JP2011249677A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2011249677A
JP2011249677A JP2010123247A JP2010123247A JP2011249677A JP 2011249677 A JP2011249677 A JP 2011249677A JP 2010123247 A JP2010123247 A JP 2010123247A JP 2010123247 A JP2010123247 A JP 2010123247A JP 2011249677 A JP2011249677 A JP 2011249677A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010123247A
Other languages
English (en)
Inventor
Hiroyuki Doi
博之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010123247A priority Critical patent/JP2011249677A/ja
Priority to PCT/JP2010/006412 priority patent/WO2011148437A1/ja
Publication of JP2011249677A publication Critical patent/JP2011249677A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • H04N25/633Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current by using optical black pixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】基板上方に配列された複数の光電変換部を有する固体撮像素子であって、画素間の混色、感度低下、および、高照度時のシェーディングの抑制が可能な、固体撮像素子を提供する。
【解決手段】基板5の上方に配列された複数の光電変換部9を有する固体撮像素子1であって、前記光電変換部9が、基板5の上方に形成された下部電極25と、下部電極25の上面に形成された光電変換膜27と、光電変換膜27の上面に形成された上部電極29とを含んで構成され、上部電極29の上面に接して配置され、光電変換部9に開口を有する形状で、隣接する光電変換部9の境界部分に形成された導電膜33を備える。
【選択図】図1

Description

本発明は、基板上に配列された光電変換部を複数有する固体撮像素子であって、前記光電変換部が、下部電極と、前記下部電極上に形成された光電変換膜と、前記光電変換膜上に形成された上部電極とを含んで構成された素子に関するものである。
従来より、2次元配列された多数の画素部(以下、単に「画素」ともいう。)を有し、画素部毎に半導体基板の上部に形成された光電変換素子であるフォトダイオードと画素信号読み出し用のCCDやMOSトランジスタを設けるとともに、各フォトダイオード上に赤色(R),緑色(G),青色(B)の各カラーフィルタを形成したCCD型固体撮像素子やCMOS型固体撮像素子がある。
このような従来の固体撮像素子は、半導体基板の上面部にフォトダイオード及びCCDやMOSトランジスタや各種配線を配置しているため、半導体基板の面積を増加させることなく画素数を増大させると、受光領域の開口率が小さくなり、感度が悪化する等の課題が生じていた。
この欠点を無くす固体撮像素子として、例えば半導体基板上に赤色(R),緑色(G),青色(B)の光を検出する3つの光電変換膜を積層したもの(特許文献1)も検討されているが、3つの光電変換膜を積層するため、その厚みが増してしまうとともに製造工程が複雑になるという課題があった。
これらに対し、例えば特許文献2及び特許文献3に記載されている固体撮像素子(以下、「従来技術の固体撮像素子」とする。)が提案されている。
図8は、従来技術の固体撮像素子を説明するための断面模式図である。
従来技術の固体撮像素子901は、例えば、n型シリコン基板903上にpウェル層905が形成されてなる半導体基板907と、半導体基板907の上方に絶縁膜909を介して形成された複数の光電変換部911と、各光電変換部911上に配されたカラーフィルタ913と、カラーフィルタ913上に形成されたマイクロレンズ915とを備え、光電変換部911は、半導体基板907側から、画素単位で形成された下部電極917、光電変換膜919、上部電極921、保護膜923が順次積層されてなる。
光電変換膜919で変換された電荷は、上部電極921と下部電極917との間で印加されたバイアス電圧により、コンタクトプラグ925を介して半導体基板907の電荷蓄積部927に蓄積された後、信号読み出し部929から外部へと読み出される。
ここで、上部電極921は、光電変換膜919に光を入射させる必要があるため、入射光に対して透明な導電性材料で構成される。これにより、上部電極921を光電変換膜919上に形成でき、半導体基板907の面積を増加させることなく画素数を増大させても、受光領域の開口率が小さくなるのを防ぐことができ、高感度の撮像が可能となる。
また、光電変換膜919を単層構造にしているため、素子全体としての厚みを薄くでき、かつ半導体プロセスを利用して容易に製造できる。
特開2002−83946号公報 特開2008−252004号公報 特開2009−130090号公報
しかしながら、従来の固体撮像素子901では、以下の課題が生じる。
光電変換部911を構成する上部電極921は、光電変換膜919に光を入射させる必要があるため透明な導電性材料で構成され、その材料としては、可視光に対する透過率が高く、しかも、抵抗値が小さい特性が要求される。
特に、撮像領域(入射光に対して電気信号を得ることができる多数の画素が2次元に配列されている領域)の全体にわたって上部電極921に均一なバイアス電圧を印加するためには、相応する低い抵抗値が必要とされる。
そのため、上部電極921として、光電変換膜919で発生した電荷を移動させる際に撮像特性に悪影響を与えない範囲でバイアス電圧の低下が生じることのない低い抵抗値を確保しうる膜厚が必要となる。
しかしながら、透過特性を高めるために上部電極921の膜厚を薄くした場合、上部電極921の抵抗値が上昇し、これによって撮像領域全体に対して均一なバイアス電圧を印加することが困難となる。つまり、強い光が入射したとき(高照度時)、多量に発生した電荷の流れ(電流)が増大し、光電変換膜919から発生した電荷を取り出す際に上部電極921の抵抗値に起因したバイアス低下が生じてしまい、撮像領域内の位置に依存した信号出力(感度)の傾斜(いわゆる、感度シェーディング現象である。)が生じてしまう。
なお、この感度シェーディング現象は、特に、撮像領域の中央付近と外周付近とで信号出力の差(感度の差)が大きくなりやすい。
それに反して、上部電極921の抵抗値を下げるために上部電極921の膜厚を厚くした場合、上部電極921の膜厚が厚くなるに応じて入射光の透過特性が低下し、光電変換膜919への光の入射量が低下するため、信号出力(感度)の低下が生じる他、固体撮像素子901の撮像領域に対して斜め方向から入射した光が、隣接する画素部から洩れ込んで、当該画素部の光電変換部911に入り込む、いわゆる、画素間の混色現象を引き起こしてしまう。
隣接する画素部から洩れ込んだ入射光によって発生した電荷の信号出力は、本来、当該画素に入射する光から発生する電荷によって出力された信号に対するノイズ成分となる。特に、カラーフィルタ913を備えた固体撮像素子の場合、例えば、隣接する画素部に設けられたカラーフィルタ913を透過した緑色光や青色光が赤色画素部の光電変換膜へ漏れ込むため、画質の大きな劣化を生じる。
