JP2011506251A - SiC material combining α-SiC and β-SiC, manufacturing method, and two-body plasma chamber cathode using the material - Google Patents

SiC material combining α-SiC and β-SiC, manufacturing method, and two-body plasma chamber cathode using the material Download PDF

Info

Publication number
JP2011506251A
JP2011506251A JP2010537855A JP2010537855A JP2011506251A JP 2011506251 A JP2011506251 A JP 2011506251A JP 2010537855 A JP2010537855 A JP 2010537855A JP 2010537855 A JP2010537855 A JP 2010537855A JP 2011506251 A JP2011506251 A JP 2011506251A
Authority
JP
Japan
Prior art keywords
sic
carbon
silicon
powder
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010537855A
Other languages
Japanese (ja)
Inventor
フル,チャン
チャン,ジェ−クク
Original Assignee
ワールドエクス インダストリー アンド トレイディング カンパニー,リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワールドエクス インダストリー アンド トレイディング カンパニー,リミテッド filed Critical ワールドエクス インダストリー アンド トレイディング カンパニー,リミテッド
Publication of JP2011506251A publication Critical patent/JP2011506251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/3834Beta silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)

Abstract

本発明によれば、常圧および加圧焼結により製造されたα−SiC粉末とカーボン粉末を混合してなるカーボン/α−SiC混合物を仮成形した後、真空の高温環境において抵抗調節済みの溶融シリコンと反応させて電気的な特性に見合う抵抗を有するβ−SiC素材を製造することにより、半導体製造工程の部品に要される電気的特性と優れた機械化学的特性を有し、SiC素材の製造が高速であり、しかも安価であるという特徴を有する半導体工程部品用α−SiCおよびβ−SiCを複合した反応焼結β−SiC素材およびその製造方法が提供される。
また、本発明の他の側面によれば、前記反応焼結β−SiC素材を用いてカソードをシリコン−SiC構造の二体型に構成して、高い熱伝導度と低抵抗により電気的特性と、耐久性、耐摩耗性などの機械的性質が向上するシリコン−SiC構造の二体型プラズマチャンバーカソードが提供される。
【選択図】図1
According to the present invention, after temporarily forming a carbon / α-SiC mixture obtained by mixing an α-SiC powder produced by normal pressure and pressure sintering and a carbon powder, the resistance is adjusted in a high temperature environment in a vacuum. By producing a β-SiC material having resistance corresponding to electrical characteristics by reacting with molten silicon, it has electrical characteristics and excellent mechanochemical characteristics required for parts in the semiconductor manufacturing process. The reaction-sintered β-SiC material composited with α-SiC and β-SiC for semiconductor process parts, which is characterized by high-speed production and low cost, and a method for producing the same.
According to another aspect of the present invention, the reaction sintered β-SiC material is used to form a cathode in a two-body silicon-SiC structure, with high thermal conductivity and low resistance, A two-body plasma chamber cathode having a silicon-SiC structure with improved mechanical properties such as durability and wear resistance is provided.
[Selection] Figure 1

Description

本発明は、最近半導体工程の部品としての使用が増大しているSiC素材のうち電気的特性を有するSIC素材の製造方法に係り、カーボン粉末とα−SiC粉末を混合してなるカーボン/α−SiC成形体を抵抗調節済みの溶融シリコンと反応させて含浸させることにより、機械的な特性に優れており、高純度・高強度の特性を有するとともに半導体工程に要される電気的特性を有し、製造コストが安価である他、高速焼結が行われるα−SiCおよびβ−SiCを複合した反応焼結SiC素材とその製造方法およびその反応焼結素材を用いたシリコン−SiC構造の二体型プラズマチャンバーカソードに関する。 The present invention relates to a method of manufacturing an SIC material having electrical characteristics among SiC materials that have recently been used as components in semiconductor processes, and is a carbon / α- mixture obtained by mixing carbon powder and α-SiC powder. By reacting and impregnating the SiC compact with resistance-adjusted molten silicon, it has excellent mechanical properties, high purity and strength, and electrical characteristics required for semiconductor processes. Reacting sintered SiC material in which α-SiC and β-SiC are combined in addition to low manufacturing cost and high-speed sintering, a manufacturing method thereof, and a silicon-SiC structure two-body type using the reaction sintering material The present invention relates to a plasma chamber cathode.

