JP2011256106A - Nanocrystal with multilayered structure and method for producing thereof - Google Patents

Nanocrystal with multilayered structure and method for producing thereof Download PDF

Info

Publication number
JP2011256106A
JP2011256106A JP2011149538A JP2011149538A JP2011256106A JP 2011256106 A JP2011256106 A JP 2011256106A JP 2011149538 A JP2011149538 A JP 2011149538A JP 2011149538 A JP2011149538 A JP 2011149538A JP 2011256106 A JP2011256106 A JP 2011256106A
Authority
JP
Japan
Prior art keywords
nanocrystal
group
alloy layer
zinc
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011149538A
Other languages
Japanese (ja)
Other versions
JP5602104B2 (en
Inventor
Shin Ae Jun
信 愛 田
Ginshu Cho
銀 珠 張
Seisai Sai
誠 宰 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2011256106A publication Critical patent/JP2011256106A/en
Application granted granted Critical
Publication of JP5602104B2 publication Critical patent/JP5602104B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/88Thick layer coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a nanocrystal with a new structure having excellent stability of the substance while exhibiting excellent light emission efficiency in the blue region.SOLUTION: The nanocrystal with the mutilayered structure comprising two or more substances includes an alloy layer of the substances.

Description

本発明は、多層構造のナノ結晶およびその製造方法に係り、より詳しくは、2種以上の物質からなるナノ結晶において、前記物質の合金層を含むことを特徴とする多層構造のナノ結晶およびその製造方法に関する。   The present invention relates to a multilayered nanocrystal and a method for producing the same, and more particularly, in a nanocrystal composed of two or more kinds of substances, including an alloy layer of the substance, and a multilayered nanocrystal thereof It relates to a manufacturing method.

ナノ結晶は、数ナノサイズの結晶構造を有する物質であって、数百〜数千個程度の原子から構成されている。このように小さいサイズの物質は、単位体積当たりの表面積が広く、多くの部分の原子が物質の表面に露出するので、物質自体の固有特性とは異なる独特な電気的、磁気的、光学的、化学的、機械的特性がナノ結晶の物理的サイズを調節することで多様に調節されうる。ナノ結晶を合成する方法としては、MOCVD(metal organic chemical vapor deposition)やMBE(molecular beam epitaxy)などのCVD法があり、最近では、界面活性剤の存在下に有機溶媒に前駆体物質を入れて結晶を成長させる化学的湿式方法が急速に発展しつつある。化学的湿式方法は、結晶が成長するときに界面活性剤が自然にナノ結晶の表面に配位されて分散剤の役割を担うようにすることにより、結晶の成長を調節する方法であって、MOCVDやMBEなどのCVD法より一層容易かつ低廉な工程によってナノ結晶の大きさと形状の均一度を調節することができるという利点を持つ。   A nanocrystal is a substance having a crystal structure of several nanosizes, and is composed of several hundred to several thousand atoms. Such a small size material has a large surface area per unit volume, and since many parts of the atoms are exposed on the surface of the material, it has a unique electrical, magnetic, optical, Chemical and mechanical properties can be adjusted in various ways by adjusting the physical size of nanocrystals. As a method of synthesizing nanocrystals, there are CVD methods such as MOCVD (metal organic chemical deposition) and MBE (molecular beam epitaxy). Recently, a precursor material is put in an organic solvent in the presence of a surfactant. Chemical wet methods for growing crystals are developing rapidly. The chemical wet method is a method of controlling the growth of the crystal by allowing the surfactant to be naturally coordinated to the surface of the nanocrystal and play the role of a dispersing agent when the crystal grows, There is an advantage that the uniformity of the size and shape of the nanocrystals can be adjusted by a process that is easier and less expensive than CVD methods such as MOCVD and MBE.

特許文献1は、発光効率が増加したコア−シェル構造を有する半導体ナノ結晶物質を開示しており、特許文献2は、そのようなコア−シェル構造を有する半導体ナノ結晶物質を製造する方法を開示している。このように形成されたコア−シェル構造の化合物半導体ナノ結晶は発光効率が30%〜50%まで増加するものと報告された。前述した従来の技術では、半導体ナノ結晶は大部分エネルギーバンドギャップのエッジでのみ転移が起こるため、純粋な波長で高効率の光を発光する特性を利用してディスプレイまたはバイオイメージセンサとして応用することができると明らかにしている。   Patent Document 1 discloses a semiconductor nanocrystal material having a core-shell structure with increased luminous efficiency, and Patent Document 2 discloses a method for producing a semiconductor nanocrystal material having such a core-shell structure. is doing. It has been reported that the compound semiconductor nanocrystal having the core-shell structure formed in this way has an increase in luminous efficiency of 30% to 50%. In the above-mentioned conventional technology, semiconductor nanocrystals are mostly transferred only at the edge of the energy band gap, so that they can be applied as displays or bioimage sensors using the property of emitting highly efficient light at pure wavelengths. It is clarified that you can.

米国特許第6,322,901号明細書US Pat. No. 6,322,901 米国特許第6,207,229号明細書US Pat. No. 6,207,229

ところが、青色で発光するコア−シェルナノ結晶を前記従来の技術によって製造するには小さいサイズのコア(直径2nm以下)を使用しなければならず、このような小さい結晶は、シェルを形成する過程で非常に不安定であって互いに凝集するという問題点などがあった。   However, in order to manufacture a core-shell nanocrystal emitting blue light by the conventional technique, a small-sized core (diameter of 2 nm or less) must be used, and such a small crystal is formed in the process of forming a shell. There was a problem that they were very unstable and aggregated with each other.

そこで、本発明はこのような問題点に鑑みてなされたもので、その目的とするところは、青色領域で優れた発光効率を示すうえ、物質の安定性に優れた新しい構造のナノ結晶を提供することにある。   Therefore, the present invention has been made in view of such problems, and the object of the present invention is to provide a nanocrystal having a new structure that exhibits excellent luminous efficiency in the blue region and has excellent material stability. There is to do.

上記課題を解決するために、本発明の一形態によれば、2種以上の物質からなるナノ結晶において、前記物質の合金層を含むことを特徴とする、多層構造のナノ結晶が提供される。   In order to solve the above problems, according to one aspect of the present invention, there is provided a nanocrystal having a multilayer structure characterized in that a nanocrystal composed of two or more substances includes an alloy layer of the substances. .

また、本発明の他の形態によれば、(a)第1ナノ結晶を製造する段階と、(b)前記(a)段階で得られた前記第1ナノ結晶の表面上に前記第1ナノ結晶とは異なる種類の第2ナノ結晶を成長させる段階と、(c)前記第1ナノ結晶と前記第2ナノ結晶との界面に拡散によって合金層を形成する段階とを含む、多層構造のナノ結晶の製造方法が提供される。   According to another aspect of the present invention, (a) a step of manufacturing a first nanocrystal, and (b) the first nanocrystal on the surface of the first nanocrystal obtained in the step (a). A step of growing a second nanocrystal of a type different from the crystal; and (c) forming an alloy layer by diffusion at an interface between the first nanocrystal and the second nanocrystal. A method for producing a crystal is provided.

また、本発明のさらに他の形態によれば、前記製造方法で製造した多層構造のナノ結晶が提供される。   Moreover, according to the further another form of this invention, the nanocrystal of the multilayered structure manufactured with the said manufacturing method is provided.

また、本発明のさらに他の形態によれば、前記製造方法で製造した多層構造のナノ結晶を含む素子が提供される。   According to still another aspect of the present invention, there is provided an element including a multilayered nanocrystal manufactured by the above manufacturing method.

本発明に係る多層構造のナノ結晶は、互いに異なる結晶の間に合金層が存在するため、物質の安定性を増加させる。その結果、本発明によれば、青色領域で発光効率が非常に優れた物質を製造することができる。   The multi-layered nanocrystal according to the present invention increases the stability of the material because an alloy layer exists between different crystals. As a result, according to the present invention, it is possible to manufacture a substance having a very excellent luminous efficiency in the blue region.

本発明に係る球状ナノ結晶構造の模式図である。It is a schematic diagram of the spherical nanocrystal structure according to the present invention. 本発明に係る球状ナノ結晶において合金層が物質組成の勾配を有するグラディエント構造の模式図である。It is a schematic diagram of the gradient structure in which the alloy layer has a gradient of material composition in the spherical nanocrystal according to the present invention. 本発明に係る棒状ナノ結晶および前記構造において合金層が物質組成の勾配を有するグラディエント構造の模式図である。FIG. 3 is a schematic diagram of a rod-shaped nanocrystal according to the present invention and a gradient structure in which the alloy layer has a gradient of material composition in the structure. 本発明に係る三脚状ナノ結晶構造および前記構造において合金層が物質組成の勾配を有するグラディエント構造の模式図である。FIG. 2 is a schematic diagram of a tripod-like nanocrystal structure according to the present invention and a gradient structure in which the alloy layer has a gradient of material composition in the structure. 本発明に係るチューブ状ナノ結晶構造および前記構造において合金層が物質組成の勾配を有する構造の模式図である。1 is a schematic view of a tubular nanocrystal structure according to the present invention and a structure in which an alloy layer has a gradient of material composition in the structure. 本発明に係る有機無機ハイブリッド電気発光素子の概略断面図である。It is a schematic sectional drawing of the organic inorganic hybrid electroluminescent element which concerns on this invention. 実施例1で得たCdSeコアナノ結晶の透過電子顕微鏡写真である。2 is a transmission electron micrograph of the CdSe core nanocrystal obtained in Example 1. FIG. 実施例1で得たCdSe//ZnSナノ結晶の透過電子顕微鏡写真である。2 is a transmission electron micrograph of CdSe // ZnS nanocrystals obtained in Example 1. FIG. 実施例1で得たCdSe//ZnSナノ結晶とCdSeコアナノ結晶の光励起発光スペクトルである。2 is a photoexcitation emission spectrum of CdSe // ZnS nanocrystals and CdSe core nanocrystals obtained in Example 1. FIG. 実施例5で得たCdSe//ZnSナノ結晶とCdSeコアナノ結晶の光励起発光スペクトルである。6 is a photoexcitation emission spectrum of CdSe // ZnS nanocrystals and CdSe core nanocrystals obtained in Example 5. 実施例6で得たCdSe//ZnSeナノ結晶とCdSeコアナノ結晶の光励起発光スペクトルである。6 is a photoexcitation emission spectrum of CdSe // ZnSe nanocrystals and CdSe core nanocrystals obtained in Example 6. FIG. 実施例7で得たCdSeS//ZnSナノ結晶とCdSeSコアナノ結晶の光励起発光スペクトルである。7 is a photoexcitation emission spectrum of CdSeS // ZnS nanocrystals and CdSeS core nanocrystals obtained in Example 7. 実施例8で得た有無機ハイブリッド電気発光素子に使用されたナノ結晶の電気発光スペクトルである。6 is an electroluminescence spectrum of a nanocrystal used in the presence / absence hybrid electroluminescence device obtained in Example 8.

以下、本発明についてより詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の一形態は、2種以上の物質からなるナノ結晶において、前記物質の合金(alloy)層を含むことを特徴とする、多層構造のナノ結晶に関するものである。   One embodiment of the present invention relates to a nanocrystal having a multilayer structure, wherein the nanocrystal includes two or more kinds of substances, and includes an alloy layer of the substances.

本発明に係る多層構造のナノ結晶に必須的に含まれる前記合金層は、ナノ結晶を構成する物質の界面の間に合金層として形成され、ナノ結晶を構成する物質の間に存在する格子定数の差を緩衝して物質の安定性を増進させる。   The alloy layer essentially included in the nanocrystal having a multilayer structure according to the present invention is formed as an alloy layer between the interfaces of the substance constituting the nanocrystal, and the lattice constant existing between the substances constituting the nanocrystal. Buffer the difference to increase the stability of the substance.

図1は本発明の一実施形態に係る多層構造の球状ナノ結晶の構造を示している。図1(a)を参照すると、3次元構造を有する球状の場合には、球の内部から外部に向かって、順次コア、合金層およびシェルから構成されている。この際、図1(b)を参照すると、コア部分の体積が小さいかシェルがコアに拡散していく速度がさらに速い場合、合金層の拡散がコアの中心部分まで行われて合金コア−シェルの形を持つことができる。また、図1(c)を参照すると、シェルの厚さが薄いかコアがシェルに拡散していく速度がさらに速い場合、合金層の拡散がシェルの外部まで行われてコア−合金シェルの形を持つことができる。   FIG. 1 shows the structure of a spherical nanocrystal having a multilayer structure according to an embodiment of the present invention. Referring to FIG. 1A, in the case of a spherical shape having a three-dimensional structure, a core, an alloy layer, and a shell are sequentially formed from the inside of the sphere toward the outside. In this case, referring to FIG. 1 (b), when the volume of the core portion is small or the speed at which the shell diffuses into the core is faster, the alloy layer is diffused to the center portion of the core, and the alloy core-shell Can have the shape of Referring to FIG. 1C, when the shell is thin or the core is diffused faster, the alloy layer is diffused to the outside of the shell to form the core-alloy shell. Can have.

