JP2011251329A - High-temperature lead-free solder paste - Google Patents

High-temperature lead-free solder paste Download PDF

Info

Publication number
JP2011251329A
JP2011251329A JP2010128436A JP2010128436A JP2011251329A JP 2011251329 A JP2011251329 A JP 2011251329A JP 2010128436 A JP2010128436 A JP 2010128436A JP 2010128436 A JP2010128436 A JP 2010128436A JP 2011251329 A JP2011251329 A JP 2011251329A
Authority
JP
Japan
Prior art keywords
powder
mass
solder
alloy
solder paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010128436A
Other languages
Japanese (ja)
Inventor
Hironao Minami
浩尚 南
Takashi Izeki
隆士 井関
Juichi Shimizu
寿一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010128436A priority Critical patent/JP2011251329A/en
Publication of JP2011251329A publication Critical patent/JP2011251329A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Bi-based high-temperature lead-free solder paste having high heat conductivity, capable of ensuring high soldering reliability, and suitable for die-bonding or the like of a power semi-conductor element.SOLUTION: The Bi-based high-temperature lead-free solder paste is composed of at least one kind of Bi solder powder selected among Bi powder and Bi alloy powder, Cu metal powder, and the balance flux. The Cu metal powder is composed of at least one kind of Cu powder having purity of ≥97.5 mass%, and the average grain size of 1-80 μm, and covered Cu powder having a film of the film thickness of ≤1 μm composed of at least one element of Ag, Au and Ni on the surface of Cu powder. The total amount of Cu metal powder is 8-60 mass% when the total amount of Cu metal powder and Bi solder powder is defined as 100 mass%.

Description

本発明は、パワー半導体素子のダイボンディング等に用いられる高温鉛フリーはんだペーストに関する。   The present invention relates to a high-temperature lead-free solder paste used for die bonding of power semiconductor elements.

パワー半導体素子のダイボンディングや各種電子部品の組立て等に用いるはんだ材料には、被接合材に対する濡れ性等の通常のはんだ材料に要求される特性に加えて、1)380℃程度以下の温度ではんだ付けが可能なこと、2)はんだ付けした部品をプリント基板へ実装する際に240℃程度の温度で再溶融しないこと、3)はんだ接合部の信頼性が確保できること、即ち比較的高温の使用環境下において接合部の劣化が生じないこと等の性能が要求される。   Solder materials used for die bonding of power semiconductor elements, assembly of various electronic components, etc., in addition to the properties required for ordinary solder materials such as wettability to the material to be joined, 1) at a temperature of about 380 ° C. or lower 2) Soldering is possible, 2) Soldered parts are not re-melted at a temperature of about 240 ° C. when mounted on a printed circuit board, and 3) Reliability of solder joints can be ensured, that is, use at a relatively high temperature. Performance such as no deterioration of the joints under the environment is required.

これらの性能を有するはんだ材料として、パワー半導体素子のダイボンディング等の用途には、従来からPb−5質量%Snに代表される高温はんだが使用されている。しかし、近年では環境汚染防止への配慮から、はんだ材料で使用されている鉛を排除しようとする活動がなされ、鉛を含まない、いわゆる鉛フリーはんだの開発が進められている。   As a solder material having these performances, high-temperature solder represented by Pb-5 mass% Sn has been conventionally used for applications such as die bonding of power semiconductor elements. However, in recent years, from the viewpoint of prevention of environmental pollution, there has been an effort to eliminate lead used in solder materials, and so-called lead-free solder that does not contain lead has been developed.

その結果、プリント基板への実装に用いられるSn−40質量%Pbはんだについては、Sn−Ag−Cuはんだに代表される低温鉛フリーはんだが開発され、既に代替が進みつつある。一方、高温はんだの領域においては、上記1)〜3)の全ての条件を満足するような好適な材料が見出されておらず、鉛系はんだから鉛フリーはんだへの代替がほとんど進んでいないのが現状である。   As a result, low-temperature lead-free solder represented by Sn-Ag-Cu solder has been developed for Sn-40 mass% Pb solder used for mounting on a printed circuit board, and substitution is already progressing. On the other hand, no suitable material that satisfies all the above conditions 1) to 3) has been found in the region of high-temperature solder, and the substitution from lead-based solder to lead-free solder has hardly progressed. is the current situation.

例えば、特許文献1には、高温鉛フリーはんだとしてBi合金を用いることが提案されている。しかし、Bi合金には、(イ)加工性が低く、ワイヤーやシート等の形状に加工することが難しい、(ロ)脆いため、接合部に発生する熱応力等の影響で接合部の信頼性が確保しにくい、(ハ)熱伝導性が低いため、特にパワー半導体のダイボンディングに用いる場合、素子から発生する熱を十分に放熱できず、素子自身や接合部の信頼性が確保できない等の課題があり、そのため特許文献1のBi合金も必ずしも満足できるものではない。   For example, Patent Document 1 proposes using a Bi alloy as high-temperature lead-free solder. However, Bi alloys (i) have low processability and are difficult to be processed into shapes such as wires and sheets. (B) Since they are brittle, the reliability of the joints is affected by the effects of thermal stress generated at the joints. (C) Low thermal conductivity, especially when used for power semiconductor die bonding, the heat generated from the element cannot be sufficiently dissipated, and the reliability of the element itself and the joint cannot be secured. There is a problem, and therefore, the Bi alloy of Patent Document 1 is not always satisfactory.

上記(イ)の課題に対しては、はんだを粉末化してペーストにするという方法で対応が可能であり、例えば特許文献2には、Bi系はんだ合金粉末とエポキシ樹脂を含むフラックスとからなるはんだペーストが提案されている。また、(ロ)の課題に対しては、例えば特許文献3に、応力緩和相として熱弾性型マルテンサイト変態を起こすCu合金を分散させる方法が提案されている。   The above problem (a) can be addressed by a method in which solder is pulverized into a paste. For example, Patent Document 2 discloses a solder composed of a Bi-based solder alloy powder and a flux containing an epoxy resin. A paste has been proposed. For the problem (b), for example, Patent Document 3 proposes a method of dispersing a Cu alloy that causes thermoelastic martensitic transformation as a stress relaxation phase.

