferring a solid electrolyte layer (solid electrolyte layer transfer sheet).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the solid electrolyte-containing sheet of the present invention includes a fiber having an average diameter d of 0.1 to 2 ⁇ m and an average length L of 0.2 to 50 mm, and an inorganic solid electrolyte, and has a thickness t (unit: ⁇ m), and the above L and t satisfy the relationship represented by the following formula.
  • the solid electrolyte-containing sheet of the present invention has the above-described configuration, thereby achieving the effects described above.
  • the reason is not yet clear, but is estimated as follows.
  • the fiber used in the present invention maintains a high dispersibility of the inorganic solid electrolyte and forms a three-dimensional network structure using the fiber as a matrix. Conceivable.
  • a fiber having an average diameter d and an average length L within the above-described ranges, that is, a fiber having a specific aspect ratio, is used as a matrix, so that the interval between the inorganic solid electrolytes taken into the three-dimensional network structure is in a preferable range.
  • the solid electrolyte-containing sheet of the present invention can improve battery performance with a desired physical property using a small amount of binder or without using a binder. Presumed.
  • the fiber has a network structure in both plane and three dimensions, and solid particles such as an inorganic solid electrolyte are dispersed in the network.
  • the fiber exists as a fiber.
  • the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention may contain a dispersion medium described later.
  • the content of the dispersion medium is, for example, 1000 ppm or less on a mass basis.
  • t can be appropriately set according to the size of the all-solid-state secondary battery, and is, for example, 5 to 250 ⁇ m, preferably 10 to 100 ⁇ m, and more preferably 15 to 40 ⁇ m.
  • the solid electrolyte-containing sheet of the present invention is a sheet (self-supporting film) composed of the solid electrolyte-containing layer. However, it can also be used as a transfer sheet having a release film (support).
  • the transfer sheet having the solid electrolyte-containing sheet of the present invention which is a transfer sheet, may be referred to as “the transfer sheet of the present invention”.
  • the transfer sheet of the present invention is suitable for transferring the solid electrolyte-containing layer onto the electrode active material layer.
  • a preferred form of the transfer sheet of the present invention is the transfer sheet shown in FIG.
  • a transfer sheet 10 of the present invention shown in FIG. 1 has a release film 2 and a solid electrolyte layer 1 in this order.
  • the release film used for the transfer sheet of the present invention is not particularly limited.
  • metal films such as aluminum film, stainless steel (SUS) film, copper film, polyethylene terephthalate film, polyethylene naphthalate film, polyimide film, polytetra
  • resin film such as a fluoroethylene (PTFE) film.
  • a releasability adjusting layer such as a silicone resin layer, a fluororesin layer, or an olefin resin layer is provided between the solid electrolyte layer and the release film. May be.
  • Specific examples of the release film having a release property adjusting layer include Toray Film Processing Co., Ltd., Peelac Panapeel, Unitika Co., Ltd. Unipeel.
  • the solid electrolyte-containing sheet of the present invention may have a protective film.
  • the protective film the film mentioned in the above release film can be used.
  • the film that needs to be peeled off before transfer is the protective film, and the film that peels off after the solid electrolyte layer is laminated on the electrode active material layer is the release film.
  • the solid electrolyte-containing sheet of the present invention is a film that protects the end face of a solid electrolyte-containing layer in order to prevent short circuit due to contact of the positive electrode and the negative electrode caused by moisture, foreign matter intrusion prevention, misalignment during lamination after transfer, etc. You may have.
  • the electrode sheet for an all-solid-state secondary battery of the present invention has the solid electrolyte-containing sheet (solid electrolyte layer) of the present invention and an electrode active material layer.
  • an electrode sheet for an all-solid-state secondary battery of the present invention for example, a sheet having an electrode active material layer on a current collector, a solid electrolyte layer on the electrode active material layer, and a conductive material on the current collector Examples thereof include a sheet having a body layer, an electrode active material layer on the conductor layer, and a solid electrolyte layer on the electrode active material layer.
  • the solid electrolyte layer may contain a dispersion medium described later.
  • the content of the dispersion medium is, for example, 1000 ppm or less on a mass basis.
  • Examples of the conductor layer include conductor layers (carbon coated foils) described in JP2013-23654A and JP2013-229187A.
  • the electrode active material layer and the current collector may be the electrode active material layer and the current collector used in a normal all-solid secondary battery.
  • an electrode active material layer and a current collector described in JP-A-2015-088486 can be used.
  • an electrode active material layer (a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer)) may be referred to as an active material layer. .
  • An all solid state secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer is formed on the positive electrode current collector as necessary to constitute a positive electrode.
  • the negative electrode active material layer is formed on the negative electrode current collector as necessary, and constitutes the negative electrode.
  • the all-solid-state secondary battery of the present invention has the above-described electrode sheet for an all-solid-state secondary battery of the present invention.
  • the thicknesses of the negative electrode active material layer and the positive electrode active material layer are not particularly limited.
  • each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m, considering the dimensions of a general all solid state secondary battery.
  • the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 ⁇ m or more and less than 500 ⁇ m.
  • the thickness of the solid electrolyte layer is synonymous with the above “t ( ⁇ m)”, and the preferred range is also the same.
  • a lithium metal layer lithium metal layer may be used as the negative electrode.
  • a layer formed by depositing or molding lithium powder, a lithium foil, a lithium vapor deposition film, and the like Is included.
  • the thickness of the lithium metal layer is not particularly limited, and may be, for example, 0.01 to 100 ⁇ m or 0.1 to 100 ⁇ m.
  • Each of the positive electrode active material layer and the negative electrode active material layer may include a current collector on the side opposite to the solid electrolyte layer.
  • the all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above-mentioned structure depending on the application. Is preferred.
  • the housing may be metallic or made of resin (plastic). In the case of using a metallic material, for example, an aluminum alloy or a stainless steel material can be used.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • FIG. 2 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 100 of this embodiment has a negative electrode current collector 3, a negative electrode active material layer 4, a solid electrolyte layer 5, a positive electrode active material layer 6, and a positive electrode current collector 7 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has an adjacent structure.
  • lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 8.
  • a light bulb is used as a model for the operating part 8 and is lit by discharge.
  • this all-solid-state secondary battery When the all-solid-state secondary battery having the layer configuration shown in FIG. 2 is put in a 2032 type coin case, this all-solid-state secondary battery is referred to as an all-solid-state secondary battery laminate.
  • a battery produced by placing it in a 2032 type coin case may be referred to as an all-solid secondary battery.
  • the all-solid secondary battery 100 has a small electric resistance and exhibits excellent battery performance.
  • the inorganic solid electrolytes contained in the positive electrode active material layer 6, the solid electrolyte layer 5 and the negative electrode active material layer 4 may be the same or different from each other. In the present invention, either or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • the binder when used in combination with solid particles such as an inorganic solid electrolyte, contact failure between the solid particles and peeling of the solid particles from the current collector can be suppressed. Therefore, excellent battery characteristics can be maintained even when bending stress acts on the solid electrolyte-containing sheet or the all-solid secondary battery of the present invention in the manufacturing process, for example.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, and titanium, as well as aluminum or stainless steel surface treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the inorganic solid electrolyte is an inorganic solid electrolyte
  • the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from an electrolyte or an inorganic electrolyte salt in which cations and anions are dissociated or liberated in the polymer (LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.). Is done.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
  • a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte is preferably used in order to further improve ionic conductivity.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1).
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3, and more preferably 0 to 1.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably from 0 to 5, and more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of the element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but is practically 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7.
  • LLT Li xb La yb Zr zb M bb mb Onb
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn
  • Xb satisfies 5 ⁇ xb ⁇ 10
  • yb satisfies 1 ⁇ yb ⁇ 4
  • zb satisfies 1 ⁇ zb ⁇ 4
  • mb satisfies 0 ⁇ mb ⁇ 2
  • nb satisfies 5 ⁇ nb ⁇ 20.
  • Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • Xc is 0 ⁇ xc ⁇ 5
  • Yc satisfies 0 ⁇ yc ⁇ 1,
  • zc satisfies 0 ⁇ zc ⁇ 1,
  • nc satisfies 0 ⁇ nc ⁇ 6
  • Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ⁇ xd ⁇ 3, yd Satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ md ⁇ 7, and nd satisfies 3 ⁇ nd ⁇
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
  • LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
  • the inorganic solid electrolyte is preferably a particle.
  • the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the volume average particle size of the inorganic solid electrolyte is measured by the following procedure.
  • the inorganic solid electrolyte particles are prepared by diluting a 1 mass% dispersion in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA)
  • data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size.
  • JIS Z 8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
  • An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the inorganic solid electrolyte per unit area (cm 2 ) of the solid electrolyte-containing layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
  • the content of the inorganic solid electrolyte in the solid electrolyte-containing layer is preferably 48% by mass or more and 61% by mass or more at a solid content of 100% by mass in terms of reduction in interface resistance and binding properties. It is more preferable that the content is 74% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 97 mass% or less, It is especially preferable that it is 95 mass% or less.
  • the solid content (solid component) is a component that does not disappear by evaporation or evaporation when the solid electrolyte composition described below is dried at 170 ° C. in a nitrogen atmosphere at a pressure of 1 mmHg for 6 hours. Say. Typically, it refers to components other than the dispersion medium described below.
  • the fiber used in the present invention has an average diameter d of 0.1 to 2 ⁇ m and an average length L of 0.2 to 50 mm.
  • the thickness of the L and the solid electrolyte-containing layer containing the fiber t (unit: ⁇ m) satisfies the relationship represented by the following formula.
  • the average diameter d is preferably 0.3 to 2 ⁇ m, more preferably 0.4 to 1 ⁇ m.
  • the average length L is preferably 0.3 to 45 mm, and more preferably 0.4 to 35 mm.
  • the aspect ratio L / d is preferably 150 to 150,000, and more preferably 400 to 87,500. This is because both d and L are in the above range, so that flexibility and battery performance can be achieved at a higher level.
  • L and t preferably satisfy the relationship represented by 200 ⁇ t ⁇ L ⁇ 2000 ⁇ t, more preferably satisfy the relationship represented by 500 ⁇ t ⁇ L ⁇ 1500 ⁇ t, and 550 ⁇ t ⁇ It is more preferable to satisfy the relationship represented by L ⁇ 1500 ⁇ t. By being in the above range, flexibility and battery performance can be achieved at a higher level.
  • the average diameter d, the average length L, and the aspect ratio of the fiber can be calculated by SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope), or the like. For specific measurement conditions and the like, the SEM analysis described in the Examples section can be referred to.
  • the average diameter means the number average diameter
  • the average length means the number average length
  • the aspect ratio means the aspect ratio of the number average length to the number average diameter.
  • the fiber used in the present invention may be organic or inorganic, and is preferably organic.
  • the fiber exhibits insulating properties, and for example, the volume resistivity is preferably 1 ⁇ 10 12 ( ⁇ ⁇ cm) or more, and more preferably 1 ⁇ 10 14 ( ⁇ ⁇ cm) or more. It is practical that the upper limit is 1 ⁇ 10 19 ( ⁇ ⁇ cm) or less. For this reason, it is different from the carbon nanofiber used as a conductive additive.
  • the volume resistivity of a fiber can be measured by the method as described in the term of an Example.
  • the fiber used for this invention may be formed from one type of material, and may be formed from two or more types of materials.
  • the center part of the fiber is a part that can itself become a fiber.
  • the surface of the fiber means a surface portion outside the center. Therefore, when formed from one kind of material, the surface is not covered, and a fiber consisting only of the central portion is formed.
  • the fiber whose surface is coated with resin will be described as an example.
  • the center portion of the fiber is a fiber before being coated with resin, and the surface of the center portion is covered with resin.
  • the surface When the central part is made of an organic substance, the surface may or may not be covered with another organic substance, and the central part is made of an inorganic substance having an electric conductivity of 1 ⁇ 10 ⁇ 6 S / m or less.
  • the surface may or may not be coated with an organic substance.
  • the central part is made of a semiconductor or conductor having an electric conductivity exceeding 1 ⁇ 10 ⁇ 6 S / m, the surface is covered with a material having an electric conductivity of 1 ⁇ 10 ⁇ 6 S / m or less. Is preferred.
  • the electrical conductivity of the fiber may be 1 ⁇ 10 ⁇ 6 S / m or less.
  • the material having an electric conductivity of 1 ⁇ 10 ⁇ 6 S / m or less is preferably an organic material, and may be any of a low molecular compound and a polymer (oligomer or polymer) as long as it is an organic material, but is preferably a polymer. .
  • the polymer examples include polyimide, cellulose acetate, acrylic polymer, methyl methacrylate-acrylic acid copolymer, urethane resin, and polyacrylamine. These can be polymerized by conventional methods. Moreover, you may use a commercial item. Since the polymer has a hydroxy group, a carboxy group, an ester group, etc., the binding property between the polymer and the inorganic solid electrolyte can be further improved, so that the flexibility and battery voltage are further improved. Can do.
  • the content of a functional group such as a hydroxy group, a carboxy group or an ester group is preferably 0.001 to 50% by mass, more preferably 0.01 to 5% by mass, per polymer repeating unit.
  • the catalog value of the vendor can be adopted as the content of the carboxy group in the polymer.
  • the method for preparing the polymer fiber is not particularly limited, and examples thereof include an electrospinning method, a dry spinning method, and a wet spinning method.
  • a fiber (electrospun fiber) prepared by an electrospinning method in that d and L can be set in a predetermined range to further improve flexibility and battery voltage. .
  • a polymer solution is obtained by dissolving the polymer in an organic solvent.
  • the organic solvent include methylene chloride, n-methyl-2-pyrrolidone, formic acid, and formalin.
  • examples of the apparatus used for preparing the fiber by the electrospinning method include NANON-3 (trade name, manufactured by MEC) and NEU (trade name, manufactured by Kato Tech).
  • NANON-3 trade name, manufactured by MEC
  • NEU trade name, manufactured by Kato Tech
  • a positive voltage is applied to the nozzle tip
  • the collector is negatively charged
  • the polymer solution is discharged from the nozzle tip at a constant temperature (for example, 5 to 40 ° C.)
  • fibers are accumulated on the collector.
  • a gas at a constant temperature for example, 5 to 15 ° C.
  • the electrospinning method can be performed with reference to, for example, Japanese Patent Application Laid-Open Nos. 2008-013873 and 2009-270210.
  • the dry spinning method can be performed with reference to, for example, Japanese Patent Application Laid-Open Nos. 2008-069291 and 2013-130404.
  • the wet spinning method can be performed with reference to, for example, JP-A-2006-248272 and JP-A-2016-53241.
  • fibers made of inorganic materials include fibers made of metals (silver nanowires, copper nanowires, nickel nanowires, cobalt nanowires, gold nanowires, etc.), and fibers made of ceramics (alumina oxide wires, copper hydroxide nanos). Wire, hydroxyapatite nanowire, iron oxide hydrate nanowire, iron oxide nanowire, nickel hydroxide nanowire, magnesium oxide nanowire, molybdenum oxide nanowire, silicon carbide nanowire, titanium oxide nanowire, manganese oxide nanowire, Nickel oxide nanowires, tungsten oxide nanowires, vanadium oxide nanowires, zinc oxide nanowires, etc.), fibers made of glass (silica glass nanofibers, etc.) .
  • the fiber content in the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention is preferably 0.1 to 40% by volume, more preferably 1 to 30% by volume, and still more preferably 5 to 20% by volume.
  • the volume of the solid electrolyte-containing layer is an apparent volume including voids and is calculated from the height and width.
  • the content can be calculated as follows. [ ⁇ Mass of fiber in sheet (g) ⁇ specific gravity of fiber raw material (g / cm 3 ) ⁇ ⁇ total volume of sheet (cm 3 )] ⁇ 100 (%). By being in the preferred range, both flexibility and battery voltage can be enhanced.
  • the above fibers may be used alone or in combination of two or more, and are preferably used alone.
  • the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention preferably contains a binder.
  • the polymer constituting the binder may be in any form, and for example, in the solid electrolyte-containing sheet or the all-solid secondary battery, it may be in the form of particles or indefinite shape.
  • the polymer constituting the binder is preferably particulate.
  • the polymer which comprises the binder used by this invention is a resin particle, if resin which forms this resin particle is an organic resin, it will not specifically limit.
  • the polymer constituting the binder is not particularly limited, and for example, the form of particles made of the following resin is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done. Further, a copolymer (copolymer) with other vinyl monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile, and styrene.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin.
  • binder one synthesized or prepared by a conventional method may be used, or a commercially available product may be used.
  • a binder may be used individually by 1 type, or may use 2 or more types.
  • the content of the binder in the solid electrolyte-containing layer is determined by considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance.
  • 100% by mass of the component 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is further preferable.
  • 20 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is still more preferable.
  • the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention can be an electrode active material layer containing an active material.
  • This active material is a material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table. Examples of such an active material include a positive electrode active material and a negative electrode active material.
  • a metal oxide preferably a transition metal oxide
  • the negative electrode active material a carbonaceous material, a metal oxide, or a metal capable of forming an alloy with lithium such as Sn, Si, Al, and In Is preferred.
  • the positive electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li such as sulfur, or a complex of sulfur and metal.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P, or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halogenated phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the median diameter D50 of the positive electrode active material is not particularly limited, but is preferably larger than the median diameter of the inorganic solid electrolyte in terms of electric capacity of the all-solid secondary battery.
  • the median diameter of the positive electrode active material can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the median diameter of the positive electrode active material can be measured in the same manner as the median diameter of the inorganic solid electrolyte.
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte-containing layer of the solid electrolyte-containing sheet is not particularly limited, preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and still more preferably 50 to 85% by mass. 55 to 80% by mass is particularly preferable.
  • the negative electrode active material is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, metal oxide such as tin oxide, silicon oxide, metal composite oxide, lithium alloy such as lithium simple substance and lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by firing various synthetic resins such as graphite (natural graphite, artificial graphite such as vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
  • Other examples include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and a group 16 element of the periodic table is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the median diameter D50 of the negative electrode active material is not particularly limited, but is preferably larger than the median diameter of the inorganic solid electrolyte.
  • the median diameter of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a normal pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the median diameter of the negative electrode active material can be measured in the same manner as the median diameter of the inorganic solid electrolyte.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte-containing layer of the solid electrolyte-containing sheet is not particularly limited, and is preferably 10 to 80% by mass, more preferably 20 to 80% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum oxide, niobium oxide, and lithium niobate compound. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention may contain a lithium salt (supporting electrolyte).
  • the lithium salt is preferably a lithium salt usually used in this type of product, and is not particularly limited.
  • the lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • a solid electrolyte content layer contains lithium salt, 0.1 mass part or more is preferable with respect to 100 mass parts of inorganic solid electrolyte, and 5 mass parts or more is more preferable. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
  • the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention may contain an ionic liquid in order to further improve the ionic conductivity.
  • an ionic liquid it does not specifically limit as an ionic liquid, From the viewpoint of improving an ionic conductivity effectively, what melt
  • the compound which consists of a combination of the following cation and an anion is mentioned.
  • (I) Cation Examples of the cation include an imidazolium cation, a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a morpholinium cation, a phosphonium cation, and a quaternary ammonium cation.
  • these cations have the following substituents.
  • one kind of these cations may be used alone, or two or more kinds may be used in combination.
  • it is a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation.
  • Examples of the substituent that the cation has include an alkyl group (an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms), a hydroxyalkyl group (a hydroxyalkyl group having 1 to 3 carbon atoms).
  • alkyloxyalkyl group (preferably an alkyloxyalkyl group having 2 to 8 carbon atoms, more preferably an alkyloxyalkyl group having 2 to 4 carbon atoms), an ether group, an allyl group, an aminoalkyl group (carbon An aminoalkyl group having 1 to 8 carbon atoms is preferred, an aminoalkyl group having 1 to 4 carbon atoms is preferred, and an aryl group (an aryl group having 6 to 12 carbon atoms is preferred, and an aryl group having 6 to 8 carbon atoms is more preferred). .).
  • the substituent may form a cyclic structure containing a cation moiety.
  • the ether group is used in combination with other substituents. Examples of such a substituent include an alkyloxy group and an aryloxy group.
  • Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ion, bis (perfluorobutylmethanesulfonyl) imide ion, allyl sulfonate ion, hexafluorophosphate ion, trifluoromethane sulfonate ion and the like.
  • these anions may be used alone or in combination of two or more.
  • Preferred are boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion or hexafluorophosphate ion, dicyanamide ion and allyl sulfonate ion, more preferably bis (trifluoromethanesulfonyl) imide ion.
  • a bis (fluorosulfonyl) imide ion and an allyl sulfonate ion are examples of the anion.
  • the ionic liquid examples include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-1-methyl Pyrrolidinium bis (trifluoromethanesulfonyl) Trimethylbutylammonium bis
  • the content of the ionic liquid in the solid electrolyte-containing layer is preferably 0 part by mass or more, more preferably 1 part by mass or more, and most preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte.
  • 50 mass parts or less are preferable, 20 mass parts or less are more preferable, and 10 mass parts or less are especially preferable.
  • the casting method is a solid electrolyte composition (slurry) containing an inorganic solid electrolyte and a dispersion medium, having an average diameter d of 0.1 to 1 ⁇ m and an average length L of 0.2 to 50 mm.
  • a step of dipping the fiber For example, the fiber obtained by the electrospinning method can be directly added to the solid electrolyte composition and immersed in the slurry.
  • the time for immersing the fiber in the slurry is preferably 5 to 60 minutes, for example.
  • the dispersion medium may be evaporated or volatilized from the fiber.
  • the dispersion medium can be evaporated or volatilized by heating at 50 to 200 ° C. for 1 to 60 minutes, for example.
  • the dispersion medium may be pressed after evaporation or volatilization.
  • the pressing pressure is, for example, 5 to 50 MPa, and may be heated (for example, 50 to 200 ° C.) when pressing.
  • the pressing time is, for example, 1 to 30 minutes. In the casting method, a desired sheet can be obtained without previously forming the fiber into a nonwoven fabric.
  • the slurry application or impregnation method is A fiber nonwoven fabric having an average diameter d of 0.1 to 1 ⁇ m and an average length L of 0.2 to 50 mm is present in the same system (in the liquid phase) when the inorganic solid electrolyte is liquid-phase synthesized.
  • the step of causing the nonwoven fabric to be present in the same system when the inorganic solid electrolyte is subjected to liquid phase synthesis specifically includes, for example, applying a slurry containing an inorganic solid electrolyte precursor to the nonwoven fabric or the inorganic solid electrolyte. This can be done by immersing the nonwoven fabric in the slurry containing the precursor.
  • a fiber nonwoven fabric having an average diameter d of 0.1 to 1 ⁇ m and an average length L of 0.2 to 50 mm has an average diameter d of 0.1 to 2 ⁇ m and an average length L of 0 by an ordinary method.
  • the fiber having a thickness of 2 to 50 mm can be obtained by making it into a nonwoven fabric form.
  • the coating method known means such as doctor blade, bar coater, applicator coating, spray coating, electrostatic coating, brush coating, electrostatic printing method, electrostatic spray deposition method, aerosol deposition method, etc. Can be adopted.
  • the dispersion medium may be evaporated or volatilized from the fiber.
  • the dispersion medium can be evaporated or volatilized by heating at 50 to 200 ° C. for 1 to 60 minutes, for example.
  • the dispersion medium may be pressed after evaporation or volatilization.
  • the pressing pressure is, for example, 5 to 50 MPa, and may be heated (for example, 50 to 200 ° C.) when pressing.
  • the pressing time is, for example, 1 to 30 minutes.
  • the “inorganic solid electrolyte precursor” means a raw material for the above-mentioned inorganic solid electrolyte that can be obtained by heating to obtain an inorganic solid electrolyte.
  • the step of evaporating or volatilizing the dispersion medium from the step of filling the inorganic solid electrolyte such as the step of immersing the fiber Or the process to a press process can also be performed repeatedly.
  • the number of repetitions is preferably 2 to 4 times, more preferably 2 to 3 times, and even more preferably 2 times.
  • the volume average particle diameter of the inorganic solid electrolyte can be reduced to further increase the filling rate of the inorganic solid electrolyte.
  • the volume average particle diameter of the inorganic solid electrolyte filled in the second time can be made about 3/4 of the volume average particle diameter of the inorganic solid electrolyte filled in the first time.
  • the solid electrolyte composition used in the method for producing a solid electrolyte-containing sheet of the present invention can be prepared by a conventional method. Specifically, it can be prepared by mixing or adding an inorganic solid electrolyte, a fiber and a dispersion medium and, if necessary, other components such as a binder. Moreover, it can prepare by mixing or adding an inorganic solid electrolyte and a dispersion medium, and other components, such as a binder as needed. For example, it can prepare by mixing the said component using various mixers.
  • the mixing conditions are not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • Dispersion medium examples include the following.
  • the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
  • amino compound solvents examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.
  • Ester compound solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, butyric acid
  • Examples include butyl, isobutyl isobutyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate, and butyl caproate.
  • aromatic compound solvent examples include benzene, toluene, xylene, and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane and cyclooctane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, and butyronitrile.
  • the method for producing an electrode sheet for an all-solid-state secondary battery of the present invention comprises a solid electrolyte-containing layer (solid electrolyte layer) possessed by a solid electrolyte-containing sheet obtained by the method for producing a solid electrolyte-containing sheet of the present invention. Laminating on the layer.
  • the manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention can be performed by a conventional method except including the manufacturing method of the said solid electrolyte containing sheet.
  • It can be manufactured by a method including (intervening) a step of applying a composition for an electrode on a metal foil to be a current collector and forming (forming) a coating film.
  • a conductive layer forming composition may be applied onto a metal foil to form a conductive layer, and the electrode composition may be applied onto the conductive layer.
  • a negative electrode composition containing a negative electrode active material is applied as a negative electrode composition on a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all solid secondary battery is formed. Make it.
  • the solid electrolyte layer of the solid electrolyte-containing sheet obtained by the method for producing a solid electrolyte-containing sheet of the present invention is laminated on the negative electrode active material layer. Taking the transfer sheet shown in FIG. 1 as an example, the transfer sheet is overlaid on the all-solid-state secondary battery negative electrode sheet so that the solid electrolyte layer 1 is in contact with the negative electrode active material layer.
  • the negative electrode sheet for all-solid-state secondary batteries of this invention can be obtained.
  • the release film 2 can be peeled from the transfer sheet shown in FIG. 1, and the solid electrolyte layer 1 can be laminated on the negative electrode active material layer to obtain a negative electrode sheet for an all solid secondary battery.
  • the electrode active material layer which comprises a normal all-solid-state secondary battery can be used for the electrode active material layer of the electrode sheet for all-solid-state secondary batteries of this invention.
  • an electrode composition for forming such an electrode active material layer for example, an electrode composition described in JP-A-2015-088486 can be used.
  • the manufacturing method of the all-solid-state secondary battery of this invention includes the manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention.
  • the manufacturing method of the all-solid-state secondary battery of this invention can be performed by a conventional method except including the manufacturing method of the said electrode sheet for all-solid-state secondary batteries.
  • the positive electrode composition is applied on the solid electrolyte layer of the prepared negative electrode sheet for an all-solid-state secondary battery to form a positive electrode active material layer.
  • the all-solid-state secondary battery 100 having the layer configuration shown in FIG. 2 can be obtained. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • a negative electrode sheet for an all-solid secondary battery is produced as described above.
  • a positive electrode composition containing a positive electrode active material is applied as a positive electrode composition on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid-state secondary battery is formed.
  • a positive electrode sheet for an all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. You may pressurize under a heating condition as needed. In this way, an all-solid secondary battery can be manufactured.
  • the method for applying the electrode composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
  • the electrode composition may be dried after being applied.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • a dispersion medium can be removed and it can be set as a solid state.
  • it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • the atmosphere during pressurization is not particularly limited and may be any of the following: air, dry air (dew point -20 ° C. or less), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraint (screw tightening pressure or the like) of the all-solid-state secondary battery can be used.
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses.
  • the application mode for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • NMP N-methyl-2-pyrrolidone
  • MENO Corporation's NANON-3 trade name
  • the average diameter d and the average length L were adjusted while confirming with an SEM image according to the solid content concentration of the solution, the applied voltage, and the solution flux.
  • cellulose triacetate cycloolefin polymer (Arton (registered trademark), manufactured by JSR Corporation), modified polyphenylene ether (Zylon (registered trademark) manufactured by Asahi Kasei Co., Ltd.), or polyacrylonitrile (Stylac (registered trademark) manufactured by Asahi Kasei Corporation)
  • a cycloolefin polymer electrospun fiber, a modified polyphenylene ether electrospun fiber, and a polyacrylonitrile electrospun fiber were prepared in the same manner as described above except that was used.
  • a fiber was prepared by the microfluidic dicer method as follows. 50 g of cedar-derived wood flour (30 mesh (500 ⁇ m) to 60 mesh (250 ⁇ m), particle size with an aspect ratio of 1 to 100 in a JIS Z8801-1 (2006) standard sieve) 50 g, distilled water 1500 ml, sodium chlorite 15 g, acetic acid It was placed in 3 ml of the solution and heated in an 80-90 ° C. water bath with occasional stirring for 1 hour. After 1 hour, 15 g of sodium chlorite and 3 ml of acetic acid were added without cooling and the mixture was further heated for 1 hour.
  • a fiber was prepared by a wet spinning method as follows.
  • Cellulose diacetate (Daisail Chemical Industries, Ltd., trade name: MBH, acetylation degree: about 55% powder) 338 g, N-methylmorpholine N-oxide (2000 g) containing about 41% by mass of water and propyl gallate (Wako Pure Chemical Industries, Ltd.) 15 g) was put into a mixer (ACM-5 type) with a vacuum deaerator manufactured by Kodaira Seisakusho, and 648 g of water was dehydrated while mixing for about 2 hours under reduced pressure heating to prepare a uniform solution of cellulose acetate.
  • ACM-5 type a vacuum deaerator manufactured by Kodaira Seisakusho
  • the kettle temperature was kept at 100 ° C.
  • the obtained cellulose acetate solution was a viscous liquid with a brown color.
  • a homogeneous solution containing 20% by mass was prepared, and then the obtained solution was extruded under nitrogen pressure of 1.5 kg / cm 2 while being kept at 100 ° C., and quantitatively supplied to the nozzle portion using a gear pump.
  • the discharge amount of the cellulose acetate solution was defined by the rotation speed of the gear pump.
  • the following examination was performed with the nozzle portion kept at 90 ° C. Using a nozzle composed of 36 capillaries having a diameter of 0.2 mm, a length of 3 mm, and a circular cross-sectional shape, spinning was examined using the apparatus shown in FIG.
  • the number average diameter and number average length of the fiber were determined by SEM analysis. Specifically, the fibers in the solid electrolyte-containing layer were observed with an SEM, and the fiber diameter and length values were read for 10 fibers.
  • the “fiber diameter” means the maximum diameter among the diameters in the cross section of the fiber (a cross section perpendicular to the length direction of the straight fiber). In other words, the diameter of the cross section may differ depending on the position of the cross section. In this case, the diameter of the cross section that gives the maximum diameter is defined as the “fiber diameter”.
  • volume resistivity of fiber The fiber before making into the nonwoven fabric prepared above was dispersed in water and cast on a polyphenylenesulfone sheet film. Drying and coating were repeated 5 times and peeled from the polyphenylene sulfone sheet to obtain a film composed of a linear structure. About this film
  • the hydroxyl group content of cellulose acetate was the manufacturer's catalog value (acetylation degree 2.9, hydroxyl group content 0.025% by mass).
  • Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 75: was 25.
  • 66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole mixture of lithium sulfide and phosphorous pentasulfide was introduced, and the container was sealed under an argon atmosphere.
  • a container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li-PS system). Glass, also referred to as “LPS”.) 6.20 g was obtained.
  • Liquid prepared in a separate container (93.1 g of 40% by weight heptane solution of macromonomer M-1, 222.8 g of methyl acrylate, 120.0 g of acrylic acid, 300.0 g of heptane, azoisobutyronitrile 2 .1 g) was added dropwise over 4 hours. After completion of the dropwise addition, 0.5 g of azoisobutyronitrile was added. Thereafter, the mixture was stirred at 100 ° C. for 2 hours, cooled to room temperature, and filtered to obtain a dispersion of binder A. The solid component concentration was 39.2%.
  • Macromonomer obtained by reacting acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) with a polymer polymerized at a ratio of 1: 0.99: 0.01 (molar ratio) with methyl acrylate and glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) M-1 was obtained.
  • the macromonomer M-1 had an SP value of 9.3 and a number average molecular weight of 11,000.
  • the estimated structural formulas of the polymer and macromonomer M-1 constituting the binder A are shown below.
  • a liquid prepared in a separate container (90 parts by mass of butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 20 parts by mass of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), acrylic acid (Japanese (Manufactured by Kojun Pharmaceutical Co., Ltd.) 10 parts by mass, 20 parts by mass of B-27 (composed product), 60 parts by mass of macromonomer MM-1 (solid content), polymerization initiator V-601 (trade name, Wako Pure Chemicals) A liquid obtained by mixing 2.0 parts by mass of Kogyo Co., Ltd.) was added dropwise over 2 hours, followed by stirring at 80 ° C.
  • Example 1 The prepared solid electrolyte composition was put into a petri dish, and the nonwoven fabric was immersed for 30 minutes. The nonwoven fabric was taken out and drained for 30 seconds, and then dried on a 150 ° C. hot plate for 30 minutes to evaporate the solvent. The dried nonwoven fabric was sandwiched between aluminum foils and pressed at 20 MPa at 150 ° C. for 5 minutes to produce a solid electrolyte-containing sheet of Example 1 having a thickness of 20 ⁇ m.
  • Example 2 to 22 In the production of the solid electrolyte-containing sheet of Example 1, the solid electrolyte-containing sheets of Examples 2 to 22 were produced in the same manner as in Example 1 except that the description in Table 1 was followed. In Examples 21 and 22, 2.94 g of LPS and 0.06 g of binder were used instead of 3.0 g of LPS.
  • Example 23 A solid electrolyte-containing sheet of Example 23 was produced in the same manner as in Example 2 except that the electrospun fiber was directly added to the above-described solid electrolyte composition from the NANON-3 discharge port.
  • Example 24 The solid electrolyte composition described above was applied to one side of the nonwoven fabric with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) so that the thickness of the solid electrolyte layer alone was 10 ⁇ m, and at 80 ° C. After heating for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, it pressurized (20 Mpa, 1 minute), heating (120 degreeC) using the heat press machine. Thereafter, the same operation was performed on the other surface of the nonwoven fabric to obtain a solid electrolyte-containing sheet.
  • an applicator trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the slurry was added and vibrated in a dry Ar atmosphere for 24 hours at 1500 rpm with an amplitude of 1 cm to obtain a slurry containing a precursor of a sulfide-based inorganic solid electrolyte.
  • the slurry was impregnated into a nonwoven fabric and dried under reduced pressure at room temperature to prepare a sheet containing a sulfide-based inorganic solid electrolyte precursor.
  • the sheet was heat-treated at 170 ° C. overnight (7 hours) under reduced pressure ( ⁇ 100 kPa) to cause the precursor to react to obtain a solid electrolyte-containing sheet.
  • the obtained solid electrolyte-containing sheet had an ionic conductivity of 1 ⁇ 10 ⁇ 4 Scm ⁇ 1 .
  • Example 26 The sulfide-based inorganic solid electrolyte powder obtained in “Synthesis of sulfide-based inorganic solid electrolyte (Li—PS—based glass)” was electrostatically printed on both surfaces of the nonwoven fabric of Example 2, and a heated roll press ( Using Takumi Giken SA-602-S (trade name)), heating and pressing were performed under the conditions of 100 ° C., 20 kN, and a roll rotation speed of 0.4 m / min to obtain a solid electrolyte-containing sheet having a thickness of 20 ⁇ m. .
  • Example 27 to 30 In the production of the solid electrolyte-containing sheet of Example 1, the solid electrolyte-containing sheets of Examples 27 to 30 were produced in the same manner as in Example 1 except that the description in Table 1 was followed.
  • Example 31 In the production of the solid electrolyte-containing sheet of Example 2, the sheet after pressing at 20 MPa at 150 ° C. for 5 minutes was again subjected to the process from immersion to pressurization to produce the solid electrolyte-containing sheet of Example 31. .
  • Example 32 and 33 and Comparative Examples 1 to 12 In the production of the solid electrolyte-containing sheet of Example 1, the solid electrolyte-containing sheets of Examples 32 and 33 and Comparative Examples 1 to 12 were the same as Example 1 except that the description in Tables 1 to 3 below was followed. Was made.
  • Example 32 a 60 ⁇ m-thick urethane non-woven fabric (“Pandex T8175N”, manufactured by DIC Covestro Polymer Co., Ltd.) was used.
  • the produced solid electrolyte-containing sheet is a sheet having a length of 50 mm and a width of 50 mm.
  • composition for positive electrode prepared above is applied on an aluminum foil (positive electrode current collector) with an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) to give a basis weight of 30 mg / cm 2. After heating at 80 ° C. for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (20 Mpa, 1 minute), heating (120 degreeC), and produced the positive electrode sheet which has a positive electrode active material layer on a positive electrode electrical power collector.
  • an applicator trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the positive electrode sheet used in Examples 28 and 30 was produced as follows. A cellulose acetate nonwoven fabric having a thickness of 80 ⁇ m was immersed in the positive electrode composition prepared above for 30 minutes. The nonwoven fabric was taken out and drained for 30 seconds, and then dried on a 110 ° C. hot plate for 1 hour to volatilize the solvent. The upper and lower sides of the dried nonwoven fabric were sandwiched between aluminum foils, pressed at 120 ° C. for 1 minute at 20 MPa, peeled off one aluminum foil, and a positive electrode sheet having a positive electrode active material layer on the positive electrode current collector was produced.
  • composition for negative electrode prepared above is applied to a basis weight of 15 mg / cm 2 on an SUS foil (negative electrode current collector) by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.). After heating at 80 ° C. for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (20 Mpa, 1 minute), heating (120 degreeC), and produced the negative electrode sheet which has a negative electrode active material layer on a negative electrode collector.
  • the negative electrode sheet used in Examples 29 and 30 was produced as follows. A cellulose acetate nonwoven fabric having a thickness of 60 ⁇ m was immersed in the negative electrode composition prepared above for 30 minutes. The nonwoven fabric was taken out and drained for 30 seconds, and then dried on a 110 ° C. hot plate for 1 hour to volatilize the solvent. The top and bottom of the dried negative electrode sheet were sandwiched between SUS foils, pressed at 120 ° C. for 1 minute at 20 MPa, and one of the SUS foils was peeled off to produce a negative electrode sheet having a negative electrode active material layer on the negative electrode current collector.
  • the negative electrode sheet used in Example 32 and Comparative Example 11 was produced as follows. 180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 4.7 g of the Li—PS system glass synthesized above and 0.1 g of the dispersion of binder B are converted into solid content. Then, 12.3 g of heptane was added as a dispersion medium. The container was set on a planetary ball mill P-7 manufactured by Fricht and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm.
  • An all-solid secondary battery having the layer configuration shown in FIG. 2 was formed.
  • the solid electrolyte-containing sheet (solid electrolyte layer) obtained above was overlaid so that the negative electrode active material layer of the negative electrode sheet was in contact, and pressurized at 50 MPa for 10 seconds.
  • a member composed of the negative electrode current collector 3 / the negative electrode active material layer 4 / the solid electrolyte layer 5 was produced and cut into a diameter of 15 mm ⁇ .
  • the positive electrode active material layer 6 of the positive electrode sheet cut into a diameter of 14 mm ⁇ in a 2032 type coin case is stacked so that the solid electrolyte layer 5 is in contact with each other to form a laminate for an all-solid-state secondary battery.
  • the all-solid-state secondary battery was produced.
  • the all-solid-state secondary battery was measured by a charge / discharge evaluation apparatus “TOSCAT-3000” (trade name) manufactured by Toyo System.
  • the all solid state secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V.
  • the battery voltage 10 seconds after the start of discharge was read according to the following criteria to evaluate the resistance.
  • Evaluation standard 1 is a standard for evaluation in Tables 1 and 2
  • evaluation standard 2 is a standard for evaluation in Table 3.
  • “ ⁇ ” in the battery performance evaluation means that the battery performance evaluation could not be performed because the strength was weak and the battery could not be formed.
  • Example 33 c12 Comparative Example 12 LLZ: Li 7 La 3 Zr 2 O 12 (Lithium lanthanum zirconate average particle size 5.0 ⁇ m Toshima Seisakusho)
  • the solid electrolyte-containing sheet of the present invention satisfying all of the relationship represented by the numerical range of d, the numerical range of L, and 100 ⁇ t ⁇ L ⁇ 2500 ⁇ t is a self-supporting film, It turns out that it is excellent in both flexibility and battery performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A solid electrolyte-including sheet, an electrode sheet for a fully solid-state secondary battery, said electrode sheet having said solid electrolyte-including sheet, a fully solid-state secondary battery that has said electrode sheet for a fully solid-state secondary battery, an electronic device and an electric vehicle that are provided with said fully solid-state secondary battery, and manufacturing methods for these, said solid electrolyte-including sheet having a tμm-thick solid electrolyte-including layer that includes an inorganic solid electrolyte and fibers with an average diameter d of 0.1-2μm and an average length L of 0.2-50mm, wherein L and t satisfy the relationship 100×t≤L≤2500×t.