図2は、本発明の球状ナノ結晶構造でそれぞれ当該合金層が均一な合金相を形成せず、物質組成の勾配を有するグラディエント(gradient)構造を示している。   FIG. 2 shows a gradient structure in which the alloy layers do not form a uniform alloy phase and have a material composition gradient in the spherical nanocrystal structure of the present invention.

図3は本発明の一実施形態に係る多層構造の棒状ナノ結晶の構造を示している。図3(a)を参照すると、2次元構造を有する棒状の場合には、長手方向に2種以上の物質が連結されて成長し、第1棒、合金層および第2棒から構成できる。また、図3(b)を参照すると、上記合金層が均質な金層形態ではない物質組成の勾配を有するグラディエント構造の合金層形態に形成されることができる。また、図3(c)を参照すると、棒状の場合でも、長手方向に2種以上の物質が連結されて成長するときに第1棒が短いか第2棒が第1棒に拡散していく速度がさらに速い場合、合金層の拡散が第1棒の端部まで行われて合金棒および第2棒の形で構成できる。   FIG. 3 shows a structure of a multi-layered rod-shaped nanocrystal according to an embodiment of the present invention. Referring to FIG. 3A, in the case of a rod having a two-dimensional structure, two or more kinds of substances are connected and grown in the longitudinal direction, and can be constituted by a first rod, an alloy layer, and a second rod. Referring to FIG. 3B, the alloy layer may be formed in a gradient alloy layer form having a material composition gradient that is not a homogeneous gold layer form. Referring to FIG. 3C, even in the case of a rod shape, when two or more kinds of substances are connected in the longitudinal direction and grown, the first rod is short or the second rod diffuses into the first rod. For higher speeds, the alloy layer can be diffused to the end of the first rod and configured in the form of an alloy rod and a second rod.

図4は本発明の一実施形態に係る多層構造の三脚状ナノ結晶の構造を示している。図4(a)を参照すると、三脚状の場合には順次コアの周囲に第1棒、第2棒および第3棒が構成され、コアと3つの棒との界面に合金層がある構造で構成できる。図4(b)を参照すると、上記合金層が均質な金層形態ではない物質組成の勾配を有するグラディエント構造の合金層形態に形成されることができる。また、厚さ方向に2種以上の物質が連結されて成長するとき、コア棒、合金層およびシェル棒で構成できる。   FIG. 4 shows the structure of a tripod-like nanocrystal having a multilayer structure according to an embodiment of the present invention. Referring to FIG. 4A, in the case of a tripod, the first rod, the second rod, and the third rod are sequentially formed around the core, and an alloy layer is provided at the interface between the core and the three rods. Can be configured. Referring to FIG. 4B, the alloy layer may be formed in an alloy layer form having a gradient structure having a material composition gradient that is not a homogeneous gold layer form. Further, when two or more kinds of substances are connected and grown in the thickness direction, the core bar, the alloy layer, and the shell bar can be used.

図5は本発明の一実施形態に係る多層構造のチューブ状ナノ結晶を示している。図5(a)を参照すると、コア、合金層、シェルがチューブ状に形成されている。図5(b)を参照すると、上記合金層が均質な金層形態ではない物質組成の勾配を有するグラディエント構造の合金層形態に形成されることができる。また、厚さ方向に2種以上の物質が連結されて成長するとき、コア棒の直径が小さいかシェル(外皮)が薄い場合、あるいはシェルとコアのいずれか一方の拡散速度がより速い場合、合金層の拡散によって合金コア棒−シェルの形またはコア棒−合金シェルの形を持つことができる。   FIG. 5 shows a tubular nanocrystal having a multilayer structure according to an embodiment of the present invention. Referring to FIG. 5A, the core, the alloy layer, and the shell are formed in a tube shape. Referring to FIG. 5B, the alloy layer may be formed in an alloy layer form having a gradient structure having a material composition gradient that is not a homogeneous gold layer form. In addition, when two or more kinds of substances are connected and grown in the thickness direction, when the diameter of the core rod is small or the shell (outer skin) is thin, or when the diffusion rate of either the shell or the core is faster, The diffusion of the alloy layer can have an alloy core rod-shell shape or a core rod-alloy shell shape.

より具体的に、図1に示すように、本発明に係る多層構造のナノ結晶は、順次コア、合金層およびシェルから構成されることにより、シェル物質またはコア物質が他方の内部に拡散していくにつれて発光コアの実際サイズが減少しながら発光波長が青色領域に移動するので、大きさが相対的に大きいコアを使用しても青色領域で発光する特性を持つ。また、発光波長の移動は、シェル物質またはコア物質が他方の内部に拡散していくにつれて発光コアの化学的組成が変わるために発生するものと推定される。   More specifically, as shown in FIG. 1, the nanocrystal having a multilayer structure according to the present invention is composed of a core, an alloy layer, and a shell, so that the shell material or the core material diffuses into the other. As the actual size of the light emitting core decreases with time, the emission wavelength shifts to the blue region, so that even if a relatively large core is used, light is emitted in the blue region. In addition, the shift of the emission wavelength is presumed to occur because the chemical composition of the light emitting core changes as the shell material or core material diffuses into the other.

また、シェルとして用いた物質がコアより広いバンドギャップを有する物質の場合、シェルによるパッシベーション(passivation)および量子閉じ込め効果によって青色領域で発光効率が非常に向上した特性を持つ。   In addition, when the material used as the shell has a wider band gap than the core, the light emission efficiency is greatly improved in the blue region due to the passivation and quantum confinement effect by the shell.

一方、コアの周囲に形成された合金層は、コアとシェルとの間に存在する格子定数の差を緩衝するので、物質の安定性を増進させる特性を持つ。   On the other hand, the alloy layer formed around the core buffers the difference in the lattice constant existing between the core and the shell, and thus has the property of enhancing the stability of the material.

本発明に係るナノ結晶を構成する物質は、II−VI族またはIII−V族およびIV−VI族の半導体化合物または前記物質の混合物よりなる群から選択できる。   The substance constituting the nanocrystal according to the present invention can be selected from the group consisting of II-VI or III-V and IV-VI group semiconductor compounds or mixtures of the aforementioned substances.

具体的に、ナノ結晶を構成する物質は、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbS、PbSe、PbTe、AlN、AlP、AlAs、GaN、GaP、GaAs、InN、InP、InAsおよび前記物質の混合物を例として挙げることができる。   Specifically, the materials constituting the nanocrystal are CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, AlN, AlP, AlAs, GaN, GaP, GaAs, InN, Examples include InP, InAs and mixtures of the aforementioned substances.

一方、本発明に係る多層構造のナノ結晶の形状は、球状、正四面体(tetrahedron)状、円筒状、棒状、三角状、円板(disc)状、三脚(tripod)状、テトラポッド(tetrapod)状、立方体(cube)状、ボックス箱(box)状、星(star)状およびチューブ(tube)状よりなる群から選択できるが、これらに限定されるものではない。   Meanwhile, the multilayered nanocrystal according to the present invention has a spherical shape, a tetrahedron shape, a cylindrical shape, a rod shape, a triangular shape, a disc shape, a tripod shape, a tetrapod shape, and a tetrapod shape. ) Shape, cube shape, box shape, star shape, and tube shape, but is not limited thereto.

以下、本発明に係る多層構造のナノ結晶を指すとき、「CdSe//ZnS」で表示する。前記「CdSe//ZnS」の表示は、CdSeナノ結晶とZnSナノ結晶との間に合金層が形成されていることを意味する。   Hereinafter, when referring to a nanocrystal having a multilayer structure according to the present invention, it is indicated by “CdSe // ZnS”. The indication of “CdSe // ZnS” means that an alloy layer is formed between the CdSe nanocrystal and the ZnS nanocrystal.

本発明の他の形態は、多層構造のナノ結晶の製造方法に関するものである。   Another embodiment of the present invention relates to a method for producing a multilayered nanocrystal.

すなわち、本発明の製造方法は、(a)第1ナノ結晶を製造する段階と、(b)前記(a)段階で得られた第1ナノ結晶の表面上に第1ナノ結晶と異なる種類の第2ナノ結晶を成長させる段階と、(c)前記第1ナノ結晶と前記第2ナノ結晶との間の界面に拡散によって合金層を形成する段階とを含む多層構造のナノ結晶の製造方法に関するものである。   That is, the production method of the present invention includes (a) a step of producing a first nanocrystal, and (b) a different kind of the first nanocrystal on the surface of the first nanocrystal obtained in the step (a). A method for producing a nanocrystal having a multilayer structure, comprising: growing a second nanocrystal; and (c) forming an alloy layer by diffusion at an interface between the first nanocrystal and the second nanocrystal. Is.

より具体的に、本発明の製造方法において、前記(a)段階の第1ナノ結晶は、金属前駆体とV族またはVI族前駆体をそれぞれ溶媒および分散剤に仕込んだ後、これらを混合し反応させて形成し、前記(b)段階の第2ナノ結晶は、金属前駆体とV族またはVI族前駆体をそれぞれ溶媒および分散剤に仕込んだ後、これらを混合し反応させて第1ナノ結晶の表面上に成長させる。   More specifically, in the production method of the present invention, the first nanocrystal in the step (a) is prepared by adding a metal precursor and a group V or group VI precursor to a solvent and a dispersant, respectively, and then mixing them. The second nanocrystal in the step (b) is prepared by adding a metal precursor and a group V or VI group precursor to a solvent and a dispersing agent, and then mixing and reacting the first nanocrystal. Grows on the surface of the crystal.

すなわち、金属前駆体とV族またはVI族前駆体をそれぞれ溶媒および分散剤に仕込み、これらを混合し反応させて第1ナノ結晶を形成した後、第2ナノ結晶の前駆体を溶媒および分散剤に仕込んだ溶液に、前記で合成した第1ナノ結晶を入れて反応させると、第1ナノ結晶の表面に第2ナノ結晶が成長し、第1ナノ結晶と第2ナノ結晶との界面に拡散によって合金層が形成される。   That is, a metal precursor and a group V or group VI precursor are charged in a solvent and a dispersant, respectively, mixed and reacted to form a first nanocrystal, and then a second nanocrystal precursor is used as a solvent and a dispersant. When the first nanocrystal synthesized above is put into the solution charged in the reaction and reacted, the second nanocrystal grows on the surface of the first nanocrystal and diffuses to the interface between the first nanocrystal and the second nanocrystal. Thus, an alloy layer is formed.

前記合金層は、前記第1ナノ結晶と前記第2ナノ結晶との界面において第2ナノ結晶を構成する物質が第1ナノ結晶の内部に拡散し、あるいは第1ナノ結晶を構成する物質が第2ナノ結晶の内部に拡散して形成されるが、拡散していく層が減少することにより、第1ナノ結晶と第2ナノ結晶との間に合金層が形成された新しい構造のナノ結晶を製造することができる。前記合金層は、ナノ結晶を構成する物質の間に存在する格子定数の差を緩衝して物質の安定性を増進させる。この際、拡散していく層が減少して完全に無くなることにより、第1ナノ結晶−合金層、合金層−第2ナノ結晶の形を持つこともできる。   In the alloy layer, a substance constituting the second nanocrystal diffuses into the first nanocrystal at the interface between the first nanocrystal and the second nanocrystal, or a substance constituting the first nanocrystal is the first. 2Diffusion is formed inside the nanocrystal, but the number of diffusing layers is reduced, so that a nanocrystal with a new structure in which an alloy layer is formed between the first nanocrystal and the second nanocrystal. Can be manufactured. The alloy layer increases the stability of the material by buffering a difference in lattice constant existing between materials constituting the nanocrystal. At this time, since the diffusing layer is reduced and completely eliminated, the first nanocrystal-alloy layer and the alloy layer-second nanocrystal can be formed.