現在、超高集積Si半導体の製造工程においては、グラファイト、石英、Al、SiC、ALN、BNなどのセラミック製品が治具および部品として使用されており、高温環境の半導体製造工程およびエッチング工程に際しては石英、ガラス、SiおよびSiCが主な素材として使用されている。
これらの中で、半導体工程用高温セラミック部品の素材として、従来は石英が占める比重が高かったものの、最近では半導体装置の高集積化および使用するSiウエハの大型化が進むに伴い、石英ガラスが有する脆弱点を補完可能な熱、機械的特性、耐化学特性、電気的特性、耐久性および耐粒子汚染特性などに優れたSiC(炭化ケイ素)を多用されている。
このようなSiC素材の従来通常の製造方法としては、ケイ素副有ガスおよび炭素含有ガスを互いに高温で反応させてSiCを合成し、活性化された環境下で気体状物質を化学反応や分解させ安定したSiCを作り出す熱CVD法と、プラズマCVD法が挙げられる。ところが、これらの方法は純度と密度が高く、優れた特性を有するSiC素材が製造可能であるというメリットがあるものの、厚い製品を製造することが困難であり、しかも、SiC素材は高価であるという欠点に起因して半導体工程の部品に適用することが困難であるのが実情である。SiC素材の一例が図7に示されている。
また、常圧および加圧焼結により製造されるα−SiC素材は、熱、機械的、耐化学的特性には優れているとはいえ、焼結後の収縮率が高くて大型製品の製造が困難であり、製造時に多量の焼結助剤を使用するためSiC素材内の不純物含量の制御が困難であり、特に、電気的特性を調節することが困難であるため一部の半導体工程の簡単な部品タイプには適用可能であるが、電気的特性を有することが求められる部品には不向きであり、その使用先が限られているという欠点がある。
一方、上述した半導体工程に用いられる部品の中で、ウエハのエッチング作業に用いられるプラズマチャンバーカソードは、チャンバーの内部に反応ガスを注入し、電流を印加してプラズマを生じさせるものである。また、従来通常のプラズマチャンバーカソードの種類として、多数のガス注入口を有するシリコン単一材質のカソードまたはシリコンにカーボン系の素材、アルミニウムなどをボンディングまたはボルトにより結合してなる様々な構成のカソードの多数が文献に開示されている。
例えば、大韓民国登録特許第10−0708321号公報の「プラズマエッチング装置におけるカソード電極の結合構造」においては、カソードを構成するシリコン電極およびグラファイト電極を結束基材に挿着して構成することにより、ボンディング中の剥離による結合力の低下による問題点を解決しようとしたが、チャンバー内部の高温・高圧の環境下でグラファイト素材が変形し易くて結束基材および結合部を損傷させてしまい、この場合、グラファイト電極とシリコン電極との接触が不安定であるため摩擦によるパーティクルの発生が懸念されるという不都合がある。
また、前記従来技術にて起こる問題点を解消するための試みとして、大韓民国公開特許第10−2007−0077048号公報に記載のプラズマ発生用電極およびプラズマ処理装置においては、炭化ケイ素にシリコンを含浸させてなるCVD−炭化ケイ素の素材をカソードに適用して、優れた機械的な特性および高い均一性を有することができる。しかしながら、前記技術に採用されるCVD−炭化ケイ素は製造の際に素材の焼結に多量の高価な焼結助剤が用いられることを余儀なくされるためカソードの製造コストの沸騰を招き、しかも、焼結助剤の投入によりSiC焼結体内の不純物の含量が増えてしまう結果、ウエハ工程に適用することが困難になるという不都合がある。
At present, ceramic products such as graphite, quartz, Al 2 0 3 , SiC, ALN, and BN are used as jigs and parts in the manufacturing process of ultra-highly integrated Si semiconductors. In the process, quartz, glass, Si and SiC are used as main materials.
Of these, quartz has been the material of high-temperature ceramic parts for semiconductor processes, but the quartz glass has been high in the past, but recently, as the integration of semiconductor devices and the size of Si wafers to be used have increased, quartz glass has become increasingly popular. SiC (silicon carbide), which is excellent in heat, mechanical characteristics, chemical resistance, electrical characteristics, durability, and particle contamination resistance capable of complementing the weak points, is often used.
As a conventional production method of such a SiC material, a silicon secondary gas and a carbon-containing gas are reacted with each other at a high temperature to synthesize SiC, and a gaseous substance is chemically reacted or decomposed in an activated environment. There are a thermal CVD method for producing stable SiC and a plasma CVD method. However, these methods are advantageous in that a SiC material having high purity and high density and excellent characteristics can be produced, but it is difficult to produce a thick product, and the SiC material is expensive. The fact is that it is difficult to apply to semiconductor process parts due to the drawbacks. An example of the SiC material is shown in FIG.
In addition, α-SiC materials manufactured by atmospheric pressure and pressure sintering have excellent thermal, mechanical and chemical resistance properties, but have a high shrinkage ratio after sintering and manufacture large products. It is difficult to control the impurity content in the SiC material because a large amount of sintering aid is used at the time of manufacture. In particular, since it is difficult to adjust the electrical characteristics, Although it can be applied to a simple part type, it is not suitable for a part that is required to have electrical characteristics, and has a drawback that its use is limited.
On the other hand, among the components used in the semiconductor process described above, the plasma chamber cathode used for the wafer etching operation injects a reaction gas into the chamber and applies a current to generate plasma. In addition, as a type of conventional plasma chamber cathode, a cathode made of a single silicon material having a large number of gas inlets or a cathode having various configurations formed by bonding carbon material, aluminum, etc. to silicon by bonding or bolts. Many are disclosed in the literature.
For example, in the “bonding structure of cathode electrodes in a plasma etching apparatus” disclosed in Korean Patent Registration No. 10-0708321, bonding is performed by inserting a silicon electrode and a graphite electrode constituting the cathode into a binding substrate. I tried to solve the problem due to the decrease in bonding force due to peeling inside, but the graphite material easily deformed under high temperature and high pressure environment inside the chamber and damaged the binding substrate and bonding part, Since the contact between the graphite electrode and the silicon electrode is unstable, there is a problem that generation of particles due to friction is a concern.
Further, as an attempt to solve the problems that occur in the prior art, in the plasma generating electrode and the plasma processing apparatus described in Korean Patent Laid-Open No. 10-2007-0077048, silicon carbide is impregnated with silicon. The following CVD-silicon carbide material can be applied to the cathode to have excellent mechanical properties and high uniformity. However, the CVD-silicon carbide employed in the above-described technique requires a large amount of expensive sintering aids to be used for sintering the raw material during production, which causes boiling of the production cost of the cathode, As a result of increasing the content of impurities in the SiC sintered body due to the introduction of the sintering aid, there is an inconvenience that it becomes difficult to apply to the wafer process.

大韓民国登録特許第10−0708321号公報Korean Registered Patent No. 10-0708321 大韓民国公開特許第10−2007−0077048号公報Korean Published Patent No. 10-2007-0077048

本発明は従来技術において起こる問題を解決するためになされたものであり、その目的は、優れた機械的な特性および電気的特性を有していて半導体工程用部品として用いて好適であり、しかも、素材の製造コストを削減可能なα−SiCおよびβ−SiCを複合した反応焼結SiC素材とその製造方法を提供するところにある。また、本発明の他の目的は、半導体工程の部品の中でプラズマチャンバーカソードに前記α−SiCおよびβ−SiCを複合した反応焼結SiC素材を適用することにより、電気的特性を維持し、高温・高圧の半導体工程に適した機械的特性を有するとともに、経済性にも富んでいるシリコン−SiC素材製の二体型プラズマチャンバーカソードを提供するところにある。 The present invention has been made to solve the problems that occur in the prior art, and its purpose is to have excellent mechanical and electrical characteristics, and is suitable for use as a semiconductor process component. The present invention provides a reaction sintered SiC material in which α-SiC and β-SiC are combined, and a method for producing the same, which can reduce the manufacturing cost of the material. Another object of the present invention is to maintain the electrical characteristics by applying the reaction sintered SiC material in which the α-SiC and β-SiC are combined to the plasma chamber cathode in the semiconductor process parts. It is an object of the present invention to provide a two-body plasma chamber cathode made of a silicon-SiC material that has mechanical properties suitable for high-temperature and high-pressure semiconductor processes and is also economical.

