JP2012007059A - Composite particle and method of manufacturing the same - Google Patents

Composite particle and method of manufacturing the same Download PDF

Info

Publication number
JP2012007059A
JP2012007059A JP2010143380A JP2010143380A JP2012007059A JP 2012007059 A JP2012007059 A JP 2012007059A JP 2010143380 A JP2010143380 A JP 2010143380A JP 2010143380 A JP2010143380 A JP 2010143380A JP 2012007059 A JP2012007059 A JP 2012007059A
Authority
JP
Japan
Prior art keywords
organic polymer
silicon compound
particles
water
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010143380A
Other languages
Japanese (ja)
Other versions
JP5579512B2 (en
Inventor
Koji Miyata
浩司 宮田
Taku Kawasaki
卓 川崎
Motoharu Fukazawa
元晴 深澤
Shingo Hanasato
真吾 花里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2010143380A priority Critical patent/JP5579512B2/en
Publication of JP2012007059A publication Critical patent/JP2012007059A/en
Application granted granted Critical
Publication of JP5579512B2 publication Critical patent/JP5579512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fine organic polymer-silicon compound composite particle with little aggregation.SOLUTION: The organic polymer-silicon compound composite particle whose average particle size is 5-150 nm, is characterized in that (a) a core is an organic polymer particle of a copolymer consisting of vinyl acetate and a monomer having one or more vinyl groups; and (b) a shell consists of a silicon compound. The method of manufacturing the organic polymer-silicon compound composite particle comprises using a copolymer consisting of vinyl acetate and a monomer having one or more vinyl groups, water, an emulsifier and a water-soluble polymerization initiator, and covering the surface of an organic polymer particle obtained by an emulsion polymerization with a silicon compound.

Description

本発明は、有機ポリマー−シリコン化合物複合粒子に関する。 The present invention relates to organic polymer-silicon compound composite particles.

近年、各種産業用部品の小型化・薄層化が進展するにつれて、使用される原材料のサイズも小型化が進展している。各種原材料として使用される粉末においても、粉末を構成する粒子として、粒径が数〜数十ナノメートル微細な粒子が必要とされる。 In recent years, with the progress of miniaturization and thinning of various industrial parts, the size of raw materials used has also been miniaturized. Even in powders used as various raw materials, particles having a particle size of several to several tens of nanometers are required as particles constituting the powder.

さらに、単一の材料からなる粒子では要求する特性を発揮できない場合があるため、このような場合に複数の材料を組み合わせた複合粒子が適用される。特に、コアが有機ポリマー、シェルがシリコン化合物からなる、有機ポリマー−シリコン化合物複合粒子は、光学用途において低屈折率充填材として使用される粒子サイズが数〜百数十ナノメートルの中空シリカ粒子の原料等として用いられる。 Further, since particles made of a single material may not exhibit the required characteristics, composite particles combining a plurality of materials are applied in such a case. In particular, the organic polymer-silicon compound composite particles in which the core is composed of an organic polymer and the shell is composed of a silicon compound are hollow silica particles having a particle size of several to several tens of nanometers used as a low refractive index filler in optical applications. Used as a raw material.

有機ポリマー−シリコン化合物複合粒子の製造方法としては、予め有機ポリマーのコア粒子を作製した後、これにシリコン化合物のシェルを被覆する方法が一般的であるが、従来の有機ポリマー−シリコン化合物複合粒子は、以下に示す問題点を有していた。 As a method for producing organic polymer-silicon compound composite particles, an organic polymer core particle is prepared in advance and then a silicon compound shell is coated thereon. Had the following problems.

有機ポリマーコア粒子にシリコン化合物のシェルを被覆する際、シリカ前駆体であるシリコンアルコキシドのアルコール溶液中またはアルコール/水混合溶液中に重合体(有機ポリマー)粒子を均一に分散せしめ、加水分解反応により該重合体粒子の表面に均一なシリコン化合物被覆層を設ける方法が用いられる(特許文献1)。しかしながらかかる方法においては、ポリ酢酸ビニルのように、アルコールに可溶な有機ポリマー粒子をコアとして用いると、加水分解反応中にコアがアルコールに溶解してしまうため、均一な有機ポリマー−シリコン化合物複合粒子を得ることができない。別の方法として、数十ナノメートルの微細なポリスチレン粒子の表面に、アミノ基(−NH )及びカルボキシル基(−COO)を導入した後にシリカを被覆する方法が提案されている。しかし、直径100nm未満(25nm及び40nm)の粒子においては、数個の粒子が数珠状に連なった凝集が、透過型電子顕微鏡像によって観察されている(非特許文献1)。かかる凝集粒子を光学用途の充填材として用いた場合、光学特性の低下を引き起こす場合がある。さらに別の方法も提案されているが、シリカの被覆を多層で行うために作製工程が煩雑である(特許文献2)。また、特許文献1と同様に、アルコールを用いるために、コアの材質がアルコールに不溶であるポリスチレン等の有機ポリマーに限られてしまう(非特許文献2)。アルコールに不溶の有機ポリマーコアは安定で分解しにくいため、例えば有機ポリマー−シリコン化合物複合粒子を中空シリカ粒子の原料に用いる場合、中空化(コア除去)の方法が煩雑になる等の問題点を有していた(非特許文献2)。 When the organic polymer core particles are coated with a silicon compound shell, the polymer (organic polymer) particles are uniformly dispersed in an alcohol solution or an alcohol / water mixed solution of silicon alkoxide, which is a silica precursor, and subjected to a hydrolysis reaction. A method of providing a uniform silicon compound coating layer on the surface of the polymer particles is used (Patent Document 1). However, in such a method, when an organic polymer particle soluble in alcohol, such as polyvinyl acetate, is used as the core, the core dissolves in the alcohol during the hydrolysis reaction. Unable to get particles. As another method, a method of coating silica after introducing amino groups (—NH 2 + ) and carboxyl groups (—COO ) on the surface of fine polystyrene particles of several tens of nanometers has been proposed. However, in particles having a diameter of less than 100 nm (25 nm and 40 nm), aggregation in which several particles are arranged in a bead shape is observed by a transmission electron microscope image (Non-patent Document 1). When such agglomerated particles are used as a filler for optical applications, optical characteristics may be deteriorated. Although another method has been proposed, the production process is complicated because the silica is coated in multiple layers (Patent Document 2). Moreover, since alcohol is used similarly to patent document 1, the material of a core will be restricted to organic polymers, such as a polystyrene which is insoluble in alcohol (nonpatent literature 2). Since an organic polymer core insoluble in alcohol is stable and difficult to decompose, for example, when organic polymer-silicon compound composite particles are used as a raw material for hollow silica particles, the hollowing (core removal) method becomes complicated. (Non Patent Literature 2).

特開平6−142491号公報JP-A-6-142491 特表2003−522621号公報Special table 2003-522621 gazette

Chemical Communication, p.1010(2003)Chemical Communication, p.1010 (2003) Journal of Chemical Engineering of Japan,Vol.37,No.9,p.1099(2004)Journal of Chemical Engineering of Japan, Vol.37, No.9, p.1099 (2004) Chem. Mater., Vol.2002,No.14,p.1325Chem. Mater., Vol. 2002, No. 14, p. 1325 Langmuir, Vol.2007,No.23,p.3062-3066Langmuir, Vol.2007, No.23, p.3062-3066