しかしながら、これら特許文献2及び特許文献3のいずれも、上記(ハ)の熱伝導性に関する課題に対して満足すべき結果が得られていない。即ち、熱伝導率が低く、素子が発生する熱の放散が十分ではないため、素子自身や接合部の信頼性を確保することができず、特にパワー半導体素子のダイボンディングに用いるには不適切であった。   However, none of these Patent Documents 2 and 3 has obtained satisfactory results with respect to the above-mentioned (c) problem relating to thermal conductivity. In other words, the thermal conductivity is low and the heat generated by the device is not sufficiently dissipated, so the reliability of the device itself and the joint cannot be ensured, and it is not suitable for use in die bonding of power semiconductor devices. Met.

特開2004−114093号公報JP 2004-114093 A 国際公開第2007/018288号パンフレットInternational Publication No. 2007/018288 Pamphlet 特開2005−313230号公報JP-A-2005-313230

本発明は、上記した従来の事情に鑑み、パワー半導体素子のダイボンディングや各種電子部品の組立て等に好適な鉛フリーのはんだ材料を提供すること、更に具体的には、高い熱伝導性を有すると同時に高い接合信頼性を確保できる、Bi系の高温鉛フリーはんだペーストを提供することを目的とする。   In view of the above-described conventional circumstances, the present invention provides a lead-free solder material suitable for die bonding of power semiconductor elements and assembly of various electronic components, and more specifically, has high thermal conductivity. At the same time, an object of the present invention is to provide a Bi-based high-temperature lead-free solder paste that can ensure high joint reliability.

本発明は、高温鉛フリーはんだとしてのBiないしBi合金に熱伝導性の高いCu粉を混入させることで、BiないしBi合金の熱伝導性が低いという欠点を解決したものである。ただし、Cu粉を均質に分散させる必要があり、またBiないしBi合金の加工性が低いという問題の解決を図るために、はんだペーストの形態をとることで工業的に利用可能なものとなった。   The present invention solves the disadvantage that the thermal conductivity of Bi or Bi alloy is low by mixing Cu powder having high thermal conductivity into Bi or Bi alloy as high-temperature lead-free solder. However, in order to solve the problem that Cu powder needs to be uniformly dispersed and the workability of Bi or Bi alloy is low, it has become industrially available by taking the form of solder paste. .

即ち、本発明の高温鉛フリーはんだペーストは、Bi粉及びBi合金粉から選ばれた少なくとも1種のBiはんだ粉と、Cu金属粉と、残部のフラックスとからなり、Cu金属粉が純度97.5質量%以上、平均粒径1〜80μmのCu粉及び該Cu粉表面にAg、Au、Niの少なくとも1元素からなる膜厚1μm以下の皮膜を設けた被覆Cu粉から選ばれた少なくとも1種であって、前記Cu金属粉と前記Biはんだ粉の合計を100質量%としたとき、前記Cu金属粉の合計が8〜60質量%であることを特徴とする。   That is, the high-temperature lead-free solder paste of the present invention comprises at least one Bi solder powder selected from Bi powder and Bi alloy powder, Cu metal powder, and the remaining flux, and the Cu metal powder has a purity of 97. 5% by mass or more, Cu powder having an average particle diameter of 1 to 80 μm, and at least one selected from coated Cu powder in which a film having a film thickness of 1 μm or less composed of at least one element of Ag, Au, and Ni is provided on the surface of the Cu powder And when the sum total of the said Cu metal powder and the said Bi solder powder is 100 mass%, the sum total of the said Cu metal powder is 8-60 mass%, It is characterized by the above-mentioned.

上記本発明の高温鉛フリーはんだペーストにおいて、前記Bi合金粉としては、(1)Cu、Ni、Teの少なくとも1種を合計で0.1〜3質量%含有し、残部がBi及び不可避不純物であるBi合金、(2)Sn、Znの少なくとも1種を合計で0.1〜13.5質量%含有し、残部がBi及び不可避不純物であるBi合金、(3)Sn、Znの少なくとも1種を合計で0.1〜13.5質量%含有すると共に、Alを2.5質量%以下及び/又はPを0.5質量%以下含有し、残部がBi及び不可避不純物であるBi合金、(4)Cu、Ni、Teの少なくとも1種を合計で0.1〜3質量%含有すると共に、Sn、Zn、Al、Pの少なくとも1種を合計で0.1〜16.0質量%含有し、残部がBi及び不可避不純物であるBi合金のいずれかが好ましい。   In the high-temperature lead-free solder paste of the present invention, the Bi alloy powder includes (1) 0.1 to 3 mass% in total of at least one of Cu, Ni and Te, with the balance being Bi and inevitable impurities. A Bi alloy, (2) a total of 0.1 to 13.5% by mass of Sn and Zn, with the balance being Bi and inevitable impurities, (3) at least one of Sn and Zn Bi in a total amount of 0.1 to 13.5% by mass, Al in an amount of 2.5% by mass or less and / or P in an amount of 0.5% by mass or less, the balance being Bi and inevitable impurities, 4) At least one of Cu, Ni and Te is contained in a total amount of 0.1 to 3% by mass, and at least one of Sn, Zn, Al and P is contained in a total of 0.1 to 16.0% by mass. Any of Bi and the Bi alloy with the balance being inevitable impurities preferable.

本発明によれば、高い熱伝導性を有すると同時に、高温の使用環境下において接合部の劣化が生じず、高い接合信頼性を確保できる高温鉛フリーはんだペーストを提供することができる。従って、本発明の高温鉛フリーはんだペーストは、各種電子部品の組立て等において用いられているPb系高温はんだの鉛フリー化を達成し、特にパワー半導体素子のダイボンディングに好適に使用することができる。   According to the present invention, it is possible to provide a high-temperature lead-free solder paste that has high thermal conductivity and at the same time does not cause deterioration of the joint portion under a high-temperature use environment and can ensure high joint reliability. Therefore, the high-temperature lead-free solder paste of the present invention achieves lead-free Pb-based high-temperature solder used in the assembly of various electronic components, and can be suitably used particularly for die bonding of power semiconductor elements. .

本発明の高温鉛フリーはんだペーストは、Cu粉又はCu粉の表面にAg、Au、Niの少なくとも1元素からなる皮膜を設けた被覆Cu粉から選ばれた少なくとも1種のCu金属粉と、Bi粉及びBi合金粉から選ばれた少なくとも1種のBiはんだ粉と、残部のフラックスとで構成されている。   The high-temperature lead-free solder paste of the present invention comprises Cu powder or at least one Cu metal powder selected from coated Cu powder provided with a coating made of at least one element of Ag, Au, and Ni on the surface of Cu powder, Bi It consists of at least one kind of Bi solder powder selected from powder and Bi alloy powder and the remaining flux.