上記の目的を達成するために、本発明は、常圧および加圧焼結により製造されたα−SiC粉末をカーボン粉末と混合してカーボン/α−SiC混合物を得るステップと、前記カーボン/α−SiC混合物を高温で加圧してカーボン/α−SiC成形体を得るステップと、前記カーボン/α−SiC成形体を、真空内において1400℃〜2000℃の高温で添加される抵抗を調節したシリコンと反応させて含浸させるステップと、を含むα−SiCおよびβ−SiCを複合した反応焼結SiC素材の製造方法を提供する。また、本発明は、電気的特性とα−SiCおよびβ−SiCを有し、前記方法により製造された反応焼結SiC素材製のSiC電極とシリコン電極を結合してなるプラズマチャンバーカソードを提供する。 In order to achieve the above object, the present invention includes a step of mixing an α-SiC powder produced by atmospheric pressure and pressure sintering with a carbon powder to obtain a carbon / α-SiC mixture, and the carbon / α A step of obtaining a carbon / α-SiC molded body by pressurizing a SiC mixture at a high temperature, and a silicon having a controlled resistance to which the carbon / α-SiC molded body is added at a high temperature of 1400 ° C. to 2000 ° C. in a vacuum And a step of impregnating with, and a method of producing a reaction sintered SiC material in which α-SiC and β-SiC are combined. The present invention also provides a plasma chamber cathode having an electrical characteristic and α-SiC and β-SiC, in which a SiC electrode made of a reaction sintered SiC material manufactured by the above method and a silicon electrode are combined. .

本発明によれば、素材が使用用途に応じた電気的特性を有し、強度に優れているとともに、細かい結晶体を有し、しかも、不純物の含量が極めて少ない高純度のα−SiCおよびβ−SiCを複合した反応焼結SiC素材が製造可能である。また、本発明によれば、素材の焼結中に寸法の変化がまったく、またはほとんどなく、事故発熱反応による高速焼結が行われるとともに、比較的に低温下でも焼結可能であることから、反応焼結SiC素材の製造性を高められるという効果がある。
さらに、本発明の他の側面によれば、上述した方法により製造された、電気的特性を有するα−SiCおよびβ−SiCを複合した反応焼結SiC素材製のSiC電極を下部のシリコン電極と結合して二体型のカソードを構成することにより、電極として使用するに際して電気的特性が安定しており、高温・高圧の半導体ウエハ工程に使用するに際してシリコン電極との熱伝導度の違いによる結合部の損傷を防ぐことができる。加えて、SiC電極は優れた強度を有することからカソードの使用寿命を延ばし、耐摩耗性が向上してウエハへのパーティクルの発生を防ぐとともに、高い熱伝導度と低い抵抗の性質により良好な電気的特性を有することから高純度のウエハが生産可能である結果、ウエハの生産収率を高めることができるという効果がある。
According to the present invention, high-purity α-SiC and β having high electrical properties according to usage, excellent strength, fine crystals, and extremely low impurity content. -Reaction sintered SiC material in which SiC is combined can be manufactured. In addition, according to the present invention, there is no or almost no change in dimensions during sintering of the material, high-speed sintering by accidental exothermic reaction is performed, and sintering is possible at a relatively low temperature. There is an effect that the productivity of the reaction sintered SiC material can be improved.
Furthermore, according to another aspect of the present invention, a SiC electrode made of a reaction sintered SiC material, which is produced by the above-described method and is a composite of α-SiC and β-SiC having electrical characteristics, is used as a lower silicon electrode. Combined to form a two-body cathode, the electrical characteristics are stable when used as an electrode, and the joint part due to the difference in thermal conductivity with a silicon electrode when used in a high-temperature, high-pressure semiconductor wafer process Can prevent damage. In addition, the SiC electrode has excellent strength, thus extending the service life of the cathode, improving wear resistance and preventing the generation of particles on the wafer, as well as good electrical conductivity due to its high thermal conductivity and low resistance properties. As a result, it is possible to produce a high-purity wafer. As a result, the production yield of the wafer can be increased.

本発明によるβ−SiC焼結体の製造方法を示す工程手順図、The process sequence diagram which shows the manufacturing method of the beta-SiC sintered compact by the present invention, 本発明によるβ−SiC焼結体の製造方法の各工程を示す作業工程図、The operation process figure which shows each process of the manufacturing method of the beta-SiC sintered compact by the present invention, 本発明によるβ−SiC焼結体の製造方法の各工程を示す作業工程図、The operation process figure which shows each process of the manufacturing method of the beta-SiC sintered compact by the present invention, 本発明の好適な実施形態によるプラズマチャンバーカソードを示す斜視図および断面図、1 is a perspective view and a cross-sectional view showing a plasma chamber cathode according to a preferred embodiment of the present invention; 本発明の他の実施形態によるプラズマチャンバーカソードを示す断面図、Sectional drawing which shows the plasma chamber cathode by other embodiment of this invention, 本発明によるプラズマチャンバーカソードと上プレートとの結合を示す断面図である。FIG. 4 is a cross-sectional view showing the coupling between the plasma chamber cathode and the upper plate according to the present invention. SiC素材の一例を示す。An example of a SiC material is shown. α−SiCを示す。α-SiC is shown. 反応焼結SiC素材を示すIndicates reactive sintered SiC material