特に、近年は市場からの要望として大きな撮像領域を備え且つ単位画素サイズの縮小によって半導体基板(907)の面積を増加させることなく撮像領域内の画素数を増大することが求められており、上記の感度シェーディング現象、感度の低下、画素間の混色現象等の画素特性の劣化を抑制して高画質を実現することは、従来の固体撮像素子において困難であった。
これらの課題に鑑み、本発明の目的は、画素特性の劣化を抑制することが可能な固体撮像素子を提供することである。なお、上記課題は、カラーフィルタを備えるカラー固体撮像素子だけでなく、カラーフィルタを備えない、いわゆる、白黒用の固体撮像素子においても生じる。
前記の目的を達成するため、本発明の固体撮像素子は、次の構成を備えることとする。
(1)基板上に2次元配列された複数の光電変換部を有する固体撮像素子において、前記光電変換部は、前記基板上に形成された下部電極と、前記下部電極の上面に形成された光電変換膜と、前記光電変換膜の上面に形成された上部電極とを含み、前記上部電極は、全画素に対応した1または複数の共通の電極膜から構成され、当該共通の電極膜の主面であって1または複数の光電変換部から構成される所定領域と当該所定領域に隣接する他の光電変換部との境界部分に、当該電極膜に接する状態で導電膜が形成されていることを特徴としている。
(2)前記導電膜は、1枚の電極膜から構成された上部電極であって各光電変換部における隣接する他の光電変換部との境界部分に沿って形成されていることを特徴としている。
(3)前記複数の光電変換部の各々の上方にカラーフィルタを有し、前記導電膜が、前記上部電極の上面に接する状態で、隣接するカラーフィルタの境界部分に形成されていることを特徴としている。
(4)前記導電膜が、前記下部電極上に四角形状の開口を有した格子状をしていることを特徴としている。
(5)前記導電膜が、前記下部電極上に多角形状の開口を有しているハニカム状をしていることを特徴としている。
(6)前記導電膜が、入射光に対して遮光性を有していることを特徴としている。
(7)前記導電膜が、タングステン、アルミニウム、チタン、窒化チタン、銅のいずれかの膜、または、それらのうち2種以上の積層膜で構成されていることを特徴としている。
本発明に係る固体撮像素子によれば、上記(1)に示したように、導電膜が一方の電極膜に接触する状態で形成されているため、当該導電膜が、一方の電極の裏打ち配線としての役割を果たすため、一方の電極の膜厚を薄くした場合においても、当該電極の抵抗値の上昇を抑えることができる。
これにより、撮像領域(入射光に対して電気信号を得ることができる多数の画素が2次元に配列されている領域)の全体にわたって均一なバイアス印加が可能となる。特に強い光が入射したとき(高照度時)、多量に発生した電荷の流れ(電流)が増大し、光電変換膜から発生した電荷を取り出す際に一方の電極の抵抗値に起因したバイアス低下が生じないため、撮像領域内の位置に依存した信号出力(感度)の傾斜(いわゆる、感度シェーディング現象)の発生が抑制できる。このため、高照度時においても、撮像領域の位置に依存することのない均一な画質の撮像が実現できる。
さらに、導電膜を備えることによって、一方の電極の膜厚を薄くできるため、当該電極に対する入射光の透過率を低下させることがなく、光電変換膜への光の入射量も低下することが無いため、高い感度を有する固体撮像素子を実現できる。
それに加えて、一方の電極の膜厚を薄くできるため、固体撮像素子の撮像面の鉛直方向に対して斜め方向から入射した光が、隣接画素上の電極を透過して当該画素の光電変換膜に洩れ込む現象、いわゆる、画素間の混色現象も抑制できる。
また、上記(2)に示したように、下層電極に透明電極を用いる必要がなくなり、安価に固体撮像素子を得ることができる。また、導電膜を上部電極に設けることによって、上部電極の膜厚を薄くできる。これにより、上部電極に対する入射光の透過率を低下させることがなく、光電変換膜への光の入射量も低下することが無いため、高い感度を有する固体撮像素子を実現できる。さらに、上部電極の膜厚を薄くできるため画素間の混色現象も抑制できる。
また、上記(3)に示したように、複数の光電変換部の上方にカラーフィルタを有しているため、カラー画像を撮像できるカラーフィルタを有する固体撮像素子の画素特性の劣化(感度シェーディング現象、感度低下)を抑制することが可能な、固体撮像素子を実現できる。さらに、導電膜が、隣接する光電変換部に形成されたカラーフィルタの境界部分に形成されているため、固体撮像素子の撮像面の鉛直方向に対して斜め方向から入射した光が、例えば、隣接する緑色画素部または青色画素部に設けられたカラーフィルタを透過し、赤色画素部の光電変換膜へ漏れ込む現象を抑制できる。これにより、カラー画像を撮像できるカラーフィルタを有する固体撮像素子においても画素間の混色現象を抑制できる。
以上のような、隣接する光電変換部の境界部分に形成された導電膜を備える構成を供えることによって、透明な電極である上部電極の裏打ち配線として光電変換部に開口を有する導電膜を形成することによって、膜厚が薄くても上部電極の抵抗値の上昇が抑えることができる構成は、上記(4)の固体撮像素子において、導電膜が光電変換部上にしか矩形状の格子状の開口を有する構造や、上記(5)の固体撮像素子において、導電膜が、光電変換部上に多角形状の開口を有する構造を採用することによって、一層の低抵抗化を実現できるため、より高い効果を発揮できる。
さらに、上記(6)に示したように、導電膜が入射光に対して遮光性を有し、特に、上記(7)に示すように、導電膜が高い遮光性を有するタングステン、アルミニウム、チタン、窒化チタン、銅のいずれか、または、それらのうち2種以上の積層膜で構成することによって、画素部間の混色現象を誘発する、隣接する光電変換部の境界部分に入射した光を遮ることが可能となり、より高い混色抑制効果を実現できる。
このように、本発明に係る固体撮像素子によれば、高照度時のシェーディングの抑制と感度低下の抑制、画素間の混色の抑制の鼎立が可能となり、撮像性能が大幅に向上した高画質な画像を撮像できる固体撮像素子を実現できる効果を有する。
上記効果は、特に、大きな撮像領域を備え、かつ、画素数の拡大を実現できる微細な単位画素サイズを有する固体撮像素子において、顕著となるものである。
第1の実施の形態に係る固体撮像素子を説明するための断面模式図である。 図1のX−X線断面を矢印方向から見た模式図である。 第2の実施の形態に係る固体撮像素子を説明するための断面模式図である。 変形例1に係る固体撮像素子を説明するための部分表面模式図である。 変形例2に係る固体撮像素子を説明するための部分表面模式図である。 変形例3に係る固体撮像素子を説明するための部分表面模式図である。 変形例4に係る固体撮像素子を説明するための断面模式図である。 従来技術の固体撮像素子を説明するための断面模式図である。
以下、本発明を実施するための最良の形態の例である実施の形態について、図面を参照しながら説明する。
<第1の実施の形態>
1.全体構成
図1は、第1の実施の形態に係る固体撮像素子1を説明するための断面模式図である。
図2は、図1のX−X線断面を矢印方向から見た図である。
固体撮像素子1は、同図に示すように、複数の画素部3を有し、これら複数の画素部3は、例えば、行列状(マトリクス状)に2次元配列されている。なお、図2で現れているのは、各画素部3を構成している後述のカラーフィルタ11r,11g,11bであり、その配列が分かるように各カラーフィルタの光色を各カラーフィルタに図示しているため、各カラーフィルタ11r,11g,11bのハッチングは省略する。ここでの固体撮像素子1は、いわゆる、カラー固体撮像素子である。
ここで、カラーフィルタ11rは主として赤色(R)の波長域の光を透過し、カラーフィルタ11gは主として緑色(G)の波長域の光を透過し、カラーフィルタ11bは主として青色(B)の波長域の光を透過する。