本発明は、凝集が少ない微細な有機ポリマー−シリコン化合物複合粒子を提供するものである。 The present invention provides fine organic polymer-silicon compound composite particles with little aggregation.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)(a)コアが酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体の有機ポリマー粒子であり、(b)シェルがシリコン化合物からなり、平均粒子径が5〜150nmである有機ポリマー−シリコン化合物複合粒子。
(2)コアの有機ポリマー粒子の平均粒子径が2〜100nmである前記(1)に記載の有機ポリマー−シリコン化合物複合粒子。
(3)シェルが1〜25nmの厚さである前記(1)又は(2)に記載の有機ポリマー−シリコン化合物複合粒子。
(4)有機ポリマー原料、水、乳化剤および 水溶性重合開始剤を用い、乳化重合で得られる有機ポリマー粒子の表面に、シリコン化合物を被覆する有機ポリマー−シリコン化合物複合粒子の製造方法であって、前記有機ポリマー原料が酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体であり、
前記乳化重合が、以下の<A> 〜<E>の条件で行われる、製造方法。
<A> 前記有機ポリマー原料が水100質量部に対しての0.1〜10質量部、
<B> 前記乳化剤がカチオン系界面活性剤、アニオン系界面活性剤、又は非イオン系界面活性剤、
<C> 前記水溶性重合開始剤が水溶性アニオン型重合開始剤、又は水溶性カチオン型重合開始剤、
<D> 前記シリコン化合物の原料が、加水分解により珪酸を形成する有機珪素化合物、
<E> 前記有機珪素化合物の加水分解、及び前記有機珪素化合物の加水分解物の前記有機ポリマー粒子表面における重縮合が、10〜60℃、pH=1〜6の酸性水中で行われる。
(5)乳化重合後の有機ポリマー粒子を含むエマルション中における有機ポリマー粒子のゼータ電位が、当該エマルションのpHが1〜6である場合において、10〜100mVである、前記(4)に記載の製造方法。
(6)前記有機ポリマー粒子に対して、前記シリコン化合物を被覆する前に、シランカップリング剤による表面処理を行う、前記(4)又は(5)に記載の製造方法。
(7)前記酸性水はフッ化物イオンを含有する、前記(4)〜(6)のいずれか一項に記載の製造方法。
(8)前記酸性水は酢酸によりpH調整されている、前記(4)〜(7)のいずれか一項に記載の製造方法。
(9)前記有機ポリマー粒子の表面に前記シリコン化合物を被覆した後に、前記有機ポリマー−シリコン化合物複合粒子を含有する液中から、未反応の前記有機珪素化合物、前記有機珪素化合物の加水分解物及び当該加水分解物の低分子量の重縮合物の少なくとも1種以上を除去する、前記(4)〜(8)のいずれか一項に記載の製造方法。
The present invention employs the following means in order to solve the above problems.
(1) (a) The core is an organic polymer particle of a copolymer composed of vinyl acetate and a monomer having at least one vinyl group, (b) the shell is composed of a silicon compound, and the average particle size is 5 to 150 nm. Organic polymer-silicon compound composite particles.
(2) The organic polymer-silicon compound composite particles according to (1), wherein the core organic polymer particles have an average particle diameter of 2 to 100 nm.
(3) The organic polymer-silicon compound composite particle according to (1) or (2), wherein the shell has a thickness of 1 to 25 nm.
(4) A method for producing organic polymer-silicon compound composite particles in which a silicon compound is coated on the surface of organic polymer particles obtained by emulsion polymerization using an organic polymer raw material, water, an emulsifier and a water-soluble polymerization initiator, The organic polymer raw material is a copolymer composed of vinyl acetate and a monomer having one or more vinyl groups,
The manufacturing method with which the said emulsion polymerization is performed on the conditions of the following <A>-<E>.
<A> The organic polymer raw material is 0.1 to 10 parts by mass with respect to 100 parts by mass of water,
<B> The emulsifier is a cationic surfactant, an anionic surfactant, or a nonionic surfactant,
<C> The water-soluble polymerization initiator is a water-soluble anionic polymerization initiator, or a water-soluble cationic polymerization initiator,
<D> An organosilicon compound in which the raw material of the silicon compound forms silicic acid by hydrolysis,
<E> Hydrolysis of the organosilicon compound and polycondensation of the hydrolyzate of the organosilicon compound on the surface of the organic polymer particles are performed in acidic water at 10 to 60 ° C. and pH = 1 to 6.
(5) The production according to (4), wherein the zeta potential of the organic polymer particles in the emulsion containing the organic polymer particles after emulsion polymerization is 10 to 100 mV when the pH of the emulsion is 1 to 6. Method.
(6) The method according to (4) or (5), wherein the organic polymer particles are subjected to a surface treatment with a silane coupling agent before the silicon compound is coated.
(7) The said acidic water is a manufacturing method as described in any one of said (4)-(6) containing a fluoride ion.
(8) The production method according to any one of (4) to (7), wherein the acidic water is pH-adjusted with acetic acid.
(9) After coating the surface of the organic polymer particles with the silicon compound, from the liquid containing the organic polymer-silicon compound composite particles, unreacted organosilicon compound, hydrolyzate of the organosilicon compound, and The production method according to any one of (4) to (8), wherein at least one or more of the low molecular weight polycondensates of the hydrolyzate is removed.

本発明によれば、凝集が少なく、微細な有機ポリマー−シリコン化合物複合粒子からなる粉末、及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a powder composed of fine organic polymer-silicon compound composite particles with little aggregation and a method for producing the same.

本発明の好適な実施形態について、以下に説明する。
本実施形態に係る有機ポリマー−シリコン化合物複合粒子(以下、単に「複合粒子」という)は、(a)コアが酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体の有機ポリマー粒子、(b)シェルがシリコン化合物からなり、平均粒子径が5〜150nmである。このようなコア−シェル型構造を有する複合粒子は、コアが酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体の有機ポリマー粒子であることから、後述する方法によって凝集をほとんど生じることなく、容易にコアを除去することができる。そのため、上記複合粒子によれば、凝集が少ない中空粒子を製造することができる。また、シェルがシリコン化合物からなることから、上記複合粒子から得られる中空粒子は、化学的安定性に優れる。また、シェルがシリコン化合物からなり、平均粒子径が5〜150nmであることから、上記複合粒子から得られる中空粒子は、透明性、流動性及び充填性に優れるものとなり、例えば光学用途において低屈折率充填材として好適に使用される。
A preferred embodiment of the present invention will be described below.
The organic polymer-silicon compound composite particles (hereinafter simply referred to as “composite particles”) according to this embodiment are: (a) a copolymer organic polymer particle whose core is composed of a monomer having vinyl acetate and one or more vinyl groups, (B) The shell is made of a silicon compound, and the average particle size is 5 to 150 nm. The composite particles having such a core-shell structure are mostly coagulated by the method described later because the core is a copolymer organic polymer particle composed of vinyl acetate and a monomer having at least one vinyl group. And the core can be easily removed. Therefore, according to the composite particles, hollow particles with little aggregation can be produced. Further, since the shell is made of a silicon compound, the hollow particles obtained from the composite particles are excellent in chemical stability. Further, since the shell is made of a silicon compound and the average particle diameter is 5 to 150 nm, the hollow particles obtained from the composite particles are excellent in transparency, fluidity and filling properties. It is preferably used as a rate filler.

「コアが酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体の有機ポリマー粒子」とは、有機ポリマー粒子が酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体である。ビニル基を1つ以上持つモノマーとしては、ジビニルベンゼン、N-ビニルピロリドン、N-フェニルマレイミドなどが挙げられる。その中でも、酢酸ビニルと共重合しやすいものが好ましく、分子鎖で架橋する構造を有するモノマー、例えばジビニルベンゼンが好ましい。 “The organic polymer particle of a copolymer whose core is composed of vinyl acetate and a monomer having at least one vinyl group” is a copolymer whose organic polymer particles are composed of a monomer having at least one vinyl acetate and a vinyl group. Examples of the monomer having one or more vinyl groups include divinylbenzene, N-vinylpyrrolidone, and N-phenylmaleimide. Among them, those that are easily copolymerized with vinyl acetate are preferable, and monomers having a structure that crosslinks with a molecular chain, such as divinylbenzene, are preferable.

シリコン化合物は、化学的安定性に一層優れることから、シリカを含有することが好ましい。また、シリコン化合物は縮合度が低いシリカを含有することがより好ましい。このような複合粒子から得られる中空粒子は、凝集が少なく、溶媒への分散性が良好なものとなる。 Since a silicon compound is further excellent in chemical stability, it is preferable to contain a silica. The silicon compound more preferably contains silica having a low degree of condensation. Hollow particles obtained from such composite particles have little aggregation and good dispersibility in a solvent.

シェルは、シェルの構成成分の固体29Si−MAS−NMR測定における、架橋酸素数が4個であるシリコンに帰属されるピーク(Q)の積分強度(IQ4)に対する、架橋酸素数が2個であるシリコンに帰属されるピーク(Q)の積分強度(IQ2)の比(IQ2/IQ4)が0.25以上1.0以下であることが好ましく、0.30以上0.8以下であることがより好ましい。このようなシェルは、シリコン化合物として縮合度が低いシリカを含有する。そのため、このようなシェル構造を備える複合粒子から得られる中空粒子は、より凝集が少なく、溶媒への分散性が良好なものとなる。 The shell has a cross-linking oxygen number of 2 with respect to an integrated intensity (I Q4 ) of a peak (Q 4 ) attributed to silicon having a cross-linking oxygen number of 4 in solid 29 Si-MAS-NMR measurement of the constituent components of the shell. The ratio (I Q2 / I Q4 ) of the integrated intensity (I Q2 ) of the peak (Q 2 ) attributed to individual silicon is preferably 0.25 or more and 1.0 or less, and 0.30 or more and 0.0. More preferably, it is 8 or less. Such a shell contains silica having a low degree of condensation as a silicon compound. Therefore, the hollow particles obtained from the composite particles having such a shell structure are less aggregated and have good dispersibility in a solvent.

複合粒子の平均粒子径は5〜150nmであり、20〜100nmであることがより好ましい。また、複合粒子において、コアの平均粒子径は2〜100nmであることが好ましく、15〜80nmであることがより好ましい。さらに、シェルの厚さは1〜25nmであることが好ましく、4〜15nmであることがより好ましい。このような複合粒子は、光学用途において低屈折率充填材として使用される中空粒子の原料としてより好適である。 The average particle size of the composite particles is 5 to 150 nm, and more preferably 20 to 100 nm. In the composite particles, the average particle diameter of the core is preferably 2 to 100 nm, and more preferably 15 to 80 nm. Furthermore, the thickness of the shell is preferably 1 to 25 nm, and more preferably 4 to 15 nm. Such composite particles are more suitable as a raw material for hollow particles used as a low refractive index filler in optical applications.