本発明は、最近、高温・高圧環境の半導体製造工程用の部品として汎用されているSiC素材の製造方法、及び該SiC素材を用いたシリコン−SIC構造の二体型プラズマチャンバーカソードに関する。本発明の一側面によれば、SIC焼結体素材の製造方法において、常圧および加圧焼結により製造されたα−SiC粉末をカーボン粉末と混合してカーボン/α−SiC混合物を得るステップと、前記カーボン/α−SiC混合物を高温で加圧してカーボン/α−SiC成形体を得るステップと、前記カーボン/α−SiC成形体を真空内において1400℃〜2000℃の高温で添加される抵抗を調節したシリコンと反応させて含浸させるステップと、を含むα−SiCおよびβ−SiCを複合した反応焼結SiC素材の製造方法を提供する。
また、本発明は、前記方法により製造されるα−SiCおよびβ−SiCを複合した反応焼結SiC素材を提供する。
さらに、本発明の他の側面によれば、半導体ウエハのエッチング工程に用いられるプラズマチャンバーカソードにおいて、下部のシリコン電極と、シリコン電極の上部に結合されるSiC電極を含み、α−SiCおよびβ−SiCを複合した反応焼結SiC素材製のシリコン−SiC構造の二体型プラズマチャンバーカソードが提供される。
以下、添付図面に基づき、本発明の構成および実施形態を詳述する。先ず、図1は、本発明の好適な実施形態によるα−SiCおよびβ−SiCを複合した反応焼結SiC素材の製造方法を示す工程手順図であり、図2および図3は、本発明に好適な実施形態によるβ−SiC焼結体の製造方法の各工程を示す作業工程図である。本発明の好適な実施形態によるβ−SiC素材の製造方法によれば、図1に示すように、常圧および加圧焼結により製造されたα−SiC粉末をカーボン粉末と混合してカーボン/α−SiC混合物を得るステップ(S11)と、前記カーボン/α−SiC混合物を高温で加圧してカーボン/α−SiC成形体を得るステップ(S12)と、前記カーボン/α−SiC成形体を真空内において1400℃〜2000℃の高温で溶融シリコンと反応させて含浸させるステップ(S13)と、を含むことを特徴とする。
以下、各工程段階別の実施例を挙げて本発明を一層詳しく説明する。
−カーボン/α−SiC混合物の形成−
一般的に、α−SiC素材は、焼結時に焼結助剤が添加されるため焼結体内に多量の不純物が含まれてしまい、且つ、高い体内気孔率を有するため高温環境の半導体工程には不向きであるという特徴がある。α−SiCは図8に示される。
α−SiC素材の特性を改善するために、粉末状のα−SiC粉末をカーボン粉末と混合して焼結加工のためのカーボン/α−SiC混合物を形成する。
前記カーボン粉末は粒子径が0〜50μm以内のものを使用することが好ましく、前記α−SiC粉末は、大型のアチソン炉を用いてSiOと石油コークスを混合し、電流を流して2200℃〜2400℃の高温で反応させて製造されたα−SiC素材を使用することが好ましく、前記α−SiC粉末は、1〜100μm以内のものを使用することが好ましい。
また、上記のステップにおいては、後述するシリコンを混合物に含浸してα−SiCおよびβ−SiCを複合した反応焼結SiC素材を製造する過程における、シリコンと前記カーボン/α−SiC混合物の炭素成分との反応性を高めるために、それぞれ0〜50μm以内の粒子径を有するシリコン粉末とドーパント粉末を含浸してもよい。この場合、カーボン/α−SiC混合物の総重量を基準として、前記シリコン粉末は0.1〜20wt%、ドーパント粉末は0.1〜10wt%を混入することが好ましい。
−カーボン/α−SiC成形体の形成−
前記α−SiC素材の粉末とカーボン粉末を混合してなるカーボンとα−SiCの混合物をプレスまたはCIPなどを用いて加圧してカーボン/α−SiC成形体を形成する。
−α−SiCおよびβ−SiCを複合する反応焼結SiC焼結体の製造−
上記のようにして形成されたカーボン/α−SiC成形体にシリコンを塗布し、真空の状態で高温に加熱すると、成形体の空隙にシリコンが含浸しつつシリコンとカーボンが反応されてβ−SiCが製造され、α−SiCはβ−SiCとシリコンに囲まれているとともに電気的特性を有するα−SiCおよびβ−SiCを複合した反応焼結SiC素材が製造される。
上記において、シリコンを浸潤させたカーボン/α−SiC成形体を加熱する温度は、常圧および加圧によるα−SiC焼結温度よりも低温である1400℃〜2000℃であることが好ましく、前記シリコンの全体がカーボンとα−SiCの混合物の間に真空による毛細管圧力とシリコンの自重により含浸されて、無気孔のコンパクトな構造及び電気的特性を有するα−SiCおよびβ−SiCを複合した反応焼結SiC素材が製造される。この反応焼結SiCは図3に示される。
この過程において、カーボンとα−SiCの混合物、またはカーボンとα−SiC、シリコン、ドーパントの混合物と含浸抵抗を有するシリコンとの反応により電気的特性を持たせ、含浸させるシリコンに添加されるホウ素(ボロン)の量の調節により抵抗を調節して抵抗調節済みのシリコンを含浸させることにより、α−SiCおよびβ−SiCを複合した反応焼結SiC素材の電気的抵抗を調節する。
参考までに、前記シリコンの抵抗調節のためにその添加量が調節されるホウ素は、その添加量が多量になるほどシリコンの抵抗が低下して炭素との反応性を高めることができ、上記のような抵抗調節済みのシリコンをカーボン/α−SiCの成形体の炭素と反応させることにより、所要の抵抗性または低抵抗性を有する素材を製造することができる。
ここで、カーボンとα−SiC、シリコンおよびドーパントを混合する場合には、製造されるα−SiCおよびβ−SiCを複合した反応焼結SiC素材の総重量を基準として、抵抗調節済みのシリコン30〜80wt%と、シリコンの抵抗を決める0.1〜10wt%を使用することが好ましい。
−α−SiCおよびβ−SiCを複合した反応焼結SiC素材の特性−(図9)
以上述べたように、本発明の製造方法により製造されたα−SiCおよびβ−SiCを複合した反応焼結SiC素材は、反応焼結中に寸法の変化がほとんど、またはまったくなく、カーボンとα−SiCが反応して生成される混合物組織が素材の強度を増大させる役割を果たす。また、本発明の製造方法により製造されたα−SiCおよびβ−SiCを複合した反応焼結SiC素材は、前記混合物組織の間にシリコンが含浸されて強度が高く、微粒の凝集体として分布されて無気孔のコンパクトな焼結体が得られる他、原料粉末の焼結を促すための焼結助剤をSiC素材に添加しないことから不純物の含量を大幅に低減することができる。
また、常圧および加圧による製造方法に比べて低温の加熱が可能であり、自己発熱反応が起きて高速焼結が行われることから、反応焼結後にβ−SiC焼結体の寸法と形状をそのまま維持し、作業速度が速いというメリットがある。特に、SiC素材の抵抗が調節できて所望の電気的特性に見合うように製造可能になる結果、単に機械化学的な性質を有するSiCと比較してその活用先が多く半導体工程に広く適用可能である。
このため、本発明による場合、高温の環境および耐腐食性が要される半導体工程、特に、半導体エッチング工程に要される電気的特性を有しているとともに、高純度・高密度・高強度のSiC素材が製造可能である。加えて、優れた機械的性質を有するSiC素材の高速製造が可能になることから、製造コストを削減できるという効果があり、これにより、半導体製造装備において好適な電気的特性を有するα−SiCおよびβ−SiCを複合した反応焼結SiC素材が製造可能であるという特徴がある。
さらに、本発明の他の側面によれば、半導体工程の中でウエハのエッチング工程に用いられるカソードにおいて、シリコン電極の上部に本発明の製造方法により製造されるα−SiCおよびβ−SiCを複合した反応焼結SiC素材製のSiC電極を並べてこれらの上下に結合してなるシリコン−SiCからなる二体型プラズマチャンバーカソードが提供される。以下、本発明によるシリコン−SiC構造の二体型プラズマチャンバーカソードの構成および作用について説明する。
図4は、本発明の好適な実施形態によるプラズマチャンバーカソードを示す斜視図および断面図であり、図5は、本発明の他の実施形態によるプラズマチャンバーカソードを示す断面図であり、図6は、本発明によるプラズマチャンバーカソードと上プレートとの結合を示す断面図である。図4に示すように、本発明の好適な実施形態によるプラズマチャンバーカソードは、下部のシリコン電極20の上に本発明により製造されたα−SiCおよびβ−SiCを複合した反応焼結SiC素材製のSiC電極10を並べてこれらを上下に結合する二体型に構成される。このとき、前記シリコン電極20とSiC電極10はエラストマーボンディングEにより結合されてもよく、結合ボルトBにより結合されてもよい。
また、図5に示すように、シリコン電極20とSiC電極10を結合してなるカソード100を単一体にして、図6に示すように、チャンバーの内部に任意に形成される上プレート30に単独で結合できるように構成してもよく、あるいは図5に示すように、カソードの外側から外リング110が外れて、カソードと外リングが上プレート30にそれぞれ別々に結合するように構成して、中央部のカソード100を外側において外リング110が所定の間隔をあけて漏斗状に囲繞して結合するように構成してもよい。
このため、前記構成を有する本発明のプラズマチャンバーカソードによれば、α−SiCおよびβ−SiCを複合した反応焼結SiC素材のSiC電極10に優れた電気的特性、熱伝導率、硬度、耐酸化性、耐磨耗性、耐腐食性および高温安定性などの機械的性質を持たせることにより、下部に結合されるシリコン電極20と上部に結合される上プレート30の変形による結合ボルトBの結合部の損傷を防ぎ、高純度のα−SiCおよびβ−SiCを複合した反応焼結SiC素材を使用することにより、上記のシリコン電極20と上プレート30の変形による摩耗時にパーティクルが発生することを防ぐことができる。加えて、前記構成を有する本発明のプラズマチャンバーカソードによれば、前記SiC電極10が0.10hm−cm以下の低い電気的抵抗および高い熱伝導率を有するように製造可能であり、上プレート30に電圧をかけたときの通電性を良好にして良質のプラズマが生成可能であるとともに、均質なプラズマ密度などを有してウエハの上に高集積回路が生産可能であるという効果がある。
The present invention relates to a method of manufacturing a SiC material that has recently been widely used as a component for a semiconductor manufacturing process in a high-temperature / high-pressure environment, and a two-body plasma chamber cathode having a silicon-SIC structure using the SiC material. According to one aspect of the present invention, in the method for producing a SIC sintered body material, a step of mixing an α-SiC powder produced by normal pressure and pressure sintering with a carbon powder to obtain a carbon / α-SiC mixture. Pressing the carbon / α-SiC mixture at a high temperature to obtain a carbon / α-SiC molded body, and adding the carbon / α-SiC molded body at a high temperature of 1400 ° C. to 2000 ° C. in a vacuum. And a step of impregnating with resistance-controlled silicon, and a method for producing a reaction sintered SiC material in which α-SiC and β-SiC are combined.
The present invention also provides a reaction sintered SiC material that is a composite of α-SiC and β-SiC produced by the above method.