Description

固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法Solid electrolyte-containing sheet, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electronic device and electric vehicle, and production methods thereof
 本発明は、固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法に関する。 The present invention relates to a solid electrolyte-containing sheet, an electrode sheet for an all-solid-state secondary battery, an all-solid-state secondary battery, an electronic device and an electric vehicle, and methods for producing these.
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。更に、全固体二次電池は、電極と電解質を直接並べて直列に配した積層構造とすることができる。そのため、有機電解液を用いた二次電池に比べて高エネルギー密度化が可能となり、各種電子機器、電気自動車又は大型蓄電池等への応用が期待されている。
A lithium ion secondary battery is a storage battery that includes a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charging and discharging by reciprocating lithium ions between the two electrodes. Conventionally, an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery. However, the organic electrolyte is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharge or overdischarge, resulting in ignition, and further improvements in safety and reliability are required.
Under such circumstances, an all-solid secondary battery using an inorganic solid electrolyte instead of an organic electrolyte has been attracting attention. The all-solid-state secondary battery is composed of a solid anode, electrolyte, and cathode, which can greatly improve safety and reliability, which is a problem for batteries using organic electrolytes, and can also extend the service life. It will be. Furthermore, the all-solid-state secondary battery can have a laminated structure in which electrodes and an electrolyte are directly arranged in series. Therefore, the energy density can be increased as compared with the secondary battery using the organic electrolyte, and application to various electronic devices, electric vehicles, large-sized storage batteries, and the like is expected.
 このような全固体二次電池の実用化に向けて、全固体二次電池及びこの電池を構成する部材の検討が盛んに進められている。この検討の1つとして、ファイバーを用いることにより電池性能を向上させる技術が報告されている。例えば、特許文献1には、正極活物質層、固体電解質層および負極活物質層の少なくとも1層が、特定の無機固体電解質と、平均直径が0.001~1μmであって、平均長さが0.1~150μmであり、平均直径に対する平均長さの比が10~100,000であり、電気伝導度が1×10-6S/m以下のファイバーを含有する全固体二次電池が記載されている。この全固体二次電池は、抵抗が低く、サイクル特性に優れるとされる。特許文献2には、正極活物質層と、固体電解質層と、負極活物質層とを有する全固体二次電池において、上記正極活物質層に正極活物質の導電助剤として球状炭素と繊維状炭素とを組み合わせて含有させた全固体二次電池が記載されている。この全固体二次電池は、導電助剤として繊維状炭素を利用しても正極活物質層の抵抗を低下させることができるとされる。 For the practical application of such all-solid-state secondary batteries, studies on all-solid-state secondary batteries and members constituting the batteries are being actively promoted. As one of the studies, a technique for improving battery performance by using a fiber has been reported. For example, Patent Document 1 discloses that at least one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer has a specific inorganic solid electrolyte, an average diameter of 0.001 to 1 μm, and an average length. All solid state secondary batteries containing fibers with an average length of 0.1 to 150 μm, an average length to average diameter of 10 to 100,000, and an electrical conductivity of 1 × 10 −6 S / m or less are described. Has been. This all-solid-state secondary battery has low resistance and excellent cycle characteristics. In Patent Document 2, in an all-solid-state secondary battery having a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer, spherical carbon and fibrous materials are added to the positive electrode active material layer as a conductive additive for the positive electrode active material. An all solid state secondary battery containing carbon in combination is described. This all-solid-state secondary battery can reduce the resistance of the positive electrode active material layer even if fibrous carbon is used as a conductive additive.
国際公開第2016/199805号International Publication No. 2016/199805 特開2016-9679号公報JP 2016-9679 A
 全固体二次電池の実用化に向けて、電池電圧等の電池性能の向上とともに、全固体二次電池を工業生産するための検討も行われている。固体電解質層及び電極活物質層の性能を検討する際のハンドリング性及び全固体二次電池の製造効率を向上させるために、全固体二次電池を構成する固体電解質層及び電極活物質層には、支持体を用いずに扱えることが望まれる。さらに、製造適性の観点から、これらの固体電解質層及び電極活物質層は、ロール状に巻き取られた際の大きい曲率の巻き取りなどに耐えることが必要である。そのため、可撓性の向上も望まれている。 In preparation for the practical application of all-solid-state secondary batteries, studies are underway for industrial production of all-solid-state secondary batteries along with improvements in battery performance such as battery voltage. In order to improve the handleability when examining the performance of the solid electrolyte layer and the electrode active material layer and the manufacturing efficiency of the all solid state secondary battery, the solid electrolyte layer and the electrode active material layer constituting the all solid state secondary battery include It is desirable to be able to handle without using a support. Furthermore, from the viewpoint of suitability for production, these solid electrolyte layer and electrode active material layer need to withstand winding of a large curvature when wound into a roll. Therefore, improvement in flexibility is also desired.
 本発明は、可撓性に優れ、自立膜とすることもできる固体電解質含有シートであって、構成部材として用いることにより、優れた電池電圧の全固体二次電池を実現することができる、固体電解質含有シートを提供することを課題とする。また、本発明は、上記固体電解質含有シートを有する全固体二次電池用電極シート、及び、この全固体二次電池用電極シートを有する全固体二次電池、並びに、上記全固体二次電池を具備する電子機器及び電気自動車を提供することを課題とする。また、本発明は、上記固体電解質含有シート、上記全固体二次電池用電極シート、上記全固体二次電池、上記電子機器及び上記電気自動車それぞれの製造方法を提供することを課題とする。 The present invention is a solid electrolyte-containing sheet that is excellent in flexibility and can be used as a self-supporting film, and can be used as a constituent member to realize an all-solid-state secondary battery having an excellent battery voltage. It is an object to provide an electrolyte-containing sheet. The present invention also provides an electrode sheet for an all-solid-state secondary battery having the above-described solid electrolyte-containing sheet, an all-solid-state secondary battery having the electrode sheet for an all-solid-state secondary battery, and the all-solid-state secondary battery. It is an object to provide an electronic device and an electric vehicle that are provided. Moreover, this invention makes it a subject to provide the manufacturing method of each of the said solid electrolyte containing sheet | seat, the said electrode sheet for all-solid-state secondary batteries, the said all-solid-state secondary battery, the said electronic device, and the said electric vehicle.
 本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、特定の平均直径、特定の平均長さを有するファイバーと、無機固体電解質とを含有する固体電解質含有層を有し、さらに、上記平均長さと固体電解質含有層との厚さを特定の関係を満たすようにすることにより、上記課題が解決できることを見出した。本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。 The present inventors made extensive studies in view of the above problems. As a result, it has a solid electrolyte-containing layer containing a fiber having a specific average diameter and a specific average length, and an inorganic solid electrolyte. Further, the thickness of the average length and the solid electrolyte-containing layer is specified. The present inventors have found that the above problems can be solved by satisfying the relationship. The present invention has been further studied based on these findings and has been completed.
 すなわち、上記の課題は以下の手段により解決された。
<1>
 平均直径dが0.1~2μmであり、平均長さLが0.2~50mmであるファイバーと、無機固体電解質とを含む、厚さがtμmの固体電解質含有層を有し、上記Lと上記tが下記関係を満たす固体電解質含有シート。
            100×t≦L≦2500×t
<2>
 上記ファイバーの含有率が、上記固体電解質含有層中、0.1~40体積%である、<1>に記載の固体電解質含有シート。
<3>
 上記ファイバーが電界紡糸ファイバーである、<1>又は<2>に記載の固体電解質含有シート。
<4>
 バインダーを含有する、<1>~<3>のいずれか1つに記載の固体電解質含有シート。
<5>
 自立膜である、<1>~<4>のいずれか1つに記載の固体電解質含有シート。
That is, the above problem has been solved by the following means.
<1>
A solid electrolyte-containing layer having a thickness of t μm, including a fiber having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm, and an inorganic solid electrolyte; A solid electrolyte-containing sheet in which the above t satisfies the following relationship.
100 × t ≦ L ≦ 2500 × t
<2>
The solid electrolyte-containing sheet according to <1>, wherein the fiber content is 0.1 to 40% by volume in the solid electrolyte-containing layer.
<3>
The solid electrolyte-containing sheet according to <1> or <2>, wherein the fiber is an electrospun fiber.
<4>
The solid electrolyte-containing sheet according to any one of <1> to <3>, which contains a binder.
<5>
The solid electrolyte-containing sheet according to any one of <1> to <4>, which is a self-supporting film.
<6>
 <1>~<5>のいずれか1つに記載の固体電解質含有シートと、電極活物質層とを有する全固体二次電池用電極シート。
<7>
 <6>に記載の全固体二次電池用電極シートを有する全固体二次電池。
<8>
 <7>に記載の全固体二次電池を有する電子機器。
<9>
 <7>に記載の全固体二次電池を有する電気自動車。
<6>
An electrode sheet for an all-solid-state secondary battery, comprising the solid electrolyte-containing sheet according to any one of <1> to <5> and an electrode active material layer.
<7>
The all-solid-state secondary battery which has an electrode sheet for all-solid-state secondary batteries as described in <6>.
<8>
<7> Electronic equipment having the all-solid-state secondary battery described in <7>.
<9>
An electric vehicle having the all solid state secondary battery according to <7>.
<10>
 平均直径dが0.1~2μmであり、平均長さLが0.2~50mmのファイバーと、無機固体電解質と、分散媒とを含む固体電解質組成物をキャストする工程を含む、<1>~<5>のいずれか1つに記載の固体電解質含有シートの製造方法。
<11>
 平均直径dが0.1~2μmであり、平均長さLが0.2~50mmのファイバーの不織布に、無機固体電解質の乾燥粉末を塗布する工程、上記不織布に、無機固体電解質と分散媒とを含む固体電解質組成物を塗布する工程、又は、上記不織布を、無機固体電解質と分散媒とを含む固体電解質組成物に含浸させる工程を含む、<1>~<5>のいずれか1つに記載の固体電解質含有シートの製造方法。
<12>
 平均直径dが0.1~2μmであり、平均長さLが0.2~50mmのファイバーの不織布を、無機固体電解質を液相合成する際に、同じ系(上記液相中)に存在させる工程を含む、<1>~<5>のいずれか1つに記載の固体電解質含有シートの製造方法。
<13>
 電界紡糸法によりファイバーを調製する工程を含む、<10>又は<11>に記載の固体電解質含有シートの製造方法。
<14>
 <10>~<13>のいずれか1つに記載の固体電解質含有シートの製造方法により固体電解質含有シートを得て、この固体電解質含有シートを用いて全固体二次電池用電極シートを製造することを含む、全固体二次電池用電極シートの製造方法。
<15>
 <14>に記載の全固体二次電池用電極シートの製造方法により全固体二次電池用電極シートを得て、この全固体二次電池用電極シートを用いて全固体二次電池を製造することを含む、全固体二次電池の製造方法。
<16>
 <15>に記載の全固体二次電池の製造方法により全固体二次電池を得て、この全固体二次電池を電子機器に組み込むことを含む、電子機器の製造方法。
<17>
 <15>に記載の全固体二次電池の製造方法により全固体二次電池を得て、この全固体二次電池を電気自動車に組み込むことを含む、電気自動車の製造方法。
<10>
<1> including a step of casting a solid electrolyte composition including a fiber having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm, an inorganic solid electrolyte, and a dispersion medium. The method for producing a solid electrolyte-containing sheet according to any one of <5>.
<11>
A step of applying a dry powder of an inorganic solid electrolyte to a non-woven fabric of fibers having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm; and the inorganic solid electrolyte and a dispersion medium on the non-woven fabric Any one of <1> to <5>, including a step of applying a solid electrolyte composition containing a solid electrolyte composition, or a step of impregnating the nonwoven fabric with a solid electrolyte composition containing an inorganic solid electrolyte and a dispersion medium The manufacturing method of the solid electrolyte containing sheet of description.
<12>
A fiber nonwoven fabric having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm is present in the same system (in the liquid phase) when the inorganic solid electrolyte is liquid-phase synthesized. The method for producing a solid electrolyte-containing sheet according to any one of <1> to <5>, comprising a step.
<13>
The method for producing a solid electrolyte-containing sheet according to <10> or <11>, comprising a step of preparing a fiber by an electrospinning method.
<14>
A solid electrolyte-containing sheet is obtained by the method for producing a solid electrolyte-containing sheet according to any one of <10> to <13>, and an electrode sheet for an all-solid-state secondary battery is produced using the solid electrolyte-containing sheet. The manufacturing method of the electrode sheet for all-solid-state secondary batteries including this.
<15>
An electrode sheet for an all-solid-state secondary battery is obtained by the method for producing an electrode sheet for an all-solid-state secondary battery described in <14>, and an all-solid-state secondary battery is manufactured using this electrode sheet for an all-solid-state secondary battery. The manufacturing method of the all-solid-state secondary battery including this.
<16>
The manufacturing method of an electronic device including obtaining an all-solid-state secondary battery by the manufacturing method of the all-solid-state secondary battery as described in <15>, and incorporating this all-solid-state secondary battery in an electronic device.
<17>
A method for producing an electric vehicle, comprising: obtaining an all solid state secondary battery by the method for producing an all solid state secondary battery according to <15>; and incorporating the all solid state secondary battery into an electric vehicle.
 本発明の固体電解質含有シートは、可撓性に優れる上、自立膜とすることができ、この固体電解質含有シートを構成部材として用いることにより、優れた電池電圧の全固体二次電池を実現することができる。本発明によれば、上記固体電解質含有シートを有する全固体二次電池用電極シート、この全固体二次電池用電極シートを有する全固体二次電池、並びに、この全固体二次電池を具備する電子機器及び電気自動車を提供することができる。
 本発明の固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車それぞれの製造方法によれば、上述した本発明の固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車を得ることができる。
The solid electrolyte-containing sheet of the present invention is excellent in flexibility and can be a self-supporting film. By using this solid electrolyte-containing sheet as a constituent member, an all-solid secondary battery having an excellent battery voltage is realized. be able to. According to the present invention, an electrode sheet for an all-solid-state secondary battery having the above-described solid electrolyte-containing sheet, an all-solid-state secondary battery having the electrode sheet for an all-solid-state secondary battery, and the all-solid-state secondary battery are provided. An electronic device and an electric vehicle can be provided.
According to the production method of the solid electrolyte-containing sheet, the electrode sheet for an all-solid secondary battery, the all-solid secondary battery, the electronic device, and the electric vehicle of the present invention, the above-described solid electrolyte-containing sheet, all-solid secondary A battery electrode sheet, an all-solid secondary battery, an electronic device, and an electric vehicle can be obtained.
図1は本発明の固体電解質含有シートを有する転写シートを模式化して示す縦断面図である。FIG. 1 is a longitudinal sectional view schematically showing a transfer sheet having a solid electrolyte-containing sheet of the present invention. 本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the all-solid-state secondary battery which concerns on preferable embodiment of this invention.
 本発明の説明において、固体電解質含有シートを「自立膜とすることができる」とは、支持体を用いずに、固体電解質含有シートが後記実施例に記載の自立膜性試験に合格することを意味する。
 本発明において、固体電解質層は、通常、活物質を含有しないが、本発明の効果を損なわない範囲及び活物質層として機能しない範囲であれば、活物質を含有してもよい。
 本発明の説明において、「転写」とは、離型フィルム(支持体)上に形成された固体電解質層と、電極活物質層とが接するように、固体電解質含有シートと電極活物質層とを重ね合わせ、電極活物質層上に固体電解質層を移設することを意味する。本発明の固体電解質含有シートは、固体電解質層を転写するためのシート(固体電解質層転写用シート)とすることもできる。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
In the explanation of the present invention, the solid electrolyte-containing sheet can be `` self-supporting membrane '' means that the solid electrolyte-containing sheet passes the self-supporting membrane property test described in Examples below without using a support. means.
In the present invention, the solid electrolyte layer usually does not contain an active material, but may contain an active material as long as it does not impair the effects of the present invention and does not function as an active material layer.
In the description of the present invention, “transfer” means that the solid electrolyte-containing sheet and the electrode active material layer are brought into contact with the solid electrolyte layer formed on the release film (support) and the electrode active material layer. This means that the solid electrolyte layer is transferred on the electrode active material layer. The solid electrolyte-containing sheet of the present invention can also be a sheet for transferring a solid electrolyte layer (solid electrolyte layer transfer sheet).
In the description of the present invention, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
<固体電解質含有シート>
 本発明の固体電解質含有シートは、平均直径dが0.1~2μmであり、平均長さLが0.2~50mmであるファイバーと、無機固体電解質とを含む、厚さがt(単位:μm)の固体電解質含有層を有し、上記Lと上記tが下記式で表される関係を満たす。
<Solid electrolyte-containing sheet>
The solid electrolyte-containing sheet of the present invention includes a fiber having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm, and an inorganic solid electrolyte, and has a thickness t (unit: μm), and the above L and t satisfy the relationship represented by the following formula.
            100×t≦L≦2500×t L 100 x t ≤ L ≤ 2500 x t
 本発明の固体電解質含有シートは、上記構成を有することにより、上述の効果を奏する。その理由はまだ定かではないが、以下のように推定される。
 本発明に用いられるファイバーは、平均直径d、平均長さLが上記範囲内にあることにより、無機固体電解質の高度な分散性を維持して、ファイバーをマトリックスとした三次元網状構造を形成すると考えられる。平均直径d、平均長さLが上記範囲内にあるファイバー、すなわち、特定のアスペクト比を有するファイバーをマトリックスとすることにより、三次元網状構造に取り込まれた無機固体電解質間の間隔を好適な範囲に収め、また、無機固体電解質間に、抵抗が抑制された良好な界面を形成することができると考えられる。また、少ないファイバーの含有量で三次元網状構造を形成し、無機固体電解質と接することができるため、電池の抵抗上昇を抑制することができる。さらには、この三次元網状構造が形成される固体電解質含有層の厚さtと上記Lが上記式を満足することにより、三次元網状構造が密になり過ぎずに自立膜とすることができる強度を有し、固体電解質含有層に適度な可撓性を付与できると考えられる。このような作用が相俟って、本発明の固体電解質含有シートは、バインダーを少量用いて又はバインダーを用いなくとも所望の物理的特性を備えた上で、電池性能を向上させることができると推定される。
The solid electrolyte-containing sheet of the present invention has the above-described configuration, thereby achieving the effects described above. The reason is not yet clear, but is estimated as follows.
When the average diameter d and the average length L are within the above ranges, the fiber used in the present invention maintains a high dispersibility of the inorganic solid electrolyte and forms a three-dimensional network structure using the fiber as a matrix. Conceivable. A fiber having an average diameter d and an average length L within the above-described ranges, that is, a fiber having a specific aspect ratio, is used as a matrix, so that the interval between the inorganic solid electrolytes taken into the three-dimensional network structure is in a preferable range. In addition, it is considered that a good interface with suppressed resistance can be formed between the inorganic solid electrolytes. In addition, since a three-dimensional network structure can be formed with a small amount of fiber and in contact with the inorganic solid electrolyte, an increase in the resistance of the battery can be suppressed. Furthermore, when the thickness t of the solid electrolyte-containing layer in which the three-dimensional network structure is formed and the L satisfies the above formula, the three-dimensional network structure can be made a self-supporting film without becoming too dense. It is considered that it has strength and can impart appropriate flexibility to the solid electrolyte-containing layer. Combined with these actions, the solid electrolyte-containing sheet of the present invention can improve battery performance with a desired physical property using a small amount of binder or without using a binder. Presumed.
 本発明の固体電解質含有シートが有する固体電解質含有層中、ファイバーは、平面及び三次元の両方で網目構造を有し、この網目に無機固体電解質等の固体粒子が分散している。ファイバーはファイバー状のまま存在している。
 本発明の固体電解質含有シートが有する固体電解質含有層は後述の分散媒を含んでいてもよい。この分散媒の含有量は、例えば、質量基準で1000ppm以下である。
 tは、全固体二次電池のサイズに応じて適宜設定することができ、例えば、5~250μmであり、10~100μmが好ましく、15~40μmがより好ましい。
In the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention, the fiber has a network structure in both plane and three dimensions, and solid particles such as an inorganic solid electrolyte are dispersed in the network. The fiber exists as a fiber.
The solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention may contain a dispersion medium described later. The content of the dispersion medium is, for example, 1000 ppm or less on a mass basis.
t can be appropriately set according to the size of the all-solid-state secondary battery, and is, for example, 5 to 250 μm, preferably 10 to 100 μm, and more preferably 15 to 40 μm.
<転写シート>
 本発明の固体電解質含有シートは、上記固体電解質含有層からなるシート(自立膜)である。ただし、離型フィルム(支持体)を有する転写シートとして用いることもできる。以下、転写シートである、本発明の固体電解質含有シートを有する転写シートを、「本発明の転写シート」と称することもある。本発明の転写シートは、電極活物質層上に固体電解質含有層を転写するために好適である。
 本発明の転写シートの好ましい形態として、図1に示す転写シートが挙げられる。
<Transfer sheet>
The solid electrolyte-containing sheet of the present invention is a sheet (self-supporting film) composed of the solid electrolyte-containing layer. However, it can also be used as a transfer sheet having a release film (support). Hereinafter, the transfer sheet having the solid electrolyte-containing sheet of the present invention, which is a transfer sheet, may be referred to as “the transfer sheet of the present invention”. The transfer sheet of the present invention is suitable for transferring the solid electrolyte-containing layer onto the electrode active material layer.
A preferred form of the transfer sheet of the present invention is the transfer sheet shown in FIG.
 図1に示す本発明の転写シート10は、離型フィルム2、固体電解質層1をこの順に有する。
 本発明の転写シートに用いられる離型フィルムは特に制限されないが、例えば、アルミニウムフィルム、ステンレス鋼(SUS)フィルム、銅フィルム等の金属フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム、ポリテトラフルオロエチレン(PTFE)フィルム等の樹脂フィルムが挙げられる。また、離型フィルムと固体電解質層との離型性を向上させるため、固体電解質層と離型フィルムとの間にシリコーン樹脂層、フッ素樹脂層、オレフィン樹脂層などの離型性調整層を有してもよい。離型性調整層付の離型フィルムの具体例として、東レフイルム加工(株)社製のセラピール、パナック(株)製のパナピール、ユニチカ(株)社製のユニピールを挙げることができる。
A transfer sheet 10 of the present invention shown in FIG. 1 has a release film 2 and a solid electrolyte layer 1 in this order.
The release film used for the transfer sheet of the present invention is not particularly limited. For example, metal films such as aluminum film, stainless steel (SUS) film, copper film, polyethylene terephthalate film, polyethylene naphthalate film, polyimide film, polytetra Examples thereof include a resin film such as a fluoroethylene (PTFE) film. In addition, in order to improve the releasability between the release film and the solid electrolyte layer, a releasability adjusting layer such as a silicone resin layer, a fluororesin layer, or an olefin resin layer is provided between the solid electrolyte layer and the release film. May be. Specific examples of the release film having a release property adjusting layer include Toray Film Processing Co., Ltd., Peelac Panapeel, Unitika Co., Ltd. Unipeel.
 本発明の固体電解質含有シートは、保護フィルムを有してもよい。保護フィルムとして、上記離型フィルムで挙げたフィルムを用いることができる。固体電解質含有層上に設けられるフィルムのうち、転写前に剥離する必要があるフィルムが保護フィルムであり、電極活物質層上に固体電解質層を積層した後に剥離するフィルムが離型フィルムである。
 なお、本発明の固体電解質含有シートは、水分、異物の侵入防止、転写後の積層時の位置ずれなどに起因する正極負極の接触による短絡を防ぐために、固体電解質含有層の端面を保護する膜を有してもよい。
The solid electrolyte-containing sheet of the present invention may have a protective film. As the protective film, the film mentioned in the above release film can be used. Of the films provided on the solid electrolyte-containing layer, the film that needs to be peeled off before transfer is the protective film, and the film that peels off after the solid electrolyte layer is laminated on the electrode active material layer is the release film.
The solid electrolyte-containing sheet of the present invention is a film that protects the end face of a solid electrolyte-containing layer in order to prevent short circuit due to contact of the positive electrode and the negative electrode caused by moisture, foreign matter intrusion prevention, misalignment during lamination after transfer, etc. You may have.
<全固体二次電池用電極シート>
 本発明の全固体二次電池用電極シートは、本発明の固体電解質含有シート(固体電解質層)と電極活物質層とを有する。
 本発明の全固体二次電池用電極シートとして、例えば、集電体上に電極活物質層を有し、この電極活物質層上に固体電解質層を有するシート、及び、集電体上に導電体層を有し、この導電体層上に電極活物質層を有し、この電極活物質層上に固体電解質層を有するシートが挙げられる。
 全固体二次電池用電極シートにおいて、固体電解質層は後述の分散媒を含んでいてもよい。この分散媒の含有量は、例えば、質量基準で1000ppm以下である。
 この導電体層としては、例えば、特開2013-23654号公報及び特開2013-229187号公報に記載の導電体層(カーボンコート箔)が挙げられる。
 また、上記電極活物質層及び集電体は、通常の全固体二次電池に使用される電極活物質層及び集電体を用いることができる。例えば、特開2015-088486号公報に記載の電極活物質層及び集電体を用いることができる。
 なお、本発明の説明において、電極活物質層(正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。))を活物質層と称することがある。
<Electrode sheet for all-solid-state secondary battery>
The electrode sheet for an all-solid-state secondary battery of the present invention has the solid electrolyte-containing sheet (solid electrolyte layer) of the present invention and an electrode active material layer.
As an electrode sheet for an all-solid-state secondary battery of the present invention, for example, a sheet having an electrode active material layer on a current collector, a solid electrolyte layer on the electrode active material layer, and a conductive material on the current collector Examples thereof include a sheet having a body layer, an electrode active material layer on the conductor layer, and a solid electrolyte layer on the electrode active material layer.
In the electrode sheet for an all-solid-state secondary battery, the solid electrolyte layer may contain a dispersion medium described later. The content of the dispersion medium is, for example, 1000 ppm or less on a mass basis.
Examples of the conductor layer include conductor layers (carbon coated foils) described in JP2013-23654A and JP2013-229187A.
The electrode active material layer and the current collector may be the electrode active material layer and the current collector used in a normal all-solid secondary battery. For example, an electrode active material layer and a current collector described in JP-A-2015-088486 can be used.
In the description of the present invention, an electrode active material layer (a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer)) may be referred to as an active material layer. .
<全固体二次電池>
 本発明の全固体二次電池は、正極活物質層と、この正極活物質層に対向する負極活物質層と、正極活物質層及び負極活物質層の間に配置された固体電解質層とを有する。正極活物質層は、必要により正極集電体上に形成され、正極を構成する。負極活物質層は、必要により負極集電体上に形成され、負極を構成する。
 本発明の全固体二次電池は、上記本発明の全固体二次電池用電極シートを有する。
 負極活物質層及び正極活物質層の厚さは、それぞれ、特に制限されない。各層の厚さは、一般的な全固体二次電池の寸法を考慮すると、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層及び負極活物質層の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。なお、固体電解質層の厚さは、上記「t(μm)」と同義であり、好ましい範囲も同じである。
 本発明の全固体二次電池において、負極としてリチウム金属層(リチウム金属の層)を用いてもよく、具体的には、リチウム粉末を堆積又は成形してなる層、リチウム箔及びリチウム蒸着膜等を包含する。リチウム金属層の厚さは、特に限定されず、例えば、0.01~100μmとしてもよく、0.1~100μmとしてもよい。
 正極活物質層及び負極活物質層は、それぞれ、固体電解質層とは反対側に集電体を備えていてもよい。
<All-solid secondary battery>
An all solid state secondary battery of the present invention comprises a positive electrode active material layer, a negative electrode active material layer facing the positive electrode active material layer, and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer. Have. The positive electrode active material layer is formed on the positive electrode current collector as necessary to constitute a positive electrode. The negative electrode active material layer is formed on the negative electrode current collector as necessary, and constitutes the negative electrode.
The all-solid-state secondary battery of the present invention has the above-described electrode sheet for an all-solid-state secondary battery of the present invention.
The thicknesses of the negative electrode active material layer and the positive electrode active material layer are not particularly limited. The thickness of each layer is preferably 10 to 1,000 μm, more preferably 20 μm or more and less than 500 μm, considering the dimensions of a general all solid state secondary battery. In the all solid state secondary battery of the present invention, it is more preferable that the thickness of at least one of the positive electrode active material layer and the negative electrode active material layer is 50 μm or more and less than 500 μm. The thickness of the solid electrolyte layer is synonymous with the above “t (μm)”, and the preferred range is also the same.
In the all solid state secondary battery of the present invention, a lithium metal layer (lithium metal layer) may be used as the negative electrode. Specifically, a layer formed by depositing or molding lithium powder, a lithium foil, a lithium vapor deposition film, and the like Is included. The thickness of the lithium metal layer is not particularly limited, and may be, for example, 0.01 to 100 μm or 0.1 to 100 μm.
Each of the positive electrode active material layer and the negative electrode active material layer may include a current collector on the side opposite to the solid electrolyte layer.
<筐体>
 本発明の全固体二次電池は、用途によっては、上記構造のまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いることが好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金又は、ステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
<Case>
The all-solid-state secondary battery of the present invention may be used as an all-solid-state secondary battery with the above-mentioned structure depending on the application. Is preferred. The housing may be metallic or made of resin (plastic). In the case of using a metallic material, for example, an aluminum alloy or a stainless steel material can be used. The metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively. The casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
 以下に、図2を参照して、本発明の好ましい実施形態に係る全固体二次電池について説明するが、本発明はこれに限定されない。 Hereinafter, an all-solid secondary battery according to a preferred embodiment of the present invention will be described with reference to FIG. 2, but the present invention is not limited thereto.
 図2は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池100は、負極側からみて、負極集電体3、負極活物質層4、固体電解質層5、正極活物質層6、正極集電体7を、この順に有する。各層はそれぞれ接触しており、隣接した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位8に電子が供給される。図示した例では、作動部位8に電球をモデル的に採用しており、放電によりこれが点灯するようにされている。 FIG. 2 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 100 of this embodiment has a negative electrode current collector 3, a negative electrode active material layer 4, a solid electrolyte layer 5, a positive electrode active material layer 6, and a positive electrode current collector 7 in this order as viewed from the negative electrode side. . Each layer is in contact with each other and has an adjacent structure. By adopting such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharging, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 8. In the illustrated example, a light bulb is used as a model for the operating part 8 and is lit by discharge.
 図2に示す層構成を有する全固体二次電池を2032型コインケースに入れる場合、この全固体二次電池を全固体二次電池用積層体と称し、この全固体二次電池用積層体を2032型コインケースに入れて作製した電池を全固体二次電池と称して呼び分けることもある。 When the all-solid-state secondary battery having the layer configuration shown in FIG. 2 is put in a 2032 type coin case, this all-solid-state secondary battery is referred to as an all-solid-state secondary battery laminate. A battery produced by placing it in a 2032 type coin case may be referred to as an all-solid secondary battery.
<正極活物質層、固体電解質層、負極活物質層>
 全固体二次電池100は電気抵抗が小さく、優れた電池性能を示す。正極活物質層6、固体電解質層5及び負極活物質層4が含有する無機固体電解質は、互いに同種であっても異種であってもよい。
 本発明において、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
<Positive electrode active material layer, solid electrolyte layer, negative electrode active material layer>
The all-solid secondary battery 100 has a small electric resistance and exhibits excellent battery performance. The inorganic solid electrolytes contained in the positive electrode active material layer 6, the solid electrolyte layer 5 and the negative electrode active material layer 4 may be the same or different from each other.
In the present invention, either or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
 本発明において、上記バインダーを無機固体電解質等の固体粒子と組み合わせて用いると、固体粒子同士の接触不良、集電体からの固体粒子の剥がれを抑えることができる。そのため、本発明の固体電解質含有シート又は全固体二次電池を例えば製造工程において曲げ応力が作用しても優れた電池特性を維持できる。 In the present invention, when the binder is used in combination with solid particles such as an inorganic solid electrolyte, contact failure between the solid particles and peeling of the solid particles from the current collector can be suppressed. Therefore, excellent battery characteristics can be maintained even when bending stress acts on the solid electrolyte-containing sheet or the all-solid secondary battery of the present invention in the manufacturing process, for example.
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
The positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors.
In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, and titanium, as well as aluminum or stainless steel surface treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
In addition to aluminum, copper, copper alloy, stainless steel, nickel, titanium, etc., the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に制限されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
The current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
The thickness of the current collector is not particularly limited, but is preferably 1 to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。 In the present invention, a functional layer, a member, or the like is appropriately interposed or disposed between or outside each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be. Each layer may be composed of a single layer or a plurality of layers.
<固体電解質含有層が含有する成分及び含有しうる成分>
 以下、本発明の固体電解質含有シートが有する固体電解質含有層が含有する成分及び含有しうる成分について説明する。
<Components contained in the solid electrolyte-containing layer and components that can be contained>
Hereinafter, the component which the solid electrolyte content layer which the solid electrolyte content sheet of this invention has and the component which can be contained are demonstrated.
<無機固体電解質>
 本発明の固体電解質含有シートが有する固体電解質含有層は、無機固体電解質を含有する。
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
 上記無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、よりイオン伝導性を高めるため、硫化物系無機固体電解質が好ましく用いられる。
<Inorganic solid electrolyte>
The solid electrolyte content layer which the solid electrolyte content sheet of the present invention has contains an inorganic solid electrolyte.
In the present invention, the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions. In this respect, it is also clearly distinguished from an electrolyte or an inorganic electrolyte salt in which cations and anions are dissociated or liberated in the polymer (LiPF 6 , LiBF 4 , lithium bis (fluorosulfonyl) imide (LiFSI), LiCl, etc.). Is done. The inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity. When the all solid state secondary battery of the present invention is a lithium ion battery, the inorganic solid electrolyte preferably has lithium ion ionic conductivity.
As the inorganic solid electrolyte, a solid electrolyte material usually used for an all-solid secondary battery can be appropriately selected and used. Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes. In the present invention, a sulfide-based inorganic solid electrolyte is preferably used in order to further improve ionic conductivity.
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
(I) Sulfide-based inorganic solid electrolyte The sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred. The sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1).

