JP2011245574A - Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device - Google Patents

Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device Download PDF

Info

Publication number
JP2011245574A
JP2011245574A JP2010119235A JP2010119235A JP2011245574A JP 2011245574 A JP2011245574 A JP 2011245574A JP 2010119235 A JP2010119235 A JP 2010119235A JP 2010119235 A JP2010119235 A JP 2010119235A JP 2011245574 A JP2011245574 A JP 2011245574A
Authority
JP
Japan
Prior art keywords
machining
workpiece
ultrasonic
machining tool
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010119235A
Other languages
Japanese (ja)
Other versions
JP2011245574A5 (en
Inventor
Yuha Go
勇波 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Original Assignee
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University filed Critical Akita Prefectural University
Priority to JP2010119235A priority Critical patent/JP2011245574A/en
Publication of JP2011245574A publication Critical patent/JP2011245574A/en
Publication of JP2011245574A5 publication Critical patent/JP2011245574A5/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an environmental friendly machining technique for machining a functional hard brittle material such as optoelectric materials or semiconductors to damage free mirror surfaces with high efficiency.SOLUTION: In the machining method in which two dimensional ultrasonic microvibration of a machining tool is caused by the simultaneous generation of longitudinal vibration in a direction perpendicular to the machining surface of a head and lateral vibration in a direction parallel to the machining surface, constant pressure or constant cutting out machining is carried out using two dimensional ultrasonic wave vibration machining head to which a fixed abrasive grain machining tool is affixed. The machining tool is constituted of abrasive grains exhibiting chemical reaction with the workpiece material, additives, and a binder for solidifying these particles, the kinds and mixing ratio of the respective constituting components is determined such that chemical reaction with the workpiece is easily generated, the machining tool has a shape such as a thin disc shape, a tetragonal shape, a ring shape.

Description

本発明は、光電材料や半導体など機能性硬脆材料の高能率鏡面加工技術(方法と装置)に関するものである。       The present invention relates to a high-efficiency mirror finishing technique (method and apparatus) for functional hard and brittle materials such as photoelectric materials and semiconductors.

超音波援用加工とは、工具側か工作物側に一次元か二次元の超音波微振動(周波数は数kHz〜数十kHz、振幅はサブミクロン〜数十ミクロン)を付与しながら工具と工作物間に相対運動(円運動や直線運動など)を与え、切れ刃の微小切削作用によって工作物材料を機械的に除去するユニークな除去加工法である。 Ultrasound-assisted machining means that a tool and a workpiece are applied while applying one-dimensional or two-dimensional ultrasonic vibration (frequency is several kHz to several tens of kHz, amplitude is sub-micron to several tens of microns) on the tool side or workpiece side. This is a unique removal method that gives a relative motion (circular motion, linear motion, etc.) between the workpieces and mechanically removes the workpiece material by the fine cutting action of the cutting edge.

この方法では、工具と工作物間の相対的な超音波微振動によって、切れ刃の切込深さと運動軌跡が周期的に変動し、切りくずの微細化が促進され、また切れ刃の断続的な切込作用で切れ刃と工作物間の摩擦係数が低減される。これによって、加工力が小さくなり切りくずの排出が容易になる。また、超音波振動の加速度が極めて大きく、それによる強い衝撃力で切れ刃上への切りくず付着が軽減されて、工具切れ味が長く維持される。これらのメリットのため、超音波援用加工技術が広く応用されてきている。特に、2次元超音波微振動がより大きな効果がある(非特許文献1)。 In this method, the relative ultrasonic micro-vibration between the tool and the workpiece periodically fluctuates the cutting depth and motion trajectory of the cutting edge, promoting chip miniaturization, and intermittent cutting edge. The coefficient of friction between the cutting edge and the workpiece is reduced by a smooth cutting action. This reduces the processing force and facilitates chip discharge. Further, the acceleration of the ultrasonic vibration is extremely large, and the chip adhesion on the cutting edge is reduced by the strong impact force, thereby maintaining the tool sharpness for a long time. Due to these advantages, ultrasonic-assisted processing technology has been widely applied. In particular, two-dimensional ultrasonic microvibration has a greater effect (Non-Patent Document 1).