Furthermore, according to another aspect of the present invention, a plasma chamber cathode used in a semiconductor wafer etching process includes a lower silicon electrode and an SiC electrode coupled to the upper portion of the silicon electrode, and α-SiC and β- A two-body plasma chamber cathode having a silicon-SiC structure made of a reaction sintered SiC material combined with SiC is provided.
The configuration and embodiments of the present invention will be described below in detail with reference to the accompanying drawings. First, FIG. 1 is a process sequence diagram showing a method for producing a reaction sintered SiC material in which α-SiC and β-SiC are combined according to a preferred embodiment of the present invention, and FIGS. 2 and 3 show the present invention. It is an operation process figure showing each process of the manufacturing method of the beta-SiC sintered compact by a suitable embodiment. According to the method for producing a β-SiC material according to a preferred embodiment of the present invention, as shown in FIG. 1, an α-SiC powder produced by normal pressure and pressure sintering is mixed with carbon powder to produce carbon / Obtaining an α-SiC mixture (S11), pressing the carbon / α-SiC mixture at a high temperature to obtain a carbon / α-SiC molded body (S12), and vacuuming the carbon / α-SiC molded body And impregnating by reacting with molten silicon at a high temperature of 1400 ° C. to 2000 ° C. (S13).
Hereinafter, the present invention will be described in more detail with reference to examples according to respective process steps.
-Formation of carbon / α-SiC mixture-
Generally, the α-SiC material contains a large amount of impurities in the sintered body because a sintering aid is added during sintering, and has a high internal porosity, so it is suitable for a semiconductor process in a high temperature environment. Is unsuitable. α-SiC is shown in FIG.
In order to improve the properties of the α-SiC material, powdered α-SiC powder is mixed with carbon powder to form a carbon / α-SiC mixture for sintering.
The carbon powder preferably has a particle size of 0 to 50 μm, and the α-SiC powder is a mixture of SiO 2 and petroleum coke using a large-sized Atchison furnace, and a current is applied to 2200 ° C. to It is preferable to use an α-SiC material produced by reacting at a high temperature of 2400 ° C, and the α-SiC powder is preferably 1 to 100 µm or less.
Further, in the above step, silicon and the carbon component of the carbon / α-SiC mixture in the process of manufacturing a reaction sintered SiC material in which α-SiC and β-SiC are combined by impregnating a mixture of silicon described later. May be impregnated with silicon powder and dopant powder each having a particle diameter of 0 to 50 μm or less. In this case, it is preferable that 0.1 to 20 wt% of the silicon powder and 0.1 to 10 wt% of the dopant powder are mixed based on the total weight of the carbon / α-SiC mixture.
-Formation of carbon / α-SiC molded body-
A carbon / α-SiC compact is formed by pressurizing a mixture of carbon and α-SiC obtained by mixing the powder of the α-SiC material and carbon powder using a press or CIP.
-Manufacture of reaction sintered SiC sintered compact combining α-SiC and β-SiC-
When silicon is applied to the carbon / α-SiC molded body formed as described above and heated to a high temperature in a vacuum state, silicon and carbon are reacted while silicon is impregnated in the voids of the molded body, and β-SiC is reacted. As a result, α-SiC is surrounded by β-SiC and silicon, and a reaction sintered SiC material in which α-SiC and β-SiC having electrical properties are combined is manufactured.
In the above, the temperature for heating the carbon / α-SiC molded body infiltrated with silicon is preferably 1400 ° C. to 2000 ° C., which is lower than the α-SiC sintering temperature by normal pressure and pressurization, Reaction of composite of α-SiC and β-SiC having a compact structure and electrical characteristics without pores, where the whole silicon is impregnated by the capillary pressure by vacuum and the dead weight of silicon between the mixture of carbon and α-SiC A sintered SiC material is produced. This reactive sintered SiC is shown in FIG.
In this process, boron added to the silicon to be impregnated is given electrical properties by the reaction of a mixture of carbon and α-SiC, or carbon and α-SiC, silicon, a mixture of dopant and silicon having impregnation resistance. By adjusting the resistance by adjusting the amount of boron) and impregnating the resistance-adjusted silicon, the electrical resistance of the reaction sintered SiC material in which α-SiC and β-SiC are combined is adjusted.
For reference, boron, the amount of which is added to adjust the resistance of silicon, can increase the reactivity with carbon by decreasing the resistance of silicon as the amount of addition increases. A material having a required resistance or a low resistance can be manufactured by reacting silicon having a controlled resistance with carbon of a carbon / α-SiC molded body.
Here, when carbon, α-SiC, silicon, and a dopant are mixed, the resistance-adjusted silicon 30 based on the total weight of the reaction-sintered SiC material that is a composite of α-SiC and β-SiC to be produced. It is preferable to use ˜80 wt% and 0.1˜10 wt% which determines the resistance of silicon.
-Characteristics of reaction sintered SiC material combining α-SiC and β-SiC- (FIG. 9)
