JP2011249322A - Thermal protector - Google Patents

Thermal protector Download PDF

Info

Publication number
JP2011249322A
JP2011249322A JP2011097702A JP2011097702A JP2011249322A JP 2011249322 A JP2011249322 A JP 2011249322A JP 2011097702 A JP2011097702 A JP 2011097702A JP 2011097702 A JP2011097702 A JP 2011097702A JP 2011249322 A JP2011249322 A JP 2011249322A
Authority
JP
Japan
Prior art keywords
contact
movable
thermal protector
fixed
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011097702A
Other languages
Japanese (ja)
Other versions
JP5743678B2 (en
Inventor
Yoshihiro Nakanishi
義博 中西
Kota Yagi
孝太 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsulite Manufacturing Co Ltd
Original Assignee
Komatsulite Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsulite Manufacturing Co Ltd filed Critical Komatsulite Manufacturing Co Ltd
Priority to JP2011097702A priority Critical patent/JP5743678B2/en
Publication of JP2011249322A publication Critical patent/JP2011249322A/en
Application granted granted Critical
Publication of JP5743678B2 publication Critical patent/JP5743678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermally Actuated Switches (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal protector capable of stably maintaining contact resistance even if an external force T that would twist a thermal protector body and a terminal is applied.SOLUTION: A thermal protector 1 is designed so that the tip of a movable contact 2 is formed in a triangular pillar shape 21, and contact of the movable contact 2 and a fixed contact 41 becomes line contact in parallel with a plane R of a movable piece 3 rotated and operated. Since the contact is performed on a side formed by side faces 21a of the triangular pillar shape 21 by such a constitution, a contact line 4c between both contacts is not displaced even by the external force T that would twist the terminal. Accordingly, contact resistance of the thermal protector 1 is made stable against impact.

Description

本発明は、回路断続器に関し、特に、小型のニッケル水素電池、リチウムイン電池など、二次電池の安全装置に搭載され、熱応動素子の反転動作により可動接点と固定接点とを接触離反させるサーマルプロテクターに関する。   The present invention relates to a circuit interrupter, and in particular, is mounted on a safety device for a secondary battery such as a small nickel metal hydride battery or a lithium-in battery, and is a thermal element that contacts and separates a movable contact and a fixed contact by a reversing operation of a thermally responsive element. Regarding the protector.

携帯電話、ノートパソコンなどの携帯機器に搭載されるリチウム二次電池など、バッテリーパックは、過充電や過負荷、短絡による過熱を防止するための安全装置を必要とする。このような安全装置には、動作温度の帯域幅が広く精密な温度設定の可能である機械動作式の小型サーマルプロテクターが、繰り返し使用可能で全数検査が可能であり電流変化が不連続で階段的である点で、有用である。   Battery packs such as lithium secondary batteries mounted on mobile devices such as mobile phones and notebook computers require safety devices to prevent overheating due to overcharging, overloading, and short circuits. For such safety devices, a mechanically operated small thermal protector with a wide operating temperature bandwidth and precise temperature setting can be used repeatedly, 100% inspection is possible, current change is discontinuous and stepwise In that respect, it is useful.

この種のサーマルプロテクターは、一般に小型化のために図5のように、絶縁性の樹脂からなるケース7と一体的に成形され、固定接点41及び外部に延出する固定側端子42の形成された固定片4、可動接点2及び外部に延出する可動側端子32の形成された可動片3、並びに固定片4と可動片3とに圧接する状態で上下から挟持されたバイメタル5(熱応動素子)及び正特性サーミスター(PTC6)とで構成されている。バイメタル5はPTC6の上に載せられる。尚、正特性サーミスターとは、導通により温度及び電気抵抗を急激に増大させる発熱素子のことである。   As shown in FIG. 5, this type of thermal protector is generally formed integrally with a case 7 made of an insulating resin to form a fixed contact 41 and a fixed terminal 42 extending to the outside. The fixed piece 4, the movable contact 2 and the movable piece 3 formed with the movable side terminal 32 extending to the outside, and the bimetal 5 sandwiched from above and below in a state of being pressed against the fixed piece 4 and the movable piece 3 (thermal response) Element) and a positive temperature coefficient thermistor (PTC6). The bimetal 5 is placed on the PTC 6. The positive temperature coefficient thermistor is a heating element that rapidly increases the temperature and the electric resistance by conduction.

次に、動作機序について説明する。電顕を切っている無通電状態又は正常に充放電が行われているときは、電流は可動片3から可動接点2及び固定接点41を介して固定片4へと流れ、バイメタル5は図5(a)に示す通常時の状態を維持する。この状態で、バイメタル5が反転動作を行う温度に昇温しない通常時であれば、図5(a)に示す状態を維持し、可動接点2は固定接点41に接触し続ける。電流は、低抵抗の両接点を介して可動片3及び固定片4を流れ、電気抵抗のはるかに大きいPTC6には実質的に流れない。   Next, the operation mechanism will be described. When the electron microscope is turned off or is normally charged / discharged, current flows from the movable piece 3 to the fixed piece 4 via the movable contact 2 and the fixed contact 41, and the bimetal 5 is shown in FIG. The normal state shown in (a) is maintained. In this state, if the normal time when the bimetal 5 does not rise to the temperature at which the reversing operation is performed, the state shown in FIG. 5A is maintained, and the movable contact 2 continues to contact the fixed contact 41. The current flows through the movable piece 3 and the fixed piece 4 via both low-resistance contacts, and does not substantially flow through the PTC 6 having a much higher electric resistance.

一方、過充電、短絡などによって、サーマルプロテクター1内部に蓄積する熱が過大になり、バイメタル5が反転動作を行う温度に昇温する過熱時には、図5(b)に示すように、バイメタル5が反転すると同時に該バイメタル5の端部5aが可動片3を押し上げることにより、可動接点2が固定接点41から離れ、電流は遮断する。このように両接点が離反すると、可動側端子32と固定側端子42との間の電圧がPTC6に印加され、PTC6は抵抗の増大と共に発熱する。したがって、バイメタル5を通常時の原形に戻さない限り、PTC6の自己発熱でバイメタル5は反転し続け、可動片3は押し上げられ、サーマルプロテクター1は自己保持的に電流を遮断する状態を保つ。   On the other hand, the heat accumulated in the thermal protector 1 becomes excessive due to overcharge, short circuit, etc., and when the bimetal 5 is overheated to a temperature at which the reversing operation is performed, as shown in FIG. Simultaneously with the reversal, the end 5a of the bimetal 5 pushes up the movable piece 3, whereby the movable contact 2 is separated from the fixed contact 41 and the current is cut off. When the two contacts are separated from each other in this way, a voltage between the movable terminal 32 and the fixed terminal 42 is applied to the PTC 6, and the PTC 6 generates heat as the resistance increases. Therefore, unless the bimetal 5 is returned to the original form at the normal time, the bimetal 5 is continuously reversed by the self-heating of the PTC 6, the movable piece 3 is pushed up, and the thermal protector 1 keeps the state of interrupting the current in a self-holding manner.

尚、両接点の離反する状態から接触する状態へ復帰させる場合は、サーマルプロテクター1を電源から切り離すか、負荷を軽減し冷却することにより、バイメタル5を充分に降温させれば、バイメタル5が原形に復帰し、両接点は可動片3のバネ作用により再び接触する。   When returning from the state where both contacts are separated from each other to the contact state, if the bimetal 5 is sufficiently cooled by disconnecting the thermal protector 1 from the power source or cooling the load by reducing the load, the original form of the bimetal 5 is obtained. The two contacts are brought into contact again by the spring action of the movable piece 3.

このような機械動作式の製品には、寸法を縮小してゆくにつれて、構造上の脆弱性も増してゆくという問題がある。例えば、二次電池の安全装置にサーマルプロテクターを組み付ける作業者がサーマルプロテクターを乱暴に取り扱うと、外力がサーマルプロテクターの内部に影響して固定接点と可動接点との接触が変位し、接触抵抗が不安定となり、結果としてサーマルプロテクターの動作温度が所期のものと違ってしまうという不具合を呈するなどである。   Such mechanically actuated products have the problem of increasing structural vulnerability as the dimensions are reduced. For example, if an operator who installs a thermal protector on a safety device for a secondary battery handles the thermal protector roughly, external force will affect the inside of the thermal protector, causing the contact between the fixed contact and the movable contact to be displaced, resulting in poor contact resistance. As a result, the operating temperature of the thermal protector becomes different from the intended one.

