JP2011249491A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2011249491A
JP2011249491A JP2010120059A JP2010120059A JP2011249491A JP 2011249491 A JP2011249491 A JP 2011249491A JP 2010120059 A JP2010120059 A JP 2010120059A JP 2010120059 A JP2010120059 A JP 2010120059A JP 2011249491 A JP2011249491 A JP 2011249491A
Authority
JP
Japan
Prior art keywords
metal film
electrode
semiconductor layer
semiconductor substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010120059A
Other languages
Japanese (ja)
Inventor
Takuya Hamaguchi
卓也 浜口
Tetsujiro Tsunoda
哲次郎 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010120059A priority Critical patent/JP2011249491A/en
Priority to KR1020110036002A priority patent/KR101248440B1/en
Publication of JP2011249491A publication Critical patent/JP2011249491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0501Shape
    • H01L2224/05016Shape in side view
    • H01L2224/05017Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a power semiconductor device which can enhance reliability by preventing breakdown of elements.SOLUTION: A plurality of cell regions 24 are formed on a first principal surface of an n-type semiconductor substrate 10, and an emitter electrode 26 is formed on the plurality of cell regions 24. A collector electrode 32 is formed on a second principal surface of the n-type semiconductor substrate 10. Each cell region 24 has an n+ semiconductor layer 14 and a p-type semiconductor layer 12 connected with the emitter electrode 26, a gate electrode 20, and an interlayer insulating film 22 which covers the gate electrode 20 and insulates the gate electrode 20 for the emitter electrode 26. In each cell region 24, a level difference exists between the interlayer insulating film 22 and the n+ semiconductor layer 14 and p-type semiconductor layer 12. The emitter electrode 26 has a first metal film 26b, a high strength metal film 26c, and a second metal film 26d formed sequentially on the n-type semiconductor substrate 10. The first metal film 26b and the second metal film 26d contain 95% or more of Al. The high strength metal film 26c has a strength higher than that of the second metal film 26d.

Description

本発明は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの電力用半導体装置に関し、特に素子破壊を防いで信頼性を向上することができる電力用半導体装置に関する。   The present invention relates to power semiconductor devices such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), and more particularly to power semiconductor devices that can prevent element destruction and improve reliability. About.

電力用半導体装置では、特性向上のために複数のセル領域が主電極により並列接続されている。また、主電極と複数のセル領域の制御電極とは、層間絶縁膜により絶縁されている。各セル領域において層間絶縁膜と半導体層の間に段差が存在する(例えば、特許文献1参照)。   In a power semiconductor device, a plurality of cell regions are connected in parallel by a main electrode in order to improve characteristics. Further, the main electrode and the control electrodes of the plurality of cell regions are insulated by the interlayer insulating film. In each cell region, there is a step between the interlayer insulating film and the semiconductor layer (see, for example, Patent Document 1).

特開平5−275501号公報JP-A-5-275501

各セル領域において段差が存在するため、複数のセル領域上の主電極にワイヤを超音波接続する場合、大きな超音波パワーにより層間絶縁膜やセル領域などの素子が破壊される場合があった。また、アウタリードを主電極に直接に圧接やはんだ接続する場合でも、熱ストレスにより素子が破壊される場合があった。   Since there is a step in each cell region, when a wire is ultrasonically connected to a main electrode on a plurality of cell regions, elements such as an interlayer insulating film and a cell region may be destroyed by a large ultrasonic power. Even when the outer lead is directly pressed or soldered to the main electrode, the element may be destroyed due to thermal stress.

本発明は、上述のような課題を解決するためになされたもので、その目的は、素子破壊を防いで信頼性を向上することができる電力用半導体装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a power semiconductor device that can prevent element destruction and improve reliability.