一方、半導体の製造工程においては、(1)結晶成長(インゴッド引き上げ)、(2)切断、(3) Vノッチ付け、(4)べべリングおよび面取り、(5)ラッピング、(6)エッチング、(7)ポリシング、(8)洗浄といったプロセスがある。その中のラッピングが遊離砥粒法で、ラップ剤の使用によるウエハ自身と加工機の汚れが問題であり、ウエハと加工機の洗浄とラップ剤の廃液処理に高いコストがかかる。また最近、半導体デバイスの積層化が進むにつれ、シリコンウエハの裏面研削による薄片化が盛んになっている。裏面研削は、主として粗粒ダイヤモンド砥石を用いる粗研削と微粒ダイヤモンド砥石を用いる仕上げ研削があり、高い加工能率で鏡面が得られるが、加工力が大きいため、厚い破壊層と変質層が生成されやすい。 On the other hand, in the semiconductor manufacturing process, (1) crystal growth (ingot pulling), (2) cutting, (3) V notching, (4) beveling and chamfering, (5) lapping, (6) etching, ( There are 7) polishing and (8) cleaning processes. Among them, lapping is a free abrasive grain method, and contamination of the wafer itself and the processing machine due to the use of the lapping agent is a problem, and high cost is required for cleaning the wafer and the processing machine and processing the waste liquid of the lapping agent. Recently, as semiconductor devices have been stacked, thinning of silicon wafers by backside grinding has become popular. Backside grinding mainly includes rough grinding using a coarse diamond wheel and finish grinding using a fine diamond grinding wheel. A mirror surface can be obtained with high processing efficiency, but a thick fracture layer and altered layer are likely to be generated due to high processing power. .

シリコンウエハ加工製作の最終仕上げ工程としてのポリシングは、主として化学・機械研磨(CMP)によって行われている(非特許文献2)。この方法では、ウレタンゴムなど軟質研磨パッドを一定の圧力でシリコンウエハへ押し当てて、ノズルからCMPスラリ(微細砥粒や一定のPH値を有する化学酸化剤および水質溶媒から構成されたコロイダル液体)を研磨パッドとシリコンウエハの接触領域に供給しながら、シリコンウエハに対する研磨パッドの相対円運動をさせることによって研磨を行う。研磨中、化学酸化剤によるエッチングと砥粒の微細切削の複合作用によって材料が除去され研磨が進行する。この種の加工法は、極めて高い表面品質が得られ、またシリコン以外の材料でもその材料に合ったスラリを使用すればシリコンと同様に高い表面品質の加工になるため、広く応用されている。 Polishing as a final finishing process of silicon wafer processing is mainly performed by chemical / mechanical polishing (CMP) (Non-patent Document 2). In this method, a soft polishing pad such as urethane rubber is pressed against a silicon wafer at a certain pressure, and a CMP slurry from the nozzle (a colloidal liquid composed of fine abrasive grains, a chemical oxidizer having a certain PH value, and a water-based solvent). Is supplied to the contact area between the polishing pad and the silicon wafer, and the polishing is performed by causing the polishing pad to move relative to the silicon wafer. During polishing, the material is removed by the combined action of etching with a chemical oxidizing agent and fine cutting of abrasive grains, and polishing proceeds. This type of processing method is widely applied because it can provide extremely high surface quality, and even a material other than silicon can be processed with high surface quality like silicon if a slurry suitable for the material is used.