かかる不良に対応して、まず、可動接点又は固定片の表面の少なくとも一方を梨地の半球状にして接触面積を増大させるか、若しくは、可動接点の形状を、及び可動接点の回転動作する平面と直交する軸を持たせた蒲鉾型(半円柱)又は三角柱状にして、すなわち可動接点の回転軸と平行に固定片に線接触させるようにするもの(特許文献1)、若しくは、接点表面に振動を与えながら導通して活性化痕を形成するもの(特許文献2)などの対処法が提案されている。   In response to such a defect, first, at least one of the surface of the movable contact or the fixed piece is made into a semi-spherical surface to increase the contact area, or the shape of the movable contact and the plane on which the movable contact rotates A vertical (semi-cylinder) or triangular prism shape having an orthogonal axis, that is, a line contact with a fixed piece parallel to the rotation axis of the movable contact (Patent Document 1), or vibration on the contact surface There has been proposed a coping method such as a method in which an activation trace is formed while applying electric current (Patent Document 2).

特開2000−207966号公報JP 2000-207966 A 特開2005−116511号公報JP-A-2005-116511

しかしながら、サーマルプロテクター製品の寸法が高々数mmと極めて小さく、同製品を構成する部材にサブミリメートルオーダーの精度が求められるときには、次のような原因により、上記の従来技術では接触抵抗の安定を保障するのが難しくなる。   However, when the size of the thermal protector product is extremely small, at most several millimeters, and the sub-millimeter accuracy is required for the components that make up the product, the above-mentioned conventional technology guarantees stable contact resistance for the following reasons. It becomes difficult to do.

まず、各部品が小さくなると、接触離反する接点の元来有する表面の微小な凹凸が無視できなくなるので、接点を梨地としても接点間の接触総面積が、同接点の平滑な場合と大差無い。よって、梨地にした接点は、小型サーマルプロテクターにおいては接触抵抗の安定化に功を奏さない。さらに、点接触の形態では、活性化痕を付す工程で接点が摩耗により消失する虞がある。   First, as each component becomes smaller, minute irregularities on the surface of the contact that separates from the contact cannot be ignored. Therefore, even if the contact is used as a matte surface, the total contact area between the contacts is not much different from that when the contact is smooth. Therefore, the matte contact does not work for stabilizing contact resistance in a small thermal protector. Furthermore, in the point contact form, the contact may be lost due to wear in the step of applying the activation mark.

点接触、面接触、又は可動接点の回転軸と平行な線接触では、図1におけるような可動接点2の回転動作する平面Rが捻転するような外力Tに対向できない。このような力でサーマルプロテクター製品又は端子を変形させると、固定接点と可動接点との接触箇所が大きく変位し、接触抵抗は不安定となる。特に、前記の可動片と該可動片と接続され外部に突出する端子とが一体的に形成されている形態においては、この種の捻転動作による影響は深刻で、当該端子に不用意に外力を加えると、可動片3は固定片4に対して傾斜して、伴って両接点の接触点Cは大きくずれることになる(図2(c)及び(d)参照)。この問題の起こるのは、接点に活性化痕を形成する方法を適用しても前記と同様である。   In the point contact, the surface contact, or the line contact parallel to the rotation axis of the movable contact, it is not possible to face the external force T such that the plane R in which the movable contact 2 rotates as shown in FIG. When the thermal protector product or the terminal is deformed with such a force, the contact portion between the fixed contact and the movable contact is greatly displaced, and the contact resistance becomes unstable. In particular, in a form in which the movable piece and a terminal connected to the movable piece and projecting to the outside are integrally formed, the effect of this type of twisting operation is serious, and an external force is inadvertently applied to the terminal. If it adds, the movable piece 3 will incline with respect to the fixed piece 4, and the contact point C of both contacts will shift | deviate greatly (refer FIG.2 (c) and (d)). This problem occurs in the same manner as described above even when a method for forming an activation mark at a contact is applied.

本発明は、サーマルプロテクターや端子を捻転するような外力が加わっても、接触抵抗を安定して維持できるサーマルプロテクターを提供することを目的とする。   An object of this invention is to provide the thermal protector which can maintain a contact resistance stably, even if the external force which twists a thermal protector and a terminal is added.

本発明者らは、上述のような不具合を解消すべく鋭意検討した結果、可動接点及び固定接点の形状を規定することにより耐衝撃性を有する設計を見出し、本発明に到達した。   As a result of intensive studies to solve the above-described problems, the present inventors have found a design having impact resistance by defining the shapes of the movable contact and the fixed contact, and have reached the present invention.

本発明の第1態様は、一端に固定接点が設けられ、もう一端に固定側端子が一体的に設けられた固定片、回転動作する可動接点が端部に設けられた可動片、及び温度変化により反転する湾曲面を有する熱応動素子を備えて構成されたサーマルプロテクターにおいて、前記の可動接点又は固定接点の一方の先端が略三角柱形状であり、前記可動接点と前記固定接点との接触は前記可動接点の回転軸と直交する線接触であることを特徴とする。両接点の接触は、可動接点又は固定接点の一方の先端である三角柱形状の側面の辺上で行われ、接触箇所の形状は可動接点の回転動作する平面と平行な線接触になる。   The first aspect of the present invention is a fixed piece provided with a fixed contact at one end and a fixed terminal integrally provided at the other end, a movable piece provided with a movable contact at the end, and a temperature change. In the thermal protector configured to include a thermally responsive element having a curved surface that is reversed by the above, one end of the movable contact or the fixed contact has a substantially triangular prism shape, and the contact between the movable contact and the fixed contact is the It is a line contact perpendicular to the rotation axis of the movable contact. The contact of both contacts is performed on the side of the triangular prism-shaped side that is one end of the movable contact or the fixed contact, and the shape of the contact portion is a line contact parallel to the plane on which the movable contact rotates.

本発明の第2態様は、前記のサーマルプロテクターにおいて、前記可動接点の先端が略三角柱形状であり、該三角柱形状の側面同士のなす辺において前記接触が行われることを特徴とする。この態様においては、一般に前記固定接点は前記可動接点との接触点において平面形状である。   According to a second aspect of the present invention, in the thermal protector described above, a tip of the movable contact has a substantially triangular prism shape, and the contact is performed at a side formed by side surfaces of the triangular prism shape. In this aspect, the fixed contact generally has a planar shape at the contact point with the movable contact.

本発明の第3態様は、前記のサーマルプロテクターにおいて、前記可動接点が前記固定接点から離反している状態で、前記の可動片及び固定片の間を導通する正特性サーミスターを有することを特徴とする。一般に、小型化のために前記正特性サーミスターは前記可動片及び前記固定片により挟持される。この状態では、前記熱応動素子は、通常時において前記熱応動素子を掩蓋して前記正特性サーミスター側に凹面を、前記可動片に凸面を向けている。そして、過熱時に反転したとき、前記熱応動素子は、端部が前記可動片を押し上げ、凹面を前記可動片に、凸面を正特性サーミスターにそれぞれ対向し接触させ、導通する。   According to a third aspect of the present invention, the thermal protector includes a positive temperature coefficient thermistor that conducts between the movable piece and the fixed piece in a state where the movable contact is separated from the fixed contact. And In general, the positive temperature coefficient thermistor is sandwiched between the movable piece and the fixed piece for miniaturization. In this state, the heat responsive element normally covers the heat responsive element so that the concave surface faces the positive characteristic thermistor and the convex surface faces the movable piece. And when it reverses at the time of overheating, as for the said thermoresponsive element, an edge part pushes up the said movable piece, a concave surface is made to oppose the said movable piece, a convex surface is made to oppose and contact with a positive temperature coefficient thermistor, respectively, and it conducts.

本発明の第4態様は、前記のサーマルプロテクターにおいて、超音波の振動により形成された活性化痕を有することを特徴とする。活性化痕は、超音波を与えながらサーマルプロテクターを導通させることによって固定接点と可動接点とに形成される。活性化痕の付加により、両接点の表面に存在した酸化皮膜などの不純物が除去され、導通状態が安定する。   According to a fourth aspect of the present invention, the thermal protector has an activation mark formed by ultrasonic vibration. The activation trace is formed on the fixed contact and the movable contact by conducting the thermal protector while applying ultrasonic waves. By adding the activation trace, impurities such as an oxide film present on the surfaces of both contacts are removed, and the conduction state is stabilized.