本発明は、互いに対向する第1の主面と第2の主面を有する半導体基板と、前記半導体基板の前記第1の主面に形成された複数のセル領域と、前記複数のセル領域上に形成された第1の主電極と、前記半導体基板の前記第2の主面上に形成された第2の主電極とを備え、各セル領域は、前記第1の主電極に接続された半導体層と、制御電極と、前記制御電極を覆って前記第1の主電極に対して絶縁する層間絶縁膜とを有し、各セル領域において前記層間絶縁膜と前記半導体層の間に段差が存在し、前記第1の主電極は、前記半導体基板上に順次形成された、第1の金属膜と、高強度金属膜と、第2の金属膜とを有し、前記第1の金属膜及び前記第2の金属膜はAlを95%以上有し、前記高強度金属膜は、前記第2の金属膜よりも強度が高いことを特徴とする電力用半導体装置である。   The present invention provides a semiconductor substrate having a first main surface and a second main surface facing each other, a plurality of cell regions formed on the first main surface of the semiconductor substrate, and the plurality of cell regions. A first main electrode formed on the semiconductor substrate and a second main electrode formed on the second main surface of the semiconductor substrate, each cell region being connected to the first main electrode A semiconductor layer; a control electrode; and an interlayer insulating film that covers the control electrode and insulates from the first main electrode, and a step is formed between the interlayer insulating film and the semiconductor layer in each cell region. The first main electrode includes a first metal film, a high-strength metal film, and a second metal film, which are sequentially formed on the semiconductor substrate, and the first metal film The second metal film has 95% or more of Al, and the high-strength metal film has higher strength than the second metal film. DOO is a power semiconductor device according to claim.

本発明により、素子破壊を防いで信頼性を向上することができる。   According to the present invention, element breakdown can be prevented and reliability can be improved.

実施の形態1に係る電力用半導体装置を示す断面図である。1 is a cross-sectional view showing a power semiconductor device according to a first embodiment. 比較例に係る電力用半導体装置を示す断面図である。It is sectional drawing which shows the power semiconductor device which concerns on a comparative example. 実施の形態2に係る電力用半導体装置を示す断面図である。FIG. 6 is a cross-sectional view showing a power semiconductor device according to a second embodiment.

本発明の実施の形態に係る電力用半導体装置について図面を参照して説明する。同じ構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。   A power semiconductor device according to an embodiment of the present invention will be described with reference to the drawings. The same components are denoted by the same reference numerals, and repeated description may be omitted.

実施の形態1.
図1は、実施の形態1に係る電力用半導体装置を示す断面図である。n型半導体基板10はSiからなり、互いに対向する第1の主面と第2の主面を有する。n型半導体基板10の第1の主面にp型半導体層12が形成されている。p型半導体層12の表面の一部にn+半導体層14が形成されている。n+半導体層14とp型半導体層12を貫通してn型半導体基板10に達するトレンチ溝16が形成されている。トレンチ溝16内にゲート絶縁膜18を介してゲート電極20が埋設されている。層間絶縁膜22がゲート電極20を覆っている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the power semiconductor device according to the first embodiment. N-type semiconductor substrate 10 is made of Si and has a first main surface and a second main surface facing each other. A p-type semiconductor layer 12 is formed on the first main surface of the n-type semiconductor substrate 10. An n + semiconductor layer 14 is formed on part of the surface of the p-type semiconductor layer 12. A trench groove 16 that penetrates the n + semiconductor layer 14 and the p-type semiconductor layer 12 and reaches the n-type semiconductor substrate 10 is formed. A gate electrode 20 is embedded in the trench 16 via a gate insulating film 18. An interlayer insulating film 22 covers the gate electrode 20.

n型半導体基板10の第1の主面に複数のセル領域24が形成されている。各セル領域24は、n+半導体層14及びp型半導体層12と、ゲート電極20と、層間絶縁膜22とを有する。各セル領域24において層間絶縁膜22とn+半導体層14及びp型半導体層12との間に段差が存在する。   A plurality of cell regions 24 are formed on the first main surface of the n-type semiconductor substrate 10. Each cell region 24 includes an n + semiconductor layer 14 and a p-type semiconductor layer 12, a gate electrode 20, and an interlayer insulating film 22. In each cell region 24, there is a step between the interlayer insulating film 22 and the n + semiconductor layer 14 and the p-type semiconductor layer 12.