そこで、遊離砥粒法のラッピングやダイヤモンド砥石による裏面研削における問題を解決するために、CMPにおける加工原理を鑑みて、化学・機械複合研削という固定砥粒法によるシリコンウエハのダメージフリー高平坦化加工法が提案されている(特許文献2および非特許文献3)。この方法は、シリコンと化学反応性のある砥粒(CeO2, SiO2など)および添加剤(Na2CO3, CaCO3など)を樹脂結合剤で固めてできた複合砥石を用いて、定圧か定切込み方式で研削を行うものである。この種の複合砥石を用いる固定砥粒法によって、ラッピングにおけるラップ剤の処理と洗浄およびダイヤモンド研削におけるダメージ層の形成といった問題が解決されている。
特開2002-355763号 Z. Liang, Y.Wu, T.Sato and W.Lin, X. Wang and W. Zhao, Two-dimensionalUltrasonically Assisted Grinding of Monocrystal Silicon, Proceedings of LEM21,pp.535-540, 2009. 土肥俊郎, 黒河周平. CMP技術の来し方行く末. 精密工学会誌,75(1) pp.76-77,2009. 周立波, 河合真二, 本田将之, 清水淳, 江田弘, 焼田和明. SiウエハのChemo-Mechanical-Grinding(CMG)に関する研究 : 第1報 : CMG砥石の開発. 精密工学会誌,68(12),pp.1559-1563,2002.
Therefore, in order to solve the problems in the lapping of the loose abrasive method and the back grinding with the diamond grindstone, in view of the processing principle in CMP, damage-free high planarization of the silicon wafer by the fixed abrasive method called chemical / mechanical composite grinding Methods have been proposed (Patent Document 2 and Non-Patent Document 3). This method uses a compound grindstone in which abrasive grains chemically reactive with silicon (CeO 2 , SiO 2, etc.) and additives (Na 2 CO 3 , CaCO 3, etc.) are hardened with a resin binder, and constant pressure The grinding is performed by the constant cutting method. The fixed abrasive method using this kind of composite grindstone has solved the problems of lapping agent treatment and cleaning in lapping and formation of a damaged layer in diamond grinding.
JP 2002-355763 Z. Liang, Y. Wu, T. Sato and W. Lin, X. Wang and W. Zhao, Two-dimensional Ultrasonically Assisted Grinding of Monocrystal Silicon, Proceedings of LEM21, pp. 535-540, 2009. Toshiro Tohi, Shuhei Kurokawa. The way of CMP technology is coming. Journal of Japan Society for Precision Engineering, 75 (1) pp.76-77, 2009. Zhou Tatsunami, Kawai Shinji, Honda Masayuki, Shimizu Akira, Eda Hiroshi, Yada Kazuaki. Study on Chemo-Mechanical-Grinding (CMG) of Si Wafers: 1st Report: Development of CMG Grinding Wheel, Journal of Japan Society for Precision Engineering, 68 ( 12), pp.1559-1563, 2002.

上述のように、化学・機械複合研削といった方法は、化学作用を援用した固定砥粒法であるため、ラッピングやポリシングと比べ廃液処理が不要となり環境にやさしくコストの低い加工法である。一方、ダイヤモンド研削と比べ加工力が低く抑えられ、光電材料や半導体など機能性硬脆材料のダメージフリー加工が実現される。しかし、砥石の目詰まりと加工面の焼きつきが発生しやすく、材料除去率がまだ低いといった諸問題がある。このように、光電材料や半導体など機能性硬脆材料を高能率でダメージフリーの鏡面に加工するための環境にやさしい加工技術が強く求められている。 As described above, a method such as chemical / mechanical composite grinding is a fixed abrasive method that uses chemical action, and therefore is a processing method that requires no waste liquid treatment and is environmentally friendly and less expensive than lapping and polishing. On the other hand, the processing force is kept low compared to diamond grinding, and damage-free processing of functional hard and brittle materials such as photoelectric materials and semiconductors is realized. However, there are various problems such as clogging of the grindstone and seizure of the processed surface, and the material removal rate is still low. Thus, there is a strong demand for environmentally friendly processing techniques for processing functional hard and brittle materials such as photoelectric materials and semiconductors into highly efficient and damage-free mirror surfaces.