Cu金属粉(Cu粉及び/又は被覆Cu粉)は、Bi粉及びBi合金粉からなるBiはんだ粉の熱伝導性を補って、高温鉛フリーはんだペーストに高い熱伝導率を付与する。Cu金属粉としては、Cu粉をそのまま用いてもよいが、Cu粉の表面にAg、Au、Niの少なくとも1元素からなる皮膜を施した被覆Cu粉を用いることが好ましい。Ag、Au又はNiの皮膜を設けることで、Cu粉の酸化が防止されると同時にBiとの濡れ性が高くなり、溶融したBiないしBi合金中にCu粉を均一に分散させる効果を高めることができる。   Cu metal powder (Cu powder and / or coated Cu powder) supplements the thermal conductivity of Bi solder powder made of Bi powder and Bi alloy powder, and imparts high thermal conductivity to the high-temperature lead-free solder paste. As the Cu metal powder, the Cu powder may be used as it is, but it is preferable to use a coated Cu powder in which a film made of at least one element of Ag, Au, and Ni is applied to the surface of the Cu powder. By providing a film of Ag, Au or Ni, the oxidation of Cu powder is prevented and at the same time the wettability with Bi is increased, and the effect of uniformly dispersing Cu powder in the molten Bi or Bi alloy is enhanced. Can do.

被覆Cu粉の表面に設ける皮膜の膜厚は1μm以下とする。皮膜の膜厚が1μmを超えて厚くなっても、上記した皮膜の効果が飽和するだけでなく、皮膜材料が増えてコストが上昇するからである。また、被覆Cu粉は、Cu粉の表面に電解メッキや無電解メッキを施すことで得られるほか、湿式法によるCu粉製造の最終工程でAg、Au又はNiの塩を含む溶液を添加し、ヒドラジンなどの還元剤を用いて還元する方法により製造することも可能である。   The film thickness of the coating provided on the surface of the coated Cu powder is 1 μm or less. This is because even if the film thickness exceeds 1 μm, not only the effect of the film described above is saturated but also the cost of the film increases due to an increase in film material. In addition, the coated Cu powder is obtained by subjecting the surface of the Cu powder to electrolytic plating or electroless plating. In addition, a solution containing a salt of Ag, Au or Ni is added in the final step of Cu powder production by a wet method, It can also be produced by a reduction method using a reducing agent such as hydrazine.

上記したCu粉あるいは被覆Cu粉の核となるCu粉は、熱伝導性を大きく下げなければ他の元素が含まれていても問題はないが、望ましい熱伝導率を得るために97.5質量%以上の純度とする。純度が97.5質量%よりも低い場合、添加元素によるものの、一般的には熱伝導性が純Cuよりも良くなることはないので、出来る限り純Cuに近いものが好ましい。   The Cu powder as the core of the above-mentioned Cu powder or coated Cu powder has no problem even if other elements are contained unless the thermal conductivity is greatly lowered, but in order to obtain a desirable thermal conductivity, 97.5 mass % Purity. When the purity is lower than 97.5% by mass, although it depends on the additive element, generally the thermal conductivity does not become better than that of pure Cu.

上記Cu粉の平均粒径は、1〜80μmの範囲とする。平均粒径が1μm未満では、BiないしはBi合金中でCu粉や被覆Cu粉が均一に分散しにくくなるからであり、逆に80μmを超えるとBiないしBi合金からなる接合層の破壊起点として働き、接合部の信頼性が低下するからである。尚、本発明では、粒径として粉末の最大径を用いる。また、Cu粉や被覆Cu粉の形状については、アトマイズ粉の様な真球状、電解粉の様な不規則状、フレーク粉の様な平板状のいずれでもよい。   The average particle diameter of the Cu powder is in the range of 1 to 80 μm. If the average particle size is less than 1 μm, it is difficult to uniformly disperse Cu powder or coated Cu powder in the Bi or Bi alloy. Conversely, if it exceeds 80 μm, it acts as a fracture starting point for the bonding layer made of Bi or Bi alloy. This is because the reliability of the joint is lowered. In the present invention, the maximum diameter of the powder is used as the particle diameter. Further, the shape of the Cu powder or the coated Cu powder may be any of a spherical shape such as atomized powder, an irregular shape such as electrolytic powder, and a flat shape such as flake powder.

一方、Biはんだ粉(Bi粉及び/又はBi合金粉)は、溶融してCu金属粉(Cu粉及び/又は被覆Cu粉)同士を接合すると同時に、通常のはんだとしての働きをする。熱伝導性を優先する場合を考えると不純物を含まないBi粉を用いることが好ましいが、接合部の信頼性を優先する場合にはBi合金粉を用いることが好ましい。Bi合金粉としては、従来から使用され又は提案されているBi系Pbフリーはんだ材料の粉末を用いることができる。また、好ましいBi合金粉には、例えば下記する(1)〜(4)の各Bi合金からなるものがある。   On the other hand, Bi solder powder (Bi powder and / or Bi alloy powder) melts and joins Cu metal powder (Cu powder and / or coated Cu powder) to each other, and at the same time functions as a normal solder. Considering the case where thermal conductivity is given priority, it is preferable to use Bi powder containing no impurities, but if priority is given to the reliability of the joint, it is preferable to use Bi alloy powder. As the Bi alloy powder, a powder of Bi-based Pb-free solder material that has been used or proposed in the past can be used. Further, preferable Bi alloy powder includes, for example, those composed of the following Bi alloys (1) to (4).

Bi合金(1)は、Cu、Ni、Teの少なくとも1種を合計で0.1〜3質量%含有し、残部がBi及び不可避不純物からなる。添加元素のCu、Ni、TeはBiの靭性を向上させ、接合部の信頼性を高める作用がある。Cu、Ni、Teの含有量を合計で0.1〜3質量%としたのは、0.1質量%未満では添加効果が不十分で満足すべき接合部の信頼性が得られず、3質量%を超えると粗大な金属間化合物が合金中に晶出するようになり、接合部の信頼性が低下するからである。   The Bi alloy (1) contains at least one of Cu, Ni, and Te in a total amount of 0.1 to 3% by mass, with the balance being Bi and inevitable impurities. The additive elements Cu, Ni, and Te have the effect of improving the toughness of Bi and increasing the reliability of the joint. The total content of Cu, Ni and Te is set to 0.1 to 3% by mass. If the content is less than 0.1% by mass, the effect of addition is insufficient and satisfactory joint reliability cannot be obtained. This is because if it exceeds mass%, a coarse intermetallic compound is crystallized in the alloy, and the reliability of the joint portion is lowered.