L a1 M b1 P c1 S d1 A e1 (1)

In the formula, L represents an element selected from Li, Na and K, and Li is preferred. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. A represents an element selected from I, Br, Cl and F. a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. a1 is preferably 1 to 9, and more preferably 1.5 to 7.5. b1 is preferably 0 to 3, and more preferably 0 to 1. d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5. e1 is preferably from 0 to 5, and more preferably from 0 to 3.
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
The sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized. For example, Li—PS system glass containing Li, P, and S, or Li—PS system glass ceramics containing Li, P, and S can be used.
The sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of the element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。 The ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22. By setting the ratio of Li 2 S to P 2 S 5 within this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 × 10 −1 S / cm or less.
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 Examples of combinations of raw materials are shown below as specific examples of sulfide-based inorganic solid electrolytes. For example, Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S—Ga 2 S 3, Li 2 S- GeS 2 -Ga 2 S 3, Li 2 S-GeS 2 -P 2 S 5 Li 2 S-GeS 2 -Sb 2 S 5, Li 2 S-GeS 2 -Al 2 S 3, Li 2 S-SiS 2, Li 2 S-Al 2 S 3, Li 2 S-SiS 2 -Al 2 S 3 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 —LiI, Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 10 GeP 2 S 12 and the like. However, the mixing ratio of each raw material does not matter. Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method. Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
(Ii) Oxide-based inorganic solid electrolyte The oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and Those having electronic insulating properties are preferred.
The oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 × 10 −6 S / cm or more, more preferably 5 × 10 −6 S / cm or more, and 1 × 10 −5 S. / Cm or more is particularly preferable. The upper limit is not particularly limited, but is practically 1 × 10 −1 S / cm or less.
 具体的な化合物例としては、例えばLixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT); LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。); Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In及びSnから選ばれる1種以上の元素である。xcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。); Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。); Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。); LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。); Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。); LiBO; LiBO-LiSO; LiO-B-P; LiO-SiO; LiBaLaTa12; LiPO(4-3/2w)(wはw<1); LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO; ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO; NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12; Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。); ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO); リン酸リチウムの酸素の一部を窒素で置換したLiPON; LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C及びGaから選ばれる1種以上の元素である。)等も好ましく用いることができる。
As a specific compound example, for example, Li xa La ya TiO 3 [xa satisfies 0.3 ≦ xa ≦ 0.7, and ya satisfies 0.3 ≦ ya ≦ 0.7. (LLT); Li xb La yb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn) Xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, and nb satisfies 5 ≦ nb ≦ 20. Li xc B yc M cc zc Onc (M cc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn. Xc is 0 <xc ≦ 5 Yc satisfies 0 <yc ≦ 1, zc satisfies 0 <zc ≦ 1, and nc satisfies 0 <nc ≦ 6); Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md Ond (xd satisfies 1 ≦ xd ≦ 3, yd Satisfies 0 ≦ yd ≦ 1, zd satisfies 0 ≦ zd ≦ 2, ad satisfies 0 ≦ ad ≦ 1, md satisfies 1 ≦ md ≦ 7, and nd satisfies 3 ≦ nd ≦ 13.) Li (3-2xe) M ee xe D ee O (xe represents a number of 0 to 0.1, M ee represents a divalent metal atom, D ee represents a halogen atom or two or more types of halogen atoms; Li xf Si yf O zf (xf satisfies 1 ≦ xf ≦ 5, yf satisfies 0 <yf ≦ 3, and zf satisfies 1 ≦ zf ≦ 10); Li xg S yg O zg (xg satisfies 1 ≦ xg ≦ 3, yg satisfies 0 <yg ≦ 2, and zg satisfies 1 ≦ zg ≦ 10); Li 3 BO 3 ; Li 3 BO 3 —Li 2 SO 4 ; Li 2 O-B 2 O 3 -P 2 O 5; Li 2 O-SiO 2 Li 6 BaLa 2 Ta 2 O 12 ; Li 3 PO (4-3 / 2w) N w (w is w <1); LISICON Li 3.5 Zn 0.25 GeO with (Lithium super ionic conductor) type crystal structure 4 ; La 0.55 Li 0.35 TiO 3 having a perovskite-type crystal structure; LiTi 2 P 3 O 12 having a NASICON (Natrium super ionic conductor) type crystal structure; Li 1 + xh + yh (Al, Ge) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (xh satisfies 0 ≦ xh ≦ 1 and yh satisfies 0 ≦ yh ≦ 1) And Li 7 La 3 Zr 2 O 12 (LLZ) having a garnet-type crystal structure.
Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ); LiPON obtained by substituting a part of oxygen of lithium phosphate with nitrogen; LiPOD 1 (D 1 is preferably Ti, V, Cr, Mn, Fe, Co, Ni, And at least one element selected from Cu, Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au.
Furthermore, LiA 1 ON (A 1 is one or more elements selected from Si, B, Ge, Al, C, and Ga) can be preferably used.
 無機固体電解質は粒子であることが好ましい。この場合、無機固体電解質の体積平均粒子径は特に制限されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。無機固体電解質の体積平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。 The inorganic solid electrolyte is preferably a particle. In this case, the volume average particle diameter of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less. The volume average particle size of the inorganic solid electrolyte is measured by the following procedure. The inorganic solid electrolyte particles are prepared by diluting a 1 mass% dispersion in a 20 mL sample bottle using water (heptane in the case of a substance unstable to water). The diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that. Using this dispersion liquid sample, using a laser diffraction / scattering particle size distribution measuring device LA-920 (trade name, manufactured by HORIBA), data was acquired 50 times using a quartz cell for measurement at a temperature of 25 ° C., Obtain the volume average particle size. For other detailed conditions, refer to the description of JIS Z 8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level, and the average value is adopted.
 無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 固体電解質含有層の単位面積(cm)当たりの無機固体電解質の質量(mg)(目付量)は特に制限されるものではない。設計された電池容量に応じて、適宜に決めることができ、例えば、1~100mg/cmとすることができる。
An inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
The mass (mg) (weight per unit area) of the inorganic solid electrolyte per unit area (cm 2 ) of the solid electrolyte-containing layer is not particularly limited. It can be determined as appropriate according to the designed battery capacity, for example, 1 to 100 mg / cm 2 .
 無機固体電解質の、固体電解質含有層中の含有量は、界面抵抗の低減及び結着性の点で、固形分100質量%において、48質量%以上であることが好ましく、61質量%以上であることがより好ましく、74質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることが特に好ましい。
 本明細書において、固形分(固形成分)とは、後述の固体電解質組成物を、1mmHgの気圧下、窒素雰囲気下170℃で6時間乾燥処理したときに、揮発又は蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
The content of the inorganic solid electrolyte in the solid electrolyte-containing layer is preferably 48% by mass or more and 61% by mass or more at a solid content of 100% by mass in terms of reduction in interface resistance and binding properties. It is more preferable that the content is 74% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 97 mass% or less, It is especially preferable that it is 95 mass% or less.
In the present specification, the solid content (solid component) is a component that does not disappear by evaporation or evaporation when the solid electrolyte composition described below is dried at 170 ° C. in a nitrogen atmosphere at a pressure of 1 mmHg for 6 hours. Say. Typically, it refers to components other than the dispersion medium described below.
<ファイバー>
 本発明に用いられるファイバーは、平均直径dが0.1~2μmであって、平均長さLが0.2~50mmであり、上記Lと、このファイバーを含有する固体電解質含有層の厚さt(単位:μm)が下記式で表される関係を満たす。
<Fiber>
The fiber used in the present invention has an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm. The thickness of the L and the solid electrolyte-containing layer containing the fiber t (unit: μm) satisfies the relationship represented by the following formula.
            100×t≦L≦2500×t L 100 x t ≤ L ≤ 2500 x t
 平均直径dは0.3~2μmであることが好ましく、0.4~1μmであることがより好ましい。
 平均長さLは0.3~45mmであることが好ましく、0.4~35mmであることがより好ましい。
 アスペクト比L/dは150~150,000であることが好ましく、400~87,500であることがより好ましい。
 d、Lのいずれにおいても上記範囲にあることにより、可撓性と電池性能とをより高い水準で両立できるからである。
 Lとtは、200×t≦L≦2000×tで表される関係を満たすことが好ましく、500×t≦L≦1500×tで表される関係を満たすことがより好ましく、550×t≦L≦1500×tで表される関係を満たすことがさらに好ましい。
 上記範囲にあることにより、可撓性と電池性能とをより高い水準で両立できるからである。
The average diameter d is preferably 0.3 to 2 μm, more preferably 0.4 to 1 μm.
The average length L is preferably 0.3 to 45 mm, and more preferably 0.4 to 35 mm.
The aspect ratio L / d is preferably 150 to 150,000, and more preferably 400 to 87,500.
This is because both d and L are in the above range, so that flexibility and battery performance can be achieved at a higher level.
L and t preferably satisfy the relationship represented by 200 × t ≦ L ≦ 2000 × t, more preferably satisfy the relationship represented by 500 × t ≦ L ≦ 1500 × t, and 550 × t ≦ It is more preferable to satisfy the relationship represented by L ≦ 1500 × t.
By being in the above range, flexibility and battery performance can be achieved at a higher level.
 なお、ファイバーの平均直径d、平均長さL、アスペクト比については、SEM(Scanning Electron Microscope)又はTEM(Transmission Electron Microscope)等により算出することができる。
 具体的な測定条件等については、実施例の項に記載のSEM解析を参照することができる。本発明においては、平均直径は数平均直径を意味し、平均長さは数平均長さを意味する。また、アスペクト比は数平均直径に対する数平均長さのアスペクト比を意味する。
The average diameter d, the average length L, and the aspect ratio of the fiber can be calculated by SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope), or the like.
For specific measurement conditions and the like, the SEM analysis described in the Examples section can be referred to. In the present invention, the average diameter means the number average diameter, and the average length means the number average length. The aspect ratio means the aspect ratio of the number average length to the number average diameter.
 また、本発明に用いられるファイバーは有機物であっても無機物であってもよく、有機物が好ましい。ファイバーは、絶縁性を示し、例えば、体積抵抗率が1×1012(Ω・cm)以上であることが好ましく、1×1014(Ω・cm)以上であることがより好ましい。上限は、1×1019(Ω・cm)以下であることが実際的である。このため、導電助剤として用いられるカーボンナノファイバーとは異なる。
 なお、ファイバーの体積抵抗率は、実施例の項に記載の方法により測定することができる。
The fiber used in the present invention may be organic or inorganic, and is preferably organic. The fiber exhibits insulating properties, and for example, the volume resistivity is preferably 1 × 10 12 (Ω · cm) or more, and more preferably 1 × 10 14 (Ω · cm) or more. It is practical that the upper limit is 1 × 10 19 (Ω · cm) or less. For this reason, it is different from the carbon nanofiber used as a conductive additive.
In addition, the volume resistivity of a fiber can be measured by the method as described in the term of an Example.
 本発明に用いられるファイバーは、1種類の材料から形成されていてもよく、2種類以上の材料から形成されていてもよい。
 ここで、ファイバーの中心部は、それ自体単独でファイバーとなりうる部分である。ファイバーの表面とは、中心部の外側の表面部分を意味する。そのため、1種類の材料から形成される場合には、表面が被覆されておらず、中心部のみからなるファイバーを構成する。
 表面を樹脂により被覆したファイバーを例に説明すると、ファイバーの中心部は、樹脂により被覆される前のファイバーであり、中心部の表面が樹脂により被覆されている。
The fiber used for this invention may be formed from one type of material, and may be formed from two or more types of materials.
Here, the center part of the fiber is a part that can itself become a fiber. The surface of the fiber means a surface portion outside the center. Therefore, when formed from one kind of material, the surface is not covered, and a fiber consisting only of the central portion is formed.
The fiber whose surface is coated with resin will be described as an example. The center portion of the fiber is a fiber before being coated with resin, and the surface of the center portion is covered with resin.
 中心部が有機物からなる場合には、表面は他の有機物で被覆されていてもされていなくてもよく、中心部が、電気伝導度が1×10-6S/m以下の無機物からなる場合には、表面は有機物で被覆されていてもされていなくてもよい。
 中心部が、電気伝導度が1×10-6S/mを超える半導体または導体からなる場合には、表面は電気伝導度が1×10-6S/m以下の材料で被覆されていることが好ましい。なお、ファイバーの電気伝導度が1×10-6S/m以下であればよい。
 電気伝導度が1×10-6S/m以下の材料としては、有機物が好ましく、有機物であれば低分子化合物、及び重合体(オリゴマー又はポリマー)のいずれでもよいが、ポリマーであることが好ましい。
When the central part is made of an organic substance, the surface may or may not be covered with another organic substance, and the central part is made of an inorganic substance having an electric conductivity of 1 × 10 −6 S / m or less. The surface may or may not be coated with an organic substance.
When the central part is made of a semiconductor or conductor having an electric conductivity exceeding 1 × 10 −6 S / m, the surface is covered with a material having an electric conductivity of 1 × 10 −6 S / m or less. Is preferred. The electrical conductivity of the fiber may be 1 × 10 −6 S / m or less.
The material having an electric conductivity of 1 × 10 −6 S / m or less is preferably an organic material, and may be any of a low molecular compound and a polymer (oligomer or polymer) as long as it is an organic material, but is preferably a polymer. .
 上記重合体の具体例として、例えば、ポリイミド、セルロースアセテート、アクリル系ポリマー、メタクリル酸メチルーアクリル酸共重合体、ウレタン樹脂、及びポリアクリルアミンが挙げられる。これらは常法により重合することができる。また、市販品を用いてもよい。
 上記重合体は、ヒドロキシ基、カルボキシ基、エステル基等を有することにより、重合体と無機固体電解質との結着性をより向上させることができるため、可撓性及び電池電圧をより向上させることができる。
 ヒドロキシ基、カルボキシ基、エステル基等の官能基の含有量は、重合体繰返し単位当たり0.001~50質量%が好ましく、0.01~5質量%がより好ましい。上記重合体中のカルボキシ基の含有量は例えば、販売元のカタログ値を採用することができる。
Specific examples of the polymer include polyimide, cellulose acetate, acrylic polymer, methyl methacrylate-acrylic acid copolymer, urethane resin, and polyacrylamine. These can be polymerized by conventional methods. Moreover, you may use a commercial item.
Since the polymer has a hydroxy group, a carboxy group, an ester group, etc., the binding property between the polymer and the inorganic solid electrolyte can be further improved, so that the flexibility and battery voltage are further improved. Can do.
The content of a functional group such as a hydroxy group, a carboxy group or an ester group is preferably 0.001 to 50% by mass, more preferably 0.01 to 5% by mass, per polymer repeating unit. For example, the catalog value of the vendor can be adopted as the content of the carboxy group in the polymer.
 重合体であるファイバーの調製方法は特に制限されないが、電界紡糸法、乾式紡糸法、及び湿式紡糸法が挙げられる。本発明において、上記d及びLを所定の範囲に設定して可撓性及び電池電圧をより向上させることができる点で、電界紡糸法で調製されたファイバー(電界紡糸ファイバー)を用いることが好ましい。 The method for preparing the polymer fiber is not particularly limited, and examples thereof include an electrospinning method, a dry spinning method, and a wet spinning method. In the present invention, it is preferable to use a fiber (electrospun fiber) prepared by an electrospinning method in that d and L can be set in a predetermined range to further improve flexibility and battery voltage. .
<電界紡糸法>
 上記重合体を有機溶媒に溶解させることによりポリマー溶液を得る。有機溶媒は、例えば、メチレンクロライド、n-メチル-2-ピロリドン、蟻酸、及びホルマリン挙げられる。
<Electrospinning method>
A polymer solution is obtained by dissolving the polymer in an organic solvent. Examples of the organic solvent include methylene chloride, n-methyl-2-pyrrolidone, formic acid, and formalin.
 本発明において、電界紡糸法によるファイバーの調製に用いられる装置として、例えば、NANON-3(商品名、メック社製)及びNEU(商品名、カトーテック社製)が挙げられる。これらの装置において、ノズル先端にプラスの電圧を印加し、コレクタはマイナスに帯電させ、上記ポリマー溶液を、一定温度(例えば、5~40℃)でノズル先端から出し、コレクタ上にファイバーを集積させる。この際、ノズルの先端から出たポリマー溶液の周面には、一定温度(例えば、5~15℃)の気体を送る。 In the present invention, examples of the apparatus used for preparing the fiber by the electrospinning method include NANON-3 (trade name, manufactured by MEC) and NEU (trade name, manufactured by Kato Tech). In these apparatuses, a positive voltage is applied to the nozzle tip, the collector is negatively charged, the polymer solution is discharged from the nozzle tip at a constant temperature (for example, 5 to 40 ° C.), and fibers are accumulated on the collector. . At this time, a gas at a constant temperature (for example, 5 to 15 ° C.) is sent to the peripheral surface of the polymer solution coming out from the tip of the nozzle.
 上記電界紡糸法は、例えば、特開2008-013873号公報、及び特開2009-270210号公報を参照して行うことができる。
 上記乾式紡糸法は、例えば、特開2008-069291号公報、及び特開2013-130404号公報を参照して行うことができる。
 上記湿式紡糸法は、例えば、特開2006-248272号公報、及び特開2016-53241号公報を参照して行うことができる。
The electrospinning method can be performed with reference to, for example, Japanese Patent Application Laid-Open Nos. 2008-013873 and 2009-270210.
The dry spinning method can be performed with reference to, for example, Japanese Patent Application Laid-Open Nos. 2008-069291 and 2013-130404.
The wet spinning method can be performed with reference to, for example, JP-A-2006-248272 and JP-A-2016-53241.
 無機物からなるファイバーとしては、例えば、金属からなるファイバー(銀ナノワイヤー、銅ナノワイヤー、ニッケルナノワイヤー、コバルトナノワイヤー、金ナノワイヤー等)、セラミックスからなるファイバー(酸化アルミナノワイヤー、水酸化銅ナノワイヤー、ヒドロキシアパタイトナノワイヤー、酸化鉄水和物ナノワイヤー、酸化鉄ナノワイヤー、水酸化ニッケルナノワイヤー、酸化マグネシウムナノワイヤー、酸化モリブデンナノワイヤー、シリコンカーバイドナノワイヤー、酸化チタンナノワイヤー、酸化マンガンナノワイヤー、酸化ニッケルナノワイヤー、酸化タングステンナノワイヤー、酸化バナジウムナノワイヤー、酸化亜鉛ナノワイヤー等)、ガラスからなるファイバー(シリカグラスナノファイバー等)が挙げられる。 Examples of fibers made of inorganic materials include fibers made of metals (silver nanowires, copper nanowires, nickel nanowires, cobalt nanowires, gold nanowires, etc.), and fibers made of ceramics (alumina oxide wires, copper hydroxide nanos). Wire, hydroxyapatite nanowire, iron oxide hydrate nanowire, iron oxide nanowire, nickel hydroxide nanowire, magnesium oxide nanowire, molybdenum oxide nanowire, silicon carbide nanowire, titanium oxide nanowire, manganese oxide nanowire, Nickel oxide nanowires, tungsten oxide nanowires, vanadium oxide nanowires, zinc oxide nanowires, etc.), fibers made of glass (silica glass nanofibers, etc.) .
 ファイバーの含有率は、本発明の固体電解質含有シートが有する固体電解質含有層中、0.1~40体積%が好ましく、1~30体積%がより好ましく、5~20体積%がさらに好ましい。ここで、固体電解質含有層の体積は、空隙を含めた見かけ上の体積であって縦横高さから計算される。
 上記含有率は以下のようにして算出することができる。
 〔{シート中のファイバー質量(g)÷ファイバー原料の比重(g/cm)}÷シート全体体積(cm)〕×100(%)。
 上記好ましい範囲内にあることで、可撓性及び電池電圧を両立して高めることができる。
 上記ファイバーは、1種を単独で用いても、2種以上を組み合わせて用いてもよく、1種単独で用いることが好ましい。
The fiber content in the solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention is preferably 0.1 to 40% by volume, more preferably 1 to 30% by volume, and still more preferably 5 to 20% by volume. Here, the volume of the solid electrolyte-containing layer is an apparent volume including voids and is calculated from the height and width.
The content can be calculated as follows.
[{Mass of fiber in sheet (g) ÷ specific gravity of fiber raw material (g / cm 3 )} ÷ total volume of sheet (cm 3 )] × 100 (%).
By being in the preferred range, both flexibility and battery voltage can be enhanced.
The above fibers may be used alone or in combination of two or more, and are preferably used alone.
<バインダー>
 本発明の固体電解質含有シートが有する固体電解質含有層は、バインダーを含有することが好ましい。バインダーを構成する重合体は、どのような形態でもよく、例えば、固体電解質含有シート又は全固体二次電池中において、粒子状であっても不定形状であってもよい。バインダーを構成する重合体は、粒子状が好ましい。
 本発明で使用するバインダーを構成する重合体が樹脂粒子である場合、この樹脂粒子を形成する樹脂は、有機樹脂であれば特に限定されない。
 このバインダーを構成する重合体は、特に制限はなく、例えば、下記の樹脂からなる粒子の形態が好ましい。
<Binder>
The solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention preferably contains a binder. The polymer constituting the binder may be in any form, and for example, in the solid electrolyte-containing sheet or the all-solid secondary battery, it may be in the form of particles or indefinite shape. The polymer constituting the binder is preferably particulate.
When the polymer which comprises the binder used by this invention is a resin particle, if resin which forms this resin particle is an organic resin, it will not specifically limit.
The polymer constituting the binder is not particularly limited, and for example, the form of particles made of the following resin is preferable.
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、及びこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本発明において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他の樹脂としては、例えば、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
Examples of the fluorine-containing resin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
Examples of the hydrocarbon-based thermoplastic resin include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
Examples of the acrylic resin include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done.
Further, a copolymer (copolymer) with other vinyl monomers is also preferably used. Examples thereof include a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile, and styrene. In the present invention, the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
Examples of other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin.
 バインダーは、常法により合成ないし調製したものを用いてもよく、市販品を用いてもよい。
 バインダーは、1種を単独で用いても、2種以上を用いてもよい。
As the binder, one synthesized or prepared by a conventional method may be used, or a commercially available product may be used.
A binder may be used individually by 1 type, or may use 2 or more types.
 固体電解質含有層がバインダーを含有する場合、バインダーの固体電解質含有層中の含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮すると、固形成分100質量%中、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上が更に好ましい。上限としては、電池特性の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。 When the solid electrolyte-containing layer contains a binder, the content of the binder in the solid electrolyte-containing layer is determined by considering the reduction of the interface resistance when used in an all-solid secondary battery and the maintenance of the reduced interface resistance. In 100% by mass of the component, 0.01% by mass or more is preferable, 0.1% by mass or more is more preferable, and 1% by mass or more is further preferable. As an upper limit, from a viewpoint of a battery characteristic, 20 mass% or less is preferable, 10 mass% or less is more preferable, and 5 mass% or less is still more preferable.
<活物質>
 本発明の固体電解質含有シートが有する固体電解質含有層は、活物質を含有する電極活物質層とすることもできる。この活物質は、周期律表第一族若しくは第二族に属する金属元素のイオンの挿入放出が可能な物質である。このような活物質としては、正極活物質及び負極活物質が挙げられる。正極活物質としては、金属酸化物(好ましくは遷移金属酸化物)が好ましく、負極活物質としては、炭素質材料、金属酸化物若しくはSn、Si、Al及びIn等のリチウムと合金形成可能な金属が好ましい。
<Active material>
The solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention can be an electrode active material layer containing an active material. This active material is a material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table. Examples of such an active material include a positive electrode active material and a negative electrode active material. As the positive electrode active material, a metal oxide (preferably a transition metal oxide) is preferable, and as the negative electrode active material, a carbonaceous material, a metal oxide, or a metal capable of forming an alloy with lithium such as Sn, Si, Al, and In Is preferred.
(正極活物質)
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
(Positive electrode active material)
The positive electrode active material is preferably one that can reversibly insert and release lithium ions. The material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li such as sulfur, or a complex of sulfur and metal.
Among these, as the positive electrode active material, it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred. In addition, this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P, or B) may be mixed. The mixing amount is preferably 0 ~ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
Specific examples of the transition metal oxide include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halogenated phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
(MA) As specific examples of the transition metal oxide having a layered rock salt structure, LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
Specific examples of transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
(MD) as the lithium-containing transition metal halogenated phosphate compound, for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
In the present invention, a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO or NMC is more preferable.