以上の課題解決のために本発明では、2次元超音波援用加工と化学・機械複合研削それぞれの特徴に鑑みて、機能性硬脆材料の高能率ダメージフリー鏡面加工に適したいわゆる2次元超音波援用化学・機械複合加工技術を開発する。 In order to solve the above problems, in the present invention, in view of the characteristics of two-dimensional ultrasonic assisted machining and chemical / mechanical composite grinding, so-called two-dimensional ultrasonic wave suitable for high-efficiency damage-free mirror finishing of functional hard and brittle materials. Develop a combined chemical / mechanical processing technology.

図1に、本発明で提案した新しい加工法の加工原理を示す。横振動4aと縦振動4bが同時に発生し、両者の合成で下端面がXY平面内に2次元超音波微振動4をする加工ヘッド1の下端面にシート状固定砥粒工具2を貼り付ける。この加工工具が工作物材料と化学反応を示す研磨粒子と添加物を含有し、また薄い四角形、円形、リングなどの形状にされている。 FIG. 1 shows the processing principle of the new processing method proposed in the present invention. Lateral vibration 4a and longitudinal vibration 4b are generated at the same time, and by combining them, the sheet-like fixed abrasive tool 2 is attached to the lower end surface of the machining head 1 in which the lower end surface performs two-dimensional ultrasonic fine vibration 4 in the XY plane. This processing tool contains abrasive particles and additives that show a chemical reaction with the workpiece material, and is shaped like a thin square, circle, ring or the like.

いま、この加工工具を2次元超音波微振動(超音波楕円運動4)させながら、工作物3に一定の圧力Pで押しつけるか、一定の切込量apで切り込むことによって干渉させ、また両者間に相対運動を与えると2次元(楕円)超音波援用化学・機械複合加工が行われる。なお、ここでの相対運動は、超音波加工ヘッドの自転運動5、工作物の自転運動6、工作物に対する加工ヘッドのX方向往復運動7とZ方向往復運動9、などの単一運動か複数運動の組合せによって与えられる。 Now, while making this machining tool 2D ultrasonic micro-vibration (ultrasonic elliptical motion 4), press the workpiece 3 with a constant pressure P, or make it interfere by cutting with a constant cutting depth a p. Two-dimensional (elliptical) ultrasonic-assisted chemical / mechanical machining is performed when relative motion is applied between them. Here, the relative motion may be a single motion or a plurality of motions such as an ultrasonic machining head rotation 5, a workpiece rotation 6, an X-direction reciprocation 7 and a Z-direction reciprocation 9 with respect to the workpiece. Given by a combination of movements.

表1に、各加工物材料の化学・機械複合加工に適した研磨粒子の種類を示す。加工ヘッドの形状・寸法は、工作物の形状・寸法や要求加工特性に応じた剛性と超音波楕円振動の振幅・周波数を考慮して適宜に決定する。いま、この加工工具を2次元超音波微振動(超音波楕円運動4)させながら、工作物3に一定の圧力Pで押しつけるか、一定の切込量apで切り込むことによって干渉させ、また両者間に相対運動を与えると2次元(楕円)超音波援用化学・機械複合加工が行われる。
Table 1 shows the types of abrasive particles suitable for chemical / mechanical composite processing of each workpiece material. The shape and dimensions of the machining head are appropriately determined in consideration of the rigidity and the amplitude and frequency of the ultrasonic elliptical vibration according to the shape and dimensions of the workpiece and the required machining characteristics. Now, while making this machining tool 2D ultrasonic micro-vibration (ultrasonic elliptical motion 4), press the workpiece 3 with a constant pressure P, or make it interfere by cutting with a constant cutting depth a p. Two-dimensional (elliptical) ultrasonic-assisted chemical / mechanical machining is performed when relative motion is applied between them.