複合粒子の平均粒子径、コアの平均粒子径、シェルの厚さは、いずれも透過型電子顕微鏡(TEM)を用いて測定することができる。具体的には、複合粒子の平均粒子径は、透過型電子顕微鏡を用いて得られる100個以上(例えば100個)の複合粒子の粒子像の直径を測長し、その平均値を平均粒子径とする。また、複合粒子をTEM観察すると、内部が円形状に明るく、外部がリング状に暗い二重のコントラストを有する粒子像が得られる。この内部の明るい粒子の外径をコア直径とみなし、外部の暗いリング形状の外径とみなす。
ここで粒子像が円形以外の形状である粒子の直径は、楕円形の場合は長径と短径の相乗平均値、円形や楕円形以外の不定形状の場合は最長径と最短径の相乗平均値を粒子の直径と見なす。複合粒子のシェルの厚さは、複合粒子の直径からコアの直径を差し引いて2で除した値とする。凝集の有無はシェル被覆前後において、固形分濃度、溶媒組成、測定温度等の条件を揃えて測定した動的光散乱法による粒子径を比較することによって確認される。粒子径は、特に記載のある場合を除いて、直径表示である。
なお、複合粒子の製造過程において、通常、コアになる有機ポリマー粒子が得られるが、当該有機ポリマー粒子をTEMで観察しようとすると、前処理(乾燥)時に著しく変形するため、そのままの状態ではTEM観察を行うことはできない。
The average particle diameter of the composite particles, the average particle diameter of the core, and the thickness of the shell can all be measured using a transmission electron microscope (TEM). Specifically, the average particle diameter of the composite particles is measured by measuring the diameter of 100 or more (for example, 100) composite particles obtained using a transmission electron microscope, and the average value is the average particle diameter. And Further, when the composite particles are observed with a TEM, a particle image having a double contrast in which the inside is bright in a circular shape and the outside is dark in a ring shape is obtained. The outer diameter of the inner bright particles is regarded as the core diameter, and the outer diameter of the outer dark ring shape.
The diameter of the particles whose shape is other than circular is the geometric mean value of the major axis and minor axis in the case of an ellipse, and the geometric mean value of the longest diameter and the shortest diameter in the case of an irregular shape other than a circle or ellipse. Is considered the diameter of the particle. The thickness of the composite particle shell is a value obtained by subtracting the core diameter from the composite particle diameter and dividing the result by 2. Presence / absence of aggregation is confirmed by comparing particle diameters measured by a dynamic light scattering method measured with the solid content concentration, solvent composition, measurement temperature, and the like aligned before and after shell coating. The particle diameter is a diameter display unless otherwise specified.
In the production process of the composite particles, the organic polymer particles that are the core are usually obtained. However, if the organic polymer particles are observed with TEM, the organic polymer particles are significantly deformed during pretreatment (drying). You cannot make observations.

複合粒子は、好適には、有機ポリマー粒子からなるコアとシリカ分を含有するシェルとを備えるコア−シェル型構造であり、内部のコアを除去することによって、内部が空洞の中空粒子とすることができる。複合粒子を円相当半径Rで表示した場合、その中心から70%までの部位である内部よりも、表面から30%までの部位である外部にシリカ分が多いものが好ましい。内部にシリカ分が多いと、内部が空洞の中空粒子とならない。また、シリカ分が表面から50%以上までの部位である外部にある場合、中空粒子の空隙部が小さくなりすぎて、中空粒子としての低屈折率、低誘電率などの特性が劣る場合がある。また、シリカ分が表面から5%までの部位である外部のみに多いと、中空粒子としたときにシリカ殻が薄くなりすぎて割れる危険性がある。 The composite particle preferably has a core-shell type structure including a core made of organic polymer particles and a shell containing silica, and the inner core is removed to form hollow hollow particles. Can do. When the composite particles are represented by a circle-equivalent radius R, it is preferable that the silica content is larger on the outside, which is a portion up to 30% from the surface, than the inside, which is a portion up to 70% from the center. If there is a lot of silica in the interior, hollow particles with hollow interior will not be formed. In addition, when the silica content is outside, which is a part up to 50% or more from the surface, the voids of the hollow particles become too small, and the properties such as low refractive index and low dielectric constant as the hollow particles may be inferior. . Moreover, when there is much silica content only to the outside which is a site | part which is 5% from the surface, when it is set as a hollow particle, there exists a danger that a silica shell will become thin too much and it may crack.

複合粒子の平均球形度は、0.90〜1.00であることが好ましく、0.95〜1.00であることがより好ましい。平均球形度が上記範囲より小さいと、例えば複合粒子を集合してなる粉末を充填材として用いる場合に、流動性や充填性が不足して、粒子本来の特性が充分に発揮できない可能性がある。なお、特許文献1に記載の方法では、アルコール溶媒又はアルコール/水混合溶液を用いているため、多少なりともコア粒子の溶解を生じる。そのため、特許文献1に記載の方法では、本実施形態に係る複合粒子を、平均球形度が上記範囲内となるように製造することは困難である。一方、後述する複合粒子の製造方法によれば、本実施形態に係る複合粒子を、平均球形度が上記範囲内となるように製造することができる。 The average sphericity of the composite particles is preferably 0.90 to 1.00, more preferably 0.95 to 1.00. If the average sphericity is smaller than the above range, for example, when a powder made of aggregated composite particles is used as a filler, fluidity and packing properties may be insufficient, and the original characteristics of the particles may not be fully exhibited. . In the method described in Patent Document 1, since an alcohol solvent or an alcohol / water mixed solution is used, the core particles are somewhat dissolved. Therefore, with the method described in Patent Document 1, it is difficult to produce the composite particles according to the present embodiment so that the average sphericity is within the above range. On the other hand, according to the composite particle manufacturing method described later, the composite particles according to the present embodiment can be manufactured such that the average sphericity falls within the above range.

平均球形度は、透過型電子顕微鏡の粒子像を画像解析装置(例えば、日本アビオニクス社製)に直接取り込んで測定することができる。粒子像の直接取り込みが困難な場合は、粒子像の輪郭を謄写紙上に複写した謄写図を取り込んで、測定することができる。即ち、粒子像から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対する真円の面積を(B)とすると、その粒子の球形度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出することができる。100個以上の粒子の球形度を測定し、その平均値を平均球形度とする。 The average sphericity can be measured by directly capturing a particle image of a transmission electron microscope into an image analyzer (for example, manufactured by Nippon Avionics Co., Ltd.). When it is difficult to directly capture the particle image, it can be measured by capturing a copy of the particle image copied on the copy paper. That is, the projected area (A) and the perimeter (PM) of the particle are measured from the particle image. When the area of a perfect circle with respect to the perimeter (PM) is (B), the sphericity of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 100 or more particles is measured, and the average value is defined as the average sphericity.

本実施形態に係る複合粒子の製造方法は、有機ポリマー原料、水、乳化剤及び水溶性重合開始剤の存在下で乳化重合して得られる有機ポリマー粒子の表面に、シリコン化合物を被覆する被覆工程を備える。 The method for producing composite particles according to this embodiment includes a coating step of coating a silicon compound on the surface of organic polymer particles obtained by emulsion polymerization in the presence of an organic polymer raw material, water, an emulsifier and a water-soluble polymerization initiator. Prepare.

有機ポリマー原料は、酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体である。ビニル基を1つ以上持つモノマーとしては、ジビニルベンゼン、N-ビニルピロリドン、N-フェニルマレイミドなどが挙げられる。その中でも、酢酸ビニルと共重合しやすいものが好ましく、分子鎖で架橋する構造を有するモノマー、例えばジビニルベンゼンが好ましい。 The organic polymer raw material is a copolymer composed of vinyl acetate and a monomer having one or more vinyl groups. Examples of the monomer having one or more vinyl groups include divinylbenzene, N-vinylpyrrolidone, and N-phenylmaleimide. Among them, those that are easily copolymerized with vinyl acetate are preferable, and monomers having a structure that crosslinks with a molecular chain, such as divinylbenzene, are preferable.

乳化剤としては、ドデシル硫酸ナトリウム等のアニオン系界面活性剤、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体(プルロニック系)等の非イオン系界面活性剤、又はセチルトリアンモニウムクロライド、臭化ヘキサデシルトリメチルアンモニウム等のカチオン系界面活性剤が用いられる。これらの中では、カチオン系界面活性剤が好ましい。カチオン系界面活性剤としては、セチルトリアンモニウムクロライドが好適である。 Emulsifiers include anionic surfactants such as sodium dodecyl sulfate, nonionic surfactants such as block copolymers of polyoxyethylene and polyoxypropylene (pluronic), cetyltriammonium chloride, hexadecyl bromide A cationic surfactant such as trimethylammonium is used. Of these, cationic surfactants are preferred. As the cationic surfactant, cetyltriammonium chloride is suitable.