複数のセル領域24上にエミッタ電極26が形成されている。エミッタ電極26はn+半導体層14及びp型半導体層12に接続されている。ゲート電極20は層間絶縁膜22によりエミッタ電極26に対して絶縁されている。n型半導体基板10の第2の主面にn+半導体層28とp型コレクタ層30が形成されている。第2の主面上にコレクタ電極32が形成されている。   Emitter electrodes 26 are formed on the plurality of cell regions 24. The emitter electrode 26 is connected to the n + semiconductor layer 14 and the p-type semiconductor layer 12. The gate electrode 20 is insulated from the emitter electrode 26 by the interlayer insulating film 22. An n + semiconductor layer 28 and a p-type collector layer 30 are formed on the second main surface of the n-type semiconductor substrate 10. A collector electrode 32 is formed on the second main surface.

エミッタ電極26は、n型半導体基板10上に順次形成されたバリアメタル26aと、第1の金属膜26bと、高強度金属膜26cと、第2の金属膜26dとを有する。ここで、加工性やワイヤ接続の容易性から、第1の金属膜26b及び第2の金属膜26dはAlを95%以上有する金属からなる。一方、バリアメタル26a及び高強度金属膜26cは、Ti,W,Mo,Vなどの高融点金属又は高融点金属の導電性化合物からなる。従って、高強度金属膜26cは第2の金属膜26dよりも強度が高い。   The emitter electrode 26 includes a barrier metal 26a, a first metal film 26b, a high-strength metal film 26c, and a second metal film 26d that are sequentially formed on the n-type semiconductor substrate 10. Here, from the viewpoint of workability and ease of wire connection, the first metal film 26b and the second metal film 26d are made of a metal containing 95% or more of Al. On the other hand, the barrier metal 26a and the high-strength metal film 26c are made of a refractory metal such as Ti, W, Mo, or V or a conductive compound of a refractory metal. Accordingly, the high-strength metal film 26c has higher strength than the second metal film 26d.

本実施の形態の効果について比較例と比較しながら説明する。図2は、比較例に係る電力用半導体装置を示す断面図である。比較例では、エミッタ電極34は、Alを95%以上有する1つの膜だけからなる。このエミッタ電極34にワイヤを超音波接続する際にエミッタ電極34が変形して、層間絶縁膜22やセル領域24などの素子が破壊される場合がある。   The effect of this embodiment will be described in comparison with a comparative example. FIG. 2 is a cross-sectional view showing a power semiconductor device according to a comparative example. In the comparative example, the emitter electrode 34 is composed of only one film having 95% or more of Al. When the wire is ultrasonically connected to the emitter electrode 34, the emitter electrode 34 may be deformed, and elements such as the interlayer insulating film 22 and the cell region 24 may be destroyed.

一方、本実施の形態でも、エミッタ電極26にワイヤを超音波接続する際に第2の金属膜26dは変形する。しかし、第2の金属膜26dよりも強度が高い高強度金属膜26cが存在するため、第1の金属膜26bの変形は抑制される。従って、ワイヤ接続による層間絶縁膜22やセル領域24へのダメージを緩和できる。また、アウタリードを主電極に直接に圧接やはんだ接続する場合でも、熱ストレスによる素子破壊を防ぐことができる。よって、素子破壊を防いで信頼性を向上することができる。   On the other hand, also in the present embodiment, the second metal film 26d is deformed when a wire is ultrasonically connected to the emitter electrode 26. However, since the high-strength metal film 26c having higher strength than the second metal film 26d exists, the deformation of the first metal film 26b is suppressed. Therefore, damage to the interlayer insulating film 22 and the cell region 24 due to wire connection can be reduced. Further, even when the outer lead is directly pressed or soldered to the main electrode, it is possible to prevent element destruction due to thermal stress. Therefore, element destruction can be prevented and reliability can be improved.

また、第1の金属膜26bの下に高融点金属又は高融点金属の導電性化合物からなるバリアメタル26aを設けることで、MOSFETやIGBTなどの微細パターンを有する半導体装置において電極によるSi食われを防止できる。   Further, by providing a barrier metal 26a made of a refractory metal or a conductive compound of a refractory metal under the first metal film 26b, Si erosion due to the electrodes is prevented in a semiconductor device having a fine pattern such as a MOSFET or IGBT. Can be prevented.