 正極活物質の形状は特に制限されないが粒子状が好ましい。この場合、正極活物質のメジアン径D50は、特に限定されないが、全固体二次電池の電気容量の点で、上記無機固体電解質のメジアン径よりも大きいことが好ましい。例えば、正極活物質のメジアン径は、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機若しくは分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質のメジアン径は上記無機固体電解質のメジアン径と同様にして測定できる。 The shape of the positive electrode active material is not particularly limited, but is preferably particulate. In this case, the median diameter D50 of the positive electrode active material is not particularly limited, but is preferably larger than the median diameter of the inorganic solid electrolyte in terms of electric capacity of the all-solid secondary battery. For example, the median diameter of the positive electrode active material can be 0.1 to 50 μm. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent. The median diameter of the positive electrode active material can be measured in the same manner as the median diameter of the inorganic solid electrolyte.
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The positive electrode active materials may be used alone or in combination of two or more.
When forming the positive electrode active material layer, the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
 正極活物質の、固体電解質含有シートが有する固体電解質含有層中の含有量は、特に限定されず、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量が更に好ましく、55~80質量%が特に好ましい。 The content of the positive electrode active material in the solid electrolyte-containing layer of the solid electrolyte-containing sheet is not particularly limited, preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and still more preferably 50 to 85% by mass. 55 to 80% by mass is particularly preferable.
(負極活物質)
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
(Negative electrode active material)
The negative electrode active material is preferably one that can reversibly insert and release lithium ions. The material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, metal oxide such as tin oxide, silicon oxide, metal composite oxide, lithium alloy such as lithium simple substance and lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium. Among these, a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability. The metal composite oxide is preferably capable of inserting and extracting lithium. The material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by firing various synthetic resins such as graphite (natural graphite, artificial graphite such as vapor-grown graphite), and PAN (polyacrylonitrile) -based resin or furfuryl alcohol resin. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber. Other examples include mesophase microspheres, graphite whiskers, and flat graphite.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and a group 16 element of the periodic table is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the compound group consisting of the amorphous oxide and the chalcogenide, the amorphous oxide of the metalloid element and the chalcogenide are more preferable, and elements of Groups 13 (IIIB) to 15 (VB) of the periodic table, Al , Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。 It is also preferable that the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。 In the present invention, it is also preferable to apply a Si-based negative electrode. In general, a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質のメジアン径D50は、特に限定されないが、上記無機固体電解質のメジアン径よりも大きいことが好ましい。例えば、負極活物質のメジアン径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機若しくは分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル及び旋回気流型ジェットミル若しくは篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質のメジアン径は上記無機固体電解質のメジアン径と同様にして測定できる。 The shape of the negative electrode active material is not particularly limited, but is preferably particulate. The median diameter D50 of the negative electrode active material is not particularly limited, but is preferably larger than the median diameter of the inorganic solid electrolyte. For example, the median diameter of the negative electrode active material is preferably 0.1 to 60 μm. In order to obtain a predetermined particle size, a normal pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle diameter, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet. The median diameter of the negative electrode active material can be measured in the same manner as the median diameter of the inorganic solid electrolyte.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
The said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
When forming the negative electrode active material layer, the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
 負極活物質の、固体電解質含有シートが有する固体電解質含有層中における含有量は、特に限定されず、10~80質量%であることが好ましく、20~80質量%がより好ましい。 The content of the negative electrode active material in the solid electrolyte-containing layer of the solid electrolyte-containing sheet is not particularly limited, and is preferably 10 to 80% by mass, more preferably 20 to 80% by mass.
(活物質の被覆)
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
(Coating with active material)
The surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide. Examples of the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum oxide, niobium oxide, and lithium niobate compound. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , and LiTaO 3. , LiNbO 3 , LiAlO 2 , Li 2 ZrO 3 , Li 2 WO 4 , Li 2 TiO 3 , Li 2 B 4 O 7 , Li 3 PO 4 , Li 2 MoO 4 , Li 3 BO 3 , LiBO 2 , Li 2 CO 3 , Li 2 SiO 3 , SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 , B 2 O 3 and the like.
Moreover, the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
Furthermore, the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
<リチウム塩>
 本発明の固体電解質含有シートが有する固体電解質含有層は、リチウム塩(支持電解質)を含有してもよい。
 リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はなく、例えば、特開2015-088486の段落0082~0085記載のリチウム塩が好ましい。
 固体電解質含有層がリチウム塩を含む場合、リチウム塩の含有量は、無機固体電解質100質量部に対して、0.1質量部以上が好ましく、5質量部以上がより好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましい。
<Lithium salt>
The solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention may contain a lithium salt (supporting electrolyte).
The lithium salt is preferably a lithium salt usually used in this type of product, and is not particularly limited. For example, the lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
When a solid electrolyte content layer contains lithium salt, 0.1 mass part or more is preferable with respect to 100 mass parts of inorganic solid electrolyte, and 5 mass parts or more is more preferable. As an upper limit, 50 mass parts or less are preferable, and 20 mass parts or less are more preferable.
<イオン液体>
 本発明の固体電解質含有シートが有する固体電解質含有層は、イオン伝導度をより向上させるため、イオン液体を含有してもよい。イオン液体としては、特に限定されないが、イオン伝導度を効果的に向上させる観点から、上述したリチウム塩を溶解するものが好ましい。例えば、下記のカチオンと、アニオンとの組み合わせよりなる化合物が挙げられる。
<Ionic liquid>
The solid electrolyte-containing layer of the solid electrolyte-containing sheet of the present invention may contain an ionic liquid in order to further improve the ionic conductivity. Although it does not specifically limit as an ionic liquid, From the viewpoint of improving an ionic conductivity effectively, what melt | dissolves the lithium salt mentioned above is preferable. For example, the compound which consists of a combination of the following cation and an anion is mentioned.
 (i)カチオン
 カチオンとしては、イミダゾリウムカチオン、ピリジニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、モルホリニウムカチオン、ホスホニウムカチオン及び第4級アンモニウムカチオン等が挙げられる。ただし、これらのカチオンは以下の置換基を有する。
 カチオンとしては、これらのカチオンを1種単独で用いてもよく、2以上組み合わせて用いることもできる。
 好ましくは、四級アンモニウムカチオン、ピペリジニウムカチオン又はピロリジニウムカチオンである。
 上記カチオンが有する置換基としては、アルキル基(炭素数1~8のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。)、ヒドロキシアルキル基(炭素数1~3のヒドロキシアルキル基が好ましい。)、アルキルオキシアルキル基(炭素数2~8のアルキルオキシアルキル基が好ましく、炭素数2~4のアルキルオキシアルキル基がより好ましい。)、エーテル基、アリル基、アミノアルキル基(炭素数1~8のアミノアルキル基が好ましく、炭素数1~4のアミノアルキル基が好ましい。)、アリール基(炭素数6~12のアリール基が好ましく、炭素数6~8のアリール基がより好ましい。)が挙げられる。上記置換基はカチオン部位を含有する形で環状構造を形成していてもよい。なお、上記エーテル基は、他の置換基と組み合わされて用いられる。このような置換基として、アルキルオキシ基、アリールオキシ基等が挙げられる。
(I) Cation Examples of the cation include an imidazolium cation, a pyridinium cation, a piperidinium cation, a pyrrolidinium cation, a morpholinium cation, a phosphonium cation, and a quaternary ammonium cation. However, these cations have the following substituents.
As the cation, one kind of these cations may be used alone, or two or more kinds may be used in combination.
Preferably, it is a quaternary ammonium cation, a piperidinium cation or a pyrrolidinium cation.
Examples of the substituent that the cation has include an alkyl group (an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms), a hydroxyalkyl group (a hydroxyalkyl group having 1 to 3 carbon atoms). An alkyloxyalkyl group (preferably an alkyloxyalkyl group having 2 to 8 carbon atoms, more preferably an alkyloxyalkyl group having 2 to 4 carbon atoms), an ether group, an allyl group, an aminoalkyl group (carbon An aminoalkyl group having 1 to 8 carbon atoms is preferred, an aminoalkyl group having 1 to 4 carbon atoms is preferred, and an aryl group (an aryl group having 6 to 12 carbon atoms is preferred, and an aryl group having 6 to 8 carbon atoms is more preferred). .). The substituent may form a cyclic structure containing a cation moiety. The ether group is used in combination with other substituents. Examples of such a substituent include an alkyloxy group and an aryloxy group.
 (ii)アニオン
 アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、四フッ化ホウ素イオン、硝酸イオン、ジシアナミドイオン、酢酸イオン、四塩化鉄イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン、ビス(パーフルオロブチルメタンスルホニル)イミドイオン、アリルスルホネートイオン、ヘキサフルオロリン酸イオン及びトリフルオロメタンスルホネートイオン等が挙げられる。
 アニオンとしては、これらのアニオンを1種単独で用いてもよく、2種以上組み合わせて用いることもできる。
 好ましくは、四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ビス(フルオロスルホニル)イミドイオン又はヘキサフルオロリン酸イオン、ジシアナミドイオン及びアリルスルホネートイオンであり、さらに好ましくはビス(トリフルオロメタンスルホニル)イミドイオン又はビス(フルオロスルホニル)イミドイオン及びアリルスルホネートイオンである。
(Ii) Anions As anions, chloride ions, bromide ions, iodide ions, boron tetrafluoride ions, nitrate ions, dicyanamide ions, acetate ions, iron tetrachloride ions, bis (trifluoromethanesulfonyl) imide ions, bis ( Fluorosulfonyl) imide ion, bis (perfluorobutylmethanesulfonyl) imide ion, allyl sulfonate ion, hexafluorophosphate ion, trifluoromethane sulfonate ion and the like.
As the anion, these anions may be used alone or in combination of two or more.
Preferred are boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, bis (fluorosulfonyl) imide ion or hexafluorophosphate ion, dicyanamide ion and allyl sulfonate ion, more preferably bis (trifluoromethanesulfonyl) imide ion. Or a bis (fluorosulfonyl) imide ion and an allyl sulfonate ion.
 上記のイオン液体としては、例えば、1-アリル-3-エチルイミダゾリウムブロミド、1-エチル-3-メチルイミダゾリウムブロミド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムブロミド、1-(2-メトキシエチル)-3-メチルイミダゾリウムブロミド、1-オクチル-3-メチルイミダゾリウムクロリド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムジシアナミド、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、トリメチルブチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム ビス(トリフルオロメタンスルホニル)イミド(DEME)、N-プロピル-N-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(PMP)、N-(2-メトキシエチル)-N-メチルピロリジニウム テトラフルオロボラート、1-ブチル-1-メチルピロリジニウム ビス(フルオロスルホニル)イミド、(2-アクリロイルエチル)トリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチルー1-メチルピロリジニウムアリルスルホネート、1-エチルー3-メチルイミダゾリウムアリルスルホネート及び塩化トリヘキシルテトラデシルホスホニウムが挙げられる。
 固体電解質含有層中のイオン液体の含有量は、無機固体電解質100質量部に対して0質量部以上が好ましく、1質量部以上がより好ましく、2質量部以上が最も好ましい。上限としては、50質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下が特に好ましい。
 リチウム塩とイオン液体の質量比は、リチウム塩:イオン液体=1:20~20:1が好ましく、1:10~10:1がより好ましく、1:7~2:1が最も好ましい。
Examples of the ionic liquid include 1-allyl-3-ethylimidazolium bromide, 1-ethyl-3-methylimidazolium bromide, 1- (2-hydroxyethyl) -3-methylimidazolium bromide, 1- ( 2-methoxyethyl) -3-methylimidazolium bromide, 1-octyl-3-methylimidazolium chloride, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1- Ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide, 1-ethyl-3-methylimidazolium bis (fluorosulfonyl) imide, 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-1-methyl Pyrrolidinium bis (trifluoromethanesulfonyl) Trimethylbutylammonium bis (trifluoromethanesulfonyl) imide, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME), N-propyl-N-methyl Pyrrolidinium bis (trifluoromethanesulfonyl) imide (PMP), N- (2-methoxyethyl) -N-methylpyrrolidinium tetrafluoroborate, 1-butyl-1-methylpyrrolidinium bis (fluorosulfonyl) imide (2-acryloylethyl) trimethylammonium bis (trifluoromethanesulfonyl) imide, 1-ethyl-1-methylpyrrolidinium allyl sulfonate, 1-ethyl-3-methylimidazolium allyl sulfonate and trihexyl chloride It includes the La decyl phosphonium.
The content of the ionic liquid in the solid electrolyte-containing layer is preferably 0 part by mass or more, more preferably 1 part by mass or more, and most preferably 2 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, 50 mass parts or less are preferable, 20 mass parts or less are more preferable, and 10 mass parts or less are especially preferable.
The mass ratio of the lithium salt to the ionic liquid is preferably lithium salt: ionic liquid = 1: 20 to 20: 1, more preferably 1:10 to 10: 1, and most preferably 1: 7 to 2: 1.
<固体電解質含有シートの製造方法>
 本発明の固体電解質含有シートの製造方法は、特に制限されないが、例えば、下記(1)及び(2)が挙げられる。
<Method for producing solid electrolyte-containing sheet>
Although the manufacturing method in particular of the solid electrolyte containing sheet | seat of this invention is not restrict | limited, For example, following (1) and (2) are mentioned.
(1)キャスト法
 キャスト法は、無機固体電解質と、分散媒とを含む固体電解質組成物(スラリー)に平均直径dが0.1~1μmであり、平均長さLが0.2~50mmのファイバーを浸漬させる工程を含む。例えば、固体電解質組成物に向けて、電界紡糸法により得られるファイバーを直接添加してスラリーに浸漬させることができる。ファイバーをスラリーに浸漬させる時間は、例えば、5~60分が好ましい。浸漬させた後、ファイバーから分散媒を蒸発又は揮発させてもよい。分散媒の蒸発又は揮発は、例えば、50~200℃で1~60分加熱することにより行うことができる。また、分散媒を蒸発又は揮発させた後、プレスしてもよい。プレス圧は、例えば、5~50MPaであり、プレスする際に加熱(例えば、50~200℃)してもよい。プレスする時間は、例えば、1~30分である。
 キャスト法は、ファイバーを予め不織布形態にせずに、所望のシートを得ることができる。
(1) Casting method The casting method is a solid electrolyte composition (slurry) containing an inorganic solid electrolyte and a dispersion medium, having an average diameter d of 0.1 to 1 μm and an average length L of 0.2 to 50 mm. A step of dipping the fiber. For example, the fiber obtained by the electrospinning method can be directly added to the solid electrolyte composition and immersed in the slurry. The time for immersing the fiber in the slurry is preferably 5 to 60 minutes, for example. After the immersion, the dispersion medium may be evaporated or volatilized from the fiber. The dispersion medium can be evaporated or volatilized by heating at 50 to 200 ° C. for 1 to 60 minutes, for example. Alternatively, the dispersion medium may be pressed after evaporation or volatilization. The pressing pressure is, for example, 5 to 50 MPa, and may be heated (for example, 50 to 200 ° C.) when pressing. The pressing time is, for example, 1 to 30 minutes.
In the casting method, a desired sheet can be obtained without previously forming the fiber into a nonwoven fabric.
(2)スラリー塗布又は含浸法
 スラリー塗布又は含浸法は、
 平均直径dが0.1~1μmであり、平均長さLが0.2~50mmのファイバーの不織布に、無機固体電解質の乾燥粉末を塗布する工程、
 上記不織布に、無機固体電解質と分散媒とを含む固体電解質組成物(スラリー)を塗布する工程、又は、
 上記不織布を、無機固体電解質と分散媒とを含む固体電解質組成物に浸漬させる工程を含む。
 また、別の形態では、スラリー塗布又は含浸法は、
 平均直径dが0.1~1μmであり、平均長さLが0.2~50mmのファイバーの不織布を、無機固体電解質を液相合成する際に、同じ系(上記液相中)に存在させる工程を含む。
 「不織布を、無機固体電解質を液相合成する際に、同じ系に存在させる工程」は、具体的には、例えば、無機固体電解質前駆体を含むスラリーを不織布に塗布する、又は、無機固体電解質前駆体を含むスラリーに不織布を浸漬させることにより行うことができる。
(2) Slurry application or impregnation method
Applying a dry powder of an inorganic solid electrolyte to a nonwoven fabric of fibers having an average diameter d of 0.1 to 1 μm and an average length L of 0.2 to 50 mm;
A step of applying a solid electrolyte composition (slurry) containing an inorganic solid electrolyte and a dispersion medium to the nonwoven fabric, or
A step of immersing the non-woven fabric in a solid electrolyte composition containing an inorganic solid electrolyte and a dispersion medium.
In another embodiment, the slurry application or impregnation method is
A fiber nonwoven fabric having an average diameter d of 0.1 to 1 μm and an average length L of 0.2 to 50 mm is present in the same system (in the liquid phase) when the inorganic solid electrolyte is liquid-phase synthesized. Process.
Specifically, “the step of causing the nonwoven fabric to be present in the same system when the inorganic solid electrolyte is subjected to liquid phase synthesis” specifically includes, for example, applying a slurry containing an inorganic solid electrolyte precursor to the nonwoven fabric or the inorganic solid electrolyte. This can be done by immersing the nonwoven fabric in the slurry containing the precursor.
 平均直径dが0.1~1μmであり、平均長さLが0.2~50mmのファイバーの不織布は、通常の方法で平均直径dが0.1~2μmであり、平均長さLが0.2~50mmであるファイバーを不織布形態にすることで得ることができる。 A fiber nonwoven fabric having an average diameter d of 0.1 to 1 μm and an average length L of 0.2 to 50 mm has an average diameter d of 0.1 to 2 μm and an average length L of 0 by an ordinary method. The fiber having a thickness of 2 to 50 mm can be obtained by making it into a nonwoven fabric form.
 塗布方式については、ドクターブレード、バーコーター、アプリケーターによる塗布、スプレー塗装、静電塗装、刷毛塗りによる塗布、静電印刷法や静電噴霧析出法、エアロゾルデポジション法による塗布法等、公知の手段を採用することができる。
 浸漬させた後、ファイバーから分散媒を蒸発又は揮発させてもよい。分散媒の蒸発又は揮発は、例えば、50~200℃で1~60分加熱することにより行うことができる。また、分散媒を蒸発又は揮発させた後、プレスしてもよい。プレス圧は、例えば、5~50MPaであり、プレスする際に加熱(例えば、50~200℃)してもよい。プレスする時間は、例えば、1~30分である。
 「無機固体電解質前駆体」とは、加熱することより無機固体電解質を得ることができる、上述の無機固体電解質の原料を意味する。
As for the coating method, known means such as doctor blade, bar coater, applicator coating, spray coating, electrostatic coating, brush coating, electrostatic printing method, electrostatic spray deposition method, aerosol deposition method, etc. Can be adopted.
After the immersion, the dispersion medium may be evaporated or volatilized from the fiber. The dispersion medium can be evaporated or volatilized by heating at 50 to 200 ° C. for 1 to 60 minutes, for example. Alternatively, the dispersion medium may be pressed after evaporation or volatilization. The pressing pressure is, for example, 5 to 50 MPa, and may be heated (for example, 50 to 200 ° C.) when pressing. The pressing time is, for example, 1 to 30 minutes.
The “inorganic solid electrolyte precursor” means a raw material for the above-mentioned inorganic solid electrolyte that can be obtained by heating to obtain an inorganic solid electrolyte.
 上記(1)及び(2)において、固体電解質含有シート中の無機固体電解質の充填率を高めるために、ファイバーを浸漬させる工程等の無機固体電解質を充填する工程から分散媒を蒸発若しくは揮発させる工程又はプレス工程までのプロセスを繰り返し行うこともできる。繰り返し回数としては、2~4回が好ましく、2~3回がより好ましく、2回がさらに好ましい。回数に応じて、無機固体電解質の体積平均粒子径を小さくし、より無機固体電解質の充填率を高めることもできる。例えば、2回目に充填する無機固体電解質の体積平均粒子径を、1回目に充填する無機固体電解質の体積平均粒子径の3/4程度にすることができる。 In the above (1) and (2), in order to increase the filling rate of the inorganic solid electrolyte in the solid electrolyte-containing sheet, the step of evaporating or volatilizing the dispersion medium from the step of filling the inorganic solid electrolyte such as the step of immersing the fiber Or the process to a press process can also be performed repeatedly. The number of repetitions is preferably 2 to 4 times, more preferably 2 to 3 times, and even more preferably 2 times. Depending on the number of times, the volume average particle diameter of the inorganic solid electrolyte can be reduced to further increase the filling rate of the inorganic solid electrolyte. For example, the volume average particle diameter of the inorganic solid electrolyte filled in the second time can be made about 3/4 of the volume average particle diameter of the inorganic solid electrolyte filled in the first time.
 なお、本発明の固体電解質含有シートの製造方法において、電界紡糸法によりファイバーを調製する工程を含むことが好ましい。 In addition, in the manufacturing method of the solid electrolyte containing sheet | seat of this invention, it is preferable to include the process of preparing a fiber by an electrospinning method.
<固体電解質組成物の調製>
 本発明の固体電解質含有シートの製造方法に用いられる固体電解質組成物は、常法により調製することができる。具体的には、無機固体電解質、ファイバー及び分散媒と、必要によりバインダー等の他の成分とを、混合又は添加することにより、調製できる。また、無機固体電解質及び分散媒と、必要によりバインダー等の他の成分とを、混合又は添加することにより、調製できる。例えば、各種の混合機を用いて上記成分を混合することにより、調製できる。混合条件としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー、ディスクミル等が挙げられる。
<Preparation of solid electrolyte composition>
The solid electrolyte composition used in the method for producing a solid electrolyte-containing sheet of the present invention can be prepared by a conventional method. Specifically, it can be prepared by mixing or adding an inorganic solid electrolyte, a fiber and a dispersion medium and, if necessary, other components such as a binder. Moreover, it can prepare by mixing or adding an inorganic solid electrolyte and a dispersion medium, and other components, such as a binder as needed. For example, it can prepare by mixing the said component using various mixers. The mixing conditions are not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
<分散媒>
 上記分散媒の具体例としては以下のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール及び1,4-ブタンジオールが挙げられる。
<Dispersion medium>
Specific examples of the dispersion medium include the following.
Examples of the alcohol compound solvent include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。 Examples of ether compound solvents include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol. Monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether, etc.), dialkyl ethers (dimethyl ether, diethyl ether, dibutyl ether, etc.), tetrahydrofuran, dioxane (1,2-, 1,3- and 1,4- of Including isomers).
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド及びヘキサメチルホスホリックトリアミドが挙げられる。 Examples of the amide compound solvent include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
 アミノ化合物溶媒としては、例えば、トリエチルアミン及びトリブチルアミンが挙げられる。 Examples of amino compound solvents include triethylamine and tributylamine.
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジブチルケトン、ジイソブチルケトンが挙げられる。 Examples of the ketone compound solvent include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dibutyl ketone, and diisobutyl ketone.
 エステル化合物溶媒としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、イソ酪酸イソブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル、カプロン酸ブチル等が挙げられる。 Ester compound solvents include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, butyric acid Examples include butyl, isobutyl isobutyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate, and butyl caproate.
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレン及びメシチレンが挙げられる。 Examples of the aromatic compound solvent include benzene, toluene, xylene, and mesitylene.
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、デカリン、オクタン、ペンタン、シクロペンタン及びシクロオクタンが挙げられる。 Examples of the aliphatic compound solvent include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, decalin, octane, pentane, cyclopentane and cyclooctane.
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル及びブチロニトリルが挙げられる。 Examples of the nitrile compound solvent include acetonitrile, propyronitrile, and butyronitrile.
<全固体二次電池用電極シートの製造方法>
 本発明の全固体二次電池用電極シートの製造方法は、本発明の固体電解質含有シートの製造方法により得られた固体電解質含有シートが有する固体電解質含有層(固体電解質層)を、電極活物質層上に積層する工程を含む。本発明の全固体二次電池用電極シートの製造方法は、上記固体電解質含有シートの製造方法を含む以外は、常法によって行うことができる。
<Method for producing electrode sheet for all-solid-state secondary battery>
The method for producing an electrode sheet for an all-solid-state secondary battery of the present invention comprises a solid electrolyte-containing layer (solid electrolyte layer) possessed by a solid electrolyte-containing sheet obtained by the method for producing a solid electrolyte-containing sheet of the present invention. Laminating on the layer. The manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention can be performed by a conventional method except including the manufacturing method of the said solid electrolyte containing sheet.
 集電体となる金属箔上に、電極用組成物を塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。金属箔上に導電体層形成用組成物を塗布し、導電体層を形成し、この導電体層上に電極用組成物を塗布してもよい。 It can be manufactured by a method including (intervening) a step of applying a composition for an electrode on a metal foil to be a current collector and forming (forming) a coating film. A conductive layer forming composition may be applied onto a metal foil to form a conductive layer, and the electrode composition may be applied onto the conductive layer.