水溶性重合開始剤としては、過硫酸カリウム、過硫酸ナトリウム等の水溶性アニオン型重合開始剤、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩(以下「AIBA」と略)、2,2−アゾビス(1−イミノ−1−ピロリジノ−2−メチルプロパン)2塩酸塩(以下、「VA−067」と略)等の水溶性カチオン型重合開始剤が用いられる。これらの中では、水溶性カチオン型重合開始剤が好ましい。 Examples of the water-soluble polymerization initiator include water-soluble anionic polymerization initiators such as potassium persulfate and sodium persulfate, 2,2′-azobis (2-methylpropionamidine) dihydrochloride (hereinafter abbreviated as “AIBA”), A water-soluble cationic polymerization initiator such as 2,2-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride (hereinafter abbreviated as “VA-067”) is used. Among these, a water-soluble cationic polymerization initiator is preferable.

乳化重合に用いる有機ポリマー原料の量は、乳化重合に用いる水の量100質量部に対して、0.1〜10質量部であり、1〜10質量部であることが好ましい。有機ポリマー原料の量が0.1質量部未満では、有機ポリマー粒子の濃度が希薄なため生産性が低く、10質量部を超えると有機ポリマー粒子同士が凝集して平均粒子径が粗大な粒子が生成してしまう場合がある。 The amount of the organic polymer raw material used for the emulsion polymerization is 0.1 to 10 parts by mass and preferably 1 to 10 parts by mass with respect to 100 parts by mass of the water used for the emulsion polymerization. When the amount of the organic polymer raw material is less than 0.1 parts by mass, the productivity is low because the concentration of the organic polymer particles is dilute, and when the amount exceeds 10 parts by mass, the organic polymer particles aggregate to form particles having a coarse average particle diameter. May be generated.

乳化重合は、例えば、有機ポリマー原料と乳化剤を水に添加した後、撹拌して乳化させ、窒素ガス等の不活性ガスを通じて溶存酸素を除去しながら加熱し、所定温度に達した後に水溶性重合開始剤を添加して重合を開始させることにより、行うことができる。乳化重合により得られる有機ポリマー粒子の粒径は、数〜数100nmである。得られる有機ポリマー粒子の粒径は、主に水に対する乳化剤及び/又は有機ポリマー原料の量によって調整することができ、乳化剤の量が多いほど粒径は小さくなり、有機ポリマー原料の量が少ないほど粒径は小さくなる。 In emulsion polymerization, for example, an organic polymer raw material and an emulsifier are added to water, followed by stirring to emulsify, heating while removing dissolved oxygen through an inert gas such as nitrogen gas, and after reaching a predetermined temperature, water-soluble polymerization is performed. This can be done by adding an initiator to initiate the polymerization. The particle size of the organic polymer particles obtained by emulsion polymerization is several to several hundred nm. The particle size of the obtained organic polymer particles can be adjusted mainly by the amount of the emulsifier and / or organic polymer raw material with respect to water. The larger the amount of the emulsifier, the smaller the particle size, and the smaller the amount of the organic polymer raw material. The particle size becomes smaller.

乳化重合における上記所定温度は、好ましくは40〜70℃である。また、乳化重合は、乳化剤としてカチオン系界面活性剤を用い、水溶性重合開始剤として水溶性カチオン型重合開始剤を用いることが好ましい。さらに、カチオン系界面活性剤としては、セチルトリアンモニウムクロライドが好適であり、水溶性カチオン型重合開始剤としては、AIBAが好適である。かかる乳化剤と水溶性重合開始剤との組み合わせによれば、乳化重合によって得られる有機ポリマー粒子の表面が、正電荷に帯電する。具体的な帯電量は、pH4の酸性水中におけるゼータ電位が1〜100mV、好まくは30〜100mVである。 The predetermined temperature in the emulsion polymerization is preferably 40 to 70 ° C. In the emulsion polymerization, a cationic surfactant is preferably used as an emulsifier, and a water-soluble cationic polymerization initiator is preferably used as a water-soluble polymerization initiator. Furthermore, as the cationic surfactant, cetyltriammonium chloride is suitable, and as the water-soluble cationic polymerization initiator, AIBA is suitable. According to the combination of such an emulsifier and a water-soluble polymerization initiator, the surface of the organic polymer particles obtained by emulsion polymerization is positively charged. Specifically, the zeta potential in pH 4 acidic water is 1 to 100 mV, and preferably 30 to 100 mV.

有機ポリマー粒子の表面が正電荷に帯電することで、有機ポリマー粒子にシリコン化合物シェルを被覆させる場合において、被覆反応、すなわちシリコン化合物の原料の加水分解物の重縮合反応を、有機ポリマー粒子表面で優先的に生じさせることができる。 When the surface of the organic polymer particles is positively charged, when the organic polymer particles are coated with the silicon compound shell, the coating reaction, that is, the polycondensation reaction of the hydrolyzate of the silicon compound raw material is performed on the surface of the organic polymer particles. It can be preferentially generated.

有機ポリマー粒子は、シランカップリング剤により表面処理されていてもよい。このような有機ポリマー粒子は、表面にシリコン化合物の被覆が一層生じやすくなる。シランカップリング剤としては、エポキシシラン系カップリング剤、メタクリロキシシラン系カップリング剤、アミノシラン系カップリング剤等が用いられ、(3−)グリシドキシプロピルトリメトキシシラン等のエポキシシラン系カップリング剤が特に好適に用いられる。 The organic polymer particles may be surface-treated with a silane coupling agent. Such organic polymer particles are more likely to be coated with a silicon compound on the surface. As the silane coupling agent, an epoxy silane coupling agent, a methacryloxy silane coupling agent, an amino silane coupling agent or the like is used, and an epoxy silane coupling such as (3-) glycidoxypropyltrimethoxysilane. An agent is particularly preferably used.

被覆工程では、有機ポリマー粒子の表面をシリコン化合物で被覆する。好ましくは、有機ポリマー粒子と、加水分解により珪酸を形成し得る有機珪素化合物とを、温度10〜60℃、pH1〜6の酸性水中に保持して、有機ポリマー粒子の表面にシリコン化合物を被覆する。
珪酸としては、オルト珪酸(HSiO)、メタ珪酸(HSiO)、メソ二珪酸(HSi)、メソ三珪酸(HSi)、メソ四珪酸(HSi11)等が挙げられ、有機珪素化合物は、これらのいずれかを形成し得るものであればよい。また、珪酸は[SiO(OH)4−2X(xは0以上2以下の数、nは1以上の整数)で表すこともできる。
なお、本実施形態にかかる複合粒子の製造方法において形成されるシリコン化合物は、シリカ(SiO)又はシリカを主成分として少量のシラノール基(≡Si−OH)及び/又は有機シリコン基(≡Si−OR及び/又は≡Si−R)を含むものである。
In the coating step, the surface of the organic polymer particles is coated with a silicon compound. Preferably, the organic polymer particles and the organic silicon compound capable of forming silicic acid by hydrolysis are held in acidic water at a temperature of 10 to 60 ° C. and pH 1 to 6 to coat the surface of the organic polymer particles with the silicon compound. .
As silicic acid, orthosilicic acid (H 4 SiO 4 ), metasilicic acid (H 2 SiO 3 ), meso disilicic acid (H 2 Si 2 O 5 ), meso trisilicic acid (H 4 Si 3 O 8 ), meso tetrasilicic acid ( H 6 Si 4 O 11 ) and the like, and the organosilicon compound may be any one that can form any of these. Silicic acid can also be represented by [SiO X (OH) 4-2X ] n (x is a number from 0 to 2 and n is an integer of 1 or more).
The silicon compound formed in the production method of the composite particles according to the present embodiment, silica (SiO 2) or silica small amount of silanol groups as a main component (≡Si-OH) and / or an organic silicon group (≡Si -OR and / or ≡Si-R).

シリコン化合物の原料としては、加水分解反応により珪酸を形成し得る有機珪素化合物
が好適に用いられる。有機珪素化合物を用いた場合、シリコン化合物による被覆は、例えば、有機珪素化合物の加水分解反応により生成した珪酸が、重縮合することにより形成される。このような有機珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラターシャリブトキシシラン等のアルコキシシラン;テトラアセトキシシラン等が挙げられる。これらの中で、テトラエトキシシラン(以下、「TEOS」と略)が好適に用いられる。これらの有機珪素化合物は、加水分解反応、すなわち水との反応によって、珪酸を形成する。珪酸は、酸性水中では、部分的に電離して正電荷を有する水素イオン(H)を放出するため、負電荷に帯電する。このため、有機ポリマー粒子の表面を正電荷に帯電させておけば、静電引力によって珪酸が粒子表面に引き寄せられた後に重縮合するため、有機ポリマー粒子の表面に被覆が生じやすくなる。
As a raw material for the silicon compound, an organic silicon compound capable of forming silicic acid by a hydrolysis reaction is preferably used. When an organic silicon compound is used, the coating with the silicon compound is formed, for example, by polycondensation of silicic acid generated by a hydrolysis reaction of the organic silicon compound. Examples of such organosilicon compounds include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetratertiaryoxysilane; tetraacetoxysilane and the like. Among these, tetraethoxysilane (hereinafter abbreviated as “TEOS”) is preferably used. These organosilicon compounds form silicic acid by a hydrolysis reaction, that is, a reaction with water. Silicic acid is negatively charged in acidic water because it is partially ionized to release positively charged hydrogen ions (H + ). For this reason, if the surface of the organic polymer particles is charged to a positive charge, polycondensation occurs after the silicic acid is attracted to the particle surface by electrostatic attraction, so that the surface of the organic polymer particles is likely to be coated.