Bi合金(2)は、Sn、Znの少なくとも1種を合計で0.1〜13.5質量%含有し、残部がBi及び不可避不純物からなる。添加元素のSnとZnは、電子部品等に形成されているNiメタライズ層とBiの反応を抑制し、Bi−Niの脆い層の生成を抑制する効果がある。SnとZnの含有量を合計で0.1〜13.5質量%の範囲とした理由は、0.1質量%未までは添加効果が得られず、13.5質量%を超えると濡れ性が低下しやすくなるからである。   The Bi alloy (2) contains at least one of Sn and Zn in a total amount of 0.1 to 13.5% by mass, with the balance being Bi and inevitable impurities. The additive elements Sn and Zn have an effect of suppressing the reaction of Bi with a Ni metallized layer formed in an electronic component or the like, and suppressing the formation of a Bi—Ni brittle layer. The reason why the total content of Sn and Zn is in the range of 0.1 to 13.5% by mass is that the addition effect is not obtained up to 0.1% by mass, and the wettability exceeds 13.5% by mass. It is because it becomes easy to fall.

Bi合金(3)は、上記Bi合金(2)のSnやZnの添加による濡れ性の低下を補うためAlあるいはPを添加したものであって、Sn、Znの少なくとも1種を合計で0.1〜13.5質量%含有すると共に、Alを2.5質量%以下及び/又はPを0.5質量%以下含有し、残部がBi及び不可避不純物からなる。Alの含有量が2.5質量%を超えると、融点の高いAlが偏析して良好な接合性を得られなくなり、またPの含有量が0.5質量%を超えると、ボイドが多量に発生したり、脆いP化合物を生成し信頼性を大きく低下させてしまうことがあるため好ましくない。   The Bi alloy (3) is one in which Al or P is added to compensate for the decrease in wettability due to the addition of Sn or Zn in the Bi alloy (2). While containing 1 to 13.5% by mass, Al is contained by 2.5% by mass or less and / or P is contained by 0.5% by mass or less, with the balance being Bi and inevitable impurities. If the Al content exceeds 2.5% by mass, Al having a high melting point segregates and good bondability cannot be obtained, and if the P content exceeds 0.5% by mass, a large amount of voids are present. It is not preferable because it may occur or a brittle P compound may be generated and reliability may be greatly reduced.

更に、Bi合金(4)は、Cu、Ni、Teの少なくとも1種を合計で0.1〜3質量%含有すると共に、Sn、Zn、Al、Pの少なくとも1種を合計で0.1〜16.0質量%含有し、残部がBi及び不可避不純物からなる。Sn、Zn、Al、Pの含有量が合計で0.1質量%未満では添加効果が不十分であり、逆に13.5質量%を超えると添加効果が飽和すると共に、添加元素によって融点の低下が大きくなったり、濡れ性が低下したり、ボイドが多く発生するなどの不都合が生じるからである。   Further, the Bi alloy (4) contains at least one of Cu, Ni and Te in a total amount of 0.1 to 3% by mass, and at least one of Sn, Zn, Al and P in a total of 0.1 to 0.1%. 16.0% by mass, with the balance being Bi and inevitable impurities. If the total content of Sn, Zn, Al, and P is less than 0.1% by mass, the effect of addition is insufficient. Conversely, if the content exceeds 13.5% by mass, the effect of addition is saturated, and the melting point depends on the additive element. This is because inconveniences such as a large decrease, wettability, and many voids occur.

尚、Bi合金粉を構成する上記Bi合金(1)〜(4)においては、それぞれ上記範囲の含有量となるようにSn、Zn、Al、Pなどが添加されているが、これらの元素はBiよりも熱伝導性が良好であるため、熱伝導性に悪影響を与えることはない。また、Bi粉及びBi合金粉の粒径については、特に限定されないが、製造のしやすさから平均粒径が10〜500μm程度の粉末を用いることが好ましい。   In the Bi alloys (1) to (4) constituting the Bi alloy powder, Sn, Zn, Al, P and the like are added so as to have contents in the above ranges, respectively. Since the thermal conductivity is better than Bi, the thermal conductivity is not adversely affected. The particle diameters of Bi powder and Bi alloy powder are not particularly limited, but it is preferable to use a powder having an average particle diameter of about 10 to 500 μm for ease of manufacture.

本発明の高温鉛フリーはんだペーストにおけるCu金属粉とBiはんだ粉の割合は、両者の合計を100質量%としたとき、Cu金属粉が合計で8〜60質量%の範囲とする。Cu金属粉の割合が8質量%未満では満足すべき熱伝導率を得ることができず、逆に60質量%を超えると良好な接合を得ることが難しくなり、また接合部の信頼性も著しく低下するからである。   The ratio of Cu metal powder and Bi solder powder in the high-temperature lead-free solder paste of the present invention is such that the total amount of Cu metal powder is 8 to 60 mass% when the total of both is 100 mass%. When the proportion of Cu metal powder is less than 8% by mass, satisfactory thermal conductivity cannot be obtained. Conversely, when it exceeds 60% by mass, it becomes difficult to obtain a good joint, and the reliability of the joint is also remarkable. It is because it falls.

本発明の高温鉛フリーはんだペーストは、上記したCu金属粉とBiはんだ粉に、液状フラックスを加えて混練することにより製造することができる。フラックスについては、Sn系やPb系のはんだペーストで用いられているものをそのまま使用することができる。好ましいフラックスとしては、例えば、ロジン化合物、有機酸、有機アミン化合物などを、アルコール類、エチレングリコール類、グリセリン類などの溶剤に溶かしたものを挙げることができる。   The high-temperature lead-free solder paste of the present invention can be produced by adding a liquid flux to the above Cu metal powder and Bi solder powder and kneading them. As for the flux, those used in Sn-based or Pb-based solder paste can be used as they are. As a preferable flux, for example, a rosin compound, an organic acid, an organic amine compound and the like dissolved in a solvent such as alcohols, ethylene glycols and glycerins can be exemplified.

フラックスの添加量は、Cu金属粉とBiはんだ粉の合計を100質量%としたとき、7〜13質量%の範囲であることが好ましい。フラックスの添加量が7質量%未満では、フラックス量が不足して十分な還元性が得られないうえ、ペーストの粘性が高すぎるため接合時の取り扱いが困難となる。また、13質量%を超えると、ボイド率が高くなって必要な接合強度を得られなかったり、熱伝導性が極端に低下したり、更には粘性が低くなりすぎるため取り扱いが不便になる。   The addition amount of the flux is preferably in the range of 7 to 13% by mass when the total of Cu metal powder and Bi solder powder is 100% by mass. If the added amount of the flux is less than 7% by mass, the flux amount is insufficient and sufficient reducing property cannot be obtained, and the viscosity of the paste is too high, so that handling at the time of joining becomes difficult. On the other hand, if it exceeds 13% by mass, the void ratio becomes high and the required bonding strength cannot be obtained, the thermal conductivity is extremely lowered, and the viscosity becomes too low, which makes the handling inconvenient.