一方、本発明の製造方法は、前記(b)段階および(c)段階を2回以上繰り返し行うことを含む。すなわち、コア−シェル構造の場合には、前記(b)段階および(c)段階によって製造された多層構造のナノ結晶を再び(b)段階に投入して反応させると、その表面が成長しながら別の層を確保することができ、棒構造の場合には、三脚状またはテトラポッド状に形成できる。   On the other hand, the production method of the present invention includes repeating the steps (b) and (c) two or more times. That is, in the case of the core-shell structure, when the nanocrystal having the multilayer structure manufactured in the steps (b) and (c) is charged again in the step (b) and reacted, the surface grows. Another layer can be secured, and in the case of a rod structure, it can be formed in a tripod or tetrapod shape.

本発明に係る多層構造のナノ結晶の製造方法において、前記(a)および(b)段階の金属前駆体としては、ジメチル亜鉛(dimethyl zinc)、ジエチル亜鉛(diethyl zinc)、酢酸亜鉛(Zinc acetate)、亜鉛アセチルアセトナート(Zinc acetylacetonate)、ヨウ化亜鉛(Zinc iodide)、臭化亜鉛(Zinc bromide)、塩化亜鉛(Zinc chloride)、フッ化亜鉛(Zinc fluoride)、炭酸亜鉛(Zinc carbonate)、シアン化亜鉛(Zinc cyanide)、窒化亜鉛(Zinc nitrate)、酸化亜鉛(Zinc oxide)、過酸化亜鉛(Zinc peroxide)、過塩素酸亜鉛(Zinc perchlorate)、硫酸亜鉛(Zinc sulfate)、ジメチルカドミウム(dimethyl cadmium)、ジエチルカドミウム(diethyl cadmium)、酢酸カドミウム(Cadmium acetate)、カドミウムアセチルアセトナート(Cadmium acetylacetonate)、ヨウ化カドミウム(Cadmium iodide)、臭化カドミウム(Cadmium bromide)、塩化カドミウム(Cadmium chloride)、フッ化カドミウム(Cadmium fluoride)、炭酸カドミウム(Cadmium carbonate)、硝酸カドミウム(Cadmium nitrate)、酸化カドミウム(Cadmium oxide)、過塩素酸カドミウム(Cadmium perchlorate)、リン化カドミウム(Cadmium phosphide)、硫酸カドミウム(Cadmium sulfate)、酢酸水銀(Mercury acetate)、ヨウ化水銀(Mercury iodide)、臭化水銀(Mercury bromide)、塩化水銀(Mercury chloride)、フッ化水銀(Mercury fluoride)、シアン化水銀(Mercury cyanide)、硝酸水銀(Mercury nitrate)、酸化水銀(Mercury oxide)、過塩素酸水銀(Mercury perchlorate)、硫酸水銀(Mercury sulfate)、酢酸鉛(Lead acetate)、臭化鉛(Lead bromide)、塩化鉛(Lead chloride)、フッ化鉛(Lead fluoride)、酸化鉛(Lead oxide)、過塩素酸鉛(Lead perchlorate)、硝酸鉛(Lead nitrate)、硫酸鉛(lead sulfate)、炭酸鉛(Lead carbonate)、酢酸錫(Tin acetate)、錫ビスアセチルアセトナート(Tin bisacetylacetonate)、臭化錫(Tin bromide)、塩化錫(Tin chloride)、フッ化錫(Tin fluoride)、酸化錫(Tin oxide)、硫酸錫(Tin sulfate)、四塩化ゲルマニウム(Germanium tetrachloride)、酸化ゲルマニウム(germanium oxide)、ゲルマニウムエトキシド(germanium ethoxide)、ガリウムアセチルアセトナート(Gallium acetylacetonate)、塩化ガリウム(Gallium chloride)、フッ化ガリウム(Gallium fluoride)、酸化ガリウム(Gallium oxide)、硝酸ガリウム(Gallium nitrate)、硫酸ガリウム(Gallium sulfate)、塩化インジウム(Indium chloride)、酸化インジウム(Indium oxide)、硝酸インジウム(Indium nitrate)および硫酸インジウム(Indium sulfate)を例として挙げることができるが、これらに限定されるものではない。   In the method for producing a multilayered nanocrystal according to the present invention, the metal precursors in the steps (a) and (b) include dimethyl zinc, diethyl zinc, and zinc acetate. , Zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, cyanide, zinc acetate acetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate Zinc (cyanide), zinc nitride (Zinc nitrate), zinc oxide (Zinc oxide), zinc peroxide (Zinc peroxide), zinc perchlorate (Zinc pe) chlorate, zinc sulfate, dimethyl cadmium, diethyl cadmium, cadmium acetate, cadmium acetylacetonate, cadmium acetate, and cadmium acetate Cadmium bromide, cadmium chloride, cadmium fluoride, cadmium carbonate, cadmium nitrate, cadmium oxide, cadmium oxide, cadmium oxide, cadmium oxide, cadmium oxide (Cadmium perchlorate), Cadmium phosphate, Cadmium sulfate, Mercury acetate, Mercury iodide, Mercury bromide chloride Mercury fluoride, Mercury cyanide, Mercury nitrate, Mercury oxide, Mercury perchlorate, Mercury sulfate, Mercury lead acetate acetate), lead bromide ), Lead chloride, lead fluoride, lead oxide, lead perchlorate, lead nitrate, lead sulphate, lead carbonate (lead sulphate), lead sulphate, lead sulphate, lead sulphate Lead carbonate, Tin acetate, Tin bisacetylacetonate, Tin bromide, Tin chloride, Tin fluoride, Tin oxide , Tin sulfate, germanium tetrachloride, germanium oxide Germanium ethoxide, Gallium acetylacetonate, Gallium chloride, Gallium fluoride, Gallium oxide, Gallium nitrate, Gallium nitrate Examples thereof include, but are not limited to, sulfate, indium chloride, indium oxide, indium nitrate, and indium sulfate.

また、本発明に係る多層構造のナノ結晶の製造方法において、前記(a)段階および(b)段階のVI族またはV族元素化合物としては、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、メルカプトプロピルシランなどのアルキルチオール化合物;サルファ−トリオクチルホスフィン(S−TOP)、サルファ−トリブチルホスフィン(S−TBP)、サルファ−トリフェニルホスフィン(S−TPP)、サルファ−トリオクチルアミン(S−TOA)、トリメチルシリルサルファ(trimethylsilyl sulfur)、硫化アンモニウム、硫化ナトリウム、セレン−トリオクチルホスフィン(Se−TOP)、セレン−トリブチルホスフィン(Se−TBP)、セレン−トリフェニルホスフィン(Se−TPP)、テルル−トリオクチルホスフィン(Te− TOP)、テルル−トリブチルホスフィン(Te−TBP)、テルル−トリフェニルホスフィン(Te−TPP)、トリメチルシリルホスフィン(trimethylsilyl phosphine)およびトリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィンを含むアルキルホスフィン(alkyl phosphine)、酸化ヒ素(Arsenic oxide)、塩化ヒ素(Arsenic chloride)、硫酸ヒ素(Arsenic sulfate)、臭化ヒ素(Arsenic bromide)、ヨウ化ヒ素(Arsenic iodide)、酸化窒素(Nitric oxide)、硫酸(Nitric acid)および硝酸アンモニウム(Ammonium nitrate)などを例として挙げることができる。   In the method for producing a multilayered nanocrystal according to the present invention, the group VI or group V element compound in the steps (a) and (b) includes hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecane. Alkyl thiol compounds such as thiol and mercaptopropylsilane; sulfa-trioctylphosphine (S-TOP), sulfa-tributylphosphine (S-TBP), sulfa-triphenylphosphine (S-TPP), sulfa-trioctylamine (S -TOA), trimethylsilylsulfur, ammonium sulfide, sodium sulfide, selenium-trioctylphosphine (Se-TOP), selenium-tributylphosphine (Se-TBP), selenium-tol Phenylphosphine (Se-TPP), tellurium-trioctylphosphine (Te-TOP), tellurium-tributylphosphine (Te-TBP), tellurium-triphenylphosphine (Te-TPP), trimethylsilylphosphine (trimethylsilylphosphine) and triethylphosphine, Alkylphosphine including tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide ), Arsenic iodide, Nitric oxide Nitric Oxide), it may be mentioned as examples such as sulfuric acid (Nitric acid) and ammonium nitrate (Ammonium nitrate).

この際、前駆体の反応性に応じて前駆体の濃度および注入速度を適切に調節することにより、金属が粒子の形で剥離し、あるいは金属とVI族またはV族の元素前駆体とが反応して別途に粒子を形成するなどの副反応が起こらないようにすることが好ましい。   At this time, by appropriately adjusting the concentration and injection rate of the precursor according to the reactivity of the precursor, the metal is separated in the form of particles, or the metal reacts with the group VI or V element precursor. Thus, it is preferable to prevent side reactions such as forming particles separately.

一方、本発明に係る多層構造のナノ結晶の製造方法において、前記(a)段階および(b)段階の溶媒としては、炭素数6〜22の第1級アルキルアミン、炭素数6〜22の第2級アルキルアミン、炭素数6〜22の第3級アルキルアミン、炭素数6〜22の第1級アルコール、炭素数6〜22の第2級アルコール、炭素数6〜22の第3級アルコール、炭素数6〜22のケトンおよびエステル、炭素数6〜22の窒素または硫黄を含んだヘテロ環化合物(heterocyclic compound)、炭素数6〜22のアルカン、炭素数6〜22のアルケン、炭素数6〜22のアルキン、トリオクチルホスフィンおよびトリオクチルホスフィンオキシドを例として挙げることができる。   On the other hand, in the method for producing a multilayered nanocrystal according to the present invention, as the solvent in the steps (a) and (b), a primary alkylamine having 6 to 22 carbon atoms and a solvent having 6 to 22 carbon atoms are used. Secondary alkylamine, tertiary alkylamine having 6 to 22 carbon atoms, primary alcohol having 6 to 22 carbon atoms, secondary alcohol having 6 to 22 carbon atoms, tertiary alcohol having 6 to 22 carbon atoms, C6-C22 ketones and esters, C6-C22 nitrogen or sulfur-containing heterocyclic compounds, C6-C22 alkanes, C6-C22 alkenes, C6-C22 Twenty-two alkynes, trioctylphosphine and trioctylphosphine oxide can be mentioned as examples.

また、本発明に係る多層構造のナノ結晶の製造方法において、前記(a)および(b)段階の分散剤としては、末端にカルボキシル基(COOH基)を有する炭素数6〜22のアルカンまたはアルケン、末端にホスホン基(POOH基)を有する炭素数6〜22のアルカンまたはアルケン、末端にスルホン基(SOOH基)を有する炭素数6〜22のアルカンまたはアルケン、および末端にアミン基(NH基)を有する炭素数6〜22のアルカンまたはアルケンを例として挙げることができる。 In the method for producing a multilayered nanocrystal according to the present invention, as the dispersant in the steps (a) and (b), an alkane or alkene having 6 to 22 carbon atoms having a carboxyl group (COOH group) at the terminal is used. An alkane or alkene having 6 to 22 carbon atoms having a phosphone group (POOH group) at the terminal, an alkane or alkene having 6 to 22 carbon atoms having a sulfone group (SOOH group) at the terminal, and an amine group (NH 2 group at the terminal) As an example, an alkane or alkene having 6 to 22 carbon atoms having) may be used.

具体的に、前記分散剤は、オレイン酸(oleic acid)、ステアリン酸(stearic acid)、パルミチン酸(palmitic acid)、ヘキシルホスホン酸(hexyl phosphonic acid)、n−オクチルホスホン酸(n−octyl phosphonic acid)、テトラデシルホスホン酸(tetradecyl phosphonic acid)、オクタデシルホスホン酸(octadecyl phosphonic acid)、n−オクチルアミン(n−octyl amine)およびヘキサデシルアミン(hexadecyl amine)などを例として挙げることができる。   Specifically, the dispersant may include oleic acid, stearic acid, palmitic acid, hexyl phosphonic acid, n-octyl phosphonic acid. ), Tetradecylphosphonic acid, octadecylphosphonic acid, n-octylamine, hexadecylamine, and the like.

本発明に係る多層構造のナノ結晶の製造方法において、結晶成長を容易にし且つ溶媒の安定性を保障するための前記(a)段階および(b)段階における好ましい反応温度範囲は、それぞれ100℃〜460℃、より好ましくは120℃〜390℃、よりさらに好ましくは150℃〜360℃である。   In the method for producing a multilayered nanocrystal according to the present invention, preferred reaction temperature ranges in the steps (a) and (b) for facilitating crystal growth and ensuring the stability of the solvent are 100 ° C. to It is 460 degreeC, More preferably, it is 120 to 390 degreeC, More preferably, it is 150 to 360 degreeC.