酸性水中でのシリコン化合物の被覆をさらに促進するために、酸性水中にフッ化物イオン(F)を添加することが好ましい。フッ化物イオンを添加する方法としては、例えば、フッ化物イオンを含有し、酸性水に溶解・電離してフッ化物イオンを放出する化合物を、酸性水に添加する方法がある。このような化合物としては、フッ化アンモニウム(NHF)、フッ化ナトリウム(NaF)、フッ化水素(HF)等が挙げられ、これらの中で、特にNHFが好ましい。 In order to further promote the coating of the silicon compound in the acidic water, it is preferable to add fluoride ions (F ) in the acidic water. As a method of adding fluoride ions, for example, there is a method of adding a compound containing fluoride ions and dissolving and ionizing in acidic water to release fluoride ions to acidic water. Examples of such a compound include ammonium fluoride (NH 4 F), sodium fluoride (NaF), hydrogen fluoride (HF) and the like, and among these, NH 4 F is particularly preferable.

本実施形態にかかる複合粒子の製造方法において、有機ポリマー粒子表面へのシリコン化合物の被覆は、酸性水中で行う。これに対して、従来の有機ポリマー粒子表面へのシリコン化合物への被覆方法としては、例えば粒子表面をシランカップリング剤で被覆し、塩基性条件下、少量の水を含有するアルコール中(例えば水:アルコール=5:95程度)でTEOSを添加する方法が提案されている。(非特許文献3)。また、別の方法として、アクリル系有機ポリマー粒子(メタクリル酸ブチルとアクリル酸ブチルの共重合体)表面に、水中でシリカを被覆する方法が開示されているが(非特許文献4)、本実施形態にかかる有機ポリマー粒子にシリカを被覆する方法に関しては、開示も示唆もされていない。 In the method for producing composite particles according to the present embodiment, the surface of the organic polymer particles is coated with the silicon compound in acidic water. On the other hand, as a conventional method for coating the surface of organic polymer particles with a silicon compound, for example, the particle surface is coated with a silane coupling agent, and the alcohol is contained in a small amount of water (for example, water) under basic conditions. : A method of adding TEOS in an alcohol = about 5:95) has been proposed. (Non-Patent Document 3). As another method, a method of coating silica in water on the surface of acrylic organic polymer particles (a copolymer of butyl methacrylate and butyl acrylate) is disclosed (Non-Patent Document 4). There is no disclosure or suggestion regarding a method of coating silica on organic polymer particles in a form.

被覆工程において、シリコン化合物の被覆を水中で行う具体的な方法を以下に示す。先ず、乳化重合して得られた有機ポリマー粒子を含む液(エマルション)を、有機ポリマー粒子の濃度が所定の値となるように水で希釈して、希釈水を得る。有機ポリマー粒子の濃度は、希釈水の全量基準で、好ましくは0.1〜5質量%であり、さらに好ましくは0.2〜3質量%である。次に、酸を用いて上記希釈液のpHを1〜6、好ましくは2〜5に調整する。pHの調整に用いる酸としては、酸化反応等の副反応が生じ難く、イオン性不純物が混入し難いことから、酢酸が好ましい。また、このとき、希釈水中の有機ポリマー粒子のゼータ電位が1〜100mVになるように、pHの調整を行うことが好ましい。
その後、TEOS等の有機珪素化合物を希釈液に添加する。このとき、希釈液の温度は、10〜60℃であることが好ましく、15〜40℃であることがさらに好ましい。10℃未満では、有機珪素化合物の加水分解速度及び重縮合速度が低減するため被覆を充分に行えない場合があり、60℃を超えると有機ポリマー粒子が軟化して粒子形状を維持できなくなる場合がある。有機珪素化合物を添加した希釈液を、10〜60℃で1〜10時間保持することにより、シリコン化合物で表面が被覆された有機ポリマー粒子、すなわち複合粒子が得られる。
A specific method for coating the silicon compound in water in the coating step is shown below. First, a liquid (emulsion) containing organic polymer particles obtained by emulsion polymerization is diluted with water so that the concentration of the organic polymer particles becomes a predetermined value to obtain diluted water. The concentration of the organic polymer particles is preferably 0.1 to 5% by mass, more preferably 0.2 to 3% by mass, based on the total amount of dilution water. Next, the pH of the diluted solution is adjusted to 1 to 6, preferably 2 to 5, using an acid. As the acid used for adjusting the pH, acetic acid is preferable because side reactions such as oxidation reaction are unlikely to occur and ionic impurities are hardly mixed. At this time, it is preferable to adjust the pH so that the zeta potential of the organic polymer particles in the diluted water is 1 to 100 mV.
Thereafter, an organosilicon compound such as TEOS is added to the diluent. At this time, the temperature of the diluted solution is preferably 10 to 60 ° C, and more preferably 15 to 40 ° C. If it is less than 10 ° C., the hydrolysis rate and polycondensation rate of the organosilicon compound may be reduced, so that the coating may not be sufficiently performed. If it exceeds 60 ° C., the organic polymer particles may be softened and the particle shape may not be maintained. is there. By holding the diluted solution to which the organosilicon compound has been added at 10 to 60 ° C. for 1 to 10 hours, organic polymer particles whose surfaces are coated with the silicon compound, that is, composite particles are obtained.

反応後の複合粒子を含む液中には、未反応の有機珪素化合物、有機珪素化合物の加水分解物、有機珪素化合物の低分子の重縮合物、等(以下まとめて「除去対象物」という)が存在している。複合粒子とこれらの除去対象物とが混在したまま放置しておくと、除去対象物が加水分解や重縮合することによって、複合粒子同士が架橋され、粒子の凝集やゲル化が生じることがある。このため、複合粒子が得られた後は、速やかにこれらの除去対象物
を除去することが好ましい。
除去対象物の除去の具体的な方法としては、例えば、得られる複合粒子の粒径よりもやや目開きが小さいろ過膜を用いた限外ろ過を行い、複合粒子の粒径よりも小さい除去対象物を除去する方法がある。なお、限外ろ過を行っている間も、複合粒子を含有する液のpHを1〜6、好ましくは2〜5に調整しておくことが、複合粒子の凝集抑制を図る上で好ましい。
In the liquid containing the composite particles after the reaction, unreacted organosilicon compound, hydrolyzate of organosilicon compound, low molecular polycondensate of organosilicon compound, etc. (hereinafter collectively referred to as “removal object”) Is present. If the composite particles and these removal objects are left in a mixed state, the removal objects may be hydrolyzed or polycondensed to cross-link the composite particles, which may cause aggregation or gelation of the particles. . For this reason, after the composite particles are obtained, it is preferable to quickly remove these removal objects.
As a specific method for removing the removal object, for example, ultrafiltration using a filtration membrane having a slightly smaller opening than the particle diameter of the obtained composite particles is performed, and the removal object is smaller than the particle diameter of the composite particles. There is a way to remove things. During the ultrafiltration, it is preferable to adjust the pH of the liquid containing the composite particles to 1 to 6, preferably 2 to 5 in order to suppress aggregation of the composite particles.

以下、本発明を実施例、比較例を挙げてさらに詳しく、具体的に説明する。
実施例1
室温で容量300mLのセパラブルフラスコに、蒸留水200g、コータミン60W(花王製:セチルトリアンモニウムクロライド30%水溶液)0.85gを加え、5分間攪拌した。その後、攪拌を継続しながら65℃に昇温した。溶液を65℃に保持し、酢酸ビニル9.5gおよびジビニルベンゼン0.5gを添加し、30分間攪拌混合した。その後、窒素ガスを流速50mL/minで15分間バブリングをしながら、攪拌を行った。溶液温度を65℃に保持した状態で、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩(AIBA)0.5gを蒸留水10gに溶解させて添加した。攪拌を継続しながら65℃で120分保持した後、室温まで冷却した。得られたエマルションの粒度を動的光散乱装置(HORIBA製 LB−550)にて測定した。
Hereinafter, the present invention will be described in more detail and specifically with reference to Examples and Comparative Examples.
Example 1
To a separable flask having a capacity of 300 mL at room temperature, 200 g of distilled water and 0.85 g of Cotamine 60W (manufactured by Kao: 30% aqueous solution of cetyltriammonium chloride) were added and stirred for 5 minutes. Then, it heated up to 65 degreeC, continuing stirring. The solution was kept at 65 ° C., 9.5 g of vinyl acetate and 0.5 g of divinylbenzene were added, and the mixture was stirred and mixed for 30 minutes. Thereafter, stirring was performed while bubbling nitrogen gas at a flow rate of 50 mL / min for 15 minutes. While maintaining the solution temperature at 65 ° C., 0.5 g of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was dissolved in 10 g of distilled water and added. The mixture was kept at 65 ° C. for 120 minutes while stirring was continued, and then cooled to room temperature. The particle size of the obtained emulsion was measured with a dynamic light scattering device (LB-550, manufactured by HORIBA).