本発明の第5態様は、前記サーマルプロテクターにおいて、熱応動素子と可動片とが一体的に形成されていることを特徴とする。この態様においては、温度変化により反転する部材で可動片の一部分又は全体を形成し、湾曲面を可動片上に構成し、熱応動素子が独立した部品としては用いられない。   According to a fifth aspect of the present invention, in the thermal protector, the thermally responsive element and the movable piece are integrally formed. In this aspect, a part or the whole of the movable piece is formed by a member that is reversed by a temperature change, the curved surface is formed on the movable piece, and the thermally responsive element is not used as an independent component.

本発明の第1態様によれば、可動接点又は固定接点の少なくとも一方の先端が三角柱形状であり、前記可動接点と前記固定接点との接触が線接触であり、且つ前記可動接点の回転動作する平面と平行であることにより、可動接点の回転動作する平面を捻転する外力がサーマルプロテクターに加わっても、可動接点及び固定接点の接触位置がずれない。したがって、従来の面接触による形態と違って、端子を捻る外力によっても接触抵抗の変化のない耐衝撃性のサーマルプロテクターを設計できる。さらに、接触が線接触であると、小型サーマルプロテクターにおいて両接点間の接触面積を点接触より多く取ることから、電流などの電気特性を容易に設定できる。   According to the first aspect of the present invention, at least one tip of the movable contact or the fixed contact has a triangular prism shape, the contact between the movable contact and the fixed contact is a line contact, and the movable contact rotates. By being parallel to the plane, even if an external force that twists the plane on which the movable contact rotates is applied to the thermal protector, the contact position of the movable contact and the fixed contact does not shift. Therefore, unlike the conventional surface contact configuration, it is possible to design an impact resistant thermal protector that does not change the contact resistance even when an external force twists the terminal. Furthermore, if the contact is a line contact, the contact area between the two contacts is larger than the point contact in the small thermal protector, and thus the electrical characteristics such as current can be easily set.

本発明の第2態様によれば、前記可動接点の先端が略三角柱形状であり、前記固定接点が平面形状であることにより、加工の容易で歩留まりの良いサーマルプロテクターの生産が可能となる。一般に全部分が金属材料からなる可動片は、通常インサート成形で樹脂ケースに埋設される固定片に比べて、樹脂の流動性を考慮する必要のないので、加工が容易である。この態様では、可動接点が三角柱形状であり、該三角柱形状の側面同士のなす辺において接触が行われる。さらに、可動片と外部から可動と接続する端子とが一体化されて形成されると、工費を抑えて耐衝撃性のサーマルプロテクターを生産することが可能となる。   According to the second aspect of the present invention, the tip of the movable contact has a substantially triangular prism shape, and the fixed contact has a planar shape, so that it is possible to produce a thermal protector that is easy to process and has a high yield. In general, a movable piece made entirely of a metal material is easy to process because it does not need to consider the fluidity of the resin, as compared to a fixed piece that is normally embedded in a resin case by insert molding. In this aspect, the movable contact has a triangular prism shape, and contact is made at a side formed by the side surfaces of the triangular prism shape. Furthermore, when the movable piece and the terminal connected to the movable from the outside are integrated, it is possible to produce an impact-resistant thermal protector while reducing the construction cost.

本発明の第3態様によれば、前記可動接点が前記固定接点から離反している状態で、前記の可動片及び固定片の間で挟持される熱応動素子及び正特性サーミスターが導通するので、前記サーマルプロテクターを小型化しながら自己保持回路を持たせて設計できる。   According to the third aspect of the present invention, since the movable contact and the positive temperature coefficient thermistor sandwiched between the movable piece and the fixed piece are conducted in a state where the movable contact is separated from the fixed contact. The thermal protector can be designed with a self-holding circuit while downsizing.

本発明の第4態様によれば、前記のサーマルプロテクターに超音波で振動を与えて導通しながら活性化痕を形成するので、従来の形態に比べて、両接点間の接触面積を制御するのが容易であり、歩留まり良くサーマルプロテクターを生産できる。接点の先端を僅かに平坦にして角張った構造にすれば、超音波振動による活性化工程において、超音波の振動により先端が徐々に削れて、最適な接触面積を容易に実現できる。   According to the fourth aspect of the present invention, the thermal protector is vibrated with ultrasonic waves to form the activation trace while being conducted, so that the contact area between the two contacts is controlled as compared with the conventional form. It is easy to produce thermal protectors with good yield. If the tip of the contact is made slightly flat and square, the tip is gradually scraped by the vibration of the ultrasonic wave in the activation process by the ultrasonic vibration, and the optimum contact area can be easily realized.

本発明の第5態様によれば、熱応動素子と可動片とが一体的に形成されていることで、独立部材たる熱応動素子が不要となり、一層小型化されたサーマルプロテクターを設計できる。   According to the fifth aspect of the present invention, since the thermally responsive element and the movable piece are integrally formed, the thermally responsive element as an independent member becomes unnecessary, and a further miniaturized thermal protector can be designed.

本発明の実施形態1における接点の斜視図兼透視図である。It is a perspective view and perspective view of the contact in Embodiment 1 of this invention. 本発明における接点の断面図及び側面図並びに従来技術との比較図である。It is sectional drawing of a contact in this invention, a side view, and a comparison figure with a prior art. 本発明の実施形態1における接点の拡大した断面図及び平面図である。It is sectional drawing and the top view to which the contact in Embodiment 1 of this invention was expanded. 本発明の実施形態2における接点の拡大した断面図及び平面図である。It is sectional drawing and the top view to which the contact in Embodiment 2 of this invention was expanded. 本発明及び従来技術のサーマルプロテクターの動作機構を現す断面図である。It is sectional drawing which shows the operation | movement mechanism of the thermal protector of this invention and a prior art. 可動片と熱応動素子とが一体化されたサーマルプロテクターの概略図である。It is the schematic of the thermal protector with which the movable piece and the thermally responsive element were integrated.

以下、図を用いて本発明の実施形態を説明する。図1は本発明の一実施形態(実施形態1)であるサーマルプロテクターの可動片及び固定片の先端に設けられた接点を示す斜視図であり、一部は透視図となっている。図中、接触線4c及び接触面23(三角柱形状の可動接点2の側面21a同士のなす辺に相当)が可動接点2の回転動作する平面Rと平行であれば、本発明は功を奏する。この図中の金属片3又は4いずれが可動片又は固定片となるかは特に限定されないが、以下、特にことわりのない限り、便宜的に可動接点2は三角柱形状になるものとして説明する。尚、回転動作する平面R及び接触面23などは、可動接点2の回転動作の回転軸と直交する。サーマルプロテクター1の他の部分は図5に示すような従来型のサーマルプロテクターと同様に構成できる。部材の材質なども従来技術と同様のものを使用できる。本発明の実施態様においては、両接点の形状が、可動接点2の回転動作する平面Rに平行な線接触を呈する限り、つまり、可動接点2の回転動作の回転軸と直交するかぎり特に限定はなく奏功する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a contact provided at the tip of a movable piece and a fixed piece of a thermal protector which is an embodiment (Embodiment 1) of the present invention, and a part thereof is a perspective view. In the figure, if the contact line 4c and the contact surface 23 (corresponding to the side formed by the side surfaces 21a of the triangular prism-shaped movable contact 2) are parallel to the plane R on which the movable contact 2 rotates, the present invention is effective. Whether the metal piece 3 or 4 in this figure is a movable piece or a fixed piece is not particularly limited, but hereinafter, unless otherwise specified, the movable contact 2 will be described as having a triangular prism shape. Note that the rotating surface R and the contact surface 23 are orthogonal to the rotation axis of the rotating operation of the movable contact 2. Other portions of the thermal protector 1 can be configured in the same manner as a conventional thermal protector as shown in FIG. The same material as that of the prior art can be used. In the embodiment of the present invention, there is no particular limitation as long as the shape of both the contacts exhibits a line contact parallel to the plane R in which the movable contact 2 rotates, that is, as long as it is orthogonal to the rotation axis of the rotating operation of the movable contact 2. Without success.