また、第1の金属膜26bは層間絶縁膜22よりも厚いことが好ましい。そして、0.5mmΦ程度の太線ワイヤや0.5mm厚程度のリボンワイヤーを接続することを考えると、第2の金属膜26dの厚みは3μm以上であることが好ましい。これにより、更に確実に素子破壊を防ぐことができる。   The first metal film 26 b is preferably thicker than the interlayer insulating film 22. In consideration of connecting a thick wire of about 0.5 mmΦ or a ribbon wire of about 0.5 mm, the thickness of the second metal film 26d is preferably 3 μm or more. Thereby, element destruction can be prevented more reliably.

実施の形態2.
図3は、実施の形態2に係る電力用半導体装置を示す断面図である。第1の金属膜26bはAlの高温スパッタやリフローAl工程により層間絶縁膜22を埋めることで形成され、第1の金属膜26bの上面は平坦化されている。
Embodiment 2. FIG.
FIG. 3 is a cross-sectional view showing the power semiconductor device according to the second embodiment. The first metal film 26b is formed by filling the interlayer insulating film 22 by high temperature sputtering of Al or a reflow Al process, and the upper surface of the first metal film 26b is flattened.

これにより、ワイヤ36を接続する際に第2の金属膜26dにかかる応力を高強度金属膜26cで均等に受けることができるため、ダメージを更に緩和できる。なお、アウタリードを主電極に直接に圧接やはんだ接続する場合でも、同様に熱ストレスによる素子破壊を更に確実に防ぐことができる。   Thereby, when the wire 36 is connected, the stress applied to the second metal film 26d can be evenly received by the high-strength metal film 26c, so that the damage can be further alleviated. Even when the outer lead is directly press-contacted or soldered to the main electrode, similarly, element destruction due to thermal stress can be further reliably prevented.

なお、実施の形態1,2に係る電力用半導体装置はトレンチIGBTであるが、これに限らず本発明は複数のセル領域を備える縦型の電力用半導体装置に適用することができる。   The power semiconductor device according to the first and second embodiments is a trench IGBT. However, the present invention is not limited to this, and the present invention can be applied to a vertical power semiconductor device including a plurality of cell regions.

10 n型半導体基板(半導体基板)
12 p型半導体層(半導体層)
14 n+半導体層(半導体層)
20 ゲート電極(制御電極)
22 層間絶縁膜
24 セル領域
26 エミッタ電極(第1の主電極)
26a バリアメタル
26b 第1の金属膜
26c 高強度金属膜
26d 第2の金属膜
32 コレクタ電極(第2の主電極)
10 n-type semiconductor substrate (semiconductor substrate)
12 p-type semiconductor layer (semiconductor layer)
14 n + semiconductor layer (semiconductor layer)
20 Gate electrode (control electrode)
22 Interlayer insulating film 24 Cell region 26 Emitter electrode (first main electrode)
26a barrier metal 26b first metal film 26c high-strength metal film 26d second metal film 32 collector electrode (second main electrode)

Claims (5)