得られたエマルションから40gを分取し、これに蒸留水150gを加えて、有機ポリマー粒子1.0質量%を含む液とした後、酢酸を滴下してpH=4.2に調整した。次いで、ゼータ電位測定装置(シメックス(株)製、ゼータサイザーナノ−ZS)を用い、溶液中の有機ポリマー粒子のゼータ電位を測定したところ、52mVであった。その後、溶液の温度を15℃に保持し、攪拌しながらテトラエトキシシラン(TEOS)8.7gとテトラメトキシシラン(TMOS)2.4gを、24時間かけて添加した。添加終了後も攪拌を続けながら15℃で5時間保持した後、シリコン化合物の被覆を終了させて、有機ポリマー―シリコン化合物複合粒子を含む溶液を得た。得られた溶液を微細試料捕集用(マイクログリッド)上に滴下、乾燥後、透過型電子顕微鏡(TEM)観察に供した。TEM観察は、透過型電子顕微鏡(日本電子製、2000FX)を用い、加速電圧200kV、観察倍率20万倍の条件で実施した。 40 g was fractionated from the obtained emulsion, 150 g of distilled water was added thereto to obtain a liquid containing 1.0% by mass of organic polymer particles, and then acetic acid was added dropwise to adjust to pH = 4.2. Subsequently, when the zeta potential of the organic polymer particles in the solution was measured using a zeta potential measuring device (Zetasizer Nano-ZS, manufactured by Simex Co., Ltd.), it was 52 mV. Thereafter, while maintaining the temperature of the solution at 15 ° C., 8.7 g of tetraethoxysilane (TEOS) and 2.4 g of tetramethoxysilane (TMOS) were added over 24 hours while stirring. After the addition was completed, the mixture was kept at 15 ° C. for 5 hours while continuing to stir, and then the silicon compound coating was terminated to obtain a solution containing organic polymer-silicon compound composite particles. The obtained solution was dropped onto a fine sample collection (microgrid), dried, and then subjected to observation with a transmission electron microscope (TEM). The TEM observation was performed using a transmission electron microscope (JEOL, 2000FX) under the conditions of an acceleration voltage of 200 kV and an observation magnification of 200,000 times.

TEM観察により、内部が円形状に明るく外部がリング状に暗い二重のコントラストを有する微粒子像が得られ、コアが酢酸ビニル−ジビニルベンゼンの共重合体、シェルがシリコン化合物からなる複合粒子の生成が確認された。
100個の粒子像に対して、内部の明るい粒子の外径、外部の暗いリング形状の外径を測定し、それぞれの平均値を、有機ポリマー粒子の直径及び複合粒子の直径とし、複合粒子の直径から有機ポリマー粒子の直径を差し引いて2で除した値を、複合粒子のシェルの厚さとしたところ、有機ポリマー粒子の直径は45.3nm、複合粒子の直径は69nm、シェルの厚さは12nm、であった。尚、シリコン化合物原料すなわちシリカ前駆体(TEOSおよびTMOS)添加直前及びシリコン化合物被覆終了直前の液を40gずつ採取し、液に含まれる粒子の平均粒子径の変化量を、動的光散乱装置(HORIBA製 LB−550)にて測定したところ、+9nm(「+」は増加、「−」は減少を示す。以下同じ。)であり、被覆に伴う顕著な粒子同士の凝集は発生していなかった。
By TEM observation, a fine particle image having double contrast with a circular inner shape and a dark outer ring shape is obtained, and a composite particle in which the core is a vinyl acetate-divinylbenzene copolymer and the shell is a silicon compound is generated. Was confirmed.
For 100 particle images, the outer diameter of the inner bright particle and the outer diameter of the outer dark ring shape are measured, and the average values of the outer diameter are the diameter of the organic polymer particle and the diameter of the composite particle. The value obtained by subtracting the diameter of the organic polymer particle from the diameter and dividing by 2 is the thickness of the shell of the composite particle. The diameter of the organic polymer particle is 45.3 nm, the diameter of the composite particle is 69 nm, and the thickness of the shell is 12 nm. ,Met. In addition, 40 g of a liquid immediately before the addition of silicon compound raw material, that is, silica precursors (TEOS and TMOS) and immediately before the completion of the coating of the silicon compound was sampled, and the amount of change in the average particle diameter of the particles contained in the liquid was measured using a dynamic light scattering device ( When measured with HORIBA (LB-550), it was +9 nm (“+” indicates an increase, “−” indicates a decrease. The same applies hereinafter), and no significant aggregation of particles due to the coating occurred. .

比較例1
酢酸ビニルを9.0g、ジビニルベンゼンを1.0gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。TEMによる粒子形状を測定したところ、有機ポリマー−シリコン化合物シェルからなる複合粒子は形成されるものの、平均粒子径は実施例1と比較して単分散した状態のものが確認されず凝集した粒子発生していた。
Comparative Example 1
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 9.0 g of vinyl acetate and 1.0 g of divinylbenzene were used. When the particle shape was measured by TEM, composite particles composed of an organic polymer-silicon compound shell were formed, but the average particle size was not confirmed to be monodispersed compared to Example 1, and aggregated particles were generated. Was.

実施例2
酢酸ビニルを9.0g、アクリルアミドを1.0gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。溶液に含まれる複合粒子の平均粒子径の変化量は、+10nm(「+」は増加、「−」は減少を示す。以下同じ。)であり、被覆に伴う顕著な粒子同士の凝集は発生していなかった。また、実施例2で作製したシェルは、実施例1のシェルより、厚さが2〜3nm厚いものができた。
Example 2
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 9.0 g of vinyl acetate and 1.0 g of acrylamide were used. The amount of change in the average particle size of the composite particles contained in the solution is +10 nm (“+” indicates an increase, “−” indicates a decrease. The same applies hereinafter), and significant particle aggregation occurs due to coating. It wasn't. The shell produced in Example 2 was thicker by 2 to 3 nm than the shell of Example 1.

比較例2
酢酸ビニルを8.0g、アクリルアミドを2.0gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。有機ポリマー粒子の平均粒径は、83nmであった。有機ポリマー−シリコン化合物からなるシェル複合粒子が形成されたが、複合粒子の平均粒子径は294nmであった。
Comparative Example 2
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 8.0 g of vinyl acetate and 2.0 g of acrylamide were used. The average particle diameter of the organic polymer particles was 83 nm. Shell composite particles made of an organic polymer-silicon compound were formed, and the average particle size of the composite particles was 294 nm.

実施例3
酢酸ビニルを9.75g、N−ビニルピロリドン(NVP)を0.25gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。溶液に含まれる複合粒子の平均粒子径の変化量を測定したところ、+11nm(「+」は増加、「−」は減少を示す。以下同じ。)であり、被覆に伴う顕著な粒子同士の凝集が発生していなかった。
Example 3
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1, except that 9.75 g of vinyl acetate and 0.25 g of N-vinylpyrrolidone (NVP) were used. When the amount of change in the average particle diameter of the composite particles contained in the solution was measured, it was +11 nm (“+” indicates an increase, “−” indicates a decrease, and the same applies hereinafter), and significant particle aggregation caused by coating Did not occur.

比較例3
酢酸ビニルを8.0g、N−ビニルピロリドン(NVP)を2.0gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。有機ポリマーの作製時点で白く白濁した凝集粒子が確認され、有機ポリマー粒子の平均粒径は、325nmであった。
Comparative Example 3
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 8.0 g of vinyl acetate and 2.0 g of N-vinylpyrrolidone (NVP) were used. Agglomerated particles that were white and cloudy were confirmed at the time of preparation of the organic polymer, and the average particle size of the organic polymer particles was 325 nm.

比較例4
酢酸ビニルを9.0g、N−ビニルピロリドン(NVP)を1.0gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。有機ポリマーの作製時点で白く白濁した凝集粒子が確認され、有機ポリマー粒子の平均粒径は、150nmであった。
Comparative Example 4
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 9.0 g of vinyl acetate and 1.0 g of N-vinylpyrrolidone (NVP) were used. Agglomerated particles that were white and cloudy at the time of preparation of the organic polymer were confirmed, and the average particle size of the organic polymer particles was 150 nm.