なお、ここでの相対運動は、以下の1)、2)、3)が考えられる。超音波加工ヘッドの自転運動5、工作物の自転運動6、加工ヘッドのX方向の往復運動7とZ方向往復運動9、などの単一運動か複数運動が考えられる。
1) 平面加工
a. 工作物が自転し、加工ヘッドがX方向に往復運動する。
b. 工作物と加工ヘッドとも自転し、加工ヘッドがX方向に往復運動する。
c. 工作物と加工ヘッドとも自転し、加工ヘッドがXY平面(加工面)内に所定の経路で走査運動する。
d. 加工ヘッドが自転し、工作物がXY平面(加工面)内に所定の経路で走査運動する。
e. 加工ヘッドが自転し、かつXY平面(加工面)内に所定の経路で走査運動する。
f. 複数の加工ヘッドは、円盤状ホルダに一定の偏心量で固定され、円盤の自転に伴い円盤回転軸の周りに公転しながら、工作物が自転する。
2) ウエハエッジ部(円錐面か円筒面)の加工
工作物(ウエハ)が自転し、加工ヘッドはその軸線がエッジ部に垂直になるように傾斜装着され、エッジ面母線に沿って往復運動するかもしくは自転する。
3) 三次元表面の加工
加工ヘッドが三次元形状の工作物表面をなぞって適宜な三次元走査運動をする。このとき、加工ヘッドは自転と非自転の2方式があり、また加工物も自転と非自転の2方式がある。
Here, the following 1), 2) and 3) can be considered as relative motion. A single motion or multiple motions, such as an ultrasonic machining head rotation 5, a workpiece rotation 6, a machining head X-direction reciprocation 7 and a Z-direction reciprocation 9, are conceivable.
1) Planar processing
a. The workpiece rotates and the machining head reciprocates in the X direction.
b. Both the workpiece and the machining head rotate, and the machining head reciprocates in the X direction.
c. Both the workpiece and the machining head rotate, and the machining head scans along a predetermined path in the XY plane (machining surface).
d. The processing head rotates, and the workpiece scans along a predetermined path in the XY plane (processing surface).
e. The processing head rotates and scans along a predetermined path in the XY plane (processing surface).
f. The plurality of machining heads are fixed to the disk-shaped holder with a certain amount of eccentricity, and the workpiece rotates while revolving around the disk rotation axis as the disk rotates.
2) Whether the workpiece (wafer) on the wafer edge (conical surface or cylindrical surface) rotates, and the processing head is mounted with an inclination so that its axis is perpendicular to the edge, and reciprocates along the edge surface generatrix. Or it rotates.
3) Machining of the three-dimensional surface The machining head traces the surface of the three-dimensional workpiece and performs an appropriate three-dimensional scanning motion. At this time, the machining head has two types of rotation and non-rotation, and the workpiece has two types of rotation and non-rotation.

加工工具に2次元超音波微振動を付与することで、加工能率の向上や加工面粗さの減少および加工点温度上昇の抑制など好効果が多い。また化学・機械複合研削といった乾式固定砥粒法であるため、環境にやさしいダメージフリーの鏡面加工となる。本発明によって、シリコンウエハの裏面研削やエッジトリートメだけではなく、サファイアや石英ガラスおよび次世代半導体SiC素子などの機能性光・電子材料性デバイスの加工製作も高能率超精密ダメージフリーで行われる。さらに、超音波工具と加工物の相対運動を適宜に設けることで平面や曲面など多岐の形状も加工可能である。   By applying two-dimensional ultrasonic micro-vibration to the machining tool, there are many positive effects such as improvement of machining efficiency, reduction of machined surface roughness, and suppression of machining point temperature rise. In addition, because it is a dry fixed abrasive method such as chemical / mechanical composite grinding, it is an environmentally friendly damage-free mirror finish. According to the present invention, not only backside grinding and edge treatment of silicon wafers, but also processing and production of functional optical / electronic material devices such as sapphire, quartz glass, and next-generation semiconductor SiC devices can be performed with high efficiency and ultraprecision damage free. Furthermore, various shapes such as a flat surface and a curved surface can be processed by appropriately providing a relative motion between the ultrasonic tool and the workpiece.