As described above, the reaction-sintered SiC material that is a composite of α-SiC and β-SiC produced by the production method of the present invention has little or no dimensional change during reaction sintering, and carbon and α -The mixture structure produced by the reaction of SiC plays a role of increasing the strength of the material. In addition, the reaction-sintered SiC material that is a composite of α-SiC and β-SiC manufactured by the manufacturing method of the present invention is impregnated with silicon between the mixture structures and has high strength, and is distributed as agglomerates of fine particles. In addition to obtaining a compact sintered body having no pores, the content of impurities can be greatly reduced since a sintering aid for promoting sintering of the raw material powder is not added to the SiC material.
In addition, since it can be heated at a lower temperature than the manufacturing method by normal pressure and pressurization, and self-heating reaction occurs and high-speed sintering is performed, the size and shape of β-SiC sintered body after reaction sintering There is an advantage that the work speed is fast. In particular, the resistance of the SiC material can be adjusted so that it can be manufactured to meet desired electrical characteristics. As a result, it can be used in a wide variety of semiconductor processes compared to SiC, which has only mechanochemical properties. is there.
Therefore, according to the present invention, the semiconductor process has a high temperature environment and corrosion resistance, in particular, has electrical characteristics required for the semiconductor etching process, and has high purity, high density, and high strength. SiC material can be manufactured. In addition, since it is possible to produce SiC material having excellent mechanical properties at high speed, there is an effect that the production cost can be reduced, and thereby α-SiC having suitable electrical characteristics in semiconductor production equipment and There is a feature that a reaction sintered SiC material combined with β-SiC can be manufactured.
Furthermore, according to another aspect of the present invention, α-SiC and β-SiC manufactured by the manufacturing method of the present invention are combined on the top of a silicon electrode in a cathode used for a wafer etching process in a semiconductor process. There is provided a two-body plasma chamber cathode made of silicon-SiC in which SiC electrodes made of reaction-sintered SiC material are aligned and bonded to the upper and lower sides thereof. Hereinafter, the configuration and operation of the two-body plasma chamber cathode having a silicon-SiC structure according to the present invention will be described.
4 is a perspective view and a sectional view showing a plasma chamber cathode according to a preferred embodiment of the present invention, FIG. 5 is a sectional view showing a plasma chamber cathode according to another embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view showing the coupling between the plasma chamber cathode and the upper plate according to the present invention. As shown in FIG. 4, the plasma chamber cathode according to a preferred embodiment of the present invention is made of a reaction sintered SiC material in which α-SiC and β-SiC manufactured according to the present invention are combined on a lower silicon electrode 20. The two SiC electrodes 10 are arranged side by side and are joined together vertically. At this time, the silicon electrode 20 and the SiC electrode 10 may be coupled by the elastomer bonding E or the coupling bolt B.
Further, as shown in FIG. 5, the cathode 100 formed by combining the silicon electrode 20 and the SiC electrode 10 is made into a single body, and the upper plate 30 arbitrarily formed inside the chamber as shown in FIG. Or the outer ring 110 may be detached from the outside of the cathode, and the cathode and the outer ring may be separately coupled to the upper plate 30 as shown in FIG. The outer cathode 110 may be configured so as to be coupled in a funnel shape at a predetermined interval on the outer side of the central cathode 100.
For this reason, according to the plasma chamber cathode of the present invention having the above-described configuration, excellent electrical characteristics, thermal conductivity, hardness, and acid resistance of the reaction sintered SiC material SiC electrode 10 composited with α-SiC and β-SiC. By providing mechanical properties such as heat resistance, wear resistance, corrosion resistance, and high-temperature stability, the bonding bolt B is deformed by deformation of the silicon electrode 20 bonded to the lower portion and the upper plate 30 bonded to the upper portion. By using a reaction sintered SiC material that is a composite of high-purity α-SiC and β-SiC, particles are generated during wear due to deformation of the silicon electrode 20 and the upper plate 30. Can be prevented. In addition, according to the plasma chamber cathode of the present invention having the above configuration, the SiC electrode 10 can be manufactured to have a low electrical resistance of 0.10 hm-cm or less and a high thermal conductivity, and the upper plate 30 As a result, it is possible to produce a high-quality plasma by improving the conductivity when a voltage is applied to the substrate, and to produce a highly integrated circuit on the wafer with a uniform plasma density.