実施例4
容量1.5Lの重合釜に、蒸留水1000g、花王製コータミン60W0.81g、酢酸ビニル22.5g、N−フェニルマレイミド2.5gを加え、圧力を0.1MPaから0.5MPaに上げながら攪拌した。攪拌を継続しながら窒素置換を行い80℃に加熱した。温度が80℃に達したところで窒素置換を止めて、2,2’−アゾビス(2−メチルプロピオンアミジン)2塩酸塩(AIBA)2.5gを25gの水に溶解させて添加した。攪拌を継続しながら80℃で30分保持した後、室温まで冷却した。このエマルションの粒度を動的光散乱装置(HORIBA製 LB−550)にて測定したところ、30.4nmであった。
Example 4
To a 1.5 L polymerization kettle, 1000 g of distilled water, 0.81 g of Kao Cotamine 60W, 22.5 g of vinyl acetate and 2.5 g of N-phenylmaleimide were added and stirred while increasing the pressure from 0.1 MPa to 0.5 MPa. . While continuing stirring, nitrogen substitution was performed and the mixture was heated to 80 ° C. When the temperature reached 80 ° C., the nitrogen substitution was stopped, and 2.5 g of 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was dissolved in 25 g of water and added. While maintaining stirring at 80 ° C. for 30 minutes, the mixture was cooled to room temperature. It was 30.4 nm when the particle size of this emulsion was measured with the dynamic light scattering apparatus (LB-550 made from HORIBA).

得られたエマルションから40gを分取し、これに蒸留水60gを加えて、有機ポリマー粒子1.0質量%を含む液とした後、1.0質量%のアンモニア水を少量滴下してpH=4.0に調整した。その後、液の温度を40℃に保持し、攪拌しながらテトラエトキシシラン(TEOS)6gを、0.0005mL/minの速度で20時間かけて添加した。添加終了後も攪拌を続けながら40℃、58時間保持した後、室温まで冷却してシリカ系被覆を終了させて、有機ポリマー−シリカ系複合粒子を含む液を得た。TEM像からは、有機ポリマー−シリコン化合物シェルからなる複合粒子が観測された。実施例1と同様に、ゼータ電位、有機ポリマー粒子の平均粒子径、複合粒子の平均粒子径、シェルの平均厚さ、シェル被覆前後の平均粒子径の変化量を測定した。 40 g is taken from the obtained emulsion, 60 g of distilled water is added thereto to obtain a liquid containing 1.0% by mass of organic polymer particles, and then a small amount of 1.0% by mass of ammonia water is added dropwise to adjust the pH = Adjusted to 4.0. Then, the temperature of the liquid was kept at 40 ° C., and 6 g of tetraethoxysilane (TEOS) was added at a rate of 0.0005 mL / min over 20 hours while stirring. After the addition was completed, the mixture was kept at 40 ° C. for 58 hours while continuing to stir, and then cooled to room temperature to finish the silica-based coating, thereby obtaining a liquid containing organic polymer-silica composite particles. From the TEM image, composite particles composed of an organic polymer-silicon compound shell were observed. In the same manner as in Example 1, the zeta potential, the average particle diameter of the organic polymer particles, the average particle diameter of the composite particles, the average thickness of the shell, and the amount of change in the average particle diameter before and after shell coating were measured.

比較例5
酢酸ビニル25gのみを用いて重合を行ったこと以外は、実施例4と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。有機ポリマー粒子の平均粒子径は43.3nmであった。このエマルションをコアとして用いた場合のTEMを観測したところ、内部が酢酸ビニルエマルションによるコアでシェルがシリコン化合物シェルからなる複合粒子が得られたが、TEM像からは粗大粒子および被覆の割れが観測された。
Comparative Example 5
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 4 except that polymerization was performed using only 25 g of vinyl acetate. The average particle size of the organic polymer particles was 43.3 nm. When TEM was observed when this emulsion was used as a core, composite particles with a core made of vinyl acetate emulsion and a silicon compound shell inside were obtained, but coarse particles and cracks in the coating were observed from the TEM image. It was done.

実施例5
酢酸ビニルを19g、ジビニルベンゼンを1gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。溶液に含まれる複合粒子の平均粒子径の変化量は、+6nm(「+」は増加、「−」は減少を示す。以下同じ。)であり、被覆に伴う顕著な粒子同士の凝集は発生していなかった。
Example 5
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 19 g of vinyl acetate and 1 g of divinylbenzene were used. The amount of change in the average particle size of the composite particles contained in the solution is +6 nm (“+” indicates an increase, “−” indicates a decrease. The same applies hereinafter), and significant particle aggregation occurs due to coating. It wasn't.

実施例6
酢酸ビニルを1.9g、ジビニルベンゼンを0.1gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。溶液に含まれる複合粒子の平均粒子径の変化量は、+2nm(「+」は増加、「−」は減少を示す。以下同じ。)であり、被覆に伴う顕著な粒子同士の凝集は発生していなかった。
Example 6
Organic polymer-silicon compound composite particles were prepared in the same manner as in Example 1 except that 1.9 g of vinyl acetate and 0.1 g of divinylbenzene were used. The amount of change in the average particle size of the composite particles contained in the solution is +2 nm (“+” indicates an increase, “−” indicates a decrease. The same applies hereinafter), and significant particle aggregation occurs due to coating. It wasn't.

比較例6
酢酸ビニルを28.5g、ジビニルベンゼンを1.5gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。TEMによる粒子形状を測定したところ、有機ポリマー−シリコン化合物シェルからなる複合粒子は形成されるものの、平均粒子径は実施例1と比較して単分散した状態のものが確認されず凝集した粒子発生していた。
Comparative Example 6
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 28.5 g of vinyl acetate and 1.5 g of divinylbenzene were used. When the particle shape was measured by TEM, composite particles composed of an organic polymer-silicon compound shell were formed, but the average particle size was not confirmed to be monodispersed compared to Example 1, and aggregated particles were generated. Was.

比較例7
酢酸ビニルを0.095g、ジビニルベンゼンを0.005gにした以外は、実施例1と同様にして、有機ポリマー―シリコン化合物複合粒子を作製した。TEMによる粒子形状を測定したところ、有機ポリマー−シリコン化合物シェルからなる複合粒子は形成されたが、複合粒子の平均粒子径は5nm未満であり、シュルの厚さも1nm未満のものが多く、シュルの厚さが薄かった。

なお、有機ポリマー粒子と有機ポリマー―シリコン化合物複合粒子を作製した実施例と比較例の製造条件とその物性を表1〜3に示す。
Comparative Example 7
Organic polymer-silicon compound composite particles were produced in the same manner as in Example 1 except that 0.095 g of vinyl acetate and 0.005 g of divinylbenzene were used. As a result of measuring the particle shape by TEM, composite particles composed of an organic polymer-silicon compound shell were formed, but the average particle diameter of the composite particles was less than 5 nm, and the thickness of the shell was often less than 1 nm. The thickness was thin.

The production conditions and physical properties of Examples and Comparative Examples in which organic polymer particles and organic polymer-silicon compound composite particles were produced are shown in Tables 1 to 3.


実施例と比較例を見ればわかるように、本発明によれば、凝集が少なく、微細な有機ポリマー−シリコン化合物複合粒子を得ることができた。 As can be seen from the examples and comparative examples, according to the present invention, fine organic polymer-silicon compound composite particles with little aggregation were obtained.

本発明で得られる複合粒子は、光学用途において低屈折率充填材として使用される中空シリカ球状粒子の原料に好適に用いることができる。
The composite particles obtained in the present invention can be suitably used as a raw material for hollow silica spherical particles used as a low refractive index filler in optical applications.

Claims (9)