また、平面視において、カラーフィルタ11rと重なる部分を赤色画素部3rとし、カラーフィルタ11gと重なる部分を緑色画素部3gとし、カラーフィルタ11bと重なる部分を青色画素部3bとする。
各画素部3r,3g,3bは、図1に示すように、半導体基板5と、当該半導体基板5上に絶縁膜7を介して形成され且つ各画素部3r,3g,3bに対応した光電変換部9r,9g,9bと、当該光電変換部9r,9g,9b上に形成された所定色のカラーフィルタ11r,11g,11bと、当該カラーフィルタ11r,11g,11b上に形成されてマイクロレンズ13とを備える。
これにより、固体撮像素子1は、各画素部3において、マイクロレンズ13により集光され、各カラーフィルタ11を透過した光に応じた電荷を取り出すことが可能となる。
なお、各色に関係なく、画素部を表す際には符号「3」を、光電変換部を表す際には符号「9」を、カラーフィルタを表す際には符号「11」をそれぞれ用いる。
2.各部構成
(1)半導体基板5
半導体基板5は、例えば、n型シリコン基板15と、当該シリコン基板15上に形成されたpウェル層17とからなる。なお、半導体基板5としてp型シリコン基板を利用しても良い。
半導体基板5は、各光電変換部9に対応させて、光電変換部9で光電変換された電荷を蓄積するための電荷蓄積部19と、電荷蓄積部19に蓄積された電荷を電圧信号に変換する信号読み出し部21とが形成されている。
電荷蓄積部19は、n型不純物領域(具体的にはトランジスタのソースである。)から構成され、絶縁膜7を貫通して形成された導電性材料のコンタクトプラグ23によって光電変換部9と電気的に接続されている。
これにより、各光電変換部9で変換された電荷を電荷蓄積部19へと移動させることができる。
信号読み出し部21は、公知のCMOS回路、またはCCDとアンプとを組み合わせた回路によって構成されている。
なお、各色に対応して、電荷蓄積部を表す際には符号「19」に各色の「r」、「g」、「b」を付加したものを用い、同様に、信号読み出し部を表す際には符号「21」に各色の「r」、「g」、「b」を付加したものを用いる。
本実施の形態では、基板として半導体基板5を用いているが、例えば、ガラス基板や石英基板等の、基板内部及び基板上に電子回路を設置できるものであれば良い。
また、コンタクトプラグ23は、いずれの金属で形成しても良いが、銅、アルミニウム、銀、金、クロム、タングステンの中から選択するのが好ましい。
複数の光電変換部9に応じて、下部電極25と電荷蓄積部19とが形成されており、コンタクトプラグ23は、下部電極25と電荷蓄積部19とを1対1で接続するように形成されている。
(2)絶縁膜7
絶縁膜7は、上述したコンタクトプラグ23を含むほか、電荷蓄積部19や信号読み出し部21に入射光が当たらないようにするための遮光膜や信号読み出し部21を駆動するための配線等(図示省略)が埋設されている。このように、絶縁膜7に遮光膜を形成することで、光電変換部9で光電変換されずに透過した光が電荷蓄積部19や信号読み出し部21で光電変換されてノイズとなることを防止できる。
特に、下部電極25を遮光性のある金属で形成した場合であっても、下部電極25の間隙から光が進入することがあるため、絶縁膜7においては、下部電極25の間隙の下方に遮光膜を形成することが好ましい。また、下部電極25の間隙の下方に遮光性のある金属配線を配置すれば、配線が遮光膜を兼ねることもできる。
(3)光電変換部9
各光電変換部9r,9g,9bは、各画素部3r,3g,3bに対応しており、画素部3r,3g,3b毎に分割された状態に形成された下部電極25r,25g,25bと、当該下部電極25r,25g,25bの上面に形成された光電変換膜27と、当該光電変換膜27の上面に形成された上部電極29と、当該上部電極29の上面であって隣接する光電変換部9r,9g,9b間に形成された導電膜33と、当該導電膜33及び上部電極29の上面であって導電膜33が存しない部分に形成された保護膜31とを含む。
各光電変換部9は、光電変換膜27における下部電極25と上部電極29とで挟まれている部分で発生した電荷(正孔や電子である。)を、上部電極29と下部電極25間に所定のバイアス電圧を印加することで、上部電極29や下部電極25に移動させることができる。
例えば、ここでは、上部電極29に配線(図示省略)が接続され、この配線を介して上部電極29に負のバイアス電圧が印加され、光電変換膜27に発生した電子が下部電極25に、正孔が上部電極29にそれぞれ移動するようにしている。
なお、下部電極25r,25g,25bも、各色に関係なく表す際には、符号「25」を用いる。
各下部電極25は、各画素部3の入射光に対応して変換された電荷を取り出すために、各画素部3で分割されており、平面視において、各画素部3の各カラーフィルタ11と略同じ形状・大きさをしている。
光電変換膜27は、特定の波長域の光を吸収して、この光に応じた電荷を発生するものであり、共通の材料で各画素部3単位でなく全体として一枚構成されている。
上部電極29は、光電変換膜27に光を入射させる必要があるため、入射光に対して透明な導電性材料で構成され、光電変換膜27と同様に、共通の材料で各画素部3単位でなく全体として一枚の電極膜で構成されている。
保護膜31は、水分や酸素等による光電変換膜27の経時劣化を防止するために設けられている。具体的には、カラーフィルタ11r,11g,11bの形成後も、時間の経過とともに水分や酸素が光電変換膜27に侵入してくる可能性があり、これによって光電変換膜27の性能が劣化するのである。
この特性劣化は、光電変換膜27の材料として有機光電変換材料を用いた場合に特に顕著となる。このような保護膜31は、上部電極29や光電変換膜27の保護機能(水分や酸素が浸入しにくい緻密性、水分や酸素と反応しにくい非反応性)と透明性とを兼ね備えた材料(薄膜)により構成される。
導電膜33は、図1及び図2に示すように、上部電極29の上面に接して配置され、光電変換部9に対応する部分が開口する形状で、隣接する光電変換部9r,9g,9bの境界部分(例えば、光電変換部9rと光電変換部9gとの境界部分である。)に形成されている。つまり、隣接するカラーフィルタ11r,11g,11bの境界部分に亘って形成されている。
ここでは、導電膜33は、図2に示すように、行列状に配列されたカラーフィルタ11(光電変換部9)に対応して格子状をしている。このように導電膜33は、各光電変換部9の受光領域に対応した部分に開口を有するように上部電極29の上面に接する状態で設けられている。また、導電膜33はハッチング部分であり、保護膜31は導電膜33を囲繞する線分である。
(4)カラーフィルタ11
各カラーフィルタ11r,11g,11bは、各画素部3r,3g,3bに対応して、各光電変換部9r,9g,9bの保護膜31の上面に形成されている。
カラーフィルタ11r,11g,11bの配列、つまり、各画素部3r,3g,3bの配列は、公知の単板式固体撮像素子に用いられているカラーフィルタ配列(例えばベイヤー配列)を採用している。なお、ベイヤー配列以外に、例えば、縦ストライプ、横ストライプ等も採用することができる。
(5)マイクロレンズ13
マイクロレンズ13は、各カラーフィルタ11の上面に例えばドーム状に形成されており、マイクロレンズ13に入射した光を各画素部3における光電変換部9の光電変換膜27に集光させる。
3.実施例
(1)下部電極25
下部電極25は、画素部3毎に分割された薄膜であり、不透明の導電性材料で構成される。このような導電性材料としては、Al、Ti、TiN、Cu、Cr,In,Ag等の金属を用いることができる。
(2)光電変換膜27
光電変換膜27は、特定の波長域の光を吸収してこの光に応じた電荷を発生する光電変換材料を含んで構成される。このような光電変換材料としては、分光特性や感度特性の観点からは有機光電変換材料を用いることが好ましく、例えば、キナクリドン等を用いることができ、その膜厚は、400[nm]〜600[nm]が好ましく、本実施例では500[nm]程度である。