2次元超音波援用化学・機械複合加工の概念図Conceptual diagram of 2D ultrasonic assisted chemical / mechanical combined machining 加工ヘッド自転式平面加工の概念図Conceptual diagram of machining head rotation type flat machining 加工ヘッド公転式平面加工の概念図Conceptual diagram of revolving flat surface machining ウエハエッジ部加工の概念図Conceptual diagram of wafer edge processing 3次元自由曲面加工の概念図Conceptual diagram of 3D free-form surface machining 相対運動パターン1)aの実施形態における加工装置の構成概略と加工方法Outline of processing apparatus and processing method in embodiment of relative motion pattern 1) a 超音波加工ヘッドの構造寸法Ultrasonic machining head structure dimensions 加工ヘッドの超音波楕円運動測定例(印加電圧:150V,15.3kHz;振幅単位:μm)Measurement example of ultrasonic elliptical motion of machining head (applied voltage: 150V, 15.3kHz; amplitude unit: μm) 超音波なし時と異なる超音波モード援用時の表面粗さRa[μm]と材料除去量MRR[μm]Surface roughness Ra [μm] and material removal amount MRR [μm] when using ultrasonic modes different from those without ultrasonic waves 超音波援用有無における工作物表面の顕微鏡写真Micrograph of workpiece surface with or without ultrasound assistance

相対運動パターン1)aの実施形態を図1に示す。超音波加工ヘッド1が加工力測定装置11を介してユニットホルダ10に固定され、切込み深さapか圧力Pで工作物3と干渉させたまま、自転運動6をする工作物の表面上にX方向の往復運動7をさせることによって平面加工を行う。この場合、加工ヘッドが自転しない。 An embodiment of the relative motion pattern 1) a is shown in FIG. The ultrasonic machining head 1 is fixed to the unit holder 10 via the machining force measuring device 11 and is placed on the surface of the workpiece which rotates 6 while interfering with the workpiece 3 with the depth of cut a p or pressure P. Plane machining is performed by reciprocating motion 7 in the X direction. In this case, the machining head does not rotate.

相対運動パターン1)b〜eの実施形態を図2に示す。これら実施形態における加工ヘッドの自転運動は、自転型加工ユニット22によって実現される。このユニットは、加工ヘッド1、ヘッドホルダ12、与圧ばね15、ベアリング13、14、支持ボディ16、ブラシ17、 18、スリップリング20, 21、電気モータ19から構成され、切込み深さapか圧力Pで工作物3と干渉させたまま、パターン1)b〜eで相対運動をさせることによって平面加工を行う。この場合、加工ヘッドへの電圧は、電源装置(図示なし)からの電力をスリップリング・ブラシを介して印加することによって供給され、加工ヘッドの自転運動はヘッドホルダ12に連結している電気モータ19によって与えられる。 An embodiment of relative motion patterns 1) b to e is shown in FIG. The rotational motion of the machining head in these embodiments is realized by the rotational machining unit 22. This unit, the machining head 1, the head holder 12, pressurization spring 15, bearing 13 and 14, the support body 16, the brush 17, 18 is composed of a slip ring 20, 21, the electric motor 19, or depth of cut a p Plane machining is performed by causing relative movement with patterns 1) b to e while interfering with the workpiece 3 with the pressure P. In this case, the voltage to the machining head is supplied by applying electric power from a power supply device (not shown) via a slip ring brush, and the rotation motion of the machining head is an electric motor connected to the head holder 12. Given by 19.