 例えば、負極集電体である金属箔上に、負極用組成物として、負極活物質を含有する負極用組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、この負極活物質層の上に、本発明の固体電解質含有シートの製造方法により得た固体電解質含有シートが有する固体電解質層を積層する。図1に示す転写シートを例にとると、固体電解質層1が負極活物質層と接するようにして、全固体二次電池用負極シート上に転写シートを重ねる。転写シートを重ねた後、加圧し、固体電解質含有シートと負極活物質層を密着させる。必要に応じて加熱状況下で加圧してもよい。このようにして、本発明の全固体二次電池用負極シートを得ることができる。また、図1に示す転写シートから離型フィルム2を剥離し、固体電解質層1を負極活物質層上に積層して全固体二次電池用負極シートを得ることもできる。
 なお、本発明の全固体二次電池用電極シートの電極活物質層は、通常の全固体二次電池を構成する電極活物質層を用いることができる。このような電極活物質層を形成するための電極用組成物として、例えば、特開2015-088486号公報に記載の電極用組成物を用いることができる。
For example, a negative electrode composition containing a negative electrode active material is applied as a negative electrode composition on a metal foil that is a negative electrode current collector to form a negative electrode active material layer, and a negative electrode sheet for an all solid secondary battery is formed. Make it. Next, the solid electrolyte layer of the solid electrolyte-containing sheet obtained by the method for producing a solid electrolyte-containing sheet of the present invention is laminated on the negative electrode active material layer. Taking the transfer sheet shown in FIG. 1 as an example, the transfer sheet is overlaid on the all-solid-state secondary battery negative electrode sheet so that the solid electrolyte layer 1 is in contact with the negative electrode active material layer. After the transfer sheets are stacked, pressure is applied to bring the solid electrolyte-containing sheet and the negative electrode active material layer into close contact. You may pressurize under a heating condition as needed. Thus, the negative electrode sheet for all-solid-state secondary batteries of this invention can be obtained. Moreover, the release film 2 can be peeled from the transfer sheet shown in FIG. 1, and the solid electrolyte layer 1 can be laminated on the negative electrode active material layer to obtain a negative electrode sheet for an all solid secondary battery.
In addition, the electrode active material layer which comprises a normal all-solid-state secondary battery can be used for the electrode active material layer of the electrode sheet for all-solid-state secondary batteries of this invention. As an electrode composition for forming such an electrode active material layer, for example, an electrode composition described in JP-A-2015-088486 can be used.
<全固体二次電池の製造方法>
 本発明の全固体二次電池の製造方法は、本発明の全固体二次電池用電極シートの製造方法を含む。本発明の全固体二次電池の製造方法は、上記全固体二次電池用電極シートの製造方法を含む以外は、常法によって行うことができる。
<Method for producing all-solid-state secondary battery>
The manufacturing method of the all-solid-state secondary battery of this invention includes the manufacturing method of the electrode sheet for all-solid-state secondary batteries of this invention. The manufacturing method of the all-solid-state secondary battery of this invention can be performed by a conventional method except including the manufacturing method of the said electrode sheet for all-solid-state secondary batteries.
 例えば、上記作製した全固体二次電池用負極シートの固体電解質層上に、正極用組成物を塗布し正極活物質層を形成する。正極活物質層上に集電体を重ねることにより、図2に示す層構成を有する全固体二次電池100を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。 For example, the positive electrode composition is applied on the solid electrolyte layer of the prepared negative electrode sheet for an all-solid-state secondary battery to form a positive electrode active material layer. By stacking the current collector on the positive electrode active material layer, the all-solid-state secondary battery 100 having the layer configuration shown in FIG. 2 can be obtained. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用負極シートを作製する。また、正極集電体である金属箔上に、正極用組成物として、正極活物質を含有する正極用組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。固体電解質層の上に、全固体二次電池用正極シートを、固体電解質層と活物質層とが接するように積層する。必要に応じて加熱状況下で加圧してもよい。このようにして、全固体二次電池を製造することができる。 The following method can be given as another method. That is, a negative electrode sheet for an all-solid secondary battery is produced as described above. Also, a positive electrode composition containing a positive electrode active material is applied as a positive electrode composition on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and a positive electrode sheet for an all-solid-state secondary battery is formed. Make it. A positive electrode sheet for an all-solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other. You may pressurize under a heating condition as needed. In this way, an all-solid secondary battery can be manufactured.
<電極活物質層の形成(成膜)>
 電極用組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、電極用組成物は、塗布した後に乾燥処理を施してもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
<Formation of electrode active material layer (film formation)>
The method for applying the electrode composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating.
At this time, the electrode composition may be dried after being applied. The drying temperature is not particularly limited. The lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher. The upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
 全固体二次電池を作製した後に、全固体二次電池を加圧することが好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した電極用組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
It is preferable to pressurize the all solid state secondary battery after producing the all solid state secondary battery. An example of the pressurizing method is a hydraulic cylinder press. The applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa.
Moreover, you may heat the apply | coated composition for electrodes simultaneously with pressurization. The heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
The pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積や膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
The atmosphere during pressurization is not particularly limited and may be any of the following: air, dry air (dew point -20 ° C. or less), and inert gas (for example, argon gas, helium gas, nitrogen gas).
The pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more). For example, in the case of an all-solid-state secondary battery, in order to keep applying moderate pressure, a restraint (screw tightening pressure or the like) of the all-solid-state secondary battery can be used.
The pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
The pressing pressure can be changed according to the area and film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
The press surface may be smooth or roughened.
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
<Initialization>
The all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use. The initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
<全固体二次電池の用途>
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
<Uses of all-solid-state secondary batteries>
The all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc. Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not construed as being limited thereby.
-ファイバーの調製-
(1)電界紡糸法でのファイバーの調製
 以下のようにして、電界紡糸法により、ファイバーを調製した。
 ジクロロメタン:N-メチル-2-ピロリドン(NMP)=8:2(質量比)の混合溶媒を用いて、セルローストリアセテート(ダイセル社製、商品名LT-35)溶液(濃度4質量%)を調製した。MECC社のNANON-3(商品名)を用いて、印加電圧30kV、流束1.0mL/hrの条件で電界紡糸を行い、ファイバーを得た。またこのファイバーを所望する厚みまで集積させることで形態を不織布にした。
 平均直径d、平均長さLは、溶液の固形分濃度、印加電圧、溶液流束によって、SEM画像で確認しながら調整した。
 セルローストリアセテートに変えて、シクロオレフィンポリマー(Arton(登録商標)、JSR株式会社製)、変性ポリフェニレンエーテル(旭化成社製 ザイロン(登録商標))、又はポリアクリロニトリル(旭化成社製 スタイラック(登録商標))を用いたこと以外は、上記と同様にして、シクロオレフィンポリマーの電界紡糸ファイバー、変性ポリフェニレンエーテルの電界紡糸ファイバー、及びポリアクリロニトリルの電界紡糸ファイバーを調製した(いずれも不織布)。
 セルローストリアセテート及び混合溶媒に変えて、ポリイミド(KPI-MX300F(商品名)、河村産業社製)及びN,N-ジメチルホルムアミドを用いたこと以外は、上記と同様にして、ポリイミドの電界紡糸ファイバー(不織布)を調製した。
-Preparation of fiber-
(1) Preparation of fiber by electrospinning method Fibers were prepared by the electrospinning method as follows.
Using a mixed solvent of dichloromethane: N-methyl-2-pyrrolidone (NMP) = 8: 2 (mass ratio), a cellulose triacetate (trade name LT-35, manufactured by Daicel Corporation) solution (concentration: 4 mass%) was prepared. . Electrospinning was performed using MENO Corporation's NANON-3 (trade name) under conditions of an applied voltage of 30 kV and a flux of 1.0 mL / hr to obtain a fiber. Moreover, the form was made into the nonwoven fabric by accumulating this fiber to desired thickness.
The average diameter d and the average length L were adjusted while confirming with an SEM image according to the solid content concentration of the solution, the applied voltage, and the solution flux.
Instead of cellulose triacetate, cycloolefin polymer (Arton (registered trademark), manufactured by JSR Corporation), modified polyphenylene ether (Zylon (registered trademark) manufactured by Asahi Kasei Co., Ltd.), or polyacrylonitrile (Stylac (registered trademark) manufactured by Asahi Kasei Corporation) A cycloolefin polymer electrospun fiber, a modified polyphenylene ether electrospun fiber, and a polyacrylonitrile electrospun fiber were prepared in the same manner as described above except that was used.
In the same manner as above except that polyimide (KPI-MX300F (trade name), manufactured by Kawamura Sangyo Co., Ltd.) and N, N-dimethylformamide were used instead of cellulose triacetate and the mixed solvent, an electrospun fiber of polyimide ( Nonwoven fabric) was prepared.
(2)マイクロフリュイダイサー法によるファイバーの調製
 特許第5500842号公報を参照して、以下のように、マイクロフリュイダイサー法により、ファイバーを調製した。
 スギ由来の木粉(JIS Z 8801-1(2006)標準ふるいにおける30mesh(500μm)~60mesh(250μm)、アスペクト比1~100の粒径)50gを、蒸留水1500ml、亜塩素酸ナトリウム15g、酢酸3mlの溶液中に入れ、80~90℃の湯浴中で時折攪拌しながら1時間加温した。1時間後、冷却することなく亜塩素酸ナトリウム15g、酢酸3mlを加えさらに1時間加温した。これら一連の処理を8回反復して行った。その後、冷水約5Lで洗浄した。この操作で木粉中のリグニンを除去した精製木粉(ホロセルロースパルプ リグニン量0.1質量%)を製造した。次に、得られた精製木粉を以下の条件でブレンダー攪拌処理に供した。
<ブレンダー攪拌処理>
使用モーター機種名:Vita Mix(R) Corp. ABS-BU
使用ボトル名:WARING(R) CAC90B X-TREME用2Lステンレス容器
使用タンパー:Vita Mix(R) Corp. ABS-V用プラスチック製タンパー PN-D2
[※タンパーとは、ミキシング中に泡が発生するのを防ぎ適正回転を維持するために、ボトルのふたの中央から差し込む、プラスチック製の円筒型攪拌補助棒である。高速攪拌中に起きる溶媒の激しい対流が空気を取り込み、攪拌が連続しなくなることを防ぐ。]
攪拌回転数:37000rpm
攪拌容量:1L
温度:30~80℃
とし、ブレンダー攪拌処理に供する精製木粉の最低水分含有量は、100質量%以上に保った。精製木粉を0.7質量%のパルプ水懸濁液を調製した。懸濁液1Lをブレンダー容器に投入し、タンパーを挿入し、上記の条件で攪拌処理を60分実施した。その後、懸濁液を、エタノールに溶媒置換した後、オーブン中105℃で乾燥させ、ファイバーを得た。このファイバーを所望する厚みに集積することにより、不織布にした。
(2) Preparation of fiber by microfluidic dicer method With reference to Japanese Patent No. 5500842, a fiber was prepared by the microfluidic dicer method as follows.
50 g of cedar-derived wood flour (30 mesh (500 μm) to 60 mesh (250 μm), particle size with an aspect ratio of 1 to 100 in a JIS Z8801-1 (2006) standard sieve) 50 g, distilled water 1500 ml, sodium chlorite 15 g, acetic acid It was placed in 3 ml of the solution and heated in an 80-90 ° C. water bath with occasional stirring for 1 hour. After 1 hour, 15 g of sodium chlorite and 3 ml of acetic acid were added without cooling and the mixture was further heated for 1 hour. These series of treatments were repeated 8 times. Thereafter, it was washed with about 5 L of cold water. By this operation, purified wood powder (holocellulose pulp lignin amount 0.1% by mass) from which lignin in the wood powder was removed was produced. Next, the obtained purified wood powder was subjected to a blender stirring treatment under the following conditions.
<Blender stirring process>
Motor model name: Vita Mix (R) Corp. ABS-BU
Bottle name used: WARING® CAC90B 2L stainless steel container for X-TREME Tamper used: Vita Mix® Corp. Plastic tamper PN-D2 for ABS-V
[* Tamper is a plastic cylindrical stirrer stick that is inserted from the center of the bottle lid to prevent foaming during mixing and maintain proper rotation. The vigorous convection of the solvent that occurs during high speed agitation prevents air from entering and agitating from becoming discontinuous. ]
Stirring speed: 37000 rpm
Stirring capacity: 1L
Temperature: 30-80 ° C
The minimum water content of the purified wood powder subjected to the blender stirring treatment was kept at 100% by mass or more. A 0.7 mass% pulp water suspension was prepared from the purified wood flour. 1 L of the suspension was put into a blender container, a tamper was inserted, and stirring was performed for 60 minutes under the above conditions. Thereafter, the suspension was subjected to solvent substitution with ethanol and then dried in an oven at 105 ° C. to obtain a fiber. The fibers were accumulated to a desired thickness to make a nonwoven fabric.
(3)湿式紡糸法によるファイバーの調製
 特開平09-268424号公報を参照して、以下のように、湿式紡糸法により、ファイバーを調製した。
 セルロースジアセテート(ダイセイル化学工業社製 商品名MBH 酢化度約55%粉体状)338gと約41質量%の水を含有するN-メチルモルフォリンN-オキシド2000g及び没食子酸プロピル(和光純薬製)15gを、小平製作所製真空脱泡装置付きミキサー(ACM-5型)に投入し、減圧加熱下で約2時間混合しながら648gの水を脱水し、セルロースアセテートの均一溶液を調製した。溶解操作中は釜温度を100℃に保った。得られたセルロースアセテート溶液は褐色を呈する粘調な液体であった。20質量%含有する均一溶液を調製し、次いで得られた溶液を100℃に保ったまま、1.5kg/cmの窒素加圧下で押し出し、ギヤポンプを用いてノズル部へ定量供給を行った。セルロースアセテート溶液の吐出量はギヤポンプの回転数により規定した。またノズル部は90℃に保温した状態で以下の検討を行った。直径0.2mm、長さが3mmで円形の断面形状を有するキャピラリー36個よりなるノズルを用いて、上記公報の図1に示す装置で紡糸検討を行った。この際、凝固液として25℃の水を用いた。ノズル面と凝固液面間の距離により定義されるエアーギャップを50cmとした。15.4g/minの吐出量で溶液をノズルより吐出させ、ファイバーを得た。このファイバーを所望する厚みに集積させることにより、不織布にした。
(3) Preparation of fiber by wet spinning method With reference to JP-A 09-268424, a fiber was prepared by a wet spinning method as follows.
Cellulose diacetate (Daisail Chemical Industries, Ltd., trade name: MBH, acetylation degree: about 55% powder) 338 g, N-methylmorpholine N-oxide (2000 g) containing about 41% by mass of water and propyl gallate (Wako Pure Chemical Industries, Ltd.) 15 g) was put into a mixer (ACM-5 type) with a vacuum deaerator manufactured by Kodaira Seisakusho, and 648 g of water was dehydrated while mixing for about 2 hours under reduced pressure heating to prepare a uniform solution of cellulose acetate. During the melting operation, the kettle temperature was kept at 100 ° C. The obtained cellulose acetate solution was a viscous liquid with a brown color. A homogeneous solution containing 20% by mass was prepared, and then the obtained solution was extruded under nitrogen pressure of 1.5 kg / cm 2 while being kept at 100 ° C., and quantitatively supplied to the nozzle portion using a gear pump. The discharge amount of the cellulose acetate solution was defined by the rotation speed of the gear pump. In addition, the following examination was performed with the nozzle portion kept at 90 ° C. Using a nozzle composed of 36 capillaries having a diameter of 0.2 mm, a length of 3 mm, and a circular cross-sectional shape, spinning was examined using the apparatus shown in FIG. At this time, water at 25 ° C. was used as the coagulation liquid. The air gap defined by the distance between the nozzle surface and the coagulation liquid surface was 50 cm. The solution was discharged from the nozzle at a discharge rate of 15.4 g / min to obtain a fiber. The fibers were accumulated to a desired thickness to form a nonwoven fabric.
(ファイバーの平均直径、平均長さ)
 ファイバーの数平均直径と数平均長さをSEM解析により求めた。
 詳細には、固体電解質含有層中のファイバーをSEM観察し、10本のファイバーについて繊維の直径と長さの値を読み取った。
 なお、「繊維の直径」とは、繊維の横断面(真っ直ぐにした繊維の長さ方向に垂直な断面)における直径のうち最大の直径を意味する。つまり、横断面の位置によって横断面の直径が異なる場合があり、この場合には最大の直径を与える横断面における直径を「繊維の直径」とした。また、繊維の横断面が円形でない場合には、この横断面の外周上に存在する2つの点を結ぶ直線の長さが最大となる場合におけるこの直線の長さを、この横断面の直径とした。
 得られた繊維径と長さのデータから、数平均直径(数平均直径=10本の繊維の直径の合計/10)と数平均長さ(数平均長さ=10本の繊維の長さの合計/10)を算出した。
(Average fiber diameter and length)
The number average diameter and number average length of the fiber were determined by SEM analysis.
Specifically, the fibers in the solid electrolyte-containing layer were observed with an SEM, and the fiber diameter and length values were read for 10 fibers.
The “fiber diameter” means the maximum diameter among the diameters in the cross section of the fiber (a cross section perpendicular to the length direction of the straight fiber). In other words, the diameter of the cross section may differ depending on the position of the cross section. In this case, the diameter of the cross section that gives the maximum diameter is defined as the “fiber diameter”. When the cross section of the fiber is not circular, the length of the straight line connecting the two points existing on the outer periphery of the cross section is the maximum of the diameter of the cross section. did.
From the obtained fiber diameter and length data, the number average diameter (number average diameter = sum of diameters of 10 fibers / 10) and the number average length (number average length = 10 fiber lengths) Total / 10) was calculated.
(ファイバーの体積抵抗率)
 上記で調製した不織布にする前のファイバーを水へ分散物させポリフェニレンスルホンシートフイルム上にキャストした。乾燥と塗布を5回繰り返し、ポリフェニレンスルホンシートから剥がして線状構造体からなる膜を得た。この膜について、「JIS C 2139(2008)固体電気絶縁材料体積抵抗率及び表面抵抗率の測定方法」に従って体積抵抗率を得た。
 体積抵抗率は,次の式によって求めた。なお、下記「10.1」とは、JIS C 2139(2008)の項目を示す。
(Volume resistivity of fiber)
The fiber before making into the nonwoven fabric prepared above was dispersed in water and cast on a polyphenylenesulfone sheet film. Drying and coating were repeated 5 times and peeled from the polyphenylene sulfone sheet to obtain a film composed of a linear structure. About this film | membrane, the volume resistivity was obtained according to "JIS C2139 (2008) solid electrical insulation material volume resistivity and the measuring method of surface resistivity".
The volume resistivity was obtained by the following formula. The following “10.1” indicates an item of JIS C 2139 (2008).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 セルロースアセテートのヒドロキシル基の含有量は、メーカーのカタログ値(酢化度2.9、ヒドロキシル基含有率0.025質量%)であった。 The hydroxyl group content of cellulose acetate was the manufacturer's catalog value (acetylation degree 2.9, hydroxyl group content 0.025% by mass).
-硫化物系無機固体電解質(Li-P-S系ガラス)の合成-
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
-Synthesis of sulfide-based inorganic solid electrolyte (Li-PS glass)-
Sulfide-based inorganic solid electrolytes are disclosed in T.W. Ohtomo, A .; Hayashi, M .; Tatsumisago, Y. et al. Tsuchida, S .; Hama, K .; Kawamoto, Journal of Power Sources, 233, (2013), pp231-235 and A.K. Hayashi, S .; Hama, H .; Morimoto, M .; Tatsumisago, T .; Minami, Chem. Lett. , (2001), pp 872-873.
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42kg、五硫化二リン(P、Aldrich社製、純度>99%)3.90kgをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、「LPS」とも称する。)6.20gを得た。
Specifically, in a glove box under an argon atmosphere (dew point −70 ° C.), 2.42 kg of lithium sulfide (Li 2 S, manufactured by Aldrich, purity> 99.98%), diphosphorus pentasulfide (P 2 S 5 , 3.90 kg manufactured by Aldrich, purity> 99%) were weighed, put into an agate mortar, and mixed for 5 minutes using an agate mortar. Incidentally, Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 = 75: was 25.
66 zirconia beads having a diameter of 5 mm were introduced into a 45 mL container (manufactured by Fritsch) made of zirconia, the whole mixture of lithium sulfide and phosphorous pentasulfide was introduced, and the container was sealed under an argon atmosphere. A container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mechanical milling is performed at a temperature of 25 ° C. and a rotation speed of 510 rpm for 20 hours to obtain a yellow powder sulfide-based inorganic solid electrolyte (Li-PS system). Glass, also referred to as “LPS”.) 6.20 g was obtained.
[実施例・比較例]
<バインダAを構成するポリマーの合成例>
 還流冷却管、ガス導入コックを付した2L三口フラスコに、マクロモノマーM-1の40質量%ヘプタン溶液を7.2g、アクリル酸メチル(和光純薬工業株式会社製)を12.4g、アクリル酸(和光純薬工業株式会社製)を6.7g、ヘプタン(和光純薬工業株式会社製)を207g、アゾイソブチロニトリル1.4gを添加し、流速200mL/minにて窒素ガスを10分間導入した後に、100℃に昇温した。別容器にて調製した液(マクロモノマーM-1の40質量%ヘプタン溶液を93.1g、アクリル酸メチルを222.8g、アクリル酸を120.0g、ヘプタン300.0g、アゾイソブチロニトリル2.1gを混合した液)を4時間かけて滴下した。滴下完了後、アゾイソブチロニトリル0.5gを添加した。その後100℃で2時間攪拌した後、室温まで冷却し、ろ過することでバインダAの分散液を得た。固形成分濃度は39.2%であった。
[Examples and Comparative Examples]
<Synthesis example of polymer constituting binder A>
In a 2 L three-necked flask equipped with a reflux condenser and a gas introduction cock, 7.2 g of a 40 mass% heptane solution of macromonomer M-1, 12.4 g of methyl acrylate (Wako Pure Chemical Industries, Ltd.), acrylic acid 6.7 g (manufactured by Wako Pure Chemical Industries, Ltd.), 207 g of heptane (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.4 g of azoisobutyronitrile are added, and nitrogen gas is added at a flow rate of 200 mL / min for 10 minutes. After the introduction, the temperature was raised to 100 ° C. Liquid prepared in a separate container (93.1 g of 40% by weight heptane solution of macromonomer M-1, 222.8 g of methyl acrylate, 120.0 g of acrylic acid, 300.0 g of heptane, azoisobutyronitrile 2 .1 g) was added dropwise over 4 hours. After completion of the dropwise addition, 0.5 g of azoisobutyronitrile was added. Thereafter, the mixture was stirred at 100 ° C. for 2 hours, cooled to room temperature, and filtered to obtain a dispersion of binder A. The solid component concentration was 39.2%.
(マクロモノマーM-1の合成例)
 12-ヒドロキシステアリン酸(和光純薬工業株式会社製)の自己縮合体(GPCポリスチレンスタンダード数平均分子量:2,000)にグリシジルメタクリレート(東京化成工業株式会社製)を反応させマクロモノマーとしてそれをメタクリル酸メチルとグリシジルメタクリレート(東京化成工業株式会社製)と1:0.99:0.01(モル比)の割合で重合したポリマーにアクリル酸(和光純薬株式会社製)を反応させたマクロモノマーM-1を得た。このマクロモノマーM-1のSP値は9.3、数平均分子量は11000であった。
 下記に、バインダAを構成するポリマー及びマクロモノマーM-1の推定構造式を示す。
(Synthesis example of macromonomer M-1)
Glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) is reacted with a self-condensate (GPC polystyrene standard number average molecular weight: 2,000) of 12-hydroxystearic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a macromonomer. Macromonomer obtained by reacting acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) with a polymer polymerized at a ratio of 1: 0.99: 0.01 (molar ratio) with methyl acrylate and glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) M-1 was obtained. The macromonomer M-1 had an SP value of 9.3 and a number average molecular weight of 11,000.
The estimated structural formulas of the polymer and macromonomer M-1 constituting the binder A are shown below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
<バインダBを構成するポリマーの合成例>
 還流冷却管、ガス導入コックを付した1Lの3つ口フラスコにヘプタンを200質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているヘプタン中に、別容器にて調製した液(アクリル酸ブチル(和光純薬工業社製)90質量部、メタクリル酸メチル(和光純薬工業社製)20質量部、アクリル酸(和光純薬工業社製)10質量部、B-27(後記合成品)を20質量部、マクロモノマーMM-1を60質量部(固形分量)、重合開始剤V-601(商品名、和光純薬工業社製)を2.0質量部混合した液)を2時間かけて滴下し、その後80℃で2時間攪拌した。その後、得られた混合物にV-601をさらに1.0質量部添加し、90℃で2時間攪拌した。得られた溶液をヘプタンで希釈することで、バインダBの分散液を得た。
<Synthesis example of polymer constituting binder B>
200 parts by mass of heptane was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, and nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, and then the temperature was raised from room temperature to 80 ° C. In a stirred heptane, a liquid prepared in a separate container (90 parts by mass of butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 20 parts by mass of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), acrylic acid (Japanese (Manufactured by Kojun Pharmaceutical Co., Ltd.) 10 parts by mass, 20 parts by mass of B-27 (composed product), 60 parts by mass of macromonomer MM-1 (solid content), polymerization initiator V-601 (trade name, Wako Pure Chemicals) A liquid obtained by mixing 2.0 parts by mass of Kogyo Co., Ltd.) was added dropwise over 2 hours, followed by stirring at 80 ° C. for 2 hours. Thereafter, 1.0 part by mass of V-601 was further added to the obtained mixture, and the mixture was stirred at 90 ° C. for 2 hours. The resulting solution was diluted with heptane to obtain a dispersion of binder B.
(B-27の合成)
 1Lの3つ口フラスコにコレステロール(東京化成工業社製)80g、こはく酸モノ(2-アクリロイルオキシエチル)(アルドリッチ社製)を50g、4-ジメチルアミノピリジン(東京化成工業社製)を5g、ジクロロメタンを500g加えた後、20℃で5分攪拌した。攪拌している溶液中に1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(東京化成工業社製)52gを30分かけて添加し、20℃で5時間攪拌した。その後0.1M塩酸で3回洗浄し、硫酸マグネシウムで乾燥し、減圧留去を行った。得られたサンプルをシリカゲルカラムクロマトグラフィーで精製することでB-27を得た。
(Synthesis of B-27)