また、本発明に係る多層構造のナノ結晶の製造方法において、反応速度の調節が容易な前記(a)段階および(b)段階における反応時間は、それぞれ好ましくは5秒〜4時間、より好ましくは10秒〜3時間、よりさらに好ましくは20秒〜2時間である。   In the method for producing a multilayered nanocrystal according to the present invention, the reaction time in the step (a) and the step (b) in which the reaction rate can be easily adjusted is preferably 5 seconds to 4 hours, more preferably It is 10 seconds to 3 hours, more preferably 20 seconds to 2 hours.

一方、本発明に係る多層構造のナノ結晶の製造方法において、前記(b)段階で反応温度、反応時間および第2ナノ結晶の金属前駆体物質の濃度を変化させることにより、前記(c)段階における拡散速度を調節することができる。したがって、同じサイズの第1ナノ結晶物質を使用しても、発光波長が異なる物質を得ることができる。同じ原理により、異なるサイズの第1ナノ結晶物質を使用しても、拡散速度を調節することにより、同じ波長で発光する物質を得ることができる。   Meanwhile, in the method for producing a nanocrystal having a multilayer structure according to the present invention, the reaction temperature, the reaction time, and the concentration of the metal precursor material of the second nanocrystal are changed in the step (b). The diffusion rate in can be adjusted. Therefore, even if the first nanocrystal substance having the same size is used, substances having different emission wavelengths can be obtained. According to the same principle, even when the first nanocrystalline material having different sizes is used, a material that emits light at the same wavelength can be obtained by adjusting the diffusion rate.

また、前記(b)段階で反応温度を段階的に変化させることにより、前記(c)段階における拡散速度を調節することにより、同じサイズの第1ナノ結晶物質を使用しても、発光波長の異なる物質を得ることができる。   In addition, by changing the reaction temperature stepwise in the step (b) and adjusting the diffusion rate in the step (c), even if the first nanocrystal substance of the same size is used, the emission wavelength Different materials can be obtained.

一方、本発明に係る前記多層構造のナノ結晶の製造方法において、青色波長で発光効率を増加させるための(b)段階の金属前駆体の濃度は、0.001M〜2Mであることが好ましく、より好ましくは0.1M〜1.6Mである。   Meanwhile, in the method for producing a multilayered nanocrystal according to the present invention, the concentration of the metal precursor in the step (b) for increasing the light emission efficiency at a blue wavelength is preferably 0.001M to 2M, More preferably, it is 0.1M-1.6M.

また、本発明に係る前記多層構造のナノ結晶の製造方法において、青色波長で発光効率を増加させるための(b)段階の金属前駆体に対するVI族またはV族元素のモル比は、VI族またはV族元素:金属前駆体の比が100:1〜1:50であることが好ましく、より好ましくは50:1〜1:10である。   In the method for producing a multilayered nanocrystal according to the present invention, the molar ratio of the group VI or group V element to the metal precursor in the step (b) for increasing the light emission efficiency at a blue wavelength is a group VI or The ratio of group V element: metal precursor is preferably 100: 1 to 1:50, more preferably 50: 1 to 1:10.

本発明の他の形態は、前記製造方法によって製造された多層構造のナノ結晶に関するものである。前記ナノ結晶の形状は、球状、正四面体状、円筒状、棒状、三角状、円板状、三脚状、テトラポッド状、立方体状、箱状、星状およびチューブ状よりなる群から選択できるが、これらに限定されるものではない。   Another embodiment of the present invention relates to a nanocrystal having a multilayer structure manufactured by the manufacturing method. The nanocrystal shape can be selected from the group consisting of spherical, tetrahedral, cylindrical, rod, triangular, disc, tripod, tetrapod, cube, box, star and tube. However, it is not limited to these.

また、前記ナノ結晶の発光領域は、350nm〜700nm、より好ましくは380nm〜490nmであり、前記領域内で最大発光ピークを示しながら青色光を発する。このような青色光を発するナノ結晶の発光効率は、0.1%〜100%、より好ましくは20%〜100%である。   The emission region of the nanocrystal is 350 nm to 700 nm, more preferably 380 nm to 490 nm, and emits blue light while exhibiting the maximum emission peak in the region. The luminous efficiency of such a nanocrystal emitting blue light is 0.1% to 100%, more preferably 20% to 100%.

一方、本発明の多層構造のナノ結晶は、ディスプレイ、センサ、エネルギー分野に様々に応用でき、特に青色発光素子の発光層の形成の際に有用である。   On the other hand, the nanocrystal having a multilayer structure of the present invention can be applied in various fields such as a display, a sensor and an energy field, and is particularly useful for forming a light emitting layer of a blue light emitting element.

すなわち、本発明の他の形態は、多層構造のナノ結晶を含む素子に関するものであり、具体的には、前記多層構造のナノ結晶を発光層に導入した有機無機電気発光素子に関するものである。   That is, another embodiment of the present invention relates to an element including a nanocrystal having a multilayer structure, and specifically relates to an organic / inorganic electroluminescent element in which the nanocrystal having the multilayer structure is introduced into a light emitting layer.

より具体的に、本発明の有機無機電気発光素子の構造は、図6に示すように、基板10、正孔注入電極20、正孔輸送層30、発光層40、電子輸送層50および電子注入電極60を順次含み、前記発光層40が半導体である本発明の多層構造のナノ結晶を含むことを特徴とする。   More specifically, as shown in FIG. 6, the structure of the organic / inorganic electroluminescent device of the present invention includes a substrate 10, a hole injection electrode 20, a hole transport layer 30, a light emitting layer 40, an electron transport layer 50, and an electron injection. The electrode 60 is sequentially included, and the light emitting layer 40 includes a nanocrystal having a multilayer structure of the present invention which is a semiconductor.

必要であれば、本発明では、発光層40と電子輸送層50との間に正孔抑制層70を導入してもよい。   If necessary, in the present invention, a hole suppression layer 70 may be introduced between the light emitting layer 40 and the electron transport layer 50.

本発明の電気発光素子に使用される基板10は、通常用いられる基板を使用することができ、具体的に、透明性、表面平滑性、取扱容易性および防水性に優れたガラス基板または透明プラスチック基板が好ましい。さらに具体的な例としては、ガラス基板、テレフタル酸ポリエチレン基板、ポリカーボネート基板などがある。   As the substrate 10 used in the electroluminescent device of the present invention, a commonly used substrate can be used, and specifically, a glass substrate or transparent plastic excellent in transparency, surface smoothness, ease of handling and waterproofness. A substrate is preferred. More specific examples include a glass substrate, a polyethylene terephthalate substrate, and a polycarbonate substrate.

正孔注入電極20を構成する材料は、伝導性金属またはその酸化物であって、具体的な例としてはITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、ニッケル(Ni)、白金(Pt)、金(Au)、銀(Ag)およびイリジウム(Ir)などを使用することができる。   The material constituting the hole injection electrode 20 is a conductive metal or an oxide thereof, and specific examples thereof include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), nickel (Ni), platinum (Pt ), Gold (Au), silver (Ag), iridium (Ir), and the like.

一方、本発明の正孔輸送層30を構成する材料としては、通常用いられる物質であればいずれも使用することができ、その具体的な例としては、ポリ(3,4−エチレンジオフェン)(PEDOT)/ポリスチレンパラスルフォネート(PSS)、ポリ−N−ビニルカルバゾール(poly−N−vinylcarbazole)誘導体、ポリフェニレンビニレン(polyphenylenevinylene)誘導体、ポリパラフェニレン(polyparaphenylene)誘導体、ポリメタクリレート(polymethaacrylate)誘導体、ポリ(9,9−オクチルフルオレン)(poly(9,9−octylfluorene))誘導体、ポリ(スピロ−フルオレン)(poly(spiro−fluorene))誘導体、およびTPD(N,N’−ビス−(3−メチルフェニル)−N,N’−ビス−(フェニル)−ベンジジン)を含むが、必ずしもこれらに限定されるものではない。本発明において、正孔輸送層の厚さは10〜100nmが好ましい。   On the other hand, as a material constituting the hole transport layer 30 of the present invention, any of the commonly used substances can be used, and specific examples thereof include poly (3,4-ethylenediophene). (PEDOT) / polystyrene parasulfonate (PSS), poly-N-vinylcarbazole derivative, polyphenylene vinylene derivative, polyparaphenylene derivative, polymethacrylate derivative (9,9-octylfluorene) (poly (9,9-octylfluorene)) derivative, poly (spiro-fluorene) (poly (spiro-fluorene)) ) Derivatives, and TPD (N, N'-bis- (3-methylphenyl) -N, N'-bis- (phenyl) -benzidine)), but are not necessarily limited thereto. In the present invention, the thickness of the hole transport layer is preferably 10 to 100 nm.

本発明の電子輸送層50を構成する材料としては、通常用いられる物質を使用することができる。その具体的な例としては、オキサゾール系化合物、イソオキサゾール系化合物、トリアゾール系化合物、イソチアゾール系化合物、オキシジアゾール系化合物、チアジアゾール系化合物、フリレン系化合物、およびトリス(8−ヒドロキシキノリン)−アルミニウム(Alq3)、ビス(2−メチル−8−キノラート)(p−フェニル−フェノラート)アルミニウム(Balq)、ビス(2−メチル−8−キノリナート)(トリフェニルシロキシ)アルミニウム(III)(Salq)などのアルミニウム錯体を挙げることができるが、必ずしもこれらに限定されるものではない。本発明において、電子輸送層の厚さは10〜100nmが好ましい。   As a material constituting the electron transport layer 50 of the present invention, a commonly used substance can be used. Specific examples thereof include oxazole compounds, isoxazole compounds, triazole compounds, isothiazole compounds, oxydiazole compounds, thiadiazole compounds, furylene compounds, and tris (8-hydroxyquinoline) -aluminum. (Alq3), bis (2-methyl-8-quinolate) (p-phenyl-phenolate) aluminum (Balq), bis (2-methyl-8-quinolinato) (triphenylsiloxy) aluminum (III) (Salq), etc. Although aluminum complex can be mentioned, it is not necessarily limited to these. In the present invention, the thickness of the electron transport layer is preferably 10 to 100 nm.

本発明の電子注入電極60を構成する材料は、容易な電子注入のために仕事関数の小さい金属、すなわちI、Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF/Al、BaF/Ca/Al、Al、Mg、Ag:Mg合金などを含むが、必ずしもこれらに限定されるものではない。本発明において、好ましい電子注入電極の厚さは50nm〜300nmである。 The material constituting the electron injection electrode 60 of the present invention is a metal having a small work function for easy electron injection, that is, I, Ca, Ba, Ca / Al, LiF / Ca, LiF / Al, BaF 2 / Al, Including, but not necessarily limited to, BaF 2 / Ca / Al, Al, Mg, Ag: Mg alloy. In the present invention, a preferable thickness of the electron injection electrode is 50 nm to 300 nm.

本発明の正孔抑制層70を構成する材料は、当該技術分野で通常用いられる物質を使用することができる。具体的な例としては、3−(4−ビフェニイル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(TAZ)、2,9−ジメチル−1,10−フェナントロリン(BCP)、フェナントロリン(phenanthrolines)系化合物、イミダゾール系化合物、トリアゾール(triazoles)系化合物、オキサジアゾール(oxadiazoles)系化合物およびアルミニウム錯体などを含むが、必ずしもこれらに限定されるものではない。本発明において、好ましい正孔抑制層の厚さは5〜50nmである。   As a material constituting the hole suppression layer 70 of the present invention, a substance that is usually used in the technical field can be used. Specific examples include 3- (4-biphenyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (TAZ), 2,9-dimethyl-1,10. -It includes, but is not necessarily limited to, phenanthroline (BCP), phenanthroline compounds, imidazole compounds, triazoles compounds, oxadiazoles compounds and aluminum complexes. In the present invention, the preferred hole suppression layer thickness is 5 to 50 nm.

以下、実施例によって本発明をより詳細に説明する。しかしながら、下記の実施例は、本発明を説明するためのもので、本発明を制限するものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are for explaining the present invention and do not limit the present invention.