互いに対向する第1の主面と第2の主面を有する半導体基板と、
前記半導体基板の前記第1の主面に形成された複数のセル領域と、
前記複数のセル領域上に形成された第1の主電極と、
前記半導体基板の前記第2の主面上に形成された第2の主電極とを備え、
各セル領域は、前記第1の主電極に接続された半導体層と、制御電極と、前記制御電極を覆って前記第1の主電極に対して絶縁する層間絶縁膜とを有し、
各セル領域において前記層間絶縁膜と前記半導体層の間に段差が存在し、
前記第1の主電極は、前記半導体基板上に順次形成された、第1の金属膜と、高強度金属膜と、第2の金属膜とを有し、
前記第1の金属膜及び前記第2の金属膜はAlを95%以上有し、
前記高強度金属膜は、前記第2の金属膜よりも強度が高いことを特徴とする電力用半導体装置。
A semiconductor substrate having a first main surface and a second main surface facing each other;
A plurality of cell regions formed on the first main surface of the semiconductor substrate;
A first main electrode formed on the plurality of cell regions;
A second main electrode formed on the second main surface of the semiconductor substrate,
Each cell region has a semiconductor layer connected to the first main electrode, a control electrode, and an interlayer insulating film that covers the control electrode and insulates from the first main electrode,
In each cell region, there is a step between the interlayer insulating film and the semiconductor layer,
The first main electrode includes a first metal film, a high-strength metal film, and a second metal film, which are sequentially formed on the semiconductor substrate,
The first metal film and the second metal film have 95% or more of Al,
The power semiconductor device is characterized in that the high-strength metal film has higher strength than the second metal film.
前記高強度金属膜は、高融点金属又は高融点金属の導電性化合物からなることを特徴とする請求項1に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein the high-strength metal film is made of a refractory metal or a conductive compound of a refractory metal. 前記第1の主電極は、前記第1の金属膜の下に設けられ、高融点金属又は高融点金属の導電性化合物からなるバリアメタルを更に有することを特徴とする請求項1又は2に記載の電力用半導体装置。   The first main electrode is further provided with a barrier metal formed under the first metal film and made of a refractory metal or a conductive compound of a refractory metal. Power semiconductor devices. 前記第1の金属膜は前記層間絶縁膜よりも厚く、
前記第2の金属膜の厚みは3μm以上であることを特徴とする請求項1〜3の何れか1項に記載の電力用半導体装置。
The first metal film is thicker than the interlayer insulating film,
4. The power semiconductor device according to claim 1, wherein a thickness of the second metal film is 3 μm or more. 5.
前記第1の金属膜の上面は平坦化されていることを特徴とする請求項1〜4の何れか1項に記載の電力用半導体装置。   The power semiconductor device according to claim 1, wherein an upper surface of the first metal film is flattened.
JP2010120059A 2010-05-26 2010-05-26 Power semiconductor device Pending JP2011249491A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010120059A JP2011249491A (en) 2010-05-26 2010-05-26 Power semiconductor device
KR1020110036002A KR101248440B1 (en) 2010-05-26 2011-04-19 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120059A JP2011249491A (en) 2010-05-26 2010-05-26 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2011249491A true JP2011249491A (en) 2011-12-08

Family

ID=45414414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120059A Pending JP2011249491A (en) 2010-05-26 2010-05-26 Power semiconductor device

Country Status (2)