図5に示される形態を一例に挙げて本発明の全体構成を説明する。サーマルプロテクター1は、可動片3、固定片4、バイメタル5(熱応動素子に相当)、PTC6(正特性サーミスターに相当)、及び以上を収容する樹脂製のケース7で構成される。固定片4は、諸部材の収容されるケース7にインサート成形などにより埋め込まれて構成され、ケース7の外部には、固定片4と一体的に形成された固定側端子42が延出する。可動片3は、一端に可動接点2を有し振り子様の回転動作をする可動部31を、もう一端にケース7の周縁部で回転動作の中心となり固定部33及びケース7外部に延出する可動側端子32を有する。通常時においては、図5(a)のように可動接点2と固定接点41とが可動片3のバネ作用により接触する。過熱時においては、図5(b)のようにバイメタル5の温度変化に伴う反転により可動部31は押し上げられ、可動接点2は固定接点41から離反する。この形態では、バイメタル5は通常時に可動片3の下方で固定片4上にあるPTC6を掩蓋し、過熱時に反転して端部5aで可動片3を押し上げる。   The overall configuration of the present invention will be described by taking the form shown in FIG. 5 as an example. The thermal protector 1 includes a movable piece 3, a fixed piece 4, a bimetal 5 (corresponding to a thermally responsive element), a PTC 6 (corresponding to a positive temperature coefficient thermistor), and a resin case 7 that accommodates the above. The fixed piece 4 is configured by being embedded in a case 7 in which various members are accommodated by insert molding or the like, and a fixed side terminal 42 integrally formed with the fixed piece 4 extends outside the case 7. The movable piece 3 has a movable contact 2 at one end and has a pendulum-like rotational operation, and the other end extends to the outside of the fixed portion 33 and the case 7 at the periphery of the case 7 at the center of the rotational operation. A movable terminal 32 is provided. In a normal state, the movable contact 2 and the fixed contact 41 are brought into contact with each other by the spring action of the movable piece 3 as shown in FIG. At the time of overheating, as shown in FIG. 5B, the movable part 31 is pushed up by the reversal accompanying the temperature change of the bimetal 5, and the movable contact 2 is separated from the fixed contact 41. In this embodiment, the bimetal 5 covers the PTC 6 on the fixed piece 4 below the movable piece 3 at the normal time, reverses when overheated, and pushes up the movable piece 3 at the end 5a.

可動片3、固定片4、可動接点2、固定接点41、可動側端子32、固定側端子42及びバイメタル5の材質には、サーマルプロテクター1に必要とされる特性に応じて、既知のものを使用すればよい。例えば、固定片4には銅又は銅合金、可動片3にはバネ性と導電性に富んだリン青銅などの銅合金、可動接点2及び固定接点41には導電性に優れた銀又は銀合金が用いられる。ケース7及を構成する樹脂は、頑丈で耐熱性に富んだポリアミドや液晶ポリマーなどが用いられる。熱応動素子は通常、既存の材料からなるバイメタルが材料に用いられ、プレス加工により湾曲面が形作られ、所定の熱処理を施されて反転動作をする条件が設定される。PTC6は、通常、酸化チタンを主原料にして各種の添加剤と共に円盤など扁平な形状に形成される。バイメタル5及びPTC6の温度特性及び電気特性はサーマルプロテクター1に要求される特性に基いて決定される。   The material of the movable piece 3, the fixed piece 4, the movable contact 2, the fixed contact 41, the movable side terminal 32, the fixed side terminal 42, and the bimetal 5 is known according to the characteristics required for the thermal protector 1. Use it. For example, the fixed piece 4 is made of copper or a copper alloy, the movable piece 3 is made of a copper alloy such as phosphor bronze rich in springiness and conductivity, and the movable contact 2 and the fixed contact 41 are made of silver or a silver alloy having excellent conductivity. Is used. The resin constituting the case 7 is made of polyamide, liquid crystal polymer or the like that is strong and has high heat resistance. The thermoresponsive element usually uses a bimetal made of an existing material, a curved surface is formed by pressing, and a condition for performing a reversal operation is set by performing a predetermined heat treatment. The PTC 6 is usually formed in a flat shape such as a disk with titanium oxide as a main raw material and various additives. The temperature characteristics and electrical characteristics of the bimetal 5 and the PTC 6 are determined based on characteristics required for the thermal protector 1.

上記のとおり固定片4とケース7とはインサート成形により一体的に形成される。本実施例のように、さらに、可動片3と可動側端子32とは一体的に形成されることもある。以上のような構造を持つと、端子に掛かる外力がケース7内部の接点に及びやすい。とりわけ、図1に図示されるような、可動接点2の回転動作する平面R、すなわち可動接点2の回転動作の回転軸と直交する平面Rを捻るような外力Tは、既述のように接触抵抗に対して影響が大きい。加えて、バッテリーパックへの取り付けの際、このような外力Tは容易に起こりうる。   As described above, the fixed piece 4 and the case 7 are integrally formed by insert molding. Further, as in this embodiment, the movable piece 3 and the movable terminal 32 may be integrally formed. If it has the above structures, the external force applied to a terminal will easily reach the contacts inside the case 7. In particular, the external force T that twists the plane R in which the movable contact 2 rotates, that is, the plane R perpendicular to the rotation axis of the movable contact 2 as shown in FIG. The effect on resistance is large. In addition, such external force T can easily occur during attachment to the battery pack.

図2は、本発明による両接点の拡大図であり、図5において紙面(可動接点2の回転動作する平面Rに相当)上の水平方向で両接点を断面視した図である。ここでは、通常時の接触している状態を図示している。本発明の接点は、図2(a)及び図2(b)に図示されるように、固定接点又は可動接点の先端が三角柱形状となっているので、サーマルプロテクター1の長手方向を軸にして平面Rを回転するように端子を捻転する外力Tの加わる前の状態(図2(a))と、端子を捻転する外力Tの加わった後の状態(図2(b))とで、接触点Cが変異しない。したがって、端子の捻転によっても、サーマルプロテクター1の接触抵抗は変化しない。   FIG. 2 is an enlarged view of both contacts according to the present invention, and is a cross-sectional view of both contacts in the horizontal direction on the paper surface (corresponding to the plane R on which the movable contact 2 rotates) in FIG. Here, the contact state at the normal time is illustrated. As shown in FIGS. 2 (a) and 2 (b), the contact of the present invention has a triangular prism shape at the tip of the fixed contact or the movable contact, so that the longitudinal direction of the thermal protector 1 is the axis. Contact between the state before applying the external force T for twisting the terminal to rotate the plane R (FIG. 2A) and the state after applying the external force T for twisting the terminal (FIG. 2B) Point C is not mutated. Therefore, the contact resistance of the thermal protector 1 does not change even when the terminal is twisted.

一方で、従来技術による形態では、図2(c)及び図2(d)に図示されるように、端子を捻転する外力Tの加わる前(図2(c))と後(図2(d))とでは、接触点Cが移動する。したがって、端子の捻転によってサーマルプロテクター1の接触抵抗が変化する。上記のように、先端部21の側面21a同士のなす辺が可動接点2の回転動作する平面Rと平行となっていれば、すなわち、可動接点2の回転動作の回転軸と直交していれば、可動片3又は固定片4を捻転する変位が起こっても、可動接点2と固定接点41との接触点Cがずれない。可動接点2が捻転外力Tによって捻転する場合も、固定接点41が捻転することにより相対的に可動接点2が捻転運動する場合も、接触点Cがずれないのは前記と同様である。   On the other hand, in the configuration according to the prior art, as shown in FIGS. 2C and 2D, before an external force T for twisting the terminal is applied (FIG. 2C) and after (FIG. 2D). )), The contact point C moves. Therefore, the contact resistance of the thermal protector 1 changes due to the twisting of the terminals. As described above, if the sides formed by the side surfaces 21a of the distal end portion 21 are parallel to the plane R on which the movable contact 2 rotates, that is, if it is orthogonal to the rotation axis of the rotating operation of the movable contact 2. Even if the displacement that twists the movable piece 3 or the fixed piece 4 occurs, the contact point C between the movable contact 2 and the fixed contact 41 does not shift. The contact point C is the same as described above when the movable contact 2 is twisted by the torsional external force T and when the movable contact 2 is relatively twisted by the fixed contact 41 being twisted.