[実施例1]
純度99.9質量%以上のBi、Cu、Zn、Sn、Alと、純度99.95質量%以上のPを用い、Bi合金粉を製造した。即ち、これらの金属原料を、酸化を防ぐために金属原料1kgあたり700ml/分以上の流速で窒素を流しながら高周波溶解炉で溶解し、0.5質量%Cu−3.0質量%Zn−0.2質量%Sn−0.2質量%Al−0.005質量%P−残部Biの組成を有する合金鋳塊を得た。この合金鋳塊をスタンプミルで粉砕した後、篩い分けすることにより、平均粒径30μm程度のBi合金粉を得た。また、上記と同程度の平均粒径で、純度99.9質量%以上のBiのみからなるBi粉も製造した。
[Example 1]
Bi alloy powder was manufactured using Bi, Cu, Zn, Sn, Al having a purity of 99.9% by mass or more and P having a purity of 99.95% by mass or more. That is, in order to prevent oxidation, these metal raw materials are melted in a high-frequency melting furnace while flowing nitrogen at a flow rate of 700 ml / min or more per 1 kg of the metal raw material, and 0.5 mass% Cu-3.0 mass% Zn-0. An alloy ingot having a composition of 2 mass% Sn-0.2 mass% Al-0.005 mass% P-balance Bi was obtained. The alloy ingot was pulverized with a stamp mill and then sieved to obtain Bi alloy powder having an average particle size of about 30 μm. Moreover, Bi powder which consists only of Bi with the average particle diameter comparable as the above and purity of 99.9 mass% or more was also manufactured.

上記Bi合金粉(0.5質量%Cu−3.0質量%Zn−0.2質量%Sn−0.2質量%Al−0.005質量%P−残部Bi)又はBi粉を、Biはんだ粉として使用した。一方、Cu金属粉については、純度99.9質量%以上のCuと、純度99.8質量%以上のAl及びMnを準備し、通常のアトマイズ法を用いて、下記表1に示す組成及び平均粒径を有するCu粉及びCu合金粉を製造した。   The Bi alloy powder (0.5 mass% Cu-3.0 mass% Zn-0.2 mass% Sn-0.2 mass% Al-0.005 mass% P-balance Bi) or Bi powder is replaced with Bi solder. Used as a powder. On the other hand, for the Cu metal powder, Cu having a purity of 99.9% by mass or more and Al and Mn having a purity of 99.8% by mass or more were prepared, and the composition and average shown in Table 1 below were prepared using a normal atomization method. Cu powder and Cu alloy powder having a particle size were produced.

得られたCu金属粉(Cu粉又はCu合金粉)とBiはんだ粉(Bi合金粉又はBi粉)を下記表1に示す添加量で混合し、アルコールと還元性有機材料からなるフラックス(青木メタル(株)製)を加え、混合機((株)シンキー製SR−500)を用いて混合することにより、下記表1に示す試料1〜23の各はんだペーストを製造した。   The obtained Cu metal powder (Cu powder or Cu alloy powder) and Bi solder powder (Bi alloy powder or Bi powder) are mixed in the addition amounts shown in Table 1 below, and a flux (Aoki Metal) made of alcohol and a reducing organic material is mixed. The solder pastes of Samples 1 to 23 shown in Table 1 below were manufactured by adding them and mixing them using a mixer (SR-500 manufactured by Sinky Corporation).

また、試料24として、従来の5.0質量%Sn−残部Biの組成を有する高温はんだ合金のみを含むはんだペーストを用意した。更に、試料25として、Cu金属粉を含まずBi粉のみを含むはんだペーストを用意した。尚、試料1〜25の全ての試料において、フラックスの添加量はCu金属粉とBiはんだ粉の合計100質量%に対し8質量%とした。   Moreover, as a sample 24, a solder paste containing only a high-temperature solder alloy having a conventional composition of 5.0 mass% Sn-remainder Bi was prepared. Furthermore, as a sample 25, a solder paste containing only Bi powder without Cu metal powder was prepared. In all samples 1 to 25, the amount of flux added was 8% by mass with respect to 100% by mass in total of Cu metal powder and Bi solder powder.

Figure 2011251329
Figure 2011251329

次に、上記試料1〜25の各はんだペーストについて、以下に示す方法によって、ダイボンディング性、高温はんだ特性、熱伝導率、及び接合信頼性を評価した。得られた結果を、下記表2に示した。   Next, with respect to each of the solder pastes of Samples 1 to 25, the die bonding property, high-temperature solder characteristics, thermal conductivity, and bonding reliability were evaluated by the following methods. The obtained results are shown in Table 2 below.

(ダイボンディング性)
はんだダイボンダー(dage社製、EDB−200)を用いて、Agメッキを施したCu製リードフレームに、表面上に順番にNi、Zn、Agを蒸着したダミーチップを、350±3℃の温度範囲内において上記各試料のはんだペーストを使用して接合した。はんだペーストの供給は、リードフレームのAgメッキ上に予め適量のはんだペーストを滴下することで行った。得られたCu製リードフレームとダミーチップの接合部を、X線透過装置(東研X線検査(株)製、TUX−3000W)を用いて観察し、ボイド率が5%未満を「○」、5%以上8%未満を「△」、8%以上を「×」と評価した。尚、上記ボイド率は、X線透過装置によりはんだ接合部を接合面に対し垂直方向から観察し、ボイド面積と接合部面積を求め、下式により算出した。
ボイド率(%)=ボイド面積÷(ボイド面積+接合部面積)×100
(Die bonding)
Using a solder die bonder (manufactured by dage, EDB-200), a dummy chip in which Ni, Zn, and Ag are sequentially deposited on the surface of a Cu lead frame subjected to Ag plating is set to a temperature range of 350 ± 3 ° C. Inside, it joined using the solder paste of each said sample. The solder paste was supplied by dropping a suitable amount of solder paste in advance on the Ag plating of the lead frame. The joint between the obtained Cu lead frame and the dummy chip was observed using an X-ray transmission device (manufactured by Tohken X-ray Inspection Co., Ltd., TUX-3000W), and the void ratio was less than 5%. 5% or more and less than 8% were evaluated as “Δ”, and 8% or more were evaluated as “x”. The void ratio was calculated by the following equation by observing the solder joint from a direction perpendicular to the joint surface with an X-ray transmission device, obtaining the void area and the joint area.
Void ratio (%) = void area / (void area + joint area) × 100