10:SiC電極
20:シリコン電極
30:上プレート
100:カソード
110:外リング
10: SiC electrode 20: Silicon electrode 30: Upper plate 100: Cathode 110: Outer ring

Claims (8)

常圧および加圧焼結により製造されたα−SiC粉末をカーボン粉末と混合してカーボン/α−SiC混合物を得るステップ(S11)と、
前記カーボン/α−SiC混合物を高温で加圧してカーボン/α−SiC成形体を得るステップ(S12)と、
前記カーボン/α−SiC成形体を、真空内において1400℃〜2000℃の高温で添加される抵抗を調節したシリコンと反応させて含浸させるステップ(S13)と、
を含むα−SiCおよびβ−SiCを複合した反応焼結SiC素材の製造方法。
Mixing an α-SiC powder produced by normal pressure and pressure sintering with a carbon powder to obtain a carbon / α-SiC mixture (S11);
Pressing the carbon / α-SiC mixture at a high temperature to obtain a carbon / α-SiC molded body (S12);
Reacting and impregnating the carbon / α-SiC molded body with a controlled-resistance silicon added at a high temperature of 1400 ° C. to 2000 ° C. in a vacuum (S13);
Of reaction-sintered SiC material in which α-SiC and β-SiC are mixed.
前記α−SiC粉末は、大型のアチソン炉を用いてSiOと石油コークスを混合し、電流を流して2200℃〜2400℃の高温で反応させて製造されたα−SiC素材を使用することを特徴とする請求項1に記載の方法。 The α-SiC powder uses an α-SiC material produced by mixing SiO 2 and petroleum coke using a large Atchison furnace and reacting them at a high temperature of 2200 ° C. to 2400 ° C. by passing an electric current. The method of claim 1, characterized in that: 前記α−SiC粉末をカーボン粉末と混合してカーボン/α−SiC混合物を得るステップ(S11)においては、それぞれ0〜50μmの粒子径を有するカーボン/α−SiC混合物の総重量を基準として0.1〜20wt%のシリコン粉末と0.1〜10wt%のドーパント粉末を混入してシリコン含浸過程においてカーボンとシリコンの反応性を高めていることを特徴とする請求項1に記載のα−SiCおよびβ−SiCを複合した反応焼結SiC素材の製造方法。 In the step of obtaining the carbon / α-SiC mixture by mixing the α-SiC powder with the carbon powder (S11), the carbon / α-SiC mixture having a particle diameter of 0 to 50 μm is used as a reference based on the total weight. The α-SiC according to claim 1, wherein 1 to 20 wt% silicon powder and 0.1 to 10 wt% dopant powder are mixed to increase the reactivity between carbon and silicon in the silicon impregnation process. A method for producing a reaction sintered SiC material in which β-SiC is combined. 前記α−SiC粉末をカーボン粉末と混合してカーボン/α−SiC混合物を得るステップ(S11)においては、1〜100μm粒径のα−SiC粉末と、0〜50μm粒径のカーボン粉末を使用することを特徴とする請求項1に記載の方法。 In the step (S11) of obtaining the carbon / α-SiC mixture by mixing the α-SiC powder with the carbon powder, the α-SiC powder having a particle diameter of 1 to 100 μm and the carbon powder having a particle diameter of 0 to 50 μm are used. The method according to claim 1. 前記カーボン/α−SiC成形体を抵抗調節済みのシリコンと反応させるステップ(S13)においては、製造されるα−SiCおよびβ−SiCを複合した反応焼結SiC素材の総重量を基準として、抵抗を調節したシリコンは30〜80wt%、ドーパントは0.1〜10wt%を添加して反応焼結SiC素材の電気的な抵抗を調節していることを特徴とする請求項1に記載の方法。 In the step (S13) of reacting the carbon / α-SiC molded body with the resistance-adjusted silicon, the resistance is determined based on the total weight of the reaction-sintered SiC material in which α-SiC and β-SiC are combined. 2. The method according to claim 1, wherein the electrical resistance of the reaction sintered SiC material is adjusted by adding 30 to 80 wt% of silicon with adjusted and 0.1 to 10 wt% of dopant. α−SiCおよびβ−SiCを複合した半導体工程の部品として用いられるSiC素材であって、
請求項1から4のいずれかに記載の方法により製造されるSiC素材。
A SiC material used as a component in a semiconductor process in which α-SiC and β-SiC are combined,
The SiC raw material manufactured by the method in any one of Claim 1 to 4.
半導体ウエハのエッチング工程においてチャンバーの内部に反応ガスを注入し、電流を印加してプラズマを生じさせる二体型プラズマチャンバーカソードにおいて、
シリコン電極(20)の上部に請求項1から4のいずれかに記載の方法により製造される反応焼結SiC素材のSiC電極(10)を結合され、α−SiCおよびβ−SiCを複合した二体型プラズマチャンバーカソード。
In a two-body plasma chamber cathode that injects a reaction gas into the chamber in the semiconductor wafer etching process and applies a current to generate plasma,
A reaction sintered SiC material SiC electrode (10) manufactured by the method according to any one of claims 1 to 4 is bonded to an upper portion of a silicon electrode (20), and α-SiC and β-SiC are combined. Body plasma chamber cathode.
前記シリコン電極(20)とSiC電極(10)は、エラストマーボンディング(E)及び結合ボルト(B)のうちどちらか一方により結合されることを特徴とする請求項7に記載の二体型プラズマチャンバーカソード。 The two-body type plasma chamber cathode according to claim 7, wherein the silicon electrode (20) and the SiC electrode (10) are bonded by either one of an elastomer bonding (E) and a bonding bolt (B). .
JP2010537855A 2007-12-14 2008-12-05 SiC material combining α-SiC and β-SiC, manufacturing method, and two-body plasma chamber cathode using the material Pending JP2011506251A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070131384A KR100867961B1 (en) 2007-12-14 2007-12-14 Alpha;type sic- beta; type sic combined reaction sintering sic material and manufacture method and plasma chamber cathode that use it
PCT/KR2008/007182 WO2009078605A2 (en) 2007-12-14 2008-12-05 SIC MATERIAL COMPRISING COMBINATION OF α-SIC AND β-SIC AND TWO-PART PLASMA CHAMBER CATHODE MANUFACTURED USING THE SAME