図3は、図1における可動接点2の拡大図であり、先端部21を紙面上の垂直方向から(図3(a))、そして、紙面とほぼ垂直の方向から(図3(b))見た図である。接触面23は、図3(b)で見る先端部21の二つの底面21bにおいて、底面21bが可動片3と接する辺を底辺として、両の頂角を結ぶ辺(以下、頂角の辺)を平坦にして形成される。頂角の辺は、先端部21(三角柱形状)の側面21a同士のなす辺でもある。図3においては可動接点2は先端部21のみで構成される。接触面23と接触線4cとは、図1に現されるように互いに投射することになる。尚、図1においては、先端部21である接点の対となる接点の形状は平面形状であるが、双方の接点の先端が三角柱形状になる形態も可能である。この場合、双方の接点における三角柱形状は側面の辺が互いに直交し、接触は点接触であるのが望ましい。   3 is an enlarged view of the movable contact 2 in FIG. 1, in which the tip 21 is viewed from a direction perpendicular to the paper surface (FIG. 3A), and from a direction substantially perpendicular to the paper surface (FIG. 3B). FIG. The contact surface 23 is a side connecting the apex angles of the two bottom surfaces 21b of the distal end portion 21 viewed in FIG. 3B with the side where the bottom surface 21b is in contact with the movable piece 3 as a base (hereinafter referred to as the apex angle side). Is formed flat. The side of the apex angle is also the side formed by the side surfaces 21a of the tip 21 (triangular prism shape). In FIG. 3, the movable contact 2 is composed only of the tip 21. The contact surface 23 and the contact line 4c project each other as shown in FIG. In addition, in FIG. 1, although the shape of the contact which becomes a pair of contacts which is the front-end | tip part 21 is a planar shape, the form from which the front-end | tip of both contacts becomes a triangular prism shape is also possible. In this case, it is preferable that the sides of the triangular prism shape at both contact points are orthogonal to each other, and the contact is a point contact.

本発明の第2態様においては、先端部21が可動接点2に施され、固定接点41は平面形状を取る。可動接点2の先端部21は、溶接、切削、プレスなどの通常の金属加工技術により銀合金から形成される。固定接点41は、可動接点2と同様にメッキ、クラッド、溶接などの従来技術に従って、平面形状に形成される。本発明の第2態様を適用すれば、図3は可動片3の先端及び可動接点2の拡大図となる。   In the second aspect of the present invention, the tip 21 is applied to the movable contact 2 and the fixed contact 41 takes a planar shape. The distal end portion 21 of the movable contact 2 is formed from a silver alloy by a normal metal processing technique such as welding, cutting, or pressing. The fixed contact 41 is formed in a planar shape in accordance with conventional techniques such as plating, cladding, and welding as with the movable contact 2. If the second aspect of the present invention is applied, FIG. 3 is an enlarged view of the tip of the movable piece 3 and the movable contact 2.

既述のように、固定接点は平面形状を有するのが好ましく、固定接点の先端が三角柱形状になる形態では、固定片4を樹脂製のケース7に埋設して形成するときに、樹脂の流動性によっては成形不良を生じうる。そのため、加工容易性の観点から接点先端の先端部21は、一般にインサート成形を経ない可動片3に設けるのが望ましい。また、ショートショットの発生も、サーマルプロテクター1の機械的強度に支障を来す虞があるため、やはり望ましくない。したがって、可動接点2の先端が先端部21を持つのが好ましい。   As described above, it is preferable that the fixed contact has a planar shape. In the form in which the tip of the fixed contact has a triangular prism shape, when the fixed piece 4 is formed by being embedded in the resin case 7, the flow of the resin Depending on the properties, molding defects may occur. Therefore, it is desirable that the tip 21 of the contact tip is generally provided on the movable piece 3 that does not undergo insert molding from the viewpoint of ease of processing. Moreover, the occurrence of short shots is also undesirable because it may interfere with the mechanical strength of the thermal protector 1. Therefore, it is preferable that the tip of the movable contact 2 has the tip 21.

本発明の第3態様においては、図5に示される従来型サーマルプロテクターの接点に本発明を適用して、正特性サーミスターにより自己保持回路が付与され、且つ耐衝撃性も確保されている。端子やサーマルプロテクター製品へを捻転する外力Tに影響を受けない点以外は、従来型のものと変更はないので、この形態について詳細な記述は省略する。   In the third aspect of the present invention, the present invention is applied to the contacts of the conventional thermal protector shown in FIG. 5, a self-holding circuit is provided by a positive temperature coefficient thermistor, and impact resistance is also secured. Since there is no change from the conventional type except that it is not affected by the external force T that twists the terminal or thermal protector product, detailed description of this form is omitted.

本発明の第4態様においては、前記のサーマルプロテクターに超音波で振動を与えて導通しながら活性化痕が形成される。具体的には組立の完成したサーマルプロテクター全体を通電しながら、超音波による振動を与える方法である。かかる活性化の条件のうち、超音波は、例えば、周波数10kHz〜100kHz、振幅0.001〜0.100mm、導通は、電流1.0〜40A、時間0.01〜0.10秒のいずれかを、所要の特性を検討しながら、適宜組み合わせて採用する。このように両接点の接触点Cの夾雑物が除去され、活性化痕が形成される。従来から見出されている超音波による活性化に、本発明による接点形状を追加すれば、両接点間の接触面積を制御するのが更に容易であり、歩留まり良くサーマルプロテクターを生産できる。   In the fourth aspect of the present invention, activation traces are formed while the thermal protector is vibrated with ultrasonic waves and conducted. Specifically, it is a method of applying vibrations by ultrasonic waves while energizing the entire assembled thermal protector. Among these activation conditions, for example, the ultrasonic wave has a frequency of 10 kHz to 100 kHz, an amplitude of 0.001 to 0.100 mm, and the continuity is any of current 1.0 to 40 A and time 0.01 to 0.10 seconds. Are combined as appropriate while considering the required characteristics. In this way, impurities at the contact point C of both contacts are removed, and activation marks are formed. If the contact shape according to the present invention is added to the conventional activation by ultrasonic waves, it is easier to control the contact area between both contacts, and a thermal protector can be produced with a high yield.

超音波振動による活性化工程においては、振動により可動接点2の先端(頂角の辺)が徐々に削れ、接触面23は徐々に広がる。図2(c)の従来技術のごとく平面同士で接触する形態では、接触部位及び接触箇所が当初から広いため、両接点間に微小な異物が混入すると、接触抵抗が影響されやすい。   In the activation process using ultrasonic vibration, the tip (side of the apex angle) of the movable contact 2 is gradually scraped by the vibration, and the contact surface 23 gradually spreads. In the form of contact between flat surfaces as in the prior art of FIG. 2C, the contact part and the contact part are wide from the beginning, and therefore, if a minute foreign matter is mixed between the two contact points, the contact resistance is easily affected.

一方で、本発明においては、接触面23の面積が小さいため、もしサーマルプロテクター内部に塵埃が混入しても、接触点Cに割り込む可能性は小さく、その悪影響を軽減できる。対して、従来技術においては、両接点は当初から平面同士で接触しており、活性化工程より前に両接点間に微小な塵埃を噛むか、活性化で削れた接点の破片などが両接点間に挿まれて、期待した抵抗特性を得られないことがある。このように接点表面の状況は製品個体ごとに一様でないため、接触抵抗を制御しがたくなる傾きがある。したがって、超音波の振動による活性化工程に三角柱形状の接点先端を適用した本発明の実施形態により、サーマルプロテクターの歩留まりが改善し、従来技術に比べて更に容易に最適な接触面積及び電気特性を実現できる。   On the other hand, in the present invention, since the area of the contact surface 23 is small, even if dust is mixed inside the thermal protector, the possibility of interrupting the contact point C is small, and the adverse effect can be reduced. On the other hand, in the prior art, both contact points are in contact with each other from the beginning, and both contact points include minute dust between the contact points before the activation process, or contact debris scraped by activation. Inserted in between, the expected resistance characteristics may not be obtained. As described above, since the contact surface condition is not uniform for each product, there is a slope that makes it difficult to control the contact resistance. Therefore, the embodiment of the present invention in which the tip of the triangular prism contact is applied to the activation process by ultrasonic vibration improves the yield of the thermal protector, and makes it possible to more easily achieve the optimum contact area and electrical characteristics as compared with the prior art. realizable.

本発明の第5態様においては、図6のように熱応動素子5と可動片3とが一体的に形成されている。この実施態様の可動片3はバイメタル又はトリメタルから形成され、別個に設けられた部材である熱応動素子を必要としていない。   In the fifth aspect of the present invention, the thermally responsive element 5 and the movable piece 3 are integrally formed as shown in FIG. The movable piece 3 of this embodiment is made of bimetal or trimetal, and does not require a heat responsive element which is a separately provided member.