(高温はんだ特性)
高温はんだとしての使用適性を、JIS Z 3198−7:2003に準じる高温シェア試験により評価した。即ち、上記ダイボンディング後の試料を、ボンドテスタ(テクノアルファ(株)製)にセットし、窒素を流しながら240℃に再加熱し、その状態でチップとはんだ接合部にせん断力を加えた。詳しくは、シェア試験用冶具をはんだとダミーチップ接合面に水平方向にチップ引っかけ、90Nのせん断力を加えた。チップ部には割れが発生したが、接合部やはんだ部に割れや変形がなかった場合を「○」、チップが動いてずれたり、接合部やはんだ部で割れや変形があった場合を「×」と評価した。
(High temperature solder properties)
The suitability for use as a high temperature solder was evaluated by a high temperature shear test according to JIS Z 3198-7: 2003. That is, the sample after die bonding was set in a bond tester (manufactured by Techno Alpha Co., Ltd.), reheated to 240 ° C. while flowing nitrogen, and in that state, shear force was applied to the chip and the solder joint. Specifically, a shear test jig was horizontally hooked on the solder / dummy chip joint surface, and a shearing force of 90 N was applied. “○” indicates that the chip has cracked, but there is no crack or deformation in the joint or solder, and “chip” indicates that the chip has moved or shifted, or if there is a crack or deformation in the joint or solder. “×”.

(熱伝導率)
上記ダイボンディング後の試料を用い、レーザーフラッシュ法にて接合部の熱伝導率を測定した。熱伝導率の測定は、熱伝導測定器(理学電気(株)製、型式:LF/TCM−FA8510B)を用いて、レーザービームをダミーチップ表面に当て、ダミーチップ接合部におけるのリードフレーム裏面の温度上昇を測定することで行った。
(Thermal conductivity)
Using the sample after die bonding, the thermal conductivity of the joint was measured by a laser flash method. The thermal conductivity is measured using a thermal conductivity measuring instrument (manufactured by Rigaku Denki Co., Ltd., model: LF / TCM-FA8510B). This was done by measuring the temperature rise.

(接合信頼性)
上記ダイボンディングを行った後、トランスファーモールド型モールド機により、エポキシ樹脂(住友ベークライト(株)製、EME−6300)をモールドした試料について、温度80℃及び湿度80%にて1000時間保持の恒温恒湿試験を施した後、樹脂を開封して接合部の観察を行い、チップや接合部界面に割れや剥離の発生が無い場合を「○」、割れや剥離があった場合を「×」と評価した。
(Joint reliability)
After performing the die bonding, a sample obtained by molding an epoxy resin (EME-6300, manufactured by Sumitomo Bakelite Co., Ltd.) with a transfer mold type molding machine is kept at a temperature of 80 ° C. and a humidity of 80% for 1000 hours. After performing the moisture test, the resin is opened and the joint is observed. If there is no crack or peeling at the chip or joint interface, “○” is indicated, and if there is crack or peeling, “X” is indicated. evaluated.

Figure 2011251329
Figure 2011251329

これらの結果から明らかなように、本発明による高温鉛フリーはんだペーストは、熱伝導率を比較すると、純Biはんだペースト(試料25)の2倍以上の高い熱伝導率を有している。特に、Cu金属粉の添加量が35質量%以上の試料3〜6及び試料9〜12は、従来から用いられている5質量%Sn−残部Biペースト(試料24)を超える高い熱伝導率を有していることが分かる。   As is apparent from these results, the high-temperature lead-free solder paste according to the present invention has a thermal conductivity that is twice or more that of the pure Bi solder paste (sample 25) when compared in thermal conductivity. In particular, Samples 3 to 6 and Samples 9 to 12 in which the amount of Cu metal powder added is 35% by mass or more have a high thermal conductivity exceeding that of the conventionally used 5% by mass Sn-remainder Bi paste (Sample 24). You can see that

また、本発明による試料1〜12の各高温鉛フリーはんだペーストは、ダイボンディング性、高温はんだ特性、接合信頼性の全てに優れており、高温はんだとして極めて良好なものであることが分かる。一方、比較例の試料13〜25のはんだペーストは、ダイボンディング性、高温はんだ特性、接合信頼性の1つ以上の特性において悪い評価となっている。   Moreover, it turns out that each high temperature lead free solder paste of the samples 1-12 by this invention is excellent in all of die-bonding property, high temperature solder characteristics, and joint reliability, and is very favorable as a high temperature solder. On the other hand, the solder pastes of Comparative Samples 13 to 25 are badly evaluated in one or more properties of die bonding property, high temperature solder property, and bonding reliability.

[実施例2]
Biはんだ粉として、上記実施例1と同様の方法により、0.5質量%Cu−3.0質量%Zn−残部Biの組成を有するでBiはんだ合金を製造した。一方、Cu金属粉として、上記実施例1と同様に通常のアトマイズ法を用いて純度99.9質量%以上のCu粉を製造し、その表面に所定の金属塩水溶液とヒドラジンを用いた還元処理により、下記表3に示す膜厚のAu、Ag又はCuからなる皮膜を有する被覆Cu粉を製造した。このCu粉を樹脂に埋め込み、研磨機を用い粗い研磨紙から順に細かいものを用いて研磨し、最後にバフ研磨を行い、その後、EPMA(装置名:SHIMADZU EPMA−1600)を用いてライン分析を行い、皮膜の膜厚を測定した。
[Example 2]
As a Bi solder powder, a Bi solder alloy having a composition of 0.5 mass% Cu-3.0 mass% Zn-remainder Bi was produced by the same method as in Example 1 above. On the other hand, a Cu powder having a purity of 99.9% by mass or more is produced as a Cu metal powder by using a normal atomization method in the same manner as in Example 1 above, and a reduction treatment using a predetermined metal salt aqueous solution and hydrazine on the surface. Thus, a coated Cu powder having a film made of Au, Ag, or Cu having a film thickness shown in Table 3 below was manufactured. This Cu powder is embedded in a resin, polished using a polishing machine in order from coarse abrasive paper, and finally polished with buff, and finally buffed, followed by line analysis using EPMA (device name: SHIMADZU EPMA-1600). The film thickness of the film was measured.