(a)コアが酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体の有機ポリマー粒子であり、(b)シェルがシリコン化合物からなり、平均粒子径が5〜150nmである有機ポリマー−シリコン化合物複合粒子。 (A) Organic polymer particles of a copolymer consisting of a monomer having a core having vinyl acetate and one or more vinyl groups, (b) An organic polymer having a shell made of a silicon compound and an average particle diameter of 5 to 150 nm Silicon compound composite particles. コアの有機ポリマー粒子の平均粒子径が2〜100nmである請求項1に記載の有機ポリマー−シリコン化合物複合粒子。 2. The organic polymer-silicon compound composite particle according to claim 1, wherein the core organic polymer particle has an average particle diameter of 2 to 100 nm. シェルが1〜25nmの厚さである請求項1又2に記載の有機ポリマーシリコン化合物複合粒子。 The organic polymer silicon compound composite particle according to claim 1 or 2, wherein the shell has a thickness of 1 to 25 nm. 有機ポリマー原料、水、乳化剤および 水溶性重合開始剤を用い、乳化重合で得られる有機ポリマー粒子の表面に、シリコン化合物を被覆する有機ポリマー−シリコン化合物複合粒子の製造方法であって、前記有機ポリマー原料が酢酸ビニルとビニル基を1つ以上持つモノマーからなる共重合体であり、
前記乳化重合が、以下の<A>〜<E>の条件で行われる、製造方法。
<A> 前記有機ポリマー原料が水100質量部に対しての0.1〜10質量部、
<B> 前記乳化剤がカチオン系界面活性剤、アニオン系界面活性剤、又は非イオン系界面活性剤、
<C> 前記水溶性重合開始剤が水溶性アニオン型重合開始剤、又は水溶性カチオン型重合開始剤、
<D> 前記シリコン化合物の原料が、加水分解により珪酸を形成する有機珪素化合物、
<E> 前記有機珪素化合物の加水分解、及び前記有機珪素化合物の加水分解物の前記有機ポリマー粒子表面における重縮合が、10〜60℃、pH=1〜6の酸性水中で行われる。
An organic polymer raw material, water, an emulsifier, and a water-soluble polymerization initiator, and a method for producing an organic polymer-silicon compound composite particle in which a silicon compound is coated on the surface of an organic polymer particle obtained by emulsion polymerization, the organic polymer The raw material is a copolymer consisting of vinyl acetate and a monomer having one or more vinyl groups,
The manufacturing method with which the said emulsion polymerization is performed on the conditions of the following <A>-<E>.
<A> The organic polymer raw material is 0.1 to 10 parts by mass with respect to 100 parts by mass of water,
<B> The emulsifier is a cationic surfactant, an anionic surfactant, or a nonionic surfactant,
<C> The water-soluble polymerization initiator is a water-soluble anionic polymerization initiator, or a water-soluble cationic polymerization initiator,
<D> An organosilicon compound in which the raw material of the silicon compound forms silicic acid by hydrolysis,
<E> Hydrolysis of the organosilicon compound and polycondensation of the hydrolyzate of the organosilicon compound on the surface of the organic polymer particles are performed in acidic water at 10 to 60 ° C. and pH = 1 to 6.
乳化重合後の有機ポリマー粒子を含むエマルション中における有機ポリマー粒子のゼータ電位が、当該エマルションのpHが1〜6である場合において、10〜100mVである、請求項4に記載の製造方法。 The manufacturing method of Claim 4 whose zeta potential of the organic polymer particle in the emulsion containing the organic polymer particle after emulsion polymerization is 10-100 mV when the pH of the said emulsion is 1-6. 前記有機ポリマー粒子に対して、前記シリコン化合物を被覆する前に、シランカップリング剤による表面処理を行う、請求項4又は請求項5に記載の製造方法。 The manufacturing method according to claim 4 or 5, wherein a surface treatment with a silane coupling agent is performed on the organic polymer particles before coating the silicon compound. 前記酸性水はフッ化物イオンを含有する、請求項4〜6のいずれか一項に記載の製造方法。 The said acidic water is a manufacturing method as described in any one of Claims 4-6 containing a fluoride ion. 前記酸性水は酢酸によりpH調整されている、請求項4〜7のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 4 to 7, wherein the acidic water is pH-adjusted with acetic acid. 前記有機ポリマー粒子の表面に前記シリコン化合物を被覆した後に、前記有機ポリマー−シリコン化合物複合粒子を含有する液中から、未反応の前記有機珪素化合物、前記有機珪素化合物の加水分解物及び当該加水分解物の低分子量の重縮合物の少なくとも1種以上を除去する、請求項4〜8のいずれか一項に記載の製造方法。
After coating the surface of the organic polymer particles with the silicon compound, the unreacted organosilicon compound, the hydrolyzate of the organosilicon compound, and the hydrolysis from the liquid containing the organic polymer-silicon compound composite particles The manufacturing method as described in any one of Claims 4-8 which removes at least 1 sort (s) or more of the low molecular weight polycondensate of a thing.
JP2010143380A 2010-06-24 2010-06-24 Composite particle and method for producing the same Active JP5579512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143380A JP5579512B2 (en) 2010-06-24 2010-06-24 Composite particle and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143380A JP5579512B2 (en) 2010-06-24 2010-06-24 Composite particle and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012007059A true JP2012007059A (en) 2012-01-12
JP5579512B2 JP5579512B2 (en) 2014-08-27

Family

ID=45537963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143380A Active JP5579512B2 (en) 2010-06-24 2010-06-24 Composite particle and method for producing the same

Country Status (1)

Country Link
JP (1) JP5579512B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287386B2 (en) 2017-07-28 2019-05-14 Eternal Materials Co., Ltd. Core-shell particle, method of manufacturing the same and applications thereof
TWI664197B (en) * 2017-07-28 2019-07-01 長興材料工業股份有限公司 Core-shell particle, method of manufacturing the same and applications thereof
WO2022138346A1 (en) 2020-12-25 2022-06-30 ダウ・東レ株式会社 Novel silicone elastomer particles, and cosmetic composition and other applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175351A (en) * 1989-09-05 1992-06-23 Toagosei Chem Ind Co Ltd Organic polymer powder
JPH0532790A (en) * 1991-07-31 1993-02-09 Toagosei Chem Ind Co Ltd Production of polymer powder
WO2009001905A1 (en) * 2007-06-26 2008-12-31 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particle, hollow particle, and methods for production of those particles
WO2009129907A1 (en) * 2008-04-25 2009-10-29 Byk-Chemie Gmbh Particulate wax composites having a core/shell structure and method for the production thereof and the use thereof
JP2010502795A (en) * 2006-09-06 2010-01-28 ディーエスエム アイピー アセッツ ビー.ブイ. New nanoparticles
JP2010083954A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Polymer microparticle, method for manufacturing the same, and electroconductive microparticle
WO2010074063A1 (en) * 2008-12-25 2010-07-01 電気化学工業株式会社 Composite particles, process for producing the composite particles, hollow particles, process for producing the hollow particles, and use of the hollow particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175351A (en) * 1989-09-05 1992-06-23 Toagosei Chem Ind Co Ltd Organic polymer powder
JPH0532790A (en) * 1991-07-31 1993-02-09 Toagosei Chem Ind Co Ltd Production of polymer powder
JP2010502795A (en) * 2006-09-06 2010-01-28 ディーエスエム アイピー アセッツ ビー.ブイ. New nanoparticles
WO2009001905A1 (en) * 2007-06-26 2008-12-31 Denki Kagaku Kogyo Kabushiki Kaisha Spherical organic polymer-silicon compound composite particle, hollow particle, and methods for production of those particles
WO2009129907A1 (en) * 2008-04-25 2009-10-29 Byk-Chemie Gmbh Particulate wax composites having a core/shell structure and method for the production thereof and the use thereof
JP2011518900A (en) * 2008-04-25 2011-06-30 ビック−ケミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Particulate wax compound having core-shell structure, production method thereof and use thereof
JP2010083954A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Polymer microparticle, method for manufacturing the same, and electroconductive microparticle
WO2010074063A1 (en) * 2008-12-25 2010-07-01 電気化学工業株式会社 Composite particles, process for producing the composite particles, hollow particles, process for producing the hollow particles, and use of the hollow particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10287386B2 (en) 2017-07-28 2019-05-14 Eternal Materials Co., Ltd. Core-shell particle, method of manufacturing the same and applications thereof
TWI664197B (en) * 2017-07-28 2019-07-01 長興材料工業股份有限公司 Core-shell particle, method of manufacturing the same and applications thereof
WO2022138346A1 (en) 2020-12-25 2022-06-30 ダウ・東レ株式会社 Novel silicone elastomer particles, and cosmetic composition and other applications
KR20230125001A (en) 2020-12-25 2023-08-28 다우 도레이 캄파니 리미티드 Novel silicone elastomer particles and cosmetic composition and other uses

Also Published As

Publication number Publication date
JP5579512B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5576799B2 (en) Composite particle and method for producing the same, hollow particle, method for producing the same and use
JP6840923B2 (en) Compositions and Methods for Producing Porous Inorganic Oxide Films
JP5457179B2 (en) Method for producing hollow particles
JP5617241B2 (en) New nanoparticles
JP7055969B2 (en) The process of making an antireflection coating composition, and the porous coatings made from it.
JP5463099B2 (en) Hollow silica powder, production method and use thereof
Pham et al. RETRACTED: Surface modification for stability of nano-sized silica colloids
JP6983514B2 (en) Manufacturing method of antireflection film, optical member and optical member
Chen et al. Preparation of Silica‐Coated Polystyrene Hybrid Spherical Colloids
JP2004315300A (en) Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
JP5579512B2 (en) Composite particle and method for producing the same
JP2015048297A (en) Method of producing surface-modified mesoporous silica nanoparticle
JP5241199B2 (en) Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
JP2012001622A (en) Method of producing organic-inorganic hybrid particle and method of producing inorganic hollow particle
JP2011001205A (en) Method of manufacturing porous silica capsule
Shi et al. Facile synthesis of hollow silica nanospheres employing anionic PMANa templates
JP6651321B2 (en) Polymer fine particles
JP5387330B2 (en) Hollow inorganic particle precursor, hollow inorganic particle and manufacturing method thereof, and optical member and optical member body using hollow inorganic particle
JP6355077B2 (en) Method for producing coating liquid for porous mesoporous silica membrane and method for producing porous mesoporous silica membrane
Li et al. Fabrication of raspberry-like polymethylsilsesquioxane microspheres mediated by tinny calcium carbonate particles
JP2016184023A (en) Coating film for solar cell cover glass and method for producing the same
Nagao et al. Size control of polystyrene nodules formed on silica particles in soap-free emulsion polymerization with amphoteric initiator
JP2020075830A (en) Method for producing silica sol and method for suppressing intermediate products in silica sol
JP2017114950A (en) Coating film and method for producing coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R151 Written notification of patent or utility model registration

Ref document number: 5579512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250