固体撮像素子1では、各画素部3での分光をカラーフィルタ11r,11g,11bによって行うため、光電変換膜27は、可視域全域にわたって光吸収率の高い光吸収スペクトルを持つ材料で構成され、また、高感度を維持するために量子効率も高い材料を用いることが望ましい。
一方、上述のように、光電変換膜27は光吸収率が高いほど良いが、光吸収率を大きくするために膜厚を大きくすると、量子効率の低下につながるので、光吸収係数が大きい材料を用いて、より薄い膜厚で十分に光を吸収できるようにすることが好ましい。
また、光電変換膜27は、波長400[nm]〜700[nm]における光吸収率が50[%]以上であるような材料を用いることで、撮影に問題ない程度の画質を得ることが可能となる。
また、光電変換膜27の材料としては、可視光領域の光を主に光電変換するものであれば好ましく、紫外光や赤外光に対しては、可視光よりも光電変換能力が小さい、もしくは光電変換能力がないものが好ましい。このようにすれば、紫外光や赤外光によるノイズを低減もしくはなくすことができる。ただし、本発明の固体撮像素子1の外部に紫外カットフィルタや赤外カットフィルタ(図示せず)を設けておけば、固体撮像素子1に紫外光や赤外光が入ることを防止でき、光電変換膜27の材料は可視光に対する感度のみを考慮して選択することができる。
(3)上部電極29
上部電極29は、光電変換膜27に光を入射させる必要があるため、入射光に対して透明な導電性材料で構成される。このような導電性材料としては、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を用いることができる。
TCOとして、特に、酸化インジウム錫(ITO)、酸化インジウム、酸化錫、弗素ドープ酸化錫(FTO)、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、酸化チタン等を好ましく用いることができる。また、プロセス簡易性、低抵抗性、透明性の観点からはITOが好ましい。
透明電極(上部電極29)の材料は、プラズマフリーである成膜装置、EB蒸着装置、及びパルスレーザ蒸着装置により成膜できるものが好ましく、特に好ましいのは、ITO、IZO、酸化錫、アンチモンドープ酸化錫(ATO)、FTO、酸化亜鉛、AZO、ガリウムドープ酸化亜鉛(GZO)、酸化チタンのいずれかの材料である。
上部電極29の光透過率は、その上部電極29が存する光電変換部9に含まれる光電変換膜27の光電変換光の吸収ピーク波長において、60[%]以上が好ましく、より好ましくは80[%]以上である。これは、各光電変換膜27に十分に可視光を入射させるためである。
また、上部電極29の表面抵抗は、電荷蓄積/転送/読み出し構造がCCD構造であるかCMOS構造であるか等により好ましい範囲は異なる。
例えば、電荷蓄積/転送/読み出し構造がCMOS構造の場合には10000[Ω/□]以下が好ましく、より好ましくは、1000[Ω/□]以下である。一方、電荷蓄積/転送/読み出し構造がCCD構造の場合には1000[Ω/□]以下が好ましく、より好ましくは、100[Ω/□]以下である。なお、CCD構造の方がCMOS構造より小さいのはCCD構造の方が駆動時に流れる電流が約1桁程度多いためである。
また、光電変換膜27に電圧を印加すると、光電変換効率が向上するため、光電変換膜27に電圧を印加するのが好ましい。印加電圧としては、いかなる電圧でも良いが、光電変換膜27の膜厚により必要な電圧は変わるため、膜厚にあわせて決定すれば良い。
すなわち、光電変換膜27の光電変換効率は、光電変換膜27に加わる電界が大きいほど向上するが、同じ印加電圧でも光電変換膜27の膜厚が薄いほど加わる電界は大きくなる。従って、光電変換膜27の膜厚が薄い場合は、印加電圧は相対的に小さくても良い。
また、光電変換膜27に加える電界として好ましくは、10[V・m−1]以上であり、さらに好ましくは1×10[V・m−1]以上である。上限は特にないが、電界を加えすぎると暗所でも電流が流れてしまうため好ましくないので、1×1012[V・m−1]以下が好ましく、さらに1×10[V・m−1]以下が好ましい。
なお、上部電極29の機能は電界を発生させるためであり、各画素部において、電界を発生させるのに十分な面積が確保されていれば、開口部を形成していても良い。このようにすることで、開口部では光の減衰は全く起こらないため、さらに光電変換部9に入射する光を増やし、感度を向上することができる。
(4)導電膜33
導電膜33は、隣接する光電変換部9r,9g,9bの境界部分に配置され、単位画素サイズにも依存するが、受光用の所望の開口及び抵抗値を得るためには、その幅(図2における左右方向や上下方向の寸法である。)は0.1[μm]〜0.6[μm]程度であることが好ましい。
導電膜33は、入射光に対して遮光性を有することが望ましく、タングステン、アルミニウム、チタン、窒化チタン、銅のいずれか、または、それらのうち2種以上の積層膜で構成される。
(5)保護膜31
保護膜31は、上部電極29等を保護するために上部電極29の上面に形成されている。このため光透過性が必要される。光透過性については、波長400[nm]〜700[nm]における光透過率が80[%]以上であれば、各光電変換膜27に十分に可視光を入射させることができる。
上記保護機能と透明性を兼ね備えた薄膜としては、透明性の高い膜であることと、上部電極29や光電変換膜27を保護することができる材料からなることが必要とされる。このような膜としては、窒化珪素等の窒化物の薄膜がある。窒化物を物理気相堆積法によって成膜することで、上部電極29や光電変換膜27の特性等を実質的に変化させることなく、緻密な窒化物の膜を形成することができる。
なお、保護膜31の膜厚は、0.1[μm]〜10[μm]が好ましく、0.5[μm]〜5[μm]がより好ましい。さらには、1[μm]〜3[μm]が好ましい。
これは、保護膜31の膜厚が薄いと保護膜としての機能(耐湿性、不純物の進入の抑制)が不十分となり、膜厚が厚いと入射光が吸収され感度の低下を引き起こすためである。
4.動作
上記構成の固体撮像素子1では、入射光のうちの赤色光が赤色画素部3rの光電変換膜27で吸収されて電荷に変換され、この電荷がバイアス電圧の印加により下部電極25rへ移動した後に電荷蓄積部19rに蓄積され、信号読み出し部21rによって赤色信号として出力される。
また、入射光のうちの緑色光が緑色画素部3gの光電変換膜27で吸収されて電荷に変換され、この電荷がバイアス電圧の印加により下部電極25gへ移動した後に電荷蓄積部19gに蓄積され、信号読み出し部21gによって緑色信号として出力される。
また、入射光のうちの青色光が青色画素部3bの光電変換膜27で吸収されて電荷に変換され、この電荷がバイアス電圧の印加により下部電極25bへ移動した後に電荷蓄積部19bに蓄積され、信号読み出し部21bによって青色信号として出力される。
このように、固体撮像素子1からは、撮像によって各画素部3r,3g,3bから対応した各赤色信号、緑色信号及び青色信号が出力されるため、公知の信号処理により、カラー画像データを生成することが可能となる。
(1)バイアス電圧印加時
固体撮像素子1は、各光電変換部9の受光領域に対応した部分に開口を有する導電膜33を上部電極29の上面に、当該電極29に接する状態で備えている。これにより、導電膜33は透明電極である上部電極29の裏打ち配線としての役割を果たすため、上部電極29の膜厚を従来の200[nm]程度からその半分の100[nm]程度へと薄くした場合においても、上部電極29としての抵抗値の上昇を抑えることが可能となり、撮像領域の全体にわたって均一なバイアス印加を可能とすることができる。
(2)感度シェーディング