得られたCu金属粉(被覆Cu粉)とBiはんだ粉(Bi合金粉)を下記表3に示す添加量で混合し、上記実施例1と同様にアルコールと還元性有機材料からなるフラックスを加えて混合することにより、下記表3に示す本発明による試料26〜31の各はんだペーストを製造した。尚、試料26〜31の全ての試料において、フラックスの添加量はCu金属粉とBiはんだ粉の合計100質量%に対し8質量%とした。   The obtained Cu metal powder (coated Cu powder) and Bi solder powder (Bi alloy powder) were mixed in the addition amounts shown in Table 3 below, and a flux composed of alcohol and a reducing organic material was added as in Example 1 above. Then, each solder paste of Samples 26 to 31 according to the present invention shown in Table 3 below was manufactured. In all the samples 26 to 31, the addition amount of the flux was 8% by mass with respect to 100% by mass in total of the Cu metal powder and the Bi solder powder.

Figure 2011251329
Figure 2011251329

次に、上記試料26〜31の本発明による各はんだペーストについて、上記実施例1と同様の方法により、ダイボンディング性、高温はんだ特性、熱伝導率、及び接合信頼性を評価した。得られた結果を、下記表4に示した。   Next, for each of the solder pastes of the samples 26 to 31 according to the present invention, die bonding properties, high temperature solder properties, thermal conductivity, and bonding reliability were evaluated by the same method as in Example 1. The obtained results are shown in Table 4 below.

Figure 2011251329
Figure 2011251329

これらの結果から明らかなように、本発明による被覆Cu粉を含有した高温鉛フリーはんだペーストは、全て45W/mK以上の高い熱伝導率を有すると共に、ダイボンディング性、高温はんだ特性、接合性の全てにおいて優れており、高温はんだとして極めて良好なものであることが分かる。   As is clear from these results, all the high-temperature lead-free solder pastes containing the coated Cu powder according to the present invention have a high thermal conductivity of 45 W / mK or more, as well as die bondability, high-temperature solder characteristics, and bondability. It is excellent in all, and it turns out that it is a very good thing as a high temperature solder.

[実施例3]
Biはんだ粉として、純度99.9質量%以上のBi、Cu、Ni、Te、Zn、Sn、Alと、純度99.95質量%以上のPとを用い、上記実施例1と同様の方法により、下記表5に示す組成を有する試料32〜43の各Bi合金粉を製造した。一方、Cu金属粉として、上記実施例1と同様にして、純度99.9質量%以上のCu粉の表面に膜厚0.2μmのAg皮膜を有する被覆Cu粉を製造した。
[Example 3]
As Bi solder powder, Bi, Cu, Ni, Te, Zn, Sn, Al having a purity of 99.9% by mass or more and P having a purity of 99.95% by mass or more were used in the same manner as in Example 1 above. The Bi alloy powders of Samples 32-43 having the compositions shown in Table 5 below were manufactured. On the other hand, as Cu metal powder, a coated Cu powder having an Ag film with a film thickness of 0.2 μm on the surface of a Cu powder having a purity of 99.9% by mass or more was produced in the same manner as in Example 1.

Figure 2011251329
Figure 2011251329

得られた被覆Cu粉とBi合金粉を、被覆Cu粉が35質量%及びBi合金粉が残部となるように混合し、上記実施例1と同様にアルコールと還元性有機材料からなるフラックスを加えて混合することにより、本発明による試料32〜43の各はんだペーストを製造した。尚、試料32〜43の全ての試料において、フラックスの添加量はCu金属粉とBiはんだ粉の合計100質量%に対し8質量%とした。   The obtained coated Cu powder and Bi alloy powder were mixed so that the coated Cu powder was 35% by mass and the Bi alloy powder was the remainder, and a flux composed of alcohol and a reducing organic material was added as in Example 1 above. The solder pastes of Samples 32-43 according to the present invention were manufactured by mixing. In all samples 32 to 43, the amount of flux added was 8% by mass with respect to 100% by mass in total of the Cu metal powder and Bi solder powder.

次に、上記本発明による試料32〜43の各はんだペーストについて、上記実施例1と同様の方法により、ダイボンディング性、高温はんだ特性、熱伝導率、及び接合信頼性を評価した。得られた結果を、下記表6に示した。   Next, for each of the solder pastes of Samples 32-43 according to the present invention, die bonding properties, high-temperature solder properties, thermal conductivity, and bonding reliability were evaluated by the same method as in Example 1. The obtained results are shown in Table 6 below.

Figure 2011251329
Figure 2011251329

これらの結果から明らかなように、本発明による試料32〜43の各はんだペーストは、全て45W/m・K以上の高い熱伝導率を有すると共に、ダイボンディング性、高温はんだ特性及び接合信頼性の全てに優れており、高温はんだとして極めて良好なものであることが分かる。   As is apparent from these results, each of the solder pastes of Samples 32-43 according to the present invention has a high thermal conductivity of 45 W / m · K or more, and has die bonding properties, high-temperature solder characteristics, and bonding reliability. It is excellent in all, and it turns out that it is a very good thing as a high temperature solder.

Claims (2)