実施例1.CdSeナノ結晶および多層構造のCdSe//ZnS合成
トリオクチルアミン(Trioctylamine、以下「TOA」という)16g、オクタデシルホスホン酸0.3gおよび酸化カドミウム0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込んだ後、攪拌しながら反応温度を300℃に調節した。
Example 1. Synthesis of CdSe nanocrystals and multilayered CdSe // ZnS After charging 16 g of trioctylamine (hereinafter referred to as “TOA”), 0.3 g of octadecylphosphonic acid and 0.4 mmol of cadmium oxide into a 125 mL reflux condenser flask at the same time The reaction temperature was adjusted to 300 ° C. while stirring.

これとは別に、Se粉末をトリオクチルホスフィン(TOP)に溶解させてSe濃度約2M程度のSe−TOP錯体溶液を作った。前記攪拌されている反応混合物に2M Se−TOP錯体溶液2mLを速い速度で注入し、約2分間反応させた。   Separately, Se powder was dissolved in trioctylphosphine (TOP) to prepare a Se-TOP complex solution having a Se concentration of about 2M. To the stirred reaction mixture, 2 mL of 2M Se-TOP complex solution was injected at a high speed and allowed to react for about 2 minutes.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒(non solvent)としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させてCdSeナノ結晶溶液を合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize a CdSe nanocrystal solution.

TOA8g、オレイン酸0.1gおよび酢酸亜鉛0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。前記で合成したCdSeナノ結晶溶液を反応物に添加した後、S−TOP錯体溶液をゆっくり加えて約1時間反応させることによりCdSeナノ結晶の表面上にZnSナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。   8 g of TOA, 0.1 g of oleic acid and 0.4 mmol of zinc acetate were simultaneously charged into a 125 mL flask equipped with a reflux condenser, and the reaction temperature was adjusted to 300 ° C. while stirring. After adding the CdSe nanocrystal solution synthesized above to the reaction product, the S-TOP complex solution is slowly added and allowed to react for about 1 hour to grow ZnS nanocrystals on the surface of the CdSe nanocrystals and diffuse to the interface. Thus, an alloy layer was formed.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSe//ZnSを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSe // ZnS.

こうして得られたナノ結晶は、365nmUVランプの下で青色にて発光した。本実施例で得たコアCdSeナノ結晶と多層構造のCdSe//ZnSナノ結晶の透過電子顕微鏡写真(TEM)をそれぞれ図7および図8に示し、光励起発光スペクトルを調査して図9に示した。図9に示すように、発光波長の中心はそれぞれ470nm、496nmであった。   The nanocrystals thus obtained emitted blue light under a 365 nm UV lamp. Transmission electron micrographs (TEM) of the core CdSe nanocrystal and the multilayer CdSe // ZnS nanocrystal obtained in this example are shown in FIG. 7 and FIG. 8, respectively, and the photoexcitation emission spectrum was investigated and shown in FIG. . As shown in FIG. 9, the centers of the emission wavelengths were 470 nm and 496 nm, respectively.

実施例2.反応温度による多層構造のCdSe//ZnS合成効果
TOA8g、オレイン酸0.1gおよび酢酸亜鉛0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度をそれぞれ220℃、260℃、300℃および320℃に調節した。実施例1で合成したCdSeナノ結晶溶液を反応物に添加した後、S−TOP錯体溶液をゆっくり加えて約1時間反応させることによりCdSeナノ結晶の表面上にZnSナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。
Example 2 Synthetic effect of CdSe // ZnS with multilayer structure depending on reaction temperature 8 g of TOA, 0.1 g of oleic acid and 0.4 mmol of zinc acetate were charged simultaneously into a 125 mL flask equipped with a reflux condenser, and the reaction temperatures were 220 ° C., 260 ° C., 300 respectively while stirring. Adjusted to ℃ and 320 ℃. After the CdSe nanocrystal solution synthesized in Example 1 was added to the reaction product, the S-TOP complex solution was slowly added and reacted for about 1 hour to grow ZnS nanocrystals on the surface of the CdSe nanocrystals. An alloy layer was formed by diffusion.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSe//ZnSを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSe // ZnS.

コアとして用いたCdSeの発光波長の中心が522nmであり、反応後得られた多層構造のナノ結晶CdSe//ZnSは反応温度によって異なる青色で発光した。反応温度による発光波長の変化を表1にまとめた。   The center of the emission wavelength of CdSe used as the core was 522 nm, and the nanocrystal CdSe // ZnS having a multilayer structure obtained after the reaction emitted light in a blue color different depending on the reaction temperature. Table 1 summarizes changes in the emission wavelength depending on the reaction temperature.

実施例3.反応時間による多層構造のCdSe//ZnS合成効果
TOA8g、オレイン酸0.1gおよび酢酸亜鉛0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。実施例1で合成したCdSeナノ結晶溶液を反応物に添加した後、S−TOP錯体溶液をゆっくり加えてそれぞれ5分、20分、40分、1時間反応させることによりCdSeナノ結晶の表面上にZnSナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。
Example 3 Synthetic effect of CdSe // ZnS having a multilayer structure depending on the reaction time 8 g of TOA, 0.1 g of oleic acid and 0.4 mmol of zinc acetate were charged simultaneously into a 125 mL flask equipped with a reflux condenser, and the reaction temperature was adjusted to 300 ° C. while stirring. After the CdSe nanocrystal solution synthesized in Example 1 was added to the reaction product, the S-TOP complex solution was slowly added and reacted for 5 minutes, 20 minutes, 40 minutes, and 1 hour, respectively, on the surface of the CdSe nanocrystals. ZnS nanocrystals were grown, and an alloy layer was formed by diffusion at the interface.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSe//ZnSを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSe // ZnS.

こうして得られたナノ結晶は、365nmUVランプの下で青色にて発光した。コアとして用いたCdSeの発光波長の中心が496nmであり、こうして得られたナノ結晶は反応時間によって異なる青色で発光した。反応時間による発光波長の変化を表2にまとめた。   The nanocrystals thus obtained emitted blue light under a 365 nm UV lamp. The center of the emission wavelength of CdSe used as the core was 496 nm, and the nanocrystals thus obtained emitted blue light that differed depending on the reaction time. Table 2 summarizes changes in emission wavelength with reaction time.

実施例4.前駆体の濃度によるCdSe//ZnS合成効果
TOA8g、オレイン酸をそれぞれ0.01g、0.05、0.1g、および酢酸亜鉛をそれぞれ0.04mmol、0.2mmol、0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。実施例1で合成したCdSeナノ結晶溶液を反応物に添加した後、S−TOP錯体溶液をゆっくり加えて約30分間反応させることによりCdSeナノ結晶の表面上にZnSナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。
Example 4 CdSe // ZnS synthesis effect by precursor concentration TOA 8g, oleic acid 0.01g, 0.05, 0.1g and zinc acetate 0.04mmol, 0.2mmol, 0.4mmol respectively 125mL reflux at the same time The reaction temperature was adjusted to 300 ° C. while stirring in a flask with a condenser. After the CdSe nanocrystal solution synthesized in Example 1 was added to the reaction product, the S-TOP complex solution was slowly added and reacted for about 30 minutes to grow ZnS nanocrystals on the surface of the CdSe nanocrystals. An alloy layer was formed by diffusion.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSe//ZnSを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSe // ZnS.

コアとして用いたCdSeの発光波長の中心が496nmであり、反応後得られたナノ結晶は前駆体の濃度によって異なる青色で発光した。前駆体の濃度による発光波長の変化を表3にまとめた。   The center of the emission wavelength of CdSe used as the core was 496 nm, and the nanocrystals obtained after the reaction emitted light in blue depending on the concentration of the precursor. Table 3 summarizes changes in emission wavelength depending on the concentration of the precursor.

実施例5.追加反応温度の調節による多層構造のCdSe//ZnS合成
TOA16g、オクタデシルホスホン酸0.3gおよび酸化カドミウム0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。これとは別途に、Se粉末をトリオクチルホスフィン(TOP)に溶解させてSe濃度約2M程度のSe−TOP錯体溶液を作った。前記攪拌されている反応混合物に2M Se−TOP錯体溶液2mLを速い速度で注入し、約2分間反応させた。
Example 5 FIG. Synthesis of multi-layered CdSe // ZnS by adjusting additional reaction temperature TOA (16 g), octadecylphosphonic acid (0.3 g) and cadmium oxide (0.4 mmol) were charged into a 125 mL reflux condenser flask at the same time, and the reaction temperature was adjusted to 300 ° C. with stirring. . Separately, Se powder was dissolved in trioctylphosphine (TOP) to prepare a Se-TOP complex solution having a Se concentration of about 2M. To the stirred reaction mixture, 2 mL of 2M Se-TOP complex solution was injected at a high speed and allowed to react for about 2 minutes.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させてCdSeナノ結晶溶液を合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize a CdSe nanocrystal solution.

TOA8g、オレイン酸0.1gおよび酢酸亜鉛0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を260℃に調節した。前記で合成したCdSeナノ結晶溶液を反応物に添加した後、S−TOP錯体溶液をゆっくり加えて約1時間反応させた。1時間反応後、反応温度をゆっくり増加させて300℃に合わせ、その温度で約1時間反応させてCdSeナノ結晶の表面上にZnSナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。   8 g of TOA, 0.1 g of oleic acid and 0.4 mmol of zinc acetate were charged simultaneously into a 125 mL flask equipped with a reflux condenser, and the reaction temperature was adjusted to 260 ° C. while stirring. After the CdSe nanocrystal solution synthesized above was added to the reaction product, the S-TOP complex solution was slowly added and allowed to react for about 1 hour. After the reaction for 1 hour, the reaction temperature is slowly increased to 300 ° C., and the reaction is performed at that temperature for about 1 hour to grow ZnS nanocrystals on the surface of the CdSe nanocrystals, and an alloy layer is formed at the interface by diffusion. It was.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSe//ZnSを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSe // ZnS.

コアとして用いたCdSe、260℃で1時間反応させて得たナノ結晶、および260℃で1時間反応させ後300℃で1時間反応させて得たナノ結晶の各光励起発光スペクトルを調査して図10に示した。図10に示すように、発光波長の中心はそれぞれ498nm、492nm、466nmであった。   Each photoexcited emission spectrum of CdSe used as a core, a nanocrystal obtained by reacting at 260 ° C. for 1 hour, and a nanocrystal obtained by reacting at 260 ° C. for 1 hour and then reacted at 300 ° C. for 1 hour is shown in FIG. This is shown in FIG. As shown in FIG. 10, the centers of the emission wavelengths were 498 nm, 492 nm, and 466 nm, respectively.

実施例6.多層構造のCdSe//ZnSe合成
TOA8g、オレイン酸0.1gおよび酢酸亜鉛0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。実施例1で合成したCdSeナノ結晶溶液を反応物に添加した後、Se−TOP錯体溶液をゆっくり加えて約1時間反応させることにより、CdSeナノ結晶の表面上にZnSeナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。
Example 6 Synthesis of CdSe // ZnSe with multilayer structure 8 g of TOA, 0.1 g of oleic acid and 0.4 mmol of zinc acetate were charged simultaneously into a 125 mL flask equipped with a reflux condenser, and the reaction temperature was adjusted to 300 ° C. while stirring. After the CdSe nanocrystal solution synthesized in Example 1 was added to the reaction product, the Se-TOP complex solution was slowly added and reacted for about 1 hour to grow ZnSe nanocrystals on the surface of the CdSe nanocrystals. An alloy layer was formed by diffusion at the interface.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSe//ZnSeを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSe // ZnSe.

こうして得られたナノ結晶は、365nmUVランプの下で青色にて発光した。本実施例で得たナノ結晶とコアとして用いたCdSeの各光励起発光スペクトルを調査して図11に示した。図11に示すように、発光波長の中心はそれぞれ472nm、496nmであった。   The nanocrystals thus obtained emitted blue light under a 365 nm UV lamp. Each photoexcitation emission spectrum of the nanocrystal obtained in this example and CdSe used as the core was investigated and shown in FIG. As shown in FIG. 11, the centers of the emission wavelengths were 472 nm and 496 nm, respectively.

実施例7.CdSeSナノ結晶の合成および多層構造のCdSeS//ZnS合成
TOA16g、オレイン酸0.5gおよび酸化カドミウム0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。
Example 7 Synthesis of CdSeS nanocrystals and multilayer CdSeS // ZnS synthesis 16 g of TOA, 0.5 g of oleic acid and 0.4 mmol of cadmium oxide were charged simultaneously into a 125 mL flask equipped with a reflux condenser, and the reaction temperature was adjusted to 300 ° C. with stirring.