Publications (1)

Publication Number Publication Date
JP2011506251A true JP2011506251A (en) 2011-03-03

Family

ID=40283997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010537855A Pending JP2011506251A (en) 2007-12-14 2008-12-05 SiC material combining α-SiC and β-SiC, manufacturing method, and two-body plasma chamber cathode using the material

Country Status (5)

Country Link
JP (1) JP2011506251A (en)
KR (1) KR100867961B1 (en)
CN (1) CN101503295A (en)
TW (1) TW200930688A (en)
WO (1) WO2009078605A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159146A1 (en) * 2015-03-31 2016-10-06 北陸成型工業株式会社 Silicon carbide member for plasma treatment devices, and method for manufacturing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108558405B (en) * 2017-03-10 2021-08-24 成都超纯应用材料有限责任公司 Preparation method of high-density high-purity silicon carbide substrate material
KR102619677B1 (en) * 2021-12-16 2024-01-02 주식회사 월덱스 A two-piece electrode mounted in the chamber of an etching apparatus for semiconductors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648860Y2 (en) * 1985-05-29 1994-12-12 沖電気工業株式会社 Jig for semiconductor wafer
JP2828523B2 (en) * 1991-06-24 1998-11-25 京セラ株式会社 High toughness silicon carbide sintered body
JP3642446B2 (en) 1996-08-01 2005-04-27 東芝セラミックス株式会社 Semiconductor wafer processing tool
JPH11302077A (en) 1998-04-20 1999-11-02 Tokai Konetsu Kogyo Co Ltd Production of silicon carbide heater
KR100299099B1 (en) * 1999-04-30 2001-09-13 손재익 Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering
KR100419778B1 (en) * 2001-02-16 2004-02-21 한국에너지기술연구원 Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159146A1 (en) * 2015-03-31 2016-10-06 北陸成型工業株式会社 Silicon carbide member for plasma treatment devices, and method for manufacturing same
JPWO2016159146A1 (en) * 2015-03-31 2018-01-25 北陸成型工業株式会社 Silicon carbide member for plasma processing apparatus and manufacturing method thereof
US10280121B2 (en) 2015-03-31 2019-05-07 Hokuriku Seikei Industrial Co., Ltd. Silicon carbide member for plasma processing apparatus

Also Published As

Publication number Publication date
WO2009078605A3 (en) 2010-07-22
WO2009078605A2 (en) 2009-06-25
KR100867961B1 (en) 2008-11-10
CN101503295A (en) 2009-08-12
TW200930688A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
TWI477443B (en) Method for fabricating carbon substrate coated with silicon carbide, carbon substrate coated with silicon carbide and silicon carbide carbon composite sintered compact, silicon carbide carbon composite sintered compact coated with ceramics and method for
US9257315B2 (en) Cooling plate, method for manufacturing the same, and member for semiconductor manufacturing apparatus
US5606484A (en) Ceramic electrostatic chuck with built-in heater
JPH054950B2 (en)
JPWO2018061778A1 (en) Silicon carbide member for plasma processing apparatus and manufacturing method thereof
JP2011506251A (en) SiC material combining α-SiC and β-SiC, manufacturing method, and two-body plasma chamber cathode using the material
JP6850252B2 (en) Silicon carbide member for plasma processing equipment
KR101165477B1 (en) Ceramic heater unit
JP3150606B2 (en) Method for controlling specific resistance of silicon carbide sintered body
CN112521154A (en) SiC ceramic device with high-purity working surface and preparation method and application thereof
KR20120064164A (en) Hot press sintering device for manufacturing sintered body and mold of 3d structure and method of manufacture sintered body and mold the same
KR20120088458A (en) Silicon carbide sintered body and method for manufacturing the same
CN102674840B (en) Rapid sintering preparation method for diamond-silicon material
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
CN112750692A (en) Composite sintered body and method for producing composite sintered body
JPH11292630A (en) Diamond-silicon carbide composite sintered compact and its production
CN110981490A (en) CNT toughening of B4C-SiC laminated composite ceramic and preparation method thereof
JP2013535398A (en) Method for producing sintered silicon carbide using balls
JP2003277152A (en) Silicon carbide sintered compact, production method therefor and its use
CN117164363B (en) High-temperature composite material and preparation method thereof
CN102690120B (en) High-heat-conductance electronic packaging material
CN102701741A (en) Preparation method for improved electronic packaging material with high heat conductivity
JP5809896B2 (en) BORON CARBIDE-CONTAINING CERAMIC-OXIDE CERAMIC BODY AND METHOD FOR PRODUCING THE BODY
KR20230161700A (en) Electro-static chuck and manufacturing method thereof
TW202422772A (en) Electrostatic chuck and method of manufacturing the same