強い光が光電変換部9に入射した場合(高照度時である。)に、光電変換膜27に多量の電荷が発生し、電荷の流れ(電流)が増大する。しかし、バイアス印加時に、上述したように均一なバイアス印加が可能となるため、光電変換膜27から発生した電荷を取り出す際に上部電極29の抵抗値に起因したバイアス低下が生じなく(小さく)なる。
これにより、撮像領域内の位置に依存した信号出力(感度)の傾斜(いわゆる、感度シェーディング現象)の発生を抑制することができ、結果的に、高照度時においても、撮像領域の位置に依存することのない均一な画質の撮像を実現することができる。
(3)感度
導電膜33は、上部電極29の上面に接して配置され、隣接する光電変換部の境界部分に形成されている。これによって、上部電極29の膜厚を従来の半分程度まで薄くできるため、上部電極29に対する入射光の透過率を低下させることがなくなる。このため、高い感度を有する固体撮像素子1を実現することができる。
また、カラーフィルタ11r,11g,11bの上に、マイクロレンズ13を設け、さらに隣接する光電変換部9の境界部分に導電膜33を設ける構成を採用している。これにより、導電膜33を形成しない場合と比べると、光電変換部9の受光用の開口面積が減少することとなり、マイクロレンズ13を用いた入射光の集光を効率良く行うことができ、感度の向上に寄与できる。
(4)混色
固体撮像素子1は導電膜33を備えることにより、上部電極29の膜厚を従来の半分程度まで薄くできる。これにより、固体撮像素子1の撮像領域に対して斜め方向から光が入射した場合でも、隣接する画素部3の上部電極29を透過して光電変換膜27に洩れ込むのを抑制でき、結果的に画素間の混色現象を抑制することができる。
(5)まとめ
このように、第1の実施の形態に係る固体撮像素子1によれば、高照度時のシェーディングの発生、感度の低下、画素間の混色の鼎立する課題の解消が可能となり、撮像性能が大幅に向上した高画質な画像を撮像できる固体撮像素子1を実現することができる。
5.比較例
従来の固体撮像素子は、導電膜33を備えず、金属膜等で上部電極を形成した場合は、例えば、上部電極の抵抗を100[Ω/□]以下にするには、200[nm]以上の膜厚を必要とする。
これに対して、本実施の形態における固体撮像素子1では、導電膜33を上部電極(29)の裏打ち配線として適用し、導電膜33を構成する金属膜をタングステン、窒化チタンで構成すると、導電膜33の抵抗値が、上部電極(29)を構成するITOの1/10となる。
これにより、単位画素サイズが、例えば2.0[μm]の1/10の幅(例えば0.2[μm])の場合、上部電極29と導電膜33とをそれぞれ100[nm]以下の膜厚で形成することができ、従来の固体撮像素子の半分程度にすることができる。
<第2の実施の形態>
図3は、第2の実施の形態に係る固体撮像素子101を説明するための断面模式図である。なお、図3は、赤色画素部、緑色画素部及び青色画素部の各断面を仮想的に並べて表している。
第2の実施の形態では、光電変換部の導電膜の膜厚を、第1の実施の形態における導電膜33の膜厚よりも厚くしている。なお、第2の実施の形態において、第1の実施の形態と同様の構成については、同じ符号を用いて説明する。
1.構成
第2の実施の形態に係る固体撮像素子101は、複数の画素部103を有し、これら複数の画素部103は、第1の実施の形態と同様に、2次元配列されている。なお、各画素部103は、赤色画素部103r、緑色画素部103g及び青色画素部103bの3種類を含む。
各画素部103r,103g,103bは、図3に示すように、半導体基板5と、当該半導体基板5の上方に絶縁膜7を介して形成された各画素部103r,103g,103bに対応した光電変換部105r,105g,105bと、当該光電変換部105r,105g,105b上に形成された所定色のカラーフィルタ107r,107g,107bと、当該カラーフィルタ107r,107g,107b上に形成されてマイクロレンズ13とを備える。
なお、各色に関係なく、画素部を表す際には符号「103」を、光電変換部を表す際には符号「105」を、カラーフィルタを表す際には符号「107」をそれぞれ用いる。
光電変換部105は、下部電極25、光電変換膜27、上部電極29、導電膜109、保護膜111を備える。
導電膜109は、図3に示すように、カラーフィルタ107と同等(0.2[μm]〜0.5[μm]程度)、または、それ以下の膜厚を有し、第1の実施の形態に係る導電膜33の膜厚よりも厚くなっている。
導電膜109は、カラーフィルタ107の側面に形成され(側面に位置し)、隣接するカラーフィルタ107r,107g,107bを分離する位置(つまり、隣接するカラーフィルタ間である。)に配置され、全体として光電変換部105の下部電極25の上方が開口した格子形状をしている。
カラーフィルタ107は、格子形状の導電膜109の開口部分に形成されている。カラーフィルタ107の上面は、導電膜109を被覆して保護する保護膜111の上面と略一致し、カラーフィルタ107と保護膜111との上面にマイクロレンズ13が形成されている。
2.実施例
第1の実施の形態で説明した実施例と異なるところだけを以下では説明する。
導電膜109は、タングステン、アルミニウム、チタン、窒化チタン、銅のいずれか、または、それらのうち2種以上の積層膜で構成され、例えば、ここでは、タングステンと窒化チタンの積層膜で構成されている。
導電膜109の幅は、単位画素サイズにも依存するが、所望の開口及び抵抗値を得るためには、0.1[μm]〜0.6[μm]程度であることが望ましく、例えば、1.5[μm]程度の画素サイズであれば、導電膜109の幅は0.2[μm]程度が望ましい。
また、導電膜109は、入射光に対して遮光性を有することが望ましく、その膜厚は、0.2[μm]〜0.5[μm]程度、例えば、0.4[μm]である。
3.効果
(1)上部電極の抵抗・透過率
導電膜109を備えずに上部電極29のみを形成した場合は、100[Ω/□]以下の抵抗を実現するには、膜厚が200[nm]以上の上部電極を必要とする(従来の固体撮像素子である。)。
これに対して、導電膜109を上部電極29の裏打ち配線として適用した場合、導電膜109をタングステンと窒化チタンとの積層膜で、上部電極29をITOでそれぞれ構成すると、単位画素サイズが、例えば、2.0[μm]の1/10の幅の場合、導電膜109の膜厚を0.4[μm]にすると、上部電極29は25[nm]程度の膜厚で形成することができる。
このように、導電膜109は透明電極である上部電極29の裏打ち配線としての役割を果たすため、上部電極29の膜厚を従来の200[nm]程度から25[nm]へと薄くした場合においても、上部電極29としての抵抗値の上昇を抑えることが可能となり、撮像領域の全体に亘って均一なバイアス印加が可能となる。
それとともに、上部電極29の膜厚を従来の1/8程度まで薄くできるため、上部電極29に対する入射光の透過率が大幅に向上し、非常に高い感度を有する固体撮像素子を実現することができる。
(2)遮光性
導電膜109は、上部電極29の上面に接して配置され、隣接する光電変換部105r,105g,105bの境界部分に形成されている。しかも、隣接するカラーフィルタ107r,107g,107bの間を分離する位置に配置されている。
そして、入射光に対して高い遮光性を有するタングステンや窒化チタンで構成する導電膜109を備えることによって、カラーフィルタ107の側面に遮光体(遮光膜)を形成することとなる。
これにより、半導体基板5の主面と直交する方向(垂直方向)に対して斜め方向から入射する光がカラーフィルタ107を透過して隣接する画素部103に漏れ込む現象を完全に抑制することができる。これにより、画素部103r,103g,103b間の混色をなくす(抑制する)ことが可能となる。
(3)まとめ