図3において、先端部21が可動片3に形成されているものとして、以下図説する。可動接点2を構成する先端部21において、先端部21(三角柱形状)の底面21b(三角部)の一辺のうち、可動片3の本体に接するもの、即ち底辺の幅L1は、接触面23の幅L3に比べて、できるだけ広い方がよい。尚、ここで底辺の幅L1とは、先端部21を平面Rと水平に断面視した三角部(先端部21の底面21b)の底辺の大きさを意味し、頂角の辺(接触面23)に向かって傾斜が始まる部分の幅である。底辺の幅L1は、可動片3のバネ性を担保できるだけあれば特に制限はないが、1.0mm乃至3.5であるのが望ましい。この範囲より小さい場合、超音波振動による活性化工程で導通と共に振動が加わると磨耗により先端部21の消失する虞があり、導通できる電流の量が制限されるため不利である。一方、この範囲より大きいと、小型のサーマルプロテクターを設計する場合、小型化に不利である。   In FIG. 3, the following description will be given assuming that the tip 21 is formed on the movable piece 3. In the tip 21 constituting the movable contact 2, one of the sides of the bottom 21 b (triangle) of the tip 21 (triangular prism shape) that is in contact with the main body of the movable piece 3, that is, the width L 1 of the bottom is the width of the contact surface 23. It should be as wide as possible as compared to the width L3. Here, the width L1 of the bottom side means the size of the bottom side of the triangular part (bottom surface 21b of the tip part 21) when the tip part 21 is viewed in a horizontal plane with the plane R, and the side of the apex angle (contact surface 23). ) Is the width of the portion where the inclination starts toward. The width L1 of the base is not particularly limited as long as the spring property of the movable piece 3 can be ensured, but is preferably 1.0 mm to 3.5. If it is smaller than this range, if vibration is applied along with conduction in the activation process by ultrasonic vibration, the tip 21 may be lost due to wear, which is disadvantageous because the amount of current that can be conducted is limited. On the other hand, if it is larger than this range, it is disadvantageous for miniaturization when designing a small thermal protector.

実施形態1の可動接点2の高さは、三角柱形状の先端部21の三角部(底面21b)において可動片3の本体に接する辺、即ち底辺からの頂角の高さL2であり、少なくとも0.05mmであり、望ましくは0.1mm以上である。可動接点2の先端部21の高さL2の上限は特にないが、サーマルプロテクター1を小型化するためには、1.0mm程度である。先端部21の頂角の高さL2が前記の範囲に満たないと超音波による活性化で削れて消滅してしまい、端子を捻転する外力Tに対して奏功しない虞がある。   The height of the movable contact 2 according to the first embodiment is the height L2 of the apex angle from the side that is in contact with the main body of the movable piece 3 at the triangular portion (bottom surface 21b) of the triangular prism-shaped tip portion 21, that is, from the bottom. 0.05 mm, desirably 0.1 mm or more. There is no particular upper limit on the height L2 of the tip 21 of the movable contact 2, but in order to reduce the size of the thermal protector 1, it is about 1.0 mm. If the height L2 of the apex angle of the distal end portion 21 is less than the above range, the tip portion 21 may be scraped and disappeared by activation with ultrasonic waves, and may not be effective against the external force T that twists the terminal.

三角柱形状の先端部21における側面21a同士のなす傾斜の度合いは、実施形態1では、L2/L1を指標にして、L2/L1の値が0.01乃至1.00であるのが望ましい。この範囲を下回ると、可動接点2の先端が事実上、三角柱形状ではなくなり奏功しない虞が生ずる。一方、この範囲を上回ると、サーマルプロテクター1の小型化に不利となり、また、超音波による活性化で削れて消滅してしまう虞が生ずる。   In the first embodiment, the degree of inclination between the side surfaces 21a of the triangular prism-shaped distal end portion 21 is preferably such that the value of L2 / L1 is 0.01 to 1.00 using L2 / L1 as an index. Below this range, the tip of the movable contact 2 is practically not in the shape of a triangular prism and may not be successful. On the other hand, if it exceeds this range, it will be disadvantageous for miniaturization of the thermal protector 1, and there is a possibility that the thermal protector 1 will be scraped off by activation with ultrasonic waves and disappear.

本発明において線接触とは、数学的な線分を意味するのではなく、実際上は、細長い帯状である。先端部21は、図3(a)に示すように断面が台形となるように、接触面23を施される。線接触を形成する先端部21の接触面23の幅L3は、可動接点2の回転動作する平面Rと平行の方から見て、幅0.1乃至1.0mm程度であることが望ましく、更に望ましくは、、0.2乃至0.5mmである。接触面23の幅L3が上記の範囲を超えると、可動接点2の回転動作する平面Rを捻転するように端子に掛かる外力Tに対して、奏功しなくなる。一方、接触面23の幅L3が上記の範囲を下回ると、接触する面積が小さすぎて電流や電圧などの電気特性が安定しない。接触面23の幅L3は、上記の活性化工程において、適宜に電圧、電流及び超音波の振動数、処理時間を設定して、導通しながら超音波で振動することにより、最適な長さが実現できる。尚、前記の電流、電圧、処理時間などはサーマルプロテクター1の本来有する耐用限界値を超えてはならないのは言うまでもない。   In the present invention, the line contact does not mean a mathematical line segment, but is actually an elongated strip. The tip portion 21 is provided with a contact surface 23 so that the cross section becomes a trapezoid as shown in FIG. The width L3 of the contact surface 23 of the distal end portion 21 forming the line contact is preferably about 0.1 to 1.0 mm in width as viewed from the direction parallel to the plane R on which the movable contact 2 rotates. Desirably, it is 0.2 to 0.5 mm. When the width L3 of the contact surface 23 exceeds the above range, the contact surface 23 will not be effective against the external force T applied to the terminal so as to twist the plane R on which the movable contact 2 rotates. On the other hand, if the width L3 of the contact surface 23 is less than the above range, the contact area is too small, and electrical characteristics such as current and voltage are not stable. In the activation step, the width L3 of the contact surface 23 is set to an optimum length by oscillating ultrasonically while conducting by appropriately setting the voltage, current, ultrasonic frequency and processing time. realizable. Needless to say, the current, voltage, processing time, and the like should not exceed the intrinsic durability of the thermal protector 1.

図3(b)の接触面23(頂角の辺)の長さL4(可動接点2の回転動作の回転軸方向(平面Rと垂直の向き)の長さ)は特に限定されないが、0.1mm以上であるのが望ましい。これは、サーマルプロテクター1の稼働により、可動接点2が徐々に摩耗してゆくにつれて、適切な接触点Cが全て消滅しないように、可動片3の先端から固定部33にかけて、前記の適切な接触を担保しておくためである。点接触の場合、小型のサーマルプロテクターの部品は小さすぎるため、適切な接触箇所がサーマルプロテクターを使用するうちにほぼ消滅し、失われる虞がある。以上を踏まえると、接触面23長さL4に必要とされる具体的大きさは、概ね0.1mm以上であると好適であり、更に好適には0.3mm以上である。   The length L4 of the contact surface 23 (vertical side) in FIG. 3B (the length in the rotational axis direction (direction perpendicular to the plane R) of the rotating operation of the movable contact 2) is not particularly limited. It is desirable that it is 1 mm or more. This is because, as the movable contact 2 gradually wears due to the operation of the thermal protector 1, the appropriate contact point from the tip of the movable piece 3 to the fixed portion 33 is prevented so that all the appropriate contact points C do not disappear. This is to keep the security. In the case of point contact, since the components of the small thermal protector are too small, there is a risk that the appropriate contact point will almost disappear and be lost while using the thermal protector. Based on the above, the specific size required for the contact surface 23 length L4 is preferably approximately 0.1 mm or more, and more preferably 0.3 mm or more.