In a 1 L three-necked flask, 80 g of cholesterol (manufactured by Tokyo Chemical Industry Co., Ltd.), 50 g of mono (2-acryloyloxyethyl) succinate (manufactured by Aldrich), 5 g of 4-dimethylaminopyridine (manufactured by Tokyo Chemical Industry Co., Ltd.), After adding 500 g of dichloromethane, the mixture was stirred at 20 ° C. for 5 minutes. To the stirring solution, 52 g of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (manufactured by Tokyo Chemical Industry Co., Ltd.) was added over 30 minutes, and the mixture was stirred at 20 ° C. for 5 hours. Thereafter, it was washed 3 times with 0.1 M hydrochloric acid, dried over magnesium sulfate, and distilled under reduced pressure. The obtained sample was purified by silica gel column chromatography to obtain B-27.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(マクロモノマーMM-1の合成)
 還流冷却管、ガス導入コックを付した1Lの3つ口フラスコにトルエンを190質量部加え、流速200mL/minにて窒素ガスを10分間導入した後に室温から80℃に昇温した。攪拌しているトルエン中に、別容器にて調製した液(下記処方α)を2時間かけて滴下し、80℃で2時間攪拌した。その後、V-601を0.2質量部添加し、さらに95℃で2時間攪拌した。攪拌後95℃に保った溶液に2,2,6,6-テトラメチルピペリジン-1-オキシル(東京化成工業社製)を0.025質量部、メタクリル酸グリシジル(和光純薬工業社製)を13質量部、テトラブチルアンモニウムブロミド(東京化成工業社製)を2.5質量部加えて120℃で3時間攪拌した。得られた混合物を室温まで冷却したのちメタノールに加えて沈殿させ、沈殿物をろ取し、メタノールで2回洗浄後、ヘプタン300質量部を加えて溶解させた。得られた溶液を減圧下で濃縮することでマクロモノマーMM-1の溶液を得た。固形分濃度は43.4%、SP値は9.1、質量平均分子量は16,000であった。得られたマクロモノマーMM-1を以下に示す。
(Synthesis of Macromonomer MM-1)
190 parts by mass of toluene was added to a 1 L three-necked flask equipped with a reflux condenser and a gas introduction cock, and nitrogen gas was introduced at a flow rate of 200 mL / min for 10 minutes, and then the temperature was raised from room temperature to 80 ° C. A liquid prepared in a separate container (the following formulation α) was dropped into the stirring toluene over 2 hours, and the mixture was stirred at 80 ° C. for 2 hours. Thereafter, 0.2 part by mass of V-601 was added, and the mixture was further stirred at 95 ° C. for 2 hours. 0.025 parts by mass of 2,2,6,6-tetramethylpiperidine-1-oxyl (manufactured by Tokyo Chemical Industry Co., Ltd.) and glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) were added to the solution kept at 95 ° C. after stirring. 13 parts by mass and 2.5 parts by mass of tetrabutylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) were added and stirred at 120 ° C. for 3 hours. The obtained mixture was cooled to room temperature and then added to methanol for precipitation. The precipitate was collected by filtration, washed twice with methanol, and then dissolved by adding 300 parts by mass of heptane. The obtained solution was concentrated under reduced pressure to obtain a solution of macromonomer MM-1. The solid content concentration was 43.4%, the SP value was 9.1, and the mass average molecular weight was 16,000. The obtained macromonomer MM-1 is shown below.
 (処方α)
メタクリル酸ドデシル(和光純薬工業社製)        150質量部
メタクリル酸メチル (和光純薬工業社製)         59質量部
3-メルカプトイソ酪酸 (東京化成工業社製)        2質量部
V-601 (和光純薬工業社製)            1.9質量部
(Prescription α)
Dodecyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 150 parts by mass Methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) 59 parts by mass 3-mercaptoisobutyric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 parts by mass V-601 (Wako Pure Chemical Industries, Ltd.) 1.9 parts by mass)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(固体電解質組成物(スラリー)の調製)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを130個投入し、LPS 3.0g、分散媒としてトルエン9.0gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数100rpmで30分混合し、粒径2.0μmのLPSを含有する、固体電解質層を形成するための固体電解質組成物(固体電解質用組成物)を調製した。
(Preparation of solid electrolyte composition (slurry))
In a 45 mL zirconia container (manufactured by Fritsch), 130 zirconia beads having a diameter of 5 mm were charged, 3.0 g of LPS, and 9.0 g of toluene as a dispersion medium. A container is set on a planetary ball mill P-7 (trade name) manufactured by Frichtu, and mixed for 30 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to form a solid electrolyte layer containing LPS having a particle size of 2.0 μm. A solid electrolyte composition (composition for solid electrolyte) was prepared.
<固体電解質含有シートの作製>
(実施例1)
 作製した上述の固体電解質組成物をシャーレに投入し、不織布を30分間浸漬させた。不織布を取り出し、液切りを30秒間行った後、150℃ホットプレートにて30分間乾燥させ溶媒を揮発させた。乾燥した不織布の上下をアルミ箔で挟み、20MPaで150℃5分間加圧し、厚さ20μmの実施例1の固体電解質含有シートを作製した。
<Preparation of solid electrolyte containing sheet>
Example 1
The prepared solid electrolyte composition was put into a petri dish, and the nonwoven fabric was immersed for 30 minutes. The nonwoven fabric was taken out and drained for 30 seconds, and then dried on a 150 ° C. hot plate for 30 minutes to evaporate the solvent. The dried nonwoven fabric was sandwiched between aluminum foils and pressed at 20 MPa at 150 ° C. for 5 minutes to produce a solid electrolyte-containing sheet of Example 1 having a thickness of 20 μm.
(実施例2~22)
 実施例1の固体電解質含有シートの作製において、下記表1の記載に従ったこと以外は、実施例1と同様にして、実施例2~22の固体電解質含有シートを作製した。
 なお、実施例21及び22において、LPS 3.0gに代えてLPS 2.94gとバインダー0.06gを用いた。
(Examples 2 to 22)
In the production of the solid electrolyte-containing sheet of Example 1, the solid electrolyte-containing sheets of Examples 2 to 22 were produced in the same manner as in Example 1 except that the description in Table 1 was followed.
In Examples 21 and 22, 2.94 g of LPS and 0.06 g of binder were used instead of 3.0 g of LPS.
(実施例23)
 上述の固体電解質組成物に向けて、NANON-3の吐出口から、電界紡糸ファイバーを直接添加したこと以外は実施例2と同様にして実施例23の固体電解質含有シートを作製した。
(Example 23)
A solid electrolyte-containing sheet of Example 23 was produced in the same manner as in Example 2 except that the electrospun fiber was directly added to the above-described solid electrolyte composition from the NANON-3 discharge port.
(実施例24)
 上述の固体電解質組成物をアプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)で固体電解質層単独の膜厚が10μmとなるように不織布の片面に塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)した。その後、不織布のもう一方の面にも同様の操作を行うことで固体電解質含有シートを得た。
(Example 24)
The solid electrolyte composition described above was applied to one side of the nonwoven fabric with an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.) so that the thickness of the solid electrolyte layer alone was 10 μm, and at 80 ° C. After heating for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, it pressurized (20 Mpa, 1 minute), heating (120 degreeC) using the heat press machine. Thereafter, the same operation was performed on the other surface of the nonwoven fabric to obtain a solid electrolyte-containing sheet.
(実施例25)
 LiS:0.3827g、P:0.6170g(モル比Li:P=3:1 )を、3Aモレキュラーシーブで脱水したプロピオン酸エチル(EP):20mLに添加し、ドライAr雰囲気下で、24時間、1500rpm、振幅1cmで加振して硫化物系無機固体電解質の前駆体を含むスラリーを得た。
 このスラリーを、不織布に含浸させ、室温にて減圧乾燥し、硫化物系無機固体電解質の前駆体を含有するシートを作製した。
 上記シートを170℃で、一晩(7時間)、減圧下(-100kPa)で熱処理し、上記前駆体を反応させ、固体電解質含有シートを得た。
 なお、得られた固体電解質含有シートのイオン伝導度は、1×10-4Scm-1であった。
(Example 25)
Li 2 S: 0.3827 g, P 2 S 5 : 0.6170 g (molar ratio Li 2 S 5 : P 2 S 5 = 3: 1) dehydrated with 3A molecular sieve, ethyl propionate (EP): 20 mL The slurry was added and vibrated in a dry Ar atmosphere for 24 hours at 1500 rpm with an amplitude of 1 cm to obtain a slurry containing a precursor of a sulfide-based inorganic solid electrolyte.
The slurry was impregnated into a nonwoven fabric and dried under reduced pressure at room temperature to prepare a sheet containing a sulfide-based inorganic solid electrolyte precursor.
The sheet was heat-treated at 170 ° C. overnight (7 hours) under reduced pressure (−100 kPa) to cause the precursor to react to obtain a solid electrolyte-containing sheet.
The obtained solid electrolyte-containing sheet had an ionic conductivity of 1 × 10 −4 Scm −1 .
(実施例26)
 実施例2の不織布の両面に、上記「硫化物系無機固体電解質(Li-P-S系ガラス)の合成」で得た硫化物系無機固体電解質粉末を静電印刷し、加熱ロールプレス機(タクミ技研製SA―602―S(商品名))を用い、100℃、20kN、ロール回転速度0.4m/分の条件で加熱、加圧処理し、厚さ20μmの固体電解質含有シートを得た。
(Example 26)
The sulfide-based inorganic solid electrolyte powder obtained in “Synthesis of sulfide-based inorganic solid electrolyte (Li—PS—based glass)” was electrostatically printed on both surfaces of the nonwoven fabric of Example 2, and a heated roll press ( Using Takumi Giken SA-602-S (trade name)), heating and pressing were performed under the conditions of 100 ° C., 20 kN, and a roll rotation speed of 0.4 m / min to obtain a solid electrolyte-containing sheet having a thickness of 20 μm. .
(実施例27~30)
 実施例1の固体電解質含有シートの作製において、下記表1の記載に従ったこと以外は、実施例1と同様にして、実施例27~30の固体電解質含有シートを作製した。
(Examples 27 to 30)
In the production of the solid electrolyte-containing sheet of Example 1, the solid electrolyte-containing sheets of Examples 27 to 30 were produced in the same manner as in Example 1 except that the description in Table 1 was followed.
(実施例31)
 実施例2の固体電解質含有シートの作製において、前記の20MPaで150℃5分間加圧後のシートを、再度浸漬から加圧までの過程に付し、実施例31の固体電解質含有シートを作製した。
(Example 31)
In the production of the solid electrolyte-containing sheet of Example 2, the sheet after pressing at 20 MPa at 150 ° C. for 5 minutes was again subjected to the process from immersion to pressurization to produce the solid electrolyte-containing sheet of Example 31. .
(実施例32、33及び比較例1~12)
 実施例1の固体電解質含有シートの作製において、下記表1~3の記載に従ったこと以外は、実施例1と同様にして、実施例32、33及び比較例1~12の固体電解質含有シートを作製した。なお、実施例32では、厚さ60μmのウレタン不織布(「パンデックスT8175N」ディーアイシー コベストロ ポリマー社製商品名)を用いた。
(Examples 32 and 33 and Comparative Examples 1 to 12)
In the production of the solid electrolyte-containing sheet of Example 1, the solid electrolyte-containing sheets of Examples 32 and 33 and Comparative Examples 1 to 12 were the same as Example 1 except that the description in Tables 1 to 3 below was followed. Was made. In Example 32, a 60 μm-thick urethane non-woven fabric (“Pandex T8175N”, manufactured by DIC Covestro Polymer Co., Ltd.) was used.
 なお、上記作製した固体電解質含有シートは、縦50mm、横50mmのシートである。 The produced solid electrolyte-containing sheet is a sheet having a length of 50 mm and a width of 50 mm.
<全固体二次電池の作製>
(正極シートの作製)
 以下のようにして、実施例1~27、29、31~33及び比較例1~12において用いる正極シートを作製した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス2.8g、バインダAの分散液を固形分換算で0.2g、分散媒としてトルエン12.3gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてNMC(LiNi0.33Co0.33Mn0.33(アルドリッチ社製))7.0g、導電助剤としてアセチレンブラック(デンカ(株)製)を0.2g容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混(合を続け、正極用組成物を調製した。
<Preparation of all-solid secondary battery>
(Preparation of positive electrode sheet)
In the following manner, positive electrode sheets used in Examples 1-27, 29, 31-33 and Comparative Examples 1-12 were prepared.
180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 2.8 g of the Li—PS glass based synthesized above, and 0.2 g of the dispersion liquid of binder A in terms of solid content. Then, 12.3 g of toluene was added as a dispersion medium. The container was set in a planetary ball mill P-7 (trade name) manufactured by Fricht, and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm. Then, 7.0 g of NMC (LiNi 0.33 Co 0.33 Mn 0.33 O 2 (manufactured by Aldrich)) as an active material and 0.2 g of acetylene black (manufactured by Denka) as a conductive additive In the same manner, a container was set in the planetary ball mill P-7, and mixed for 10 minutes at a temperature of 25 ° C. and a rotation speed of 100 rpm to prepare a positive electrode composition.
 上記で調製した正極用組成物を、アルミ箔(正極集電体)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により30mg/cmの目付量となるように塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、正極集電体上に正極活物質層を有する正極シートを作製した。 The composition for positive electrode prepared above is applied on an aluminum foil (positive electrode current collector) with an applicator (trade name: SA-201 Baker-type applicator, manufactured by Tester Sangyo Co., Ltd.) to give a basis weight of 30 mg / cm 2. After heating at 80 ° C. for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (20 Mpa, 1 minute), heating (120 degreeC), and produced the positive electrode sheet which has a positive electrode active material layer on a positive electrode electrical power collector.
 以下のようにして、実施例28及び30において用いる正極シートを作製した。
 上記で調製した正極用組成物に、厚さ80μmとなるセルロースアセテートの不織布を30分間浸漬させた。不織布を取り出し、液切りを30秒間行った後、110℃ホットプレートにて1時間乾燥させ溶媒を揮発させた。乾燥した不織布の上下をアルミ箔で挟み、120℃で1分間、20MPaで加圧し、片方のアルミ箔を剥し、正極集電体上に正極活物質層を有する正極シートを作製した。
The positive electrode sheet used in Examples 28 and 30 was produced as follows.
A cellulose acetate nonwoven fabric having a thickness of 80 μm was immersed in the positive electrode composition prepared above for 30 minutes. The nonwoven fabric was taken out and drained for 30 seconds, and then dried on a 110 ° C. hot plate for 1 hour to volatilize the solvent. The upper and lower sides of the dried nonwoven fabric were sandwiched between aluminum foils, pressed at 120 ° C. for 1 minute at 20 MPa, peeled off one aluminum foil, and a positive electrode sheet having a positive electrode active material layer on the positive electrode current collector was produced.
(負極シートの作製)
 以下のようにして、実施例1~28、31、33、比較例1~10及び12において用いる負極シートを作製した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス2.8g、バインダBの分散液を固形分換算で0.2g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてCGB20(商品名、日本黒鉛社製)7.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物を調製した。
(Preparation of negative electrode sheet)
In the following manner, negative electrode sheets used in Examples 1 to 28, 31, and 33 and Comparative Examples 1 to 10 and 12 were produced.
180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 2.8 g of the Li—PS system glass synthesized above and 0.2 g of the dispersion of binder B in terms of solid content are added. Then, 12.3 g of heptane was added as a dispersion medium. The container was set on a planetary ball mill P-7 manufactured by Fricht and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm. Thereafter, 7.0 g of CGB20 (trade name, manufactured by Nippon Graphite Co., Ltd.) as an active material is put into the container, and similarly, the container is set in the planetary ball mill P-7 and mixed for 15 minutes at a temperature of 25 ° C. and a rotation speed of 200 rpm. Subsequently, a negative electrode composition was prepared.
 上記で調製した負極用組成物を、SUS箔(負極集電体)上に、アプリケータ(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により15mg/cmの目付量となるように塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、負極集電体上に負極活物質層を有する負極シートを作製した。 The composition for negative electrode prepared above is applied to a basis weight of 15 mg / cm 2 on an SUS foil (negative electrode current collector) by an applicator (trade name: SA-201 Baker type applicator, manufactured by Tester Sangyo Co., Ltd.). After heating at 80 ° C. for 1 hour, it was further dried at 110 ° C. for 1 hour. Then, using a heat press machine, it pressurized (20 Mpa, 1 minute), heating (120 degreeC), and produced the negative electrode sheet which has a negative electrode active material layer on a negative electrode collector.
 以下のようにして、実施例29及び30において用いる負極シートを作製した。
 上記で調製した負極用組成物に、厚さ60μmのセルロースアセテートの不織布を30分間浸漬させた。不織布を取り出し、液切りを30秒間行った後、110℃ホットプレートにて1時間乾燥させ溶媒を揮発させた。乾燥した負極シートの上下をSUS箔で挟み、120℃で1分間、20MPaで加圧し、片方のSUS箔を剥し、負極集電体上に負極活物質層を有する負極シートを作製した。
The negative electrode sheet used in Examples 29 and 30 was produced as follows.
A cellulose acetate nonwoven fabric having a thickness of 60 μm was immersed in the negative electrode composition prepared above for 30 minutes. The nonwoven fabric was taken out and drained for 30 seconds, and then dried on a 110 ° C. hot plate for 1 hour to volatilize the solvent. The top and bottom of the dried negative electrode sheet were sandwiched between SUS foils, pressed at 120 ° C. for 1 minute at 20 MPa, and one of the SUS foils was peeled off to produce a negative electrode sheet having a negative electrode active material layer on the negative electrode current collector.
 以下のようにして、実施例32及び比較例11において用いる負極シートを作製した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス4.7g、バインダBの分散液を固形分換算で0.1g、分散媒としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてSilicon Powder1-5μm(Alfa Aesar社製)4.7g、導電助剤としてアセチレンブラック(デンカ(株)製)0.5gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物を調製し、厚さ60μmのウレタン不織布(「パンデックスT8175N」ディーアイシー コベストロ ポリマー社製商品名)を用いて実施例29と同様にして負極シートを作製した。
The negative electrode sheet used in Example 32 and Comparative Example 11 was produced as follows.
180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 4.7 g of the Li—PS system glass synthesized above and 0.1 g of the dispersion of binder B are converted into solid content. Then, 12.3 g of heptane was added as a dispersion medium. The container was set on a planetary ball mill P-7 manufactured by Fricht and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm. Thereafter, 4.7 g of Silicon Powder 1-5 μm (manufactured by Alfa Aesar) as an active material and 0.5 g of acetylene black (manufactured by Denka Co., Ltd.) as a conductive auxiliary agent are put into a container, and similarly to planetary ball mill P-7. A container was set, mixing was continued for 15 minutes at a temperature of 25 ° C. and a rotation speed of 200 rpm to prepare a negative electrode composition, and a 60 μm-thick urethane nonwoven fabric (“Pandex T8175N” DIC Covestro Polymer Co., Ltd. product name) was used. A negative electrode sheet was produced in the same manner as in Example 29.
(電池形成)
 図2に示す層構成を有する全固体二次電池を形成した。
 上記で得られた固体電解質含有シート(固体電解質層)と負極シートの負極活物質層が接するように重ね、50MPaで10秒加圧した。負極集電体3/負極活物質層4/固体電解質層5からなる部材を作製し、直径15mmΦに切り出した。その後、2032型コインケース内で直径14mmΦに切り出した正極シートの正極活物質層6と固体電解質層5が接するように重ねて全固体二次電池用積層体とし、600MPaで加圧後、コインケースをかしめ、全固体二次電池を作製した。
(Battery formation)
An all-solid secondary battery having the layer configuration shown in FIG. 2 was formed.
The solid electrolyte-containing sheet (solid electrolyte layer) obtained above was overlaid so that the negative electrode active material layer of the negative electrode sheet was in contact, and pressurized at 50 MPa for 10 seconds. A member composed of the negative electrode current collector 3 / the negative electrode active material layer 4 / the solid electrolyte layer 5 was produced and cut into a diameter of 15 mmΦ. Thereafter, the positive electrode active material layer 6 of the positive electrode sheet cut into a diameter of 14 mmΦ in a 2032 type coin case is stacked so that the solid electrolyte layer 5 is in contact with each other to form a laminate for an all-solid-state secondary battery. The all-solid-state secondary battery was produced.
 実施例及び比較例の固体電解質含有シート、並びに、実施例及び比較例の全固体二次電池の性能を以下の試験により評価した。 The performance of the solid electrolyte-containing sheets of Examples and Comparative Examples and the all-solid secondary batteries of Examples and Comparative Examples were evaluated by the following tests.
(1)自立膜性試験
 固体電解質含有シートから、10mm×30mmの試験片を切り出し、短辺側の端部を固定し、他方の短辺側の端部を掴んで試験片を水平にした後離した。水平にした際の試験片に対する垂線と、離した後の試験片とのなす角度を測定した。この角度が下記評価基準のいずれに含まれるかで評価した。AA、A、B及びCが本試験の合格である。
-評価基準-
AA:70~90度
A:50~69度
B:40~49度
C:30~39度
D:15~29度
E:0~14度
 角度が大きい程、試験片が水平にした際の状態に近く、自立膜性が優れる。
(1) Self-supporting membrane test After cutting out a 10 mm × 30 mm test piece from a solid electrolyte-containing sheet, fixing the short side end, and holding the other short side end to level the test piece Released. The angle formed between the perpendicular to the test piece when leveled and the test piece after separation was measured. Evaluation was made based on which of the following evaluation criteria included this angle. AA, A, B, and C pass the test.
-Evaluation criteria-
AA: 70 to 90 degrees A: 50 to 69 degrees B: 40 to 49 degrees C: 30 to 39 degrees D: 15 to 29 degrees E: 0 to 14 degrees The larger the angle, the more the specimen is leveled The self-standing film property is excellent.
(2)可撓性試験
 JIS K5600-5-1に準拠し、マンドレル試験機を用いた耐屈曲性試験により、固体電解質含有シートの可撓性を評価した。
 幅50mm、長さ100mmの短冊状の固体電解質含有シートを用い、直径違いのマンドレルを用いて、屈曲させた後、ヒビ及び割れの有無を目視で観察した。ヒビ及び割れの少なくとも一方(ヒビ及び/又は割れ)が発生していない場合、マンドレルの径(単位mm)を25、20、16、12、10、8、6、5、4、3、2と徐々に小さくしていき、ヒビ及び/又は割れが最初に発生したマンドレルの径を記録した。ヒビ及び割れの少なくとも一方が発生したマンドレルの径のうち最大ものが下記評価基準のいずれに含まれるかで評価した。
(2) Flexibility test In accordance with JIS K5600-5-1, the flexibility of the solid electrolyte-containing sheet was evaluated by a bending resistance test using a mandrel testing machine.
A strip-shaped solid electrolyte-containing sheet having a width of 50 mm and a length of 100 mm was bent using a mandrel having a different diameter, and then visually observed for cracks and cracks. When at least one of cracks and cracks (cracks and / or cracks) has not occurred, the diameter (unit: mm) of the mandrel is 25, 20, 16, 12, 10, 8, 6, 5, 4, 3, 2, The diameter of the mandrel where cracks and / or cracks first occurred was recorded gradually. Evaluation was made based on which of the following evaluation criteria the largest diameter of the mandrel in which at least one of cracks and cracks occurred.
-評価基準-
AA:5mm未満
A:5mm以上10mm未満
B:10mm以上16mm未満
C:16mm以上20mm未満
D:20mm以上40mm未満
E:40mm以上
-Evaluation criteria-
AA: Less than 5 mm A: 5 mm or more and less than 10 mm B: 10 mm or more and less than 16 mm C: 16 mm or more and less than 20 mm D: 20 mm or more and less than 40 mm E: 40 mm or more
(3)電池性能
 全固体二次電池を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値2.0mAで放電した。放電開始10秒後の電池電圧を以下の基準で読み取り、抵抗を評価した。
(3) Battery performance The all-solid-state secondary battery was measured by a charge / discharge evaluation apparatus “TOSCAT-3000” (trade name) manufactured by Toyo System. The all solid state secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 2.0 mA until the battery voltage reached 3.0 V. The battery voltage 10 seconds after the start of discharge was read according to the following criteria to evaluate the resistance.
 評価基準を以下に示す。評価基準1は、表1及び2における評価の基準であり、評価基準2は、表3における評価の基準である。なお、表1~3の電池性能評価における「-」は、強度が弱く、電池形成自体ができなかったため、電池性能評価ができなかったことを意味する。
-評価基準1-
AA:4.1V以上
A:4.0V以上4.1V未満
B:3.9V以上4.0V未満
C:3.8V以上3.9V未満
D:3.7V以上3.8V未満
E:3.7V未満
-評価基準2-
AA:3.8V以上
A:3.7V以上3.8V未満
B:3.6V以上3.7未満
C:3.5V以上3.6V未満
D:3.4V以上3.5V未満
E:3.4V未満
The evaluation criteria are shown below. Evaluation standard 1 is a standard for evaluation in Tables 1 and 2, and evaluation standard 2 is a standard for evaluation in Table 3. In Tables 1 to 3, “−” in the battery performance evaluation means that the battery performance evaluation could not be performed because the strength was weak and the battery could not be formed.
-Evaluation criteria 1
AA: 4.1 V or more A: 4.0 V or more and less than 4.1 V B: 3.9 V or more and less than 4.0 V C: 3.8 V or more and less than 3.9 V D: 3.7 V or more and less than 3.8 V E: 3. Less than 7V-Evaluation criteria 2-
A: 3.8 V or more A: 3.7 V or more and less than 3.8 V B: 3.6 V or more and less than 3.7 C: 3.5 V or more and less than 3.6 V D: 3.4 V or more and less than 3.5 V E: 3. Less than 4V
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<表の注>
1~32:実施例1~32
c1~11:比較例1~11
d:ファイバーの平均直径(μm)
L:ファイバーの平均長(mm)
t:固体電解質含有シート(固体電解質層)の厚さ(μm)
PVdF:ポリビニリデンジフルオリド
<Notes on the table>
1-32: Examples 1-32
c1 to 11: Comparative Examples 1 to 11
d: Average fiber diameter (μm)
L: Average length of fiber (mm)
t: thickness of solid electrolyte-containing sheet (solid electrolyte layer) (μm)
PVdF: Polyvinylidene difluoride
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<表の注>
33:実施例33
c12:比較例12
LLZ:LiLaZr12(ランタンジルコン酸リチウム 平均粒子径5.0μm 豊島製作所)
<Notes on the table>
33: Example 33
c12: Comparative Example 12
LLZ: Li 7 La 3 Zr 2 O 12 (Lithium lanthanum zirconate average particle size 5.0 μm Toshima Seisakusho)
 表1~3から明らかなように、dの数値範囲、Lの数値範囲及び100×t≦L≦2500×tで表される関係を全て満たす本発明の固体電解質含有シートは、自立膜性、可撓性及び電池性能のいずれにも優れることがわかる。 As is apparent from Tables 1 to 3, the solid electrolyte-containing sheet of the present invention satisfying all of the relationship represented by the numerical range of d, the numerical range of L, and 100 × t ≦ L ≦ 2500 × t is a self-supporting film, It turns out that it is excellent in both flexibility and battery performance.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2018年4月27日に日本国で特許出願された特願2018-87792及び2018年9月3日に日本国で特許出願された特願2018-164231に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2018-877792 filed in Japan on April 27, 2018 and Japanese Patent Application No. 2018-164231 filed on September 3, 2018 in Japan. Which are hereby incorporated by reference herein as part of their description.
1 固体電解質層
2 離型フィルム
3 負極集電体
4 負極活物質層
5 固体電解質層
6 正極活物質層
7 正極集電体
8 作動部位
100 全固体二次電池
DESCRIPTION OF SYMBOLS 1 Solid electrolyte layer 2 Release film 3 Negative electrode collector 4 Negative electrode active material layer 5 Solid electrolyte layer 6 Positive electrode active material layer 7 Positive electrode collector 8 Working part 100 All-solid-state secondary battery