このように、第2の実施の形態に係る固体撮像素子101によれば、各光電変換部105の受光領域に対応した部分に開口を有する導電膜109を上部電極29の上面に当該電極29に接する状態で備えているため、第1の実施の形態と同様に、高照度時のシェーディングの抑制が可能となる。
さらに、導電膜109の膜厚を、第1の実施の形態における導電膜33の膜厚よりも厚くしているため、上述のように、大幅な感度向上、画素間の混色を無くすることが可能となり、撮像性能の大幅に向上した高画質な画像を撮像できる固体撮像素子を実現することができる。
また、第2の実施の形態において、各カラーフィルタ107の上面に、マイクロレンズ13を設ける構成としている。このため、第1の実施の形態と同様に、隣接する光電変換部105r,105g,105bの境界部分に導電膜109を設けることによって、マイクロレンズ13を用いた入射光の集光を効率良く行うことができ、感度の向上に寄与できる。
<変形例>
1.導電膜
(1)構造
上記第1の実施の形態及び第2の実施の形態における導電膜33,109は、平面(2次元)構造をし、全体としての形状が正方格子形状となるように配設(形成)されている。しかしながら、導電膜は、第1の実施の形態や第2の実施の形態のように平面構造とする必要はなく、他の構造であっても良い。以下、導電膜の他の構造を変形例1として説明する。
図4は、変形例1に係る固体撮像素子201を説明するための部分表面模式図である。
図4は、変形例1に係る固体撮像素子201において、図1におけるX−X線に相当する仮想線での断面を、図1における矢印方向から見た断面図である。
変形例1に係る固体撮像素子201は複数の画素部203r,203g,203b(破線で示す。)を有している。各画素部203の導電膜205は、同図に示すように、直線(1次元)構造をしている。つまり、導電膜205は、列方向に延伸するライン状に構成して、行方向に複数本配設する構成としても良い。本変形例1においても導電膜205は、保護膜207により被覆され、また、各光電変換部上には所定の配列となるカラーフィルタ209r,209g,209bが形成されている。
なお、図4で現れているカラーフィルタ209は断面であり、本来はハッチングが必要であるが、各色のカラーフィルタ209の配列が分かるように、ハッチングを施していない。また、導電膜205はハッチング部分であり、保護膜207は導電膜205を囲繞する線分である。さらに、カラーフィルタ209の配列は、列方向に直線状に配列された赤色、緑色、青色が行方向にこの順序で繰り返されている。
変形例1における固体撮像素子201では、導電膜33,109を正方格子形状に配設した場合(第1及び第2の実施の形態である。)に比べて、高照度時のシェーディングの抑制と、画素間の混色については改善効果が劣るが、開口面積を大きくできるため感度についての向上が可能となり、シェーディング及び混色に対して感度を優先する用途に使用する際に有利である。
(2)形状
上記第1の実施の形態及び第2の実施の形態における導電膜33,109は、平面視において各光電変換部9,105の受光領域が開口した正方格子形状をしている。しかしながら、導電膜の平面視における形状は、第1の実施の形態や第2の実施の形態のように正方格子形状とする必要はなく、他の形状であっても良い。以下、導電膜の他の形状を変形例2、3として説明する。
図5は変形例2に係る固体撮像素子251を説明するための部分表面模式図であり、図6は変形例3に係る固体撮像素子301を説明するための部分表面模式図である。
なお、図5及び図6は、図4と同様に、図1におけるX−X線に相当する仮想線での固体撮像素子251,301の断面を、図1における矢印方向から見た断面図であり、図5及び図6で現れているカラーフィルタ257,309は断面であり、本来はハッチングが必要であるが、各色のカラーフィルタの配列が分かるように、ハッチングを施していない。
変形例2に係る固体撮像素子251は、複数の画素部253r,253g,253b(破線で示す。)を有している。各画素部253は、図5に示すように、平面視において、多角形状、ここでは、正六角形状をしている。
各画素部253の導電膜255は、平面視において、各画素部253に対応して、多角形状の環状、ここでは、正六角形状のハニカム形状をしている。
また、各画素部253r,253g,253bのカラーフィルタ257r,257g,257bは、奇数行に緑色のカラーフィルタ257gが複数配列され、偶数行に赤色のカラーフィルタ257rと青色のカラーフィルタ257bとが交互に複数配列され、奇数行と偶数行とが行方向に配列ピッチの約1/2だけ互いにずらして配列されている。
本変形例2においても導電膜255は、保護膜259により被覆され、また、各光電変換部上には上記配列となるカラーフィルタ257r,257g,257bが形成されている。
このような構成をした固体撮像素子251では、各画素部253から出力される信号の空間位置がハニカム配置になるため、信号が得られていない虚画素位置の信号を、その位置の周囲の信号から求める信号補間処理を行うことで、解像度を2倍にすることができる。
この信号補間処理については、画素部253がハニカム状に配列された従来からある固体撮像素子を搭載する撮像装置で行われている各種手法を用いることができる。
変形例3に係る固体撮像素子301は、複数の画素部303r,303g,303b(破線で示す。)を有している。各画素部303の導電膜305は、図6に示すように、平面視おいて、格子形状をし、縦・横の交差している部分のみ幅広い形状をしている。つまり、導電膜305は、光電変換部の受光領域として平面視が正八角形の開口を有するような形状をしている。
本変形例3においても導電膜305は、保護膜307により被覆され、また、各光電変換部上には所定の配列となるカラーフィルタ309r,309g,309bが形成されている。
変形例3に係る固体撮像素子301では、導電膜33,109を平面視において正方格子状に配設した場合に比べて、感度については劣るが、高照度時のシェーディングの抑制と、画素間の混色については向上が可能となり、感度に対して、シェーディング及び混色を優先する用途に使用する際に有利である。
なお、導電膜305は、固体撮像素子301の内部において基準となる信号を出力する画素(いわゆる、オプティカル・ブラック画素)に対する遮光膜として用いることで、固体撮像素子301の構造を簡略化することも可能となる。
(3)配置位置
上記第1及び第2の実施の形態並びに上記変形例1〜3では、導電膜は上部電極の上面に接する状態で形成されていたが、上部電極の抵抗値の上昇を抑えるだけの観点からは、導電膜を上部電極の上面に接する状態で設ける必要はなく、他の領域に形成することもできる。
以下、導電膜の他の構造を変形例4として説明する。
図7は、変形例4に係る固体撮像素子351を説明するための断面模式図である。
変形例4に係る固体撮像素子351の光電変換部353は、下部電極25、光電変換膜27、上部電極29、導電膜33,355、そして保護膜31を備える。
導電膜33は、同図に示すように、上部電極29の上面に接する状態で隣接する光電変換部353間の境界部分に配置され、導電膜355は、同図に示すように、上部電極29の下面に接する状態で隣接する光電変換部353間の境界部分に配置されている。
2.光電変換部
(1)バイアス電圧
各画素部に含まれる光電変換部では、上部電極と下部電極との間に所定のバイアス電圧を印加することで、光電変換膜における下部電極と上部電極とで挟まれる部分で発生した電荷(正孔、電子)のうちの一方を上部電極に移動させ、他方を下部電極に移動させることができる。
本実施の形態等では、負のバイアス電圧を上部電極に印加する構成を使用していたが、逆に、負のバイアス電圧を下部電極に印加する構成としても良い。
この場合、上部電極と電荷蓄積部とを接続するコンタクトプラグを、絶縁層及び光電変換膜を貫通させて設けることで実施できる。なお、このコンタクトプラグは、言うまでもなく、下部電極と接触しないように形成する必要があり、形成箇所は、隣接する光電変換部の境界部分が好ましい。