Country Link
JP (1) JP2011249491A (en)
KR (1) KR101248440B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091545A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2014192351A (en) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp Semiconductor device manufacturing method
JP2017011129A (en) * 2015-06-23 2017-01-12 三菱電機株式会社 Semiconductor device
JP2018022836A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Semiconductor device
DE102018101392A1 (en) 2017-01-24 2018-07-26 Toyota Jidosha Kabushiki Kaisha SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
KR20180087172A (en) 2017-01-24 2018-08-01 도요타 지도샤(주) Semiconductor device and method of manufacturing the same
US10115798B2 (en) 2017-02-15 2018-10-30 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US10217859B2 (en) 2016-10-12 2019-02-26 Fuji Electric Co., Ltd. Semiconductor device
US10217832B2 (en) 2016-10-12 2019-02-26 Fuji Electric Co., Ltd. Semiconductor device
CN110858610A (en) * 2018-08-23 2020-03-03 三菱电机株式会社 Power semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109984A (en) * 2001-09-28 2003-04-11 Seiko Epson Corp Ic-mounted oscillator
JP2005302941A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2007142138A (en) * 2005-11-18 2007-06-07 Mitsubishi Electric Corp Semiconductor device
JP2007335432A (en) * 2006-06-12 2007-12-27 Toyota Central Res & Dev Lab Inc Semiconductor device and its fabrication process
JP2008112825A (en) * 2006-10-30 2008-05-15 Denso Corp Semiconductor device, and its manufacturing method
JP2010129585A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4231580B2 (en) * 1999-02-05 2009-03-04 株式会社日立製作所 Semiconductor device
JP4906184B2 (en) * 2000-11-17 2012-03-28 オンセミコンダクター・トレーディング・リミテッド Insulated gate type semiconductor device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109984A (en) * 2001-09-28 2003-04-11 Seiko Epson Corp Ic-mounted oscillator
JP2005302941A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2007142138A (en) * 2005-11-18 2007-06-07 Mitsubishi Electric Corp Semiconductor device
JP2007335432A (en) * 2006-06-12 2007-12-27 Toyota Central Res & Dev Lab Inc Semiconductor device and its fabrication process
JP2008112825A (en) * 2006-10-30 2008-05-15 Denso Corp Semiconductor device, and its manufacturing method
JP2010129585A (en) * 2008-11-25 2010-06-10 Toyota Motor Corp Method for manufacturing semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091545A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2014192351A (en) * 2013-03-27 2014-10-06 Mitsubishi Electric Corp Semiconductor device manufacturing method
JP2017011129A (en) * 2015-06-23 2017-01-12 三菱電機株式会社 Semiconductor device
US10347725B2 (en) 2015-06-23 2019-07-09 Mitsubishi Electric Corporation Semiconductor device that facilitates a reduction in the occurrences of cracking in a semiconductor layer accompanying thermal stress
JP2018022836A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Semiconductor device
US10217859B2 (en) 2016-10-12 2019-02-26 Fuji Electric Co., Ltd. Semiconductor device
US10217832B2 (en) 2016-10-12 2019-02-26 Fuji Electric Co., Ltd. Semiconductor device
DE102018101392A1 (en) 2017-01-24 2018-07-26 Toyota Jidosha Kabushiki Kaisha SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
JP2018121050A (en) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 Semiconductor device and method for manufacturing the same
KR101995933B1 (en) 2017-01-24 2019-07-03 도요타 지도샤(주) Semiconductor device and method of manufacturing the same
KR20180087172A (en) 2017-01-24 2018-08-01 도요타 지도샤(주) Semiconductor device and method of manufacturing the same
US10490638B2 (en) 2017-01-24 2019-11-26 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US10115798B2 (en) 2017-02-15 2018-10-30 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of manufacturing the same
CN110858610A (en) * 2018-08-23 2020-03-03 三菱电机株式会社 Power semiconductor device
US10971591B2 (en) 2018-08-23 2021-04-06 Mitsubishi Electric Corporation Power semiconductor device
CN110858610B (en) * 2018-08-23 2023-09-08 三菱电机株式会社 Semiconductor device for electric power
DE102019211754B4 (en) 2018-08-23 2024-08-01 Mitsubishi Electric Corporation Power semiconductor device

Also Published As

Publication number Publication date
KR20110129812A (en) 2011-12-02
KR101248440B1 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
JP2011249491A (en) Power semiconductor device
JP2018093244A5 (en)
JP5605095B2 (en) Semiconductor device
US10115798B2 (en) Semiconductor device and method of manufacturing the same
CN109075089B (en) Power semiconductor device and method for manufacturing the same
US8546926B2 (en) Power converter
US10147707B2 (en) Semiconductor device
JP2013069782A (en) Semiconductor device
JP2016092233A (en) Semiconductor device
US11923266B2 (en) Semiconductor module circuit structure
JP2005259904A (en) Semiconductor device
KR101734712B1 (en) Power module
JPWO2020208706A1 (en) Semiconductor devices and semiconductor modules
JP2016171231A (en) Semiconductor device and semiconductor package
KR101766082B1 (en) Power module
JP2018186220A (en) Semiconductor device
JP7076387B2 (en) Semiconductor device
CN109643653A (en) Semiconductor device
JP6500565B2 (en) Semiconductor module
JP6064682B2 (en) Semiconductor device
CN110858610B (en) Semiconductor device for electric power
JP2017135144A (en) Semiconductor module
JP2016171148A (en) Semiconductor device
WO2023120353A1 (en) Semiconductor device
JP2011108800A (en) Lateral igbt and method of manufacturing for the lateral igbt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401