Claims (17)

  1.  平均直径dが0.1~2μmであり、平均長さLが0.2~50mmであるファイバーと、無機固体電解質とを含む、厚さがtμmの固体電解質含有層を有し、前記Lと前記tが下記関係を満たす固体電解質含有シート。
                100×t≦L≦2500×t
    A solid electrolyte-containing layer having a thickness of t μm, including a fiber having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm, and an inorganic solid electrolyte; A solid electrolyte-containing sheet in which t satisfies the following relationship.
    100 × t ≦ L ≦ 2500 × t
  2.  前記ファイバーの含有率が、前記固体電解質含有層中、0.1~40体積%である、請求項1に記載の固体電解質含有シート。 The solid electrolyte-containing sheet according to claim 1, wherein the fiber content is 0.1 to 40% by volume in the solid electrolyte-containing layer.
  3.  前記ファイバーが電界紡糸ファイバーである、請求項1又は2に記載の固体電解質含有シート。 The solid electrolyte-containing sheet according to claim 1 or 2, wherein the fiber is an electrospun fiber.
  4.  バインダーを含有する、請求項1~3のいずれか1項に記載の固体電解質含有シート。 The solid electrolyte-containing sheet according to any one of claims 1 to 3, comprising a binder.
  5.  自立膜である、請求項1~4のいずれか1項に記載の固体電解質含有シート。 The solid electrolyte-containing sheet according to any one of claims 1 to 4, which is a self-supporting film.
  6.  請求項1~5のいずれか1項に記載の固体電解質含有シートと、電極活物質層とを有する全固体二次電池用電極シート。 An electrode sheet for an all-solid-state secondary battery, comprising the solid electrolyte-containing sheet according to any one of claims 1 to 5 and an electrode active material layer.
  7.  請求項6に記載の全固体二次電池用電極シートを有する全固体二次電池。 An all-solid secondary battery having the electrode sheet for an all-solid secondary battery according to claim 6.
  8.  請求項7に記載の全固体二次電池を有する電子機器。 An electronic device having the all solid state secondary battery according to claim 7.
  9.  請求項7に記載の全固体二次電池を有する電気自動車。 An electric vehicle having the all-solid-state secondary battery according to claim 7.
  10.  平均直径dが0.1~2μmであり、平均長さLが0.2~50mmのファイバーと、無機固体電解質と、分散媒とを含む固体電解質組成物をキャストする工程を含む、請求項1~5のいずれか1項に記載の固体電解質含有シートの製造方法。 2. The method of casting a solid electrolyte composition comprising a fiber having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm, an inorganic solid electrolyte, and a dispersion medium. 6. The method for producing a solid electrolyte-containing sheet according to any one of 1 to 5.
  11.  平均直径dが0.1~2μmであり、平均長さLが0.2~50mmのファイバーの不織布に、無機固体電解質の乾燥粉末を塗布する工程、前記不織布に、無機固体電解質と分散媒とを含む固体電解質組成物を塗布する工程、又は、前記不織布を、無機固体電解質と分散媒とを含む固体電解質組成物に含浸させる工程を含む、請求項1~5のいずれか1項に記載の固体電解質含有シートの製造方法。 A step of applying a dry powder of an inorganic solid electrolyte to a nonwoven fabric of fibers having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm; the inorganic solid electrolyte and a dispersion medium on the nonwoven fabric; The method according to any one of claims 1 to 5, further comprising a step of applying a solid electrolyte composition containing a solid electrolyte composition, or a step of impregnating the nonwoven fabric with a solid electrolyte composition containing an inorganic solid electrolyte and a dispersion medium. A method for producing a solid electrolyte-containing sheet.
  12.  平均直径dが0.1~2μmであり、平均長さLが0.2~50mmのファイバーの不織布を、無機固体電解質を液相合成する際に、同じ系に存在させる工程を含む、請求項1~5のいずれか1項に記載の固体電解質含有シートの製造方法。 The method includes a step of causing a non-woven fabric of fibers having an average diameter d of 0.1 to 2 μm and an average length L of 0.2 to 50 mm to be present in the same system during liquid phase synthesis of an inorganic solid electrolyte. 6. The method for producing a solid electrolyte-containing sheet according to any one of 1 to 5.
  13.  電界紡糸法によりファイバーを調製する工程を含む、請求項10又は11に記載の固体電解質含有シートの製造方法。 The manufacturing method of the solid electrolyte containing sheet | seat of Claim 10 or 11 including the process of preparing a fiber by an electrospinning method.
  14.  請求項10~13のいずれか1項に記載の固体電解質含有シートの製造方法により固体電解質含有シートを得て、当該固体電解質含有シートを用いて全固体二次電池用電極シートを製造することを含む、全固体二次電池用電極シートの製造方法。 A solid electrolyte-containing sheet is obtained by the method for producing a solid electrolyte-containing sheet according to any one of claims 10 to 13, and an electrode sheet for an all-solid-state secondary battery is produced using the solid electrolyte-containing sheet. A method for producing an electrode sheet for an all-solid-state secondary battery.
  15.  請求項14に記載の全固体二次電池用電極シートの製造方法により全固体二次電池用電極シートを得て、当該全固体二次電池用電極シートを用いて全固体二次電池を製造することを含む、全固体二次電池の製造方法。 An electrode sheet for an all-solid-state secondary battery is obtained by the method for manufacturing an electrode sheet for an all-solid-state secondary battery according to claim 14, and an all-solid-state secondary battery is manufactured using the electrode sheet for an all-solid-state secondary battery. The manufacturing method of the all-solid-state secondary battery including this.
  16.  請求項15に記載の全固体二次電池の製造方法により全固体二次電池を得て、当該全固体二次電池を電子機器に組み込むことを含む、電子機器の製造方法。 A method for manufacturing an electronic device, comprising: obtaining an all-solid secondary battery by the method for manufacturing an all-solid secondary battery according to claim 15; and incorporating the all-solid secondary battery into the electronic device.
  17.  請求項15に記載の全固体二次電池の製造方法により全固体二次電池を得て、当該全固体二次電池を電気自動車に組み込むことを含む、電気自動車の製造方法。 A method for producing an electric vehicle, comprising: obtaining an all solid state secondary battery by the method for producing an all solid state secondary battery according to claim 15; and incorporating the all solid state secondary battery into an electric vehicle.
PCT/JP2019/016403 2018-04-27 2019-04-17 Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these WO2019208347A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516262A JP7014900B2 (en) 2018-04-27 2019-04-17 Solid electrolyte-containing sheets, electrode sheets for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing these.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018087792 2018-04-27
JP2018-087792 2018-04-27
JP2018164231 2018-09-03
JP2018-164231 2018-09-03