三角柱形状の接点は、図2におけるように断面を五角形としてもよい。次に、本発明の実施形態2として、可動接点2の形状が図2におけるごとき断面五角形の可動接点について図4を用いて説明する。図4(a)は、実施形態2の可動接点2を平面Rと垂直に断面視したものである。図4(b)は、実施形態2の可動接点2を平面Rと水平に見たものである。この場合は、例えば、図3及び図1に現れるような可動片3の平坦部34が存在しない。又は、平坦部34が三角柱形状の頂角の辺(接触面23)から充分に遠い。このようなとき、可動片3が捻転された時に平坦部34による干渉がなく、又は軽減されるため、三角柱形状の可動片3からの高さ(可動接点2の高さ)に課せられる条件は緩和される。   The triangular prism shaped contact may have a pentagonal cross section as shown in FIG. Next, as Embodiment 2 of the present invention, a movable contact having a pentagonal cross section as shown in FIG. 2 will be described with reference to FIG. FIG. 4A is a cross-sectional view of the movable contact 2 of Embodiment 2 perpendicular to the plane R. FIG. FIG. 4B shows the movable contact 2 according to the second embodiment viewed horizontally with respect to the plane R. In this case, for example, the flat portion 34 of the movable piece 3 as shown in FIGS. 3 and 1 does not exist. Alternatively, the flat portion 34 is sufficiently far from the side of the apex angle (contact surface 23) of the triangular prism shape. In such a case, when the movable piece 3 is twisted, there is no interference with the flat portion 34 or is reduced, so the condition imposed on the height from the triangular prism-shaped movable piece 3 (height of the movable contact 2) is Alleviated.

かかる先端部21における底辺の長さL1及び頂角の高さL2の大きさは、制約が緩和され、次のようになる。底辺の長さL1については実施形態1におけるのと同様であるが、頂角の高さL2については、下限を0.01mm程度にすることができる。頂角の高さL2の上限は、実施形態1におけるのと同様である。   The size of the base side length L1 and the apex angle height L2 at the tip 21 is relaxed and is as follows. The length L1 of the base is the same as that in the first embodiment, but the lower limit of the height L2 of the apex angle can be set to about 0.01 mm. The upper limit of the apex angle height L2 is the same as in the first embodiment.

実施形態2の可動接点2は、図4におけるように、可動片3と接続する台座部22の上に先端部21(三角柱形状)が形成さる。この先端部21の頂角の高さL2は、図3(a)に示されるものと比較して、上述のように低く設定できる。先端部の高さL2の条件は、図4(a)における底辺の長さL1との関係で示すと、L2/L1が少なくとも0.001であり、望ましくは0.005以上であり、更に望ましくは、0.016乃至0.033である。L2/L1の上限は、実施形態1と同様に1.00程度であり、0.1以下が望ましい。   As shown in FIG. 4, the movable contact 2 according to the second embodiment has a tip 21 (triangular prism shape) formed on a pedestal 22 connected to the movable piece 3. The height L2 of the apex angle of the tip portion 21 can be set lower as described above as compared with that shown in FIG. The condition of the height L2 of the tip portion is indicated by the relationship with the base length L1 in FIG. 4A, L2 / L1 is at least 0.001, preferably 0.005 or more, and more preferably Is 0.016 to 0.033. The upper limit of L2 / L1 is about 1.00 as in the first embodiment, and is preferably 0.1 or less.

前記に規定する範囲を外れる場合、実施形態1におけるのと同様の不都合が生ずる虞がある。従来のサーマルプロテクター1におけるように、両接点の接触が平面同士の接触と大差無くなるので、奏功しなくなる。そして、この範囲を下回ると、接点が脆弱になる。実施形態2においても、可動接点2の先端部21は接触面23を施され、接触面の幅L3及び図4(b)の接触面の長さL4は実施形態1と同様である。   If it is out of the range defined above, the same inconvenience as in the first embodiment may occur. As in the case of the conventional thermal protector 1, the contact between the two contact points is not much different from the contact between the flat surfaces, so that it is not successful. Below this range, the contact becomes fragile. Also in the second embodiment, the tip 21 of the movable contact 2 is provided with a contact surface 23, and the width L3 of the contact surface and the length L4 of the contact surface in FIG. 4B are the same as those of the first embodiment.

実施形態2の可動接点2の高さL6、即ち台座部22の高さL5と先端部21の頂角の高さL2の和(L2+L5)は、実施形態1の場合と同様に、少なくとも0.05mm程度であり、望ましくは0.1mm以上であり、上限は特にないが、サーマルプロテクター1の小型化のために、1.0mm程度が望ましい。台座部22の高さL5は、サーマルプロテクター1に求められる所期の特性により決定され特に限定はなく、実施形態1に準じて決定できる。台座部22の高さがない場合でも、可動接点2の回転動作する平面Rと水平に見て可動接点2の左右に平坦部34が存在しない形態においては、可動接点2の形状及び寸法に係る条件は実施形態1及び実施形態2と同様である。   The sum (L2 + L5) of the height L6 of the movable contact 2 of the second embodiment, that is, the height L5 of the pedestal portion 22 and the height L2 of the apex angle of the distal end portion 21 is at least 0, as in the case of the first embodiment. Although it is about 05 mm, desirably 0.1 mm or more, and there is no particular upper limit, about 1.0 mm is desirable for miniaturization of the thermal protector 1. The height L5 of the pedestal portion 22 is determined by intended characteristics required for the thermal protector 1 and is not particularly limited, and can be determined according to the first embodiment. Even in the case where the height of the pedestal portion 22 is not present, the shape and the size of the movable contact 2 depend on the form in which the flat portion 34 does not exist on the left and right of the movable contact 2 when viewed horizontally with the plane R on which the movable contact 2 rotates. The conditions are the same as in the first and second embodiments.

実施形態1及び実施形態2では、可動接点2の先端を三角柱形状のものとした例で説明したが、断面が三角形に近いものであれば、半円形状又は半楕円形状の半円筒型であってもよい。さらに、接触点Cは、本実施形態においては一箇所であるが、三角柱形状が対称的且つ適切に配置されていれば、複数箇所に設けても差し支え無い。可動接点2の形状は、捻転の外力Tに効率的に対処するために、図3(a)及び図4(a)に見えるように、可動接点2の回転動作する平面Rに対して左右対称であるのが望ましい。   In Embodiments 1 and 2, the tip of the movable contact 2 has been described as an example having a triangular prism shape. However, if the cross section is close to a triangle, the movable contact 2 has a semi-cylindrical or semi-elliptical semi-cylindrical shape. May be. Furthermore, although the contact point C is one place in this embodiment, if the triangular prism shape is symmetrically and appropriately arranged, it may be provided at a plurality of places. The shape of the movable contact 2 is symmetrical with respect to the plane R on which the movable contact 2 rotates as seen in FIGS. 3A and 4A in order to efficiently cope with the external force T of torsion. It is desirable that

接触点Cの存在する接触線4cは可動接点2の接触面23を投射したものであるが、接触線4cの長手方向の全長は接触面23のそれと同じでなくてもよい。実施形態1及び実施形態2においても、通常は両接点の接触する範囲である接触線4cが、図示される接触部位23aにより点状で存在していれば、問題ない電気特性を発揮する。線接触の形状、即ち接触点Cを含む接触線4cの形状は、細長い、又は短い斑点状、となっていることもあるが、この場合も、前記の諸条件を満たせば、問題なく所期の電気特性を発揮する。尚、超音波による活性化工程を採用すれば、電流、電圧、処理時間などを指標に用いて、適正な線接触は更に容易に達成される。   The contact line 4 c where the contact point C exists is a projection of the contact surface 23 of the movable contact 2, but the total length in the longitudinal direction of the contact line 4 c may not be the same as that of the contact surface 23. Also in the first and second embodiments, if the contact line 4c, which is a range where the two contacts are normally in contact, is present in the form of dots by the illustrated contact portion 23a, the electric characteristics without problems are exhibited. The shape of the line contact, that is, the shape of the contact line 4c including the contact point C may be long or short, but in this case as long as the above conditions are satisfied, there is no problem. Demonstrate the electrical characteristics of If an activation process using ultrasonic waves is employed, proper line contact can be achieved more easily using current, voltage, processing time, and the like as indices.

本発明の実施形態は、温度変化により反転する湾曲面を有する熱応動素子により可動接点が振り子様の回転動作をし固定接点と接触離反する回路の断続器において、前記の可動接点又は固定接点の一方の先端が略三角柱形状であり、前記可動接点と前記固定接点との接触は前記可動接点の回転軸と直交する線接触であれば、即ち、前記三角柱形状において、側面同士のなす辺を前記回転軸と直交するように設定すれば、ここで記述される形態に限定されるものではない。例えば、既述の実施形態の他に、可動片が羽ばたき様の運動をし、その両端において可動接点が固定接点と接触離反する形態なども考えられる。この可動片両端に接点を有する形態においても、熱応動素子と可動片とが一体的に形成することができる。   An embodiment of the present invention is a circuit interrupter in which a movable contact rotates like a pendulum by a thermally responsive element having a curved surface that reverses due to a temperature change and contacts and separates from a fixed contact. One end is substantially triangular prism shape, and the contact between the movable contact and the fixed contact is a line contact perpendicular to the rotation axis of the movable contact, that is, in the triangular prism shape, the side formed by the side surfaces is As long as it is set so as to be orthogonal to the rotation axis, it is not limited to the form described here. For example, in addition to the above-described embodiment, a form in which the movable piece flutters and the movable contact contacts and separates from the fixed contact at both ends thereof is also conceivable. Even in a form having contacts at both ends of the movable piece, the thermally responsive element and the movable piece can be integrally formed.