これとは別に、Se粉末をトリオクチルホスフィン(TOP)に溶解させてSe濃度約0.25M程度のSe−TOP錯体溶液を作り、S粉末をTOPに溶解させてS濃度約1.0M程度のS−TOP錯体溶液を作った。前記攪拌されている反応混合物にS−TOP錯体溶液0.9mLとSe−TOP錯体溶液0.1mLの混合物を速い速度で注入し、4分間さらに攪拌した。   Separately, Se powder is dissolved in trioctylphosphine (TOP) to form a Se-TOP complex solution having a Se concentration of about 0.25M, and S powder is dissolved in TOP to have an S concentration of about 1.0M. An S-TOP complex solution was made. A mixture of 0.9 mL of S-TOP complex solution and 0.1 mL of Se-TOP complex solution was poured into the stirred reaction mixture at a high speed, and further stirred for 4 minutes.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに1wt%溶液となるように分散させてCdSeSナノ結晶溶液を合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene so as to be a 1 wt% solution to synthesize a CdSeS nanocrystal solution.

TOA8g、オレイン酸0.1gおよび酢酸亜鉛0.4mmolを同時に125mLの還流コンデンサ付きフラスコに仕込み、攪拌しながら反応温度を300℃に調節した。前記で合成したCdSeSナノ結晶溶液を反応物に添加した後、S−TOP錯体溶液をゆっくり加えて約1時間反応させることにより、CdSeSナノ結晶の表面上にZnSナノ結晶を成長させ、その界面に拡散によって合金層を形成させた。   8 g of TOA, 0.1 g of oleic acid and 0.4 mmol of zinc acetate were simultaneously charged into a 125 mL flask equipped with a reflux condenser, and the reaction temperature was adjusted to 300 ° C. while stirring. After the CdSeS nanocrystal solution synthesized above is added to the reaction product, the S-TOP complex solution is slowly added and reacted for about 1 hour to grow ZnS nanocrystals on the surface of the CdSeS nanocrystals. An alloy layer was formed by diffusion.

反応が終結すると、反応混合物の温度をできる限り速く常温に降温し、非溶媒としてのエタノールを加えて遠心分離を行った。遠心分離された沈澱物を除いた溶液の上澄み液は捨て、沈澱物はトルエンに分散させて5nmサイズの多層構造のナノ結晶CdSeS//ZnSを合成した。   When the reaction was completed, the temperature of the reaction mixture was lowered to room temperature as quickly as possible, and ethanol as a non-solvent was added for centrifugation. The supernatant of the solution excluding the centrifuged precipitate was discarded, and the precipitate was dispersed in toluene to synthesize 5 nm-sized multilayered nanocrystalline CdSeS // ZnS.

こうして得られたナノ結晶は、365nmUVランプの下で青色にて発光した。本実施例で得たナノ結晶溶液とコアとして用いたCdSeS溶液の各光励起発光スペクトルを調査して図12に示した。図12に示すように、発光波長の中心はそれぞれ527nm、540nmであった。   The nanocrystals thus obtained emitted blue light under a 365 nm UV lamp. Each photoexcitation emission spectrum of the nanocrystal solution obtained in this example and the CdSeS solution used as the core was investigated and shown in FIG. As shown in FIG. 12, the centers of the emission wavelengths were 527 nm and 540 nm, respectively.

実施例8.青色発光CdSe//ZnSナノ結晶を発光層として用いた有機無機ハイブリッド電気発光素子の製作
本実施例は、実施例1で製造したCdSe//ZnSナノ結晶を電気発光素子の発光素材として用いた有機無機ハイブリッド電気発光素子の製造例である。
Example 8 FIG. Production of organic-inorganic hybrid electroluminescent device using blue light emitting CdSe // ZnS nanocrystal as light emitting layer In this example, organic material using CdSe // ZnS nanocrystal manufactured in Example 1 as a light emitting material of electroluminescent device was used. It is an example of manufacture of an inorganic hybrid electroluminescent element.

ガラス基板上にITOがパターニングされている基板の上部に、正孔伝達物質のN,N’−ビス−(3−メチルフェニル)−N,N’−ビス−(フェニル)−ベンジジン(TPD)3重量%で製造されたクロロホルム溶液と実施例1で製造したCdSe//ZnS1重量%で製造されたクロロホルム溶液とを混合してスピンコートし、これを乾燥させて正孔伝達層と発光層を形成した。   On the top of the substrate on which ITO is patterned on a glass substrate, the hole transport material N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl) -benzidine (TPD) 3 A chloroform solution prepared at weight% and a chloroform solution prepared at 1% by weight of CdSe // ZnS prepared in Example 1 were mixed and spin coated, and dried to form a hole transport layer and a light emitting layer. did.

完全に乾燥させた前記ナノ結晶発光層の上部に正孔抑制層の3−(4−ビフェニイル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(TAZ)を10nm蒸着し、電子輸送層のtris−(8−ヒドロキシキノリン)アルミニウム(Alq-)を30nmの厚さに蒸着し、この上部に厚さ1nmのLiFを蒸着し、さらにアルミニウムを200nmの厚さに蒸着して陰極を形成することにより、電気発光素子を完成した。 The hole-inhibiting layer 3- (4-biphenyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (TAZ) is formed on the nanocrystal light emitting layer that has been completely dried. ) Is evaporated to 10 nm, tris- (8-hydroxyquinoline) aluminum (Alq- 3 ) as an electron transporting layer is evaporated to a thickness of 30 nm, LiF having a thickness of 1 nm is evaporated on top of this, and aluminum is further added to a thickness of 200 nm. An electroluminescent device was completed by forming a cathode by vapor deposition to a thickness.

本実施例で得た有機無機ハイブリッド電気発光素子の構造を図6に示し、前記電気発光素子の電気発光スペクトルを調査して図13に示した。図13に示すように、発光波長は約460nmであり、FWHMは約36nmであり、明度は500Cd/m、装置の効率は1.5Cd/Aであった。 The structure of the organic-inorganic hybrid electroluminescent device obtained in this example is shown in FIG. 6, and the electroluminescent spectrum of the electroluminescent device was investigated and shown in FIG. As shown in FIG. 13, the emission wavelength was about 460 nm, the FWHM was about 36 nm, the brightness was 500 Cd / m 2 , and the efficiency of the device was 1.5 Cd / A.

10 基板、
20 正孔注入電極、
30 正孔輸送層、
40 発光層、
50 電子輸送層、
60 電子注入電極、
70 正孔抑制層。
10 substrates,
20 hole injection electrode,
30 hole transport layer,
40 light emitting layer,
50 electron transport layer,
60 electron injection electrode,
70 Hole suppression layer.

Claims (43)