Publications (1)

Publication Number Publication Date
WO2019208347A1 true WO2019208347A1 (en) 2019-10-31

Family

ID=68294024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016403 WO2019208347A1 (en) 2018-04-27 2019-04-17 Solid electrolyte-including sheet, electrode sheet for fully solid-state secondary battery, fully solid-state secondary battery, electronic device, electric vehicle, and manufacturing methods for these

Country Status (2)

Country Link
JP (1) JP7014900B2 (en)
WO (1) WO2019208347A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218422A1 (en) * 2019-04-26 2020-10-29 株式会社日本製鋼所 Method for producing solid electrolyte membrane, method for producing all-solid-state battery, apparatus for producing solid electrolyte membrane, and apparatus for producing all-solid-state battery
WO2021089066A1 (en) * 2019-11-05 2021-05-14 ŠKODA AUTO a.s. Secondary battery cell for electromobiles, cointaining amorphous glass materials and micro- and nano materials, and method of its production
CN114400368A (en) * 2022-01-14 2022-04-26 厦门海辰新能源科技有限公司 Sulfide solid electrolyte layer, preparation method thereof and lithium ion battery
WO2023054333A1 (en) 2021-09-30 2023-04-06 マクセル株式会社 All-solid-state battery
WO2023054293A1 (en) 2021-09-30 2023-04-06 マクセル株式会社 All solid state battery
CN116072960A (en) * 2023-03-24 2023-05-05 江苏时代新能源科技有限公司 Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device
CZ309795B6 (en) * 2020-11-04 2023-10-18 ŠKODA AUTO a.s A secondary battery cell for electric vehicles containing amorphous glass materials and micro and nano materials, and a method of its production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103258A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
WO2011070893A1 (en) * 2009-12-09 2011-06-16 日清紡ホールディングス株式会社 Flexible carbon fiber nonwoven fabric
JP2012102422A (en) * 2010-11-09 2012-05-31 Toray Ind Inc Fiber, nonwoven fabric and carbonized nonwoven fabric, and method for producing them
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2016031789A (en) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 Solid electrolyte sheet and all-solid type secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103258A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
WO2011070893A1 (en) * 2009-12-09 2011-06-16 日清紡ホールディングス株式会社 Flexible carbon fiber nonwoven fabric
JP2012102422A (en) * 2010-11-09 2012-05-31 Toray Ind Inc Fiber, nonwoven fabric and carbonized nonwoven fabric, and method for producing them
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2016031789A (en) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 Solid electrolyte sheet and all-solid type secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218422A1 (en) * 2019-04-26 2020-10-29 株式会社日本製鋼所 Method for producing solid electrolyte membrane, method for producing all-solid-state battery, apparatus for producing solid electrolyte membrane, and apparatus for producing all-solid-state battery
WO2021089066A1 (en) * 2019-11-05 2021-05-14 ŠKODA AUTO a.s. Secondary battery cell for electromobiles, cointaining amorphous glass materials and micro- and nano materials, and method of its production
CZ309795B6 (en) * 2020-11-04 2023-10-18 ŠKODA AUTO a.s A secondary battery cell for electric vehicles containing amorphous glass materials and micro and nano materials, and a method of its production
WO2023054333A1 (en) 2021-09-30 2023-04-06 マクセル株式会社 All-solid-state battery
WO2023054293A1 (en) 2021-09-30 2023-04-06 マクセル株式会社 All solid state battery
KR20240064619A (en) 2021-09-30 2024-05-13 맥셀 주식회사 All-solid-state battery
KR20240064633A (en) 2021-09-30 2024-05-13 맥셀 주식회사 All-solid-state battery
CN114400368A (en) * 2022-01-14 2022-04-26 厦门海辰新能源科技有限公司 Sulfide solid electrolyte layer, preparation method thereof and lithium ion battery
CN116072960A (en) * 2023-03-24 2023-05-05 江苏时代新能源科技有限公司 Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device
CN116072960B (en) * 2023-03-24 2023-09-05 江苏时代新能源科技有限公司 Solid electrolyte membrane, preparation method thereof, all-solid battery and power utilization device

Also Published As

Publication number Publication date
JPWO2019208347A1 (en) 2021-05-13
JP7014900B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6607937B2 (en) Solid electrolyte composition, electrode sheet for all-solid-state secondary battery, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
JP7014900B2 (en) Solid electrolyte-containing sheets, electrode sheets for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing these.
JPWO2017141735A1 (en) Solid electrolyte composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
WO2018047946A1 (en) Electrode layer material, sheet for all-solid-state secondary battery electrode, all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2019188487A1 (en) Fully solid-state secondary battery and method of manufacturing same
CN111201660B (en) Solid electrolyte composition, all-solid secondary battery, and method for manufacturing same
JP7064613B2 (en) Manufacturing method of laminated member for all-solid-state secondary battery and manufacturing method of all-solid-state secondary battery
JP6572063B2 (en) All-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and production method thereof
JP7059302B2 (en) A method for producing a solid electrolyte composition, a solid electrolyte-containing sheet and an all-solid-state secondary battery, and a solid electrolyte-containing sheet and an all-solid-state secondary battery.
CN111194492A (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
JPWO2018163976A1 (en) SOLID ELECTROLYTE-CONTAINING SHEET, SOLID ELECTROLYTE COMPOSITION AND ALL-SOLID SECONDARY BATTERY, AND METHOD FOR PRODUCING SOLID ELECTROLYTE-CONTAINING SHEET AND ALL-SOLID SECONDARY BATTERY
JP7100196B2 (en) All-solid-state lithium-ion secondary battery and its manufacturing method, and laminated sheet for negative electrode
JP7014899B2 (en) Solid electrolyte-containing sheets, electrode sheets for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing these.
JP4751502B2 (en) Polymer battery
WO2020059549A1 (en) All-solid secondary battery and all-solid secondary battery negative electrode sheet
JP6665343B2 (en) Inorganic solid electrolyte material, and slurry using the same, solid electrolyte membrane for all solid secondary battery, solid electrolyte sheet for all solid secondary battery, positive electrode active material membrane for all solid secondary battery, for all solid secondary battery Negative electrode active material film, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for manufacturing all-solid secondary battery
JP6948382B2 (en) All-solid-state secondary battery and its manufacturing method, as well as solid-state electrolyte sheet for all-solid-state secondary battery and positive electrode active material sheet for all-solid-state secondary battery
JP7061728B2 (en) Method for manufacturing composite electrode active material, electrode composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and composite electrode active material, electrode sheet for all-solid secondary battery and all-solid secondary battery.
JP7119214B2 (en) All-solid secondary battery and manufacturing method thereof
JP6670641B2 (en) Electrode material, electrode sheet for all-solid secondary battery and all-solid secondary battery using the same, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
WO2018164051A1 (en) All-solid-state secondary battery, production method for same, solid electrolyte film for all-solid-state-electrolyte battery, and production method for same
JP6631363B2 (en) Negative electrode active material, negative electrode including negative electrode active material, and lithium ion secondary battery including negative electrode
WO2022202901A1 (en) Solid electrolyte layered sheet, all solid secondary battery, and method for producing all solid secondary battery
JP7245847B2 (en) Electrode composition, electrode sheet for all-solid secondary battery, all-solid secondary battery, and method for producing electrode composition, electrode sheet for all-solid secondary battery, and all-solid secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791654

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2020516262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791654

Country of ref document: EP

Kind code of ref document: A1