1 サーマルプロテクター、
2 可動接点、
21 先端部(三角柱形状)、
21a 側面(矩形面)、
21b 底面(三角面)、
23 接触面(頂角の辺)、
23c 接触部位(頂角)、
3 可動片、
32 可動側端子、
4 固定片、
41 固定接点、
4c 接触線、
5 バイメタル(熱応動素子)、
6 PTC(正特性サーミスター)、
7 ケース、
L1 底辺の長さ、
L2 頂角の高さ、
L3 接触面の幅、
L4 接触面の長さ、
L5 台座部の高さ、
L6 可動接点の高さ(L1+L5)
R 可動接点2の回転動作する平面(可動接点2の回転動作の回転軸と直交する平面)、
T 平面Rを捻転する外力(端子を捻る外力)、
C 接触点、
1 Thermal protector,
2 movable contacts,
21 Tip (triangular prism shape),
21a side surface (rectangular surface),
21b Bottom surface (triangular surface),
23 Contact surface (vertical angle side),
23c contact part (vertical angle),
3 movable pieces,
32 Movable terminal,
4 fixed pieces,
41 fixed contacts,
4c contact line,
5 Bimetal (thermally responsive element),
6 PTC (positive thermistor),
7 cases,
L1 The length of the base,
L2 apex angle height,
L3 width of contact surface,
L4 length of contact surface,
L5 pedestal height,
L6 Movable contact height (L1 + L5)
R A plane on which the movable contact 2 rotates (a plane perpendicular to the rotation axis of the rotation of the movable contact 2),
T External force that twists the plane R (external force that twists the terminal),
C contact point,

Claims (5)

一端に固定接点が設けられ、もう一端に固定側端子が一体的に設けられた固定片、回転動作する可動接点が端部に設けられた可動片、及び温度変化により反転する湾曲面を有する熱応動素子を備えて構成され、
前記可動片のバネ作用及び前記熱応動素子の温度変化に伴う反転により前記可動接点は前記固定接点と接触し又は離反し、
前記の可動接点又は固定接点の先端が略三角柱形状であり、前記可動接点と前記固定接点との接触は前記可動接点の回転軸と直交する線接触であることを特徴とするサーマルプロテクター。
A fixed piece provided with a fixed contact at one end and a fixed piece integrally provided with a fixed-side terminal at the other end, a movable piece provided with a movable contact at the end of a rotating operation, and a heat having a curved surface that is reversed by a temperature change. Configured with a response element,
The movable contact comes into contact with or separates from the fixed contact due to the spring action of the movable piece and the reversal accompanying the temperature change of the thermally responsive element,
The thermal protector according to claim 1, wherein a tip of the movable contact or the fixed contact has a substantially triangular prism shape, and the contact between the movable contact and the fixed contact is a line contact perpendicular to the rotation axis of the movable contact.
前記可動接点の先端が略三角柱形状であり、該三角柱形状の側面同士のなす辺において前記接触が行われることを特徴とする請求項1のサーマルプロテクター。   The thermal protector according to claim 1, wherein a tip of the movable contact has a substantially triangular prism shape, and the contact is made at a side formed by side surfaces of the triangular prism shape. 前記熱応動素子に掩蓋され、前記可動接点が前記固定接点から離反している状態で、前記の可動片及び固定片の間に挟持され、導通する正特性サーミスターを有することを特徴とする請求項1又は2のサーマルプロテクター。   A positive temperature coefficient thermistor sandwiched between the movable piece and the fixed piece in a state of being covered with the thermally responsive element and the movable contact being separated from the fixed contact. Item 1 or 2 thermal protector. 超音波の振動により形成された活性化痕を有することを特徴とする請求項1乃至3のサーマルプロテクター。   4. The thermal protector according to claim 1, wherein the thermal protector has an activation mark formed by ultrasonic vibration. 熱応動素子と可動片とが一体的に形成されていることを特徴とする請求項1乃至4のサーマルプロテクター。   5. The thermal protector according to claim 1, wherein the thermally responsive element and the movable piece are integrally formed.
JP2011097702A 2010-04-28 2011-04-26 Thermal protector Active JP5743678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097702A JP5743678B2 (en) 2010-04-28 2011-04-26 Thermal protector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010104464 2010-04-28
JP2010104464 2010-04-28
JP2011097702A JP5743678B2 (en) 2010-04-28 2011-04-26 Thermal protector

Publications (2)

Publication Number Publication Date
JP2011249322A true JP2011249322A (en) 2011-12-08
JP5743678B2 JP5743678B2 (en) 2015-07-01

Family

ID=45414297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097702A Active JP5743678B2 (en) 2010-04-28 2011-04-26 Thermal protector

Country Status (1)

Country Link
JP (1) JP5743678B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179462A1 (en) 2015-12-18 2017-06-22 Bourns, Inc. Battery housing
US10985552B2 (en) 2018-06-22 2021-04-20 Bourns, Inc. Circuit breakers
US11651922B2 (en) 2019-08-27 2023-05-16 Bourns, Inc. Connector with integrated thermal cutoff device for battery pack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510235U (en) * 1978-07-06 1980-01-23
JPH0973826A (en) * 1995-09-05 1997-03-18 Fujitsu Ltd Switch contact structure
JP2005116511A (en) * 2003-09-16 2005-04-28 Furukawa Electric Co Ltd:The Thermal protector, and method for reducing contact resistance of the same
JP2005174816A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Thermosensitive operation element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510235U (en) * 1978-07-06 1980-01-23
JPH0973826A (en) * 1995-09-05 1997-03-18 Fujitsu Ltd Switch contact structure
JP2005116511A (en) * 2003-09-16 2005-04-28 Furukawa Electric Co Ltd:The Thermal protector, and method for reducing contact resistance of the same
JP2005174816A (en) * 2003-12-12 2005-06-30 Matsushita Electric Ind Co Ltd Thermosensitive operation element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179462A1 (en) 2015-12-18 2017-06-22 Bourns, Inc. Battery housing
US10439196B2 (en) 2015-12-18 2019-10-08 Bourns, Inc. Electromechanical circuit breaker
US10707475B2 (en) 2015-12-18 2020-07-07 Bourns, Inc. Battery housing
US10985552B2 (en) 2018-06-22 2021-04-20 Bourns, Inc. Circuit breakers
US11651922B2 (en) 2019-08-27 2023-05-16 Bourns, Inc. Connector with integrated thermal cutoff device for battery pack

Also Published As

Publication number Publication date
JP5743678B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5695695B2 (en) Breaker and secondary battery provided with the same
JP5555024B2 (en) breaker
JP5148023B2 (en) Thermal protector and battery using the same
JP3820055B2 (en) Thermal protector
JP5743678B2 (en) Thermal protector
JP5852859B2 (en) breaker
JPWO2015029826A1 (en) Protective device
JP5918525B2 (en) breaker
JP5886609B2 (en) Breaker, safety circuit including the same, and secondary battery pack
JP2012160317A (en) Breaker
JP5864207B2 (en) breaker
US20140300445A1 (en) Thermal protector
JP2013171642A (en) Breaker
JP6457810B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP6592299B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
WO2020121896A1 (en) Thermal reaction element, breaker, safety circuit, and secondary battery pack
JP6979127B2 (en) Breaker, safety circuit and rechargeable battery pack
WO2023074752A1 (en) Breaker
JP2019008920A (en) Current cutoff device and secondary battery pack including the same
JP2006244761A (en) Retention structure of thermal protector and electronic apparatus using this
JP2005347225A (en) Thermal protector, cellular phone using it and electronic apparatus
JP2014120379A (en) Breaker
JP2006179388A (en) Thermal protector
EP3240006A1 (en) Thermal response switch
WO2006072995A1 (en) Motor protector with ptc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5743678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250