Bi粉及びBi合金粉から選ばれた少なくとも1種のBiはんだ粉と、Cu金属粉と、残部のフラックスとからなり、Cu金属粉が純度97.5質量%以上、平均粒径1〜80μmのCu粉及び該Cu粉表面にAg、Au、Niの少なくとも1元素からなる膜厚1μm以下の皮膜を設けた被覆Cu粉から選ばれた少なくとも1種であって、Cu金属粉とBiはんだ粉の合計を100質量%としたとき、Cu金属粉の合計が8〜60質量%であることを特徴とする高温鉛フリーはんだペースト。   It consists of at least one type of Bi solder powder selected from Bi powder and Bi alloy powder, Cu metal powder, and the remaining flux, and the Cu metal powder has a purity of 97.5% by mass or more and an average particle size of 1 to 80 μm. At least one selected from Cu powder and coated Cu powder in which a film having a film thickness of 1 μm or less composed of at least one element of Ag, Au, and Ni is provided on the surface of the Cu powder, comprising Cu metal powder and Bi solder powder A high-temperature lead-free solder paste, wherein the total amount of Cu metal powder is 8 to 60% by mass when the total is 100% by mass. 前記Bi合金粉が、次の(1)〜(4)のいずれかのBi合金からなることを特徴とする、請求項1に記載の高温鉛フリーはんだペースト。
(1)Cu、Ni、Teの少なくとも1種を合計で0.1〜3質量%含有し、残部がBi及び不可避不純物であるBi合金。
(2)Sn、Znの少なくとも1種を合計で0.1〜13.5質量%含有し、残部がBi及び不可避不純物であるBi合金。
(3)Sn、Znの少なくとも1種を合計で0.1〜13.5質量%含有すると共に、Alを2.5質量%以下及び/又はPを0.5質量%以下含有し、残部がBi及び不可避不純物であるBi合金。
(4)Cu、Ni、Teの少なくとも1種を合計で0.1〜3質量%含有すると共に、Sn、Zn、Al、Pの少なくとも1種を合計で0.1〜16.0質量%含有し、残部がBi及び不可避不純物であるBi合金。
2. The high-temperature lead-free solder paste according to claim 1, wherein the Bi alloy powder is made of any one of the following Bi alloys (1) to (4):
(1) A Bi alloy containing at least one of Cu, Ni, and Te in a total amount of 0.1 to 3% by mass, the balance being Bi and inevitable impurities.
(2) A Bi alloy containing at least one of Sn and Zn in a total amount of 0.1 to 13.5% by mass, the balance being Bi and inevitable impurities.
(3) 0.1 to 13.5% by mass in total of at least one of Sn and Zn, 2.5% by mass or less of Al and / or 0.5% by mass or less of P, and the balance Bi and Bi alloy which is an inevitable impurity.
(4) Contain at least one of Cu, Ni and Te in a total amount of 0.1 to 3% by mass, and at least one of Sn, Zn, Al and P in a total of 0.1 to 16.0% by mass And the balance is Bi and Bi alloy with inevitable impurities.
JP2010128436A 2010-06-04 2010-06-04 High-temperature lead-free solder paste Pending JP2011251329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128436A JP2011251329A (en) 2010-06-04 2010-06-04 High-temperature lead-free solder paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128436A JP2011251329A (en) 2010-06-04 2010-06-04 High-temperature lead-free solder paste

Publications (1)

Publication Number Publication Date
JP2011251329A true JP2011251329A (en) 2011-12-15

Family

ID=45415705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128436A Pending JP2011251329A (en) 2010-06-04 2010-06-04 High-temperature lead-free solder paste

Country Status (1)

Country Link
JP (1) JP2011251329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196563B2 (en) 2012-01-26 2015-11-24 Hitachi, Ltd. Bonded body and semiconductor module
WO2016114028A1 (en) * 2015-01-16 2016-07-21 株式会社村田製作所 Conductive material, connection method using same, and connection structure
US10046417B2 (en) 2011-08-17 2018-08-14 Honeywell International Inc. Lead-free solder compositions
WO2020044650A1 (en) * 2018-08-31 2020-03-05 Jx金属株式会社 Soldering alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254195A (en) * 2000-12-25 2002-09-10 Tdk Corp Soldering composition and soldering method
JP2003211289A (en) * 2002-01-21 2003-07-29 Fujitsu Ltd Electrically conductive joining material, method of joining by using the same and electronic device
JP2004025232A (en) * 2002-06-25 2004-01-29 Murata Mfg Co Ltd Lead-free solder composition and soldered article
JP2005095977A (en) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd Circuit device
WO2007018288A1 (en) * 2005-08-11 2007-02-15 Senju Metal Industry Co., Ltd. Lead free solder paste and application thereof
WO2007055308A1 (en) * 2005-11-11 2007-05-18 Senju Metal Industry Co., Ltd. Soldering paste and solder joints

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254195A (en) * 2000-12-25 2002-09-10 Tdk Corp Soldering composition and soldering method
JP2003211289A (en) * 2002-01-21 2003-07-29 Fujitsu Ltd Electrically conductive joining material, method of joining by using the same and electronic device
JP2004025232A (en) * 2002-06-25 2004-01-29 Murata Mfg Co Ltd Lead-free solder composition and soldered article
JP2005095977A (en) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd Circuit device
WO2007018288A1 (en) * 2005-08-11 2007-02-15 Senju Metal Industry Co., Ltd. Lead free solder paste and application thereof
WO2007055308A1 (en) * 2005-11-11 2007-05-18 Senju Metal Industry Co., Ltd. Soldering paste and solder joints

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046417B2 (en) 2011-08-17 2018-08-14 Honeywell International Inc. Lead-free solder compositions
US10661393B2 (en) 2011-08-17 2020-05-26 Honeywell International Inc. Lead-free solder compositions
US9196563B2 (en) 2012-01-26 2015-11-24 Hitachi, Ltd. Bonded body and semiconductor module
WO2016114028A1 (en) * 2015-01-16 2016-07-21 株式会社村田製作所 Conductive material, connection method using same, and connection structure
WO2020044650A1 (en) * 2018-08-31 2020-03-05 Jx金属株式会社 Soldering alloy

Similar Documents

Publication Publication Date Title
EP2589459B1 (en) Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JPH10144718A (en) Tin group lead free solder wire and ball
JP2016040051A (en) Lead-free solder, lead-free solder ball, solder joint using lead-free solder, and semiconductor circuit having solder joint
WO2015083661A1 (en) Solder material and joining structure
JP5861559B2 (en) Pb-free In solder alloy
JP5962461B2 (en) Au-Ge-Sn solder alloy
WO2012141331A1 (en) Lead-free solder alloy
WO2012002147A1 (en) Pb-FREE SOLDER ALLOY
WO2018168858A1 (en) Solder material
JP2005503926A (en) Improved composition, method and device suitable for high temperature lead-free solders
JP2011251329A (en) High-temperature lead-free solder paste
JP2018047500A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP6136878B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
JP2005052869A (en) Brazing material for high temperature soldering and semiconductor device using it
JP2011251330A (en) High-temperature lead-free solder paste
JP2012228729A (en) Pb FREE SOLDER ALLOY MAKING Zn PRINCIPAL INGREDIENT AND METHOD OF MANUFACTURING THE SAME
JP2011251332A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE USING Al POWDER
JP5979083B2 (en) Pb-free Au-Ge-Sn solder alloy
JP2018047499A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2022026896A (en) Solder alloy and molding solder
JP2017225979A (en) Pb-FREE Zn-BASED SOLDER ALLOY FOR HIGH TEMPERATURE
JP5861526B2 (en) Ge-Al solder alloy not containing Pb
JP2018047497A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2015020189A (en) Pb-FREE Au-Ge-Sn-BASED SOLDER ALLOY MAINLY CONTAINING Au

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002