2種以上の物質からなるナノ結晶において、前記2種以上の物質の合金層を含むことを特徴とする、多層構造のナノ結晶。   A nanocrystal having two or more kinds of materials, comprising an alloy layer of the two or more kinds of materials, and having a multilayer structure. 前記合金層が、2種以上の物質の界面に形成された合金層であることを特徴とする、請求項1に記載のナノ結晶。   The nanocrystal according to claim 1, wherein the alloy layer is an alloy layer formed at an interface between two or more kinds of substances. 前記合金層が、物質組成の勾配を有する合金層であることを特徴とする、請求項1に記載のナノ結晶。   The nanocrystal according to claim 1, wherein the alloy layer is an alloy layer having a material composition gradient. 前記合金層が、2種以上の物質の中で一つが合金層に含まれることを特徴とする、請求項1に記載のナノ結晶。   The nanocrystal according to claim 1, wherein the alloy layer includes one of two or more substances in the alloy layer. 前記合金層が、第1物質が第2物質に拡散して形成されることを特徴とする、請求項1に記載のナノ結晶。   The nanocrystal according to claim 1, wherein the alloy layer is formed by diffusing a first substance into a second substance. 前記合金層が、第2物質が第1物質に拡散して形成されることを特徴とする、請求項1に記載のナノ結晶。   The nanocrystal according to claim 1, wherein the alloy layer is formed by diffusing a second substance into the first substance. 前記ナノ結晶を構成する物質が、II−VI族またはIII−V族およびIV−VI族の半導体化合物およびこれらの混合物よりなる群から選択されることを特徴とする、請求項1に記載のナノ結晶。   2. The nano of claim 1, wherein the material constituting the nanocrystal is selected from the group consisting of II-VI or III-V and IV-VI semiconductor compounds and mixtures thereof. crystal. 前記ナノ結晶を構成する物質が、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbS、PbSe、PbTe、AlN、AlP、AlAs、GaN、GaP、GaAs、InN、InP、InAsおよびこれらの混合物よりなる群から選択されることを特徴とする、請求項1に記載のナノ結晶。   The material constituting the nanocrystal is CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe, AlN, AlP, AlAs, GaN, GaP, GaAs, InN, InP, InAs The nanocrystal according to claim 1, characterized in that it is selected from the group consisting of and mixtures thereof. 前記ナノ結晶の形状が、球状、正四面体状、円筒状、棒状、三角状、円板状、三脚状、テトラポッド状、立方体状、箱状、星状およびチューブ状よりなる群から選択されることを特徴とする、請求項1に記載のナノ結晶。   The shape of the nanocrystal is selected from the group consisting of spherical, tetrahedral, cylindrical, rod, triangular, disc, tripod, tetrapod, cube, box, star and tube. The nanocrystal according to claim 1, wherein: (a)第1ナノ結晶を製造する段階と、
(b)前記(a)段階で得られた第1ナノ結晶の表面上に第1ナノ結晶とは異なる種類の第2ナノ結晶を成長させる段階と、
(c)前記第1ナノ結晶と前記第2ナノ結晶との界面に拡散によって合金層を形成する段階とを含む、多層構造のナノ結晶の製造方法。
(A) producing a first nanocrystal;
(B) growing a second nanocrystal of a type different from the first nanocrystal on the surface of the first nanocrystal obtained in the step (a);
(C) A method for producing a nanocrystal having a multilayer structure, including a step of forming an alloy layer by diffusion at an interface between the first nanocrystal and the second nanocrystal.
前記(b)段階および前記(c)段階を2回以上繰り返し行うことを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the step (b) and the step (c) are repeated twice or more. 前記(a)段階の第1ナノ結晶および前記(b)段階の第2ナノ結晶が、金属前駆体とV族またはVI族前駆体とをそれぞれ溶媒および分散剤に仕込んだ後にこれらを混合し、反応させて形成されることを特徴とする、請求項10に記載の方法。   After the first nanocrystal of the step (a) and the second nanocrystal of the step (b) are charged with a metal precursor and a group V or group VI precursor in a solvent and a dispersant, respectively, The method according to claim 10, wherein the method is formed by reaction. 前記(a)段階において、第1ナノ結晶が、金属前駆体とV族またはVI族前駆体とを第1溶媒および第1分散剤に仕込んだ後にこれらを混合し、反応させて形成され、
前記(b)段階において、第2溶媒および第2分散剤に第2ナノ結晶の前駆体を含む溶液に第1ナノ結晶を仕込んだ後にこれらを混合し、反応させて第1ナノ結晶の表面上に第2ナノ結晶が形成されることを特徴とする、請求項10に記載の方法。
In the step (a), a first nanocrystal is formed by charging a metal precursor and a group V or group VI precursor into a first solvent and a first dispersant, and then mixing and reacting them.
In the step (b), the first nanocrystals are charged into a solution containing the second nanocrystal precursor in the second solvent and the second dispersant, and then mixed and reacted with each other on the surface of the first nanocrystal. The method according to claim 10, wherein second nanocrystals are formed on the surface.
前記合金層が、第1ナノ結晶と第2ナノ結晶との合金からなり前記第1ナノ結晶と前記第2ナノ結晶との界面に形成された合金層であることを特徴とする、請求項10に記載の方法。   The alloy layer is an alloy layer made of an alloy of a first nanocrystal and a second nanocrystal and formed at an interface between the first nanocrystal and the second nanocrystal. The method described in 1. 前記合金層が、物質組成の勾配を有する、前記第1ナノ結晶と前記第2ナノ結晶との合金で形成された合金層であることを特徴とする、請求項10に記載の方法。   11. The method according to claim 10, wherein the alloy layer is an alloy layer formed of an alloy of the first nanocrystal and the second nanocrystal having a material composition gradient. 前記合金層が、前記第2ナノ結晶を構成する物質が前記第1ナノ結晶を構成する物質に拡散して形成されることを特徴にする、請求項10に記載の方法。   The method according to claim 10, wherein the alloy layer is formed by diffusing a material constituting the second nanocrystal into a material constituting the first nanocrystal. 前記第1ナノ結晶を構成する物質が合金層に含まれることを特徴とする、請求項16に記載の方法。   The method according to claim 16, wherein the material constituting the first nanocrystal is included in an alloy layer. 前記合金層が、前記第1ナノ結晶を構成する物質が前記第2ナノ結晶を構成する物質に拡散して形成されることを特徴とする、請求項10に記載の方法。   The method of claim 10, wherein the alloy layer is formed by diffusing a material constituting the first nanocrystal into a material constituting the second nanocrystal. 第2ナノ結晶を構成する物質が合金層に含まれることを特徴とする、請求項18に記載の方法。   The method according to claim 18, wherein the material constituting the second nanocrystal is included in the alloy layer. 前記金属前駆体が、ジメチル亜鉛、ジエチル亜鉛、酢酸亜鉛、亜鉛アセチルアセトナート、ヨウ化亜鉛、臭化亜鉛、塩化亜鉛、フッ化亜鉛、炭酸亜鉛、シアン化亜鉛、窒化亜鉛、酸化亜鉛、過酸化亜鉛、過塩素酸亜鉛、硫酸亜鉛、ジメチルカドミウム、ジエチルカドミウム、酢酸カドミウム、カドミウムアセチルアセトナート、ヨウ化カドミウム、臭化カドミウム、塩化カドミウム、フッ化カドミウム、炭酸カドミウム、硝酸カドミウム、酸化カドミウム、過塩素酸カドミウム、リン化カドミウム、硫酸カドミウム、酢酸水銀、ヨウ化水銀、臭化水銀、塩化水銀、フッ化水銀、シアン化水銀、硝酸水銀、酸化水銀、過塩素酸水銀、硫酸水銀、酢酸鉛、臭化鉛、塩化鉛、フッ化鉛、酸化鉛、過塩素酸鉛、硝酸鉛、硫酸鉛、炭酸鉛、酢酸錫、錫ビスアセチルアセトナート、臭化錫、塩化錫、フッ化錫、酸化錫、硫酸錫、四塩化ゲルマニウム、酸化ゲルマニウム、ゲルマニウムエトキシド、ガリウムアセチルアセトナート、塩化ガリウム、フッ化ガリウム、酸化ガリウム、硝酸ガリウム、硫酸ガリウム、塩化インジウム、酸化インジウム、硝酸インジウムおよび硫酸インジウムよりなる群から選択されることを特徴とする、請求項12に記載の方法。   The metal precursor is dimethyl zinc, diethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, zinc nitride, zinc oxide, peroxide. Zinc, zinc perchlorate, zinc sulfate, dimethyl cadmium, diethyl cadmium, cadmium acetate, cadmium acetylacetonate, cadmium iodide, cadmium bromide, cadmium chloride, cadmium fluoride, cadmium carbonate, cadmium nitrate, cadmium oxide, perchlorine Cadmium acid, cadmium phosphide, cadmium sulfate, mercuric acetate, mercuric iodide, mercuric bromide, mercuric chloride, mercuric fluoride, mercuric cyanide, mercuric nitrate, mercuric oxide, mercuric perchlorate, mercuric sulfate, lead acetate, odor Lead chloride, lead chloride, lead fluoride, lead oxide, lead perchlorate, lead nitrate, lead sulfate, lead carbonate, tin acetate, tin bi Acetylacetonate, tin bromide, tin chloride, tin fluoride, tin oxide, tin sulfate, germanium tetrachloride, germanium oxide, germanium ethoxide, gallium acetylacetonate, gallium chloride, gallium fluoride, gallium oxide, gallium nitrate, 13. A method according to claim 12, characterized in that it is selected from the group consisting of gallium sulfate, indium chloride, indium oxide, indium nitrate and indium sulfate. 前記VI族またはV族元素化合物が、ヘキサンチオール、オクタンチオール、デカンチオール、ドデカンチオール、ヘキサデカンチオール、メルカプトプロピルシランからなるアルキルチオール化合物;サルファ−トリオクチルホスフィン(S−TOP)、サルファ−トリブチルホスフィン(S−TBP)、サルファ−トリフェニルホスフィン(S−TPP)、サルファ−トリオクチルアミン(S−TOA)、トリメチルシリルサルファ、硫化アンモニウム、硫化ナトリウム、セレン−トリオクチルホスフィン(Se−TOP)、セレン−トリブチルホスフィン(Se−TBP)、セレン−トリフェニルホスフィン(Se−TPP)、テルル−トリオクチルホスフィン(Te−TOP)、テルル−トリブチルホスフィン(Te−TBP)、テルル−トリフェニルホスフィン(Te−TPP)、トリメチルシリルホスフィンおよびトリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィンからなるアルキルホスフィン、酸化ヒ素、塩化ヒ素、硫酸ヒ素、臭化ヒ素、ヨウ化ヒ素、酸化窒素、硫酸および硝酸アンモニウムよりなる群から選択されることを特徴とする、請求項12に記載の方法。   The group VI or V element compound is an alkylthiol compound comprising hexanethiol, octanethiol, decanethiol, dodecanethiol, hexadecanethiol, mercaptopropylsilane; sulfur-trioctylphosphine (S-TOP), sulfur-tributylphosphine ( S-TBP), sulfa-triphenylphosphine (S-TPP), sulfa-trioctylamine (S-TOA), trimethylsilylsulfur, ammonium sulfide, sodium sulfide, selenium-trioctylphosphine (Se-TOP), selenium-tributyl Phosphine (Se-TBP), Selenium-triphenylphosphine (Se-TPP), Tellurium-trioctylphosphine (Te-TOP), Tellurium-tributylphosphine (Te-TBP), Te Alkylphosphine composed of ru-triphenylphosphine (Te-TPP), trimethylsilylphosphine and triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, arsenic oxide, arsenic chloride, arsenic sulfate, arsenic bromide, iodine 13. A method according to claim 12, characterized in that it is selected from the group consisting of arsenic nitrite, nitric oxide, sulfuric acid and ammonium nitrate. 前記溶媒が、炭素数6〜22の第1級アルキルアミン、炭素数6〜22の第2級アルキルアミン、炭素数6〜22の第3級アルキルアミン、炭素数6〜22の第1級アルコール、炭素数6〜22の第2級アルコール、炭素数6〜22の第3級アルコール、炭素数6〜22のケトンおよびエステル、炭素数6〜22の窒素または硫黄を含んだヘテロ環化合物、炭素数6〜22のアルカン、炭素数6〜22のアルケン、炭素数6〜22のアルキン、トリオクチルホスフィンおよびトリオクチルホスフィンオキシドよりなる群から選択されることを特徴とする、請求項12に記載の方法。   The solvent is a primary alkylamine having 6 to 22 carbon atoms, a secondary alkylamine having 6 to 22 carbon atoms, a tertiary alkylamine having 6 to 22 carbon atoms, or a primary alcohol having 6 to 22 carbon atoms. , Secondary alcohol having 6 to 22 carbon atoms, tertiary alcohol having 6 to 22 carbon atoms, ketone and ester having 6 to 22 carbon atoms, heterocyclic compound containing nitrogen or sulfur having 6 to 22 carbon atoms, carbon The alkane having 6 to 22 carbon atoms, the alkene having 6 to 22 carbon atoms, the alkyne having 6 to 22 carbon atoms, trioctylphosphine, and trioctylphosphine oxide. Method. 前記分散剤が、末端にカルボキシル基を有する炭素数6〜22のアルカンまたはアルケン、末端にホスホン酸基を有する炭素数6〜22のアルカンまたはアルケン、末端にスルホン酸基を有する炭素数6〜22のアルカンまたはアルケン、および末端にアミン基を有する炭素数6〜22のアルカンまたはアルケンよりなる群から選択されることを特徴とする、請求項12に記載の方法。   The dispersant is an alkane or alkene having 6 to 22 carbon atoms having a carboxyl group at the terminal, an alkane or alkene having 6 to 22 carbon atoms having a phosphonic acid group at the terminal, and a 6 to 22 carbon atoms having a sulfonic acid group at the terminal. The method according to claim 12, wherein the alkane or alkene is selected from the group consisting of an alkane or alkene having 6 to 22 carbon atoms having an amine group at a terminal thereof. 前記分散剤が、オレイン酸、ステアリン酸、パルミチン酸、ヘキシルホスホン酸、n−オクチルホスホン酸、テトラデシルホスホン酸、オクタデシルホスホン酸、n−オクチルアミンおよびヘキサデシルアミンよりなる群から選択されることを特徴とする、請求項12に記載の方法。   The dispersant is selected from the group consisting of oleic acid, stearic acid, palmitic acid, hexylphosphonic acid, n-octylphosphonic acid, tetradecylphosphonic acid, octadecylphosphonic acid, n-octylamine and hexadecylamine; 13. A method according to claim 12, characterized. 前記(a)段階および前記(b)段階の反応温度がそれぞれ100℃〜460℃であることを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the reaction temperature of the step (a) and the step (b) is 100 ° C to 460 ° C, respectively. 前記(a)段階および前記(b)段階の反応時間がそれぞれ5秒〜4時間であることを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the reaction time of the step (a) and the step (b) is 5 seconds to 4 hours, respectively. 前記(b)段階の反応温度を段階的に上昇または下降させることを特徴とする、請求項10に記載の方法。   The method according to claim 10, wherein the reaction temperature of the step (b) is increased or decreased stepwise. 前記(b)段階の金属前駆体の濃度が0.001M〜2Mであることを特徴とする、請求項10に記載の方法。   The method of claim 10, wherein the concentration of the metal precursor in the step (b) is 0.001M to 2M. 前記(b)段階の金属前駆体に対するVI族またはV族元素のモル比が100:1〜1:50(VI族またはV族元素:金属前駆体)であることを特徴とする、請求項10に記載の方法。   The molar ratio of the group VI or group V element to the metal precursor in the step (b) is 100: 1 to 1:50 (group VI or group V element: metal precursor). The method described in 1. 請求項10に記載の方法で製造した多層構造のナノ結晶。   A nanocrystal having a multilayer structure produced by the method according to claim 10. 前記ナノ結晶の形状が、球状、正四面体状、円筒状、棒状、三角状、円板状、三脚状、テトラポッド状、立方体状、箱状、星状およびチューブ状よりなる群から選択されることを特徴とする、請求項30に記載のナノ結晶。   The shape of the nanocrystal is selected from the group consisting of spherical, tetrahedral, cylindrical, rod, triangular, disc, tripod, tetrapod, cube, box, star and tube. 31. Nanocrystal according to claim 30, characterized in that 最大発光ピークが350nm〜700nmであり、発光効率が0.1%〜100%であることを特徴とする、請求項30に記載のナノ結晶。   31. The nanocrystal according to claim 30, wherein the maximum emission peak is 350 nm to 700 nm, and the light emission efficiency is 0.1% to 100%. 請求項30に記載の多層構造のナノ結晶を含む素子。   31. A device comprising a multilayered nanocrystal according to claim 30. 前記素子が有機無機ハイブリッド電気発光素子であることを特徴とする、請求項33に記載の素子。   The device according to claim 33, wherein the device is an organic-inorganic hybrid electroluminescent device. 前記有機無機ハイブリッド電気発光素子が、(i)基板、(ii)正孔注入電極、(iii)正孔輸送層および発光層、(iv)電子輸送層および(v)電子注入電極を順次含み、前記発光層が半導体である前記多層構造のナノ結晶を含むことを特徴とする、請求項34に記載の素子。   The organic-inorganic hybrid electroluminescent device comprises (i) a substrate, (ii) a hole injection electrode, (iii) a hole transport layer and a light emitting layer, (iv) an electron transport layer and (v) an electron injection electrode, in this order. 35. The device of claim 34, wherein the light emitting layer includes the multilayered nanocrystal that is a semiconductor. 前記有機無機ハイブリッド電気発光素子が、(i)基板、(ii)正孔注入電極、(iii)正孔輸送層、(iv)発光層、(v)電子輸送層および(vi)電子注入電極を順次含み、前記発光層が半導体である前記多層構造のナノ結晶を含むことを特徴とする、請求項34に記載の素子。   The organic-inorganic hybrid electroluminescent device comprises (i) a substrate, (ii) a hole injection electrode, (iii) a hole transport layer, (iv) a light emission layer, (v) an electron transport layer, and (vi) an electron injection electrode. The device of claim 34, wherein the device includes the multi-layered nanocrystal that is sequentially included and the light emitting layer is a semiconductor. 前記発光層と前記電子輸送層との間に正孔抑制層をさらに含むことを特徴とする、請求項36に記載の素子。   37. The device of claim 36, further comprising a hole suppression layer between the light emitting layer and the electron transport layer. 前記基板が、ガラス基板、テレフタル酸ポリエチレン基板、ポリカーボネート基板よりなることを特徴とする、請求項35または36に記載の素子。   37. The element according to claim 35 or 36, wherein the substrate comprises a glass substrate, a polyethylene terephthalate substrate, or a polycarbonate substrate. 前記正孔注入電極を構成する材料が、ITO、IZO、ニッケル、白金、金、銀、イリジウムからなる伝導性金属およびこれらの酸化物よりなる群から選択されることを特徴とする、請求項35または36に記載の素子。   The material constituting the hole injection electrode is selected from the group consisting of conductive metals made of ITO, IZO, nickel, platinum, gold, silver, iridium and oxides thereof. Or the device according to 36. 前記正孔輸送層を構成する材料が、ポリ(3,4−エチレンジオフェン)(PEDOT)/ポリスチレンパラスルフォネート(PSS)、ポリ−N−ビニルカルバゾール誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリメタクリレート誘導体、ポリ(9,9−オクチルフルオレン)誘導体、ポリ(スピロ−フルオレン)誘導体およびTPD(N,N’−ビス−(3−メチルフェニル)−N,N’−ビス−(フェニル)−ベンジジン)よりなる群から選択されることを特徴とする、請求項35または36に記載の素子。   The material constituting the hole transport layer is poly (3,4-ethylenediophene) (PEDOT) / polystyrene parasulfonate (PSS), poly-N-vinylcarbazole derivative, polyphenylene vinylene derivative, polyparaphenylene derivative, Polymethacrylate derivatives, poly (9,9-octylfluorene) derivatives, poly (spiro-fluorene) derivatives and TPD (N, N′-bis- (3-methylphenyl) -N, N′-bis- (phenyl)- 37. Device according to claim 35 or 36, characterized in that it is selected from the group consisting of benzidine. 前記電子輸送層を構成する材料が、オキサゾール系化合物、イソオキサゾール系化合物、トリアゾール系化合物、イソチアゾール系化合物、オキシジアゾール系化合物、チアジアゾール系化合物、フリレン系化合物、およびトリス(8−ヒドロキシキノリン)−アルミニウム(Alq3)、ビス(2−メチル−8−キノラート)(p−フェニル−フェノラート)アルミニウム(Balq)、ビス(2−メチル−8−キノリナート)(トリフェニルシロキシ)アルミニウム(III)(Salq)からなるアルミニウム錯体よりなる群から選択されることを特徴とする、請求項35または36に記載の素子。   The material constituting the electron transport layer is an oxazole compound, an isoxazole compound, a triazole compound, an isothiazole compound, an oxydiazole compound, a thiadiazole compound, a furylene compound, or tris (8-hydroxyquinoline). -Aluminum (Alq3), bis (2-methyl-8-quinolate) (p-phenyl-phenolate) aluminum (Balq), bis (2-methyl-8-quinolinato) (triphenylsiloxy) aluminum (III) (Salq) 37. Device according to claim 35 or 36, characterized in that it is selected from the group consisting of aluminum complexes consisting of 前記電子注入電極を構成する材料が、I、Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF/Al、BaF/Ca/Al、Al、Mg、Ag:Mg合金よりなる群から選択されることを特徴とする、請求項35または36に記載の素子。 The material constituting the electron injection electrode is made of I, Ca, Ba, Ca / Al, LiF / Ca, LiF / Al, BaF 2 / Al, BaF 2 / Ca / Al, Al, Mg, Ag: Mg alloy. 37. Device according to claim 35 or 36, characterized in that it is selected from the group. 前記正孔抑制層を構成する材料が、3−(4−ビフェニイル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(TAZ)、2,9−ジメチル−1,10−フェナントロリン(BCP)、フェナントロリン系化合物、イミダゾール系化合物、トリアゾール系化合物、オキサジアゾール系化合物およびアルミニウム錯体よりなる群から選択されることを特徴とする、請求項37に記載の素子。   The material constituting the hole-inhibiting layer is 3- (4-biphenyl) -4-phenyl-5- (4-tert-butylphenyl) -1,2,4-triazole (TAZ), 2,9-dimethyl. 38. The device according to claim 37, wherein the device is selected from the group consisting of -1,10-phenanthroline (BCP), a phenanthroline compound, an imidazole compound, a triazole compound, an oxadiazole compound, and an aluminum complex. .
JP2011149538A 2004-11-11 2011-07-05 Multi-layered nanocrystal and method for producing the same Active JP5602104B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20040091894 2004-11-11
KR10-2004-0091894 2004-11-11
KR1020050079284A KR100722086B1 (en) 2004-11-11 2005-08-29 Interfused Nanocrystals and Method of Preparing Thereof
KR10-2005-0079284 2005-08-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005322668A Division JP4800006B2 (en) 2004-11-11 2005-11-07 Multi-layered nanocrystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011256106A true JP2011256106A (en) 2011-12-22
JP5602104B2 JP5602104B2 (en) 2014-10-08