さらに下部電極を共通電極として一枚構造とする場合、コンタクトプラグと接触しないように絶縁部を形成し、この部分をコンタクトプラグが通過するようにすれば良い。
(2)上部電極
実施の形態等では、上部電極は、全画素部で共通の材料であって一枚の共通の電極膜で構成されていたが、複数の画素部に対応して、全体として複数の共通の電極膜により構成しても良い。
例えば、図4に示す固体撮像素子201において、列方向に配置された複数の画素部の領域を所定領域としても良いし、平面視において2行2列等の正方形状や長方形状等に含まれる複数の画像部の領域を所定領域としても良い。
この場合、導電膜は、上記の所定領域と隣接する他の光電変換部との境界部分のすべての範囲に形成しても良いし、或いは境界部分の一部に形成しても良い。なお、バイアス電圧の均一な印加の観点からは、境界部分のすべてに形成するのが好ましい。
(3)光電変換膜
実施の形態等における光電変換膜は1つの有機光電変換材料により構成されていたが、例えば、他の材料と組合せても良い。
組合せる場所としては、例えば、下部電極と光電変換膜との間、上部電極と光電変換膜との間、またはこれらの両方に他の材料を形成することができる。
また、他の材料としては、例えば、光電変換素子の機能を向上させるための機能膜(例えば、暗電流を抑制するための電荷阻止層)等がある。
さらに、実施の形態等では、光電変換膜は、全画素部で共通の材料であって一枚構成であったが、画素部毎、或いは列方向に配された複数の画素部毎(図4参照)等に分割した構成であっても良い。
本発明に係る光電変換膜積層型の固体撮像素子は、撮像性能が大幅に向上し、従来の光電変換膜積層型の固体撮像素子において課題であった感度シェーディング現象、感度低下、及び、画素間の混色現象の発生が回避できるため、現在において主流となっているCCD型やCMOS型のイメージセンサに代わる、高画質な画像を撮像できる固体撮像素子として有用である。
1 固体撮像素子
3 画素部
5 半導体基板
9 光電変換部
11 カラーフィルタ
13 マイクロレンズ
25 下部電極
27 光電変換膜
29 上部電極
31 保護膜
33 導電膜

Claims (7)

  1. 基板上に2次元配列された複数の光電変換部を有する固体撮像素子において、
    前記光電変換部は、前記基板上に形成された下部電極と、前記下部電極の上面に形成された光電変換膜と、前記光電変換膜の上面に形成された上部電極とを含み、
    前記上部電極は、全画素に対応した1または複数の共通の電極膜から構成され、
    当該共通の電極膜の主面であって1または複数の光電変換部から構成される所定領域と当該所定領域に隣接する他の光電変換部との境界部分に、当該電極膜に接する状態で導電膜が形成されている
    ことを特徴とする固体撮像素子。
  2. 前記導電膜は、1枚の電極膜から構成された上部電極であって各光電変換部における隣接する他の光電変換部との境界部分に沿って形成されている
    ことを特徴とする請求項1に記載の固体撮像素子。
  3. 前記複数の光電変換部の各々の上方にカラーフィルタを有し、
    前記導電膜が、前記上部電極の上面に接する状態で、隣接するカラーフィルタの境界部分に形成されている
    ことを特徴とする請求項2に記載の固体撮像素子。
  4. 前記導電膜が、前記下部電極上に四角形状の開口を有した格子状をしている
    ことを特徴とする請求項2または3に記載の固体撮像素子。
  5. 前記導電膜が、前記下部電極上に多角形状の開口を有しているハニカム状をしている
    ことを特徴とする請求項2または3に記載の固体撮像素子。
  6. 前記導電膜が、入射光に対して遮光性を有している
    ことを特徴とする請求項1〜5のいずれか1項に記載の固体撮像素子。
  7. 前記導電膜が、タングステン、アルミニウム、チタン、窒化チタン、銅のいずれかの膜、または、それらのうち2種以上の積層膜で構成されている
    ことを特徴とする請求項1〜6のいずれか1項に記載の固体撮像素子。
JP2010123247A 2010-05-28 2010-05-28 固体撮像素子 Withdrawn JP2011249677A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010123247A JP2011249677A (ja) 2010-05-28 2010-05-28 固体撮像素子
PCT/JP2010/006412 WO2011148437A1 (ja) 2010-05-28 2010-10-29 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123247A JP2011249677A (ja) 2010-05-28 2010-05-28 固体撮像素子

Publications (1)

Publication Number Publication Date
JP2011249677A true JP2011249677A (ja) 2011-12-08

Family

ID=45003447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123247A Withdrawn JP2011249677A (ja) 2010-05-28 2010-05-28 固体撮像素子

Country Status (2)

Country Link
JP (1) JP2011249677A (ja)
WO (1) WO2011148437A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067948A (ja) * 2012-09-27 2014-04-17 Fujifilm Corp 固体撮像素子および撮像装置
JP2014179577A (ja) * 2013-03-14 2014-09-25 Visera Technologies Company Ltd 固体撮像素子
JP2015119113A (ja) * 2013-12-19 2015-06-25 野洲メディカルイメージングテクノロジー株式会社 アクティブマトリクスアレイ基板、信号処理装置、受光装置及び表示装置
KR20160009953A (ko) * 2014-07-17 2016-01-27 삼성전자주식회사 유기 광전 소자 및 이미지 센서
JP2016032053A (ja) * 2014-07-30 2016-03-07 キヤノン株式会社 撮像装置、および、撮像システム
JP2016072389A (ja) * 2014-09-29 2016-05-09 キヤノン株式会社 光電変換装置、及び撮像システム
JP2017168757A (ja) * 2016-03-18 2017-09-21 凸版印刷株式会社 固体撮像装置及びその製造方法
JP2017223675A (ja) * 2016-06-17 2017-12-21 株式会社ミツトヨ 超解像度ボア撮像システム
JP2019192938A (ja) * 2014-10-24 2019-10-31 株式会社半導体エネルギー研究所 撮像装置
JP2019216270A (ja) * 2014-04-23 2019-12-19 株式会社半導体エネルギー研究所 撮像装置
CN112331684A (zh) * 2020-11-20 2021-02-05 联合微电子中心有限责任公司 图像传感器及其形成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887133B2 (ja) * 2016-08-05 2021-06-16 パナソニックIpマネジメント株式会社 撮像装置