図3に相対運動パターン1)fの実施形態を示す。固定砥粒工具2を貼り付けた複数の加工ヘッド1は、加工力装置11およびユニットホルダ10と23を介してロータリホルダ24端面上の半径Rの円週上に均等分布させ、ロータリホルダの回転軸25の自転運動26に伴いロータリホルダ軸周りの公転運動をする。工作物に対する加工ヘッドの相対運動は、これら加工ヘッドの公転運動以外に、工作物の自転6、研磨ヘッドの工作物加工面上の1次元(X方向かZ方向)か2次元(XとY方向同時)運動を加えて得られる。この方式は、大口径ウエハの高効率加工に適している。 FIG. 3 shows an embodiment of the relative motion pattern 1) f. The plurality of processing heads 1 to which the fixed abrasive tool 2 is pasted are distributed evenly over a circle of a radius R on the end surface of the rotary holder 24 through the processing force device 11 and the unit holders 10 and 23, and the rotary holder rotates. Along with the rotation motion 26 of the shaft 25, a revolving motion around the rotary holder shaft is performed. In addition to the revolving motion of these machining heads, the relative movement of the machining head with respect to the workpiece can be either the one-dimensional (X direction or Z direction) or two-dimensional (X and Y directions) of the workpiece rotation on the workpiece machining surface of the grinding head. It can be obtained by adding motion in the same direction). This method is suitable for high-efficiency processing of large-diameter wafers.

図4に、相対運動パターン2)の実施形態を示す。工作物(ウエハ)3が自転6をし、加工ヘッド1はその軸線がウエハ表面と角度θをなしているウエハエッジ部に垂直になるように傾斜装着され、エッジ部母線(X方向)に沿って往復運動7をする。切込み深さapか加工圧力Pで両者を干渉させながら、加工ヘッド端面上の固定砥粒工具2に超音波楕円振動4をさせると、エッジ部の超音波援用化学・機械複合加工が行われる。
図5に、相対運動パターン3)の実施形態を示す。自転型加工ユニット22における加工ヘッドを切込み深さか加圧力で工作物に干渉させたまま、三次元形状の工作物表面3をその接線方向27になぞって走査運動をさせることによって加工を行う。このとき、加工ヘッドは自転と非自転の2方式があり、また加工物も自転と非自転の2方式がある。
FIG. 4 shows an embodiment of the relative motion pattern 2). The workpiece (wafer) 3 rotates 6 and the machining head 1 is mounted with an inclination so that its axis is perpendicular to the wafer edge that forms an angle θ with the wafer surface, along the edge generatrix (X direction). Reciprocate 7 When the ultrasonic elliptical vibration 4 is applied to the fixed abrasive tool 2 on the end face of the processing head while causing the two to interfere with each other with the cutting depth a p or the processing pressure P, ultrasonic-assisted chemical / mechanical machining of the edge portion is performed. .
FIG. 5 shows an embodiment of the relative motion pattern 3). Machining is performed by scanning the three-dimensional workpiece surface 3 in the tangential direction 27 while the machining head in the rotary machining unit 22 interferes with the workpiece by the cutting depth or the applied pressure. At this time, the machining head has two types of rotation and non-rotation, and the workpiece has two types of rotation and non-rotation.