Family

ID=37150035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149538A Active JP5602104B2 (en) 2004-11-11 2011-07-05 Multi-layered nanocrystal and method for producing the same

Country Status (2)

Country Link
JP (1) JP5602104B2 (en)
KR (1) KR100722086B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157495A1 (en) * 2012-04-20 2013-10-24 コニカミノルタ株式会社 Organic electroluminescence element and production method for organic electroluminescence element
JP2016037438A (en) * 2014-08-12 2016-03-22 株式会社トクヤマ Aluminum nitride-based particle and manufacturing method therefor
CN108699434A (en) * 2016-01-19 2018-10-23 纳米***公司 INP quantum dots and its manufacturing method with GaP and AlP shells
WO2019160165A1 (en) * 2018-02-13 2019-08-22 株式会社村田製作所 Magnetic structure
CN111162187A (en) * 2019-12-31 2020-05-15 广东聚华印刷显示技术有限公司 Double-heterojunction nanorod, preparation method thereof and light-emitting diode

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159853B1 (en) * 2005-09-12 2012-06-25 삼성전기주식회사 Method of Preparing the Multishell Nanocrystals and the Multishell Nanocrystals obtained using the Same
KR100841186B1 (en) * 2007-03-26 2008-06-24 삼성전자주식회사 Multi shell nanocrystals and preparation method thereof
KR101462658B1 (en) 2008-12-19 2014-11-17 삼성전자 주식회사 Semiconductor Nanocrystal and Preparation Method thereof
WO2013040365A2 (en) * 2011-09-16 2013-03-21 Massachusetts Institute Of Technology Highly luminescent semiconductor nanocrystals
KR102047743B1 (en) * 2012-11-27 2019-11-25 엘지디스플레이 주식회사 Core/shell quantum rod
KR101462005B1 (en) * 2012-12-04 2014-11-19 서울대학교산학협력단 Nanocrystals, method for preparation thereof, devices comprising the same
WO2014104713A1 (en) * 2012-12-24 2014-07-03 주식회사 노마디엔 Gold-finished magnetic microsphere
KR101473329B1 (en) * 2013-06-03 2014-12-16 한국화학연구원 Luminescent core-shell nanoparticles including zinc-silver-indium-sulfide core and shell surrounding the core, and the method for manufacturing thereof
KR101519970B1 (en) * 2013-07-23 2015-05-14 서강대학교산학협력단 Method for preparing dendrimer-type metal nanostructure at liquid and liquid interface and Dendrimer-type metal nanostructure prepared thereby
KR102164628B1 (en) 2013-08-05 2020-10-13 삼성전자주식회사 Processes for synthesizing nanocrystals
EP3511395B1 (en) 2018-01-11 2020-05-13 Samsung Electronics Co., Ltd. Quantum dot and electronic device including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523758A (en) * 1997-11-13 2001-11-27 マサチューセッツ インスティテュート オブ テクノロジー High Emission Color-Selected Materials
JP2003055703A (en) * 2001-08-16 2003-02-26 Korea Advanced Inst Of Sci Technol Method for producing metallic nanoparticle with core shell structure and mixed alloy structure using substitution reaction between metals and its application
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
JP2004509475A (en) * 2000-09-14 2004-03-25 イースム、リサーチ、デベロプメント、カンパニー、オブ、ザ、ヘブライ、ユニバーシティー、オブ、イエルサレム Semiconductor nanocrystal materials and their uses
WO2004054923A1 (en) * 2002-12-16 2004-07-01 Agency For Science, Technology And Research Ternary and quaternary nanocrystals, processes for their production and uses thereof
JP2004303592A (en) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp Electroluminescent element and manufacturing method of the same
JP2007514133A (en) * 2003-05-07 2007-05-31 インディアナ ユニヴァーシティ リサーチ アンド テクノロジー コーポレイション Alloyed semiconductor quantum dots and alloyed concentration gradient quantum dots, series comprising these quantum dots, and methods relating thereto

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344272B1 (en) 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
US7560160B2 (en) 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US6972046B2 (en) 2003-01-13 2005-12-06 International Business Machines Corporation Process of forming magnetic nanocomposites via nanoparticle self-assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523758A (en) * 1997-11-13 2001-11-27 マサチューセッツ インスティテュート オブ テクノロジー High Emission Color-Selected Materials
JP2004509475A (en) * 2000-09-14 2004-03-25 イースム、リサーチ、デベロプメント、カンパニー、オブ、ザ、ヘブライ、ユニバーシティー、オブ、イエルサレム Semiconductor nanocrystal materials and their uses
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
JP2003055703A (en) * 2001-08-16 2003-02-26 Korea Advanced Inst Of Sci Technol Method for producing metallic nanoparticle with core shell structure and mixed alloy structure using substitution reaction between metals and its application
WO2004054923A1 (en) * 2002-12-16 2004-07-01 Agency For Science, Technology And Research Ternary and quaternary nanocrystals, processes for their production and uses thereof
JP2004303592A (en) * 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp Electroluminescent element and manufacturing method of the same
JP2007514133A (en) * 2003-05-07 2007-05-31 インディアナ ユニヴァーシティ リサーチ アンド テクノロジー コーポレイション Alloyed semiconductor quantum dots and alloyed concentration gradient quantum dots, series comprising these quantum dots, and methods relating thereto

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157495A1 (en) * 2012-04-20 2013-10-24 コニカミノルタ株式会社 Organic electroluminescence element and production method for organic electroluminescence element
JPWO2013157495A1 (en) * 2012-04-20 2015-12-21 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP2016037438A (en) * 2014-08-12 2016-03-22 株式会社トクヤマ Aluminum nitride-based particle and manufacturing method therefor
CN108699434A (en) * 2016-01-19 2018-10-23 纳米***公司 INP quantum dots and its manufacturing method with GaP and AlP shells
JP2019504811A (en) * 2016-01-19 2019-02-21 ナノシス・インク. InP quantum dots having GaP and AlP shells and method for producing the same
WO2019160165A1 (en) * 2018-02-13 2019-08-22 株式会社村田製作所 Magnetic structure
CN111712339A (en) * 2018-02-13 2020-09-25 株式会社村田制作所 Magnetic structure
JPWO2019160165A1 (en) * 2018-02-13 2021-02-04 株式会社村田製作所 Magnetic structure
US11862371B2 (en) 2018-02-13 2024-01-02 Murata Manufacturing Co., Ltd. Magnetic structural body
CN111162187A (en) * 2019-12-31 2020-05-15 广东聚华印刷显示技术有限公司 Double-heterojunction nanorod, preparation method thereof and light-emitting diode

Also Published As

Publication number Publication date
KR100722086B1 (en) 2007-05-25
KR20060050750A (en) 2006-05-19
JP5602104B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP4800006B2 (en) Multi-layered nanocrystal and method for producing the same
JP5602104B2 (en) Multi-layered nanocrystal and method for producing the same
US10577716B2 (en) Multilayer nanocrystal structure and method for producing the same
JP5416359B2 (en) Nanocrystal, method for producing the same, and electronic device including the same
KR100621308B1 (en) Method of preparing cadmium sulfide nano crystal emitting light at multiple wavelengths and the cadmium sulfide nano crystal prepared by the method
JP4933723B2 (en) SEMICONDUCTOR CRYSTAL CRYSTAL, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT ELEMENT
US7651674B2 (en) Method for manufacturing metal sulfide nanocrystals using thiol compound as sulfur precursor
US10202545B2 (en) Interfused nanocrystals and method of preparing the same
JP2007077010A (en) Multilayer shell nanocrystal and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5602104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250