JP6311771B2 (ja) * 2016-10-31 2018-04-18 凸版印刷株式会社 固体撮像素子
CN114520268B (zh) * 2020-11-19 2024-01-30 无锡华润微电子有限公司 光电二极管单元及光电二极管阵列

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211770A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Solid state image pickup device
US4441123A (en) * 1981-09-30 1984-04-03 Fuji Photo Film Co., Ltd. Photosensor pattern of solid-state imaging sensors
JP2010067827A (ja) * 2008-09-11 2010-03-25 Fujifilm Corp 固体撮像素子及び撮像装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067948A (ja) * 2012-09-27 2014-04-17 Fujifilm Corp 固体撮像素子および撮像装置
JP2014179577A (ja) * 2013-03-14 2014-09-25 Visera Technologies Company Ltd 固体撮像素子
US9502453B2 (en) 2013-03-14 2016-11-22 Visera Technologies Company Limited Solid-state imaging devices
JP2015119113A (ja) * 2013-12-19 2015-06-25 野洲メディカルイメージングテクノロジー株式会社 アクティブマトリクスアレイ基板、信号処理装置、受光装置及び表示装置
JP2019216270A (ja) * 2014-04-23 2019-12-19 株式会社半導体エネルギー研究所 撮像装置
KR20160009953A (ko) * 2014-07-17 2016-01-27 삼성전자주식회사 유기 광전 소자 및 이미지 센서
KR102338334B1 (ko) * 2014-07-17 2021-12-09 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
JP2016032053A (ja) * 2014-07-30 2016-03-07 キヤノン株式会社 撮像装置、および、撮像システム
US9502451B2 (en) 2014-07-30 2016-11-22 Canon Kabushiki Kaisha Imaging device having electrode overlying photoelectric conversion layer and having electrical contact to electrode
US9653498B2 (en) 2014-07-30 2017-05-16 Canon Kabushiki Kaisha Imaging device having electrode overlying photoelectric conversion layer and having electrical contact to electrode
US9583523B2 (en) 2014-09-29 2017-02-28 Canon Kabushiki Kaisha Photoelectric conversion device and imaging system
JP2016072389A (ja) * 2014-09-29 2016-05-09 キヤノン株式会社 光電変換装置、及び撮像システム
JP7122430B2 (ja) 2014-10-24 2022-08-19 株式会社半導体エネルギー研究所 撮像装置
JP2019192938A (ja) * 2014-10-24 2019-10-31 株式会社半導体エネルギー研究所 撮像装置
JP2019212918A (ja) * 2014-10-24 2019-12-12 株式会社半導体エネルギー研究所 撮像装置
JP2021103801A (ja) * 2014-10-24 2021-07-15 株式会社半導体エネルギー研究所 撮像装置
JP2017168757A (ja) * 2016-03-18 2017-09-21 凸版印刷株式会社 固体撮像装置及びその製造方法
JP2017223675A (ja) * 2016-06-17 2017-12-21 株式会社ミツトヨ 超解像度ボア撮像システム
CN112331684A (zh) * 2020-11-20 2021-02-05 联合微电子中心有限责任公司 图像传感器及其形成方法
CN112331684B (zh) * 2020-11-20 2024-02-09 联合微电子中心有限责任公司 图像传感器及其形成方法

Also Published As

Publication number Publication date
WO2011148437A1 (ja) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2011148437A1 (ja) 固体撮像素子
JP4637196B2 (ja) 固体撮像素子
US8237834B2 (en) Solid-state imaging device and imaging apparatus having light-preventing partitions
EP2239777A2 (en) Imaging device
JP5075512B2 (ja) 固体撮像素子及び固体撮像素子の製造方法
JP2011258728A (ja) 固体撮像素子および電子情報機器
JP2015170620A (ja) 固体撮像装置
JP2012238648A (ja) 固体撮像装置及び電子機器
JP2008227250A (ja) 複合型固体撮像素子
WO2012157730A1 (en) Imaging apparatus
CN109564928B (zh) 固态摄像元件、固态摄像元件用光瞳校正方法、摄像装置和信息处理装置
US20110228150A1 (en) Photoelectric conversion film stack-type solid-state imaging device and imaging apparatus
US9515110B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP5866248B2 (ja) 固体撮像素子
US8593554B2 (en) Solid-state imaging apparatus, camera, and method of manufacturing solid-state imaging apparatus
JP2019129322A (ja) 撮像装置
JP5504382B2 (ja) 固体撮像素子及び撮像装置
JP4696104B2 (ja) 裏面照射型固体撮像素子及びその製造方法
JP4264248B2 (ja) カラー固体撮像装置
JP2010182789A (ja) 固体撮像素子、撮像装置、固体撮像素子の製造方法
WO2011145158A1 (ja) 固体撮像装置
JP6380752B2 (ja) 固体撮像装置、撮像モジュールおよび撮像装置
WO2013136981A1 (ja) 固体撮像装置、電子機器
JP2005303284A (ja) 光電変換膜積層型固体撮像素子
JP2013254840A (ja) 固体撮像素子

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806