相対運動パターン1)aの実施形態における加工装置の構成概略と加工方法を図6に示す。工具と加工物の干渉は、一定の加工圧力によって与える。
本装置においては、超音波加工ヘッド1はリニアモーションウェー10aと力センサ11aとそのホルダ10bを介してユニットホルダ10上に支持され、その下端面に薄いディスク状固定砥粒工具2(φ6mm×1mm)を貼り付けている。力センサ11aと記録計11bからなる力測定装置11を用いて加工圧力Pを設定する。リニアモーションウェーの上下両端にコイルばね10cを設けて加工ヘッドの弾性支持を実現し、工作物3上下方向の装着誤差による加工中の加工力変動を吸収する。工作物を縦型スピンドルの上端に設置した真空チャック28によって保持され、スピンドルによって回転駆動される。なお、水平方向に直線運動するリニアモーションアクチュエータ29(THK製GL-15、ストローク220mm,速度範囲1-200mm/s,位置決め精度15μm)上にホルダを固定しており、このアクチュエータの作動によって加工ヘッドを工作物表面上に左右往復運動させる。
FIG. 6 shows a schematic configuration of the machining apparatus and a machining method in the embodiment of the relative motion pattern 1) a. The interference between the tool and the workpiece is given by a constant processing pressure.
In this apparatus, the ultrasonic machining head 1 is supported on the unit holder 10 via a linear motion way 10a, a force sensor 11a and its holder 10b, and a thin disk-shaped fixed abrasive tool 2 (φ6mm × 1mm ) Is pasted. A processing pressure P is set using a force measuring device 11 including a force sensor 11a and a recorder 11b. Coil springs 10c are provided at both the upper and lower ends of the linear motion way to realize elastic support of the machining head, and to absorb machining force fluctuations during machining due to workpiece 3 vertical mounting errors. The workpiece is held by a vacuum chuck 28 installed at the upper end of the vertical spindle, and is rotated by the spindle. The holder is fixed on the linear motion actuator 29 (THK GL-15, stroke 220mm, speed range 1-200mm / s, positioning accuracy 15μm) that moves linearly in the horizontal direction. Is moved back and forth on the workpiece surface.

超音波加工ヘッドが4極に分極された圧電素子(PZT)を金属弾性体(SUS304)に貼り付けた構造となっており、その構造寸法を図7に示すようになっている。加工ヘッドの端面に超音波楕円運動を引き起こすために、その縦振動と屈曲振動を同じ周波数で同時に引き起こす必要がある。そこで、この加工ヘッドの縦1次振動数と屈曲4次振動数が同じになるように、有限要素法で各寸法を表2に示すように決定した。図7と表2の構造寸法では、周波数の設計値とインピーダンスアナライザによる実測値がそれぞれ15.773kHzと15.3kHzであった。
The ultrasonic processing head has a structure in which a piezoelectric element (PZT) polarized to four poles is attached to a metal elastic body (SUS304), and the structural dimensions are as shown in FIG. In order to cause the ultrasonic elliptical motion on the end face of the processing head, it is necessary to cause the longitudinal vibration and the bending vibration simultaneously at the same frequency. Therefore, each dimension was determined by the finite element method as shown in Table 2 so that the longitudinal primary frequency and the bending fourth frequency of the machining head were the same. In the structural dimensions shown in FIG. 7 and Table 2, the frequency design values and the impedance analyzer measurement values were 15.773 kHz and 15.3 kHz, respectively.

いま、信号発生器32からの2相の交流信号(位相差φ、周波数は加工ヘッドの縦1次振動数と屈曲4次振動数の近傍にあるもの)をそれぞれ電力増幅器30と31で増幅した後に圧電素子に印加すると、この加工ヘッドは、縦1次振動モードと屈曲4次振動モードが同時に励振され、両者の合成でその端面に超音波楕円運動4が発生する。楕円運動の形状と大きさは、印加電圧の周波数と振幅および位相差によって変化する。図8に、加工ヘッド端面上の楕円運動発生の実測例を示す。実測では、2台のレーザドップラー振動計(小野測器製LV-1610)と1台のベクトル演算器およびデジタルマイクロスコープ(岩通製LT364L)からなる測定システムを用いた。図より明らかなように、位相差によって形状が大きく変わる。   Now, the two-phase AC signal from the signal generator 32 (phase difference φ, frequency is in the vicinity of the longitudinal primary frequency and the bent fourth frequency of the machining head) is amplified by the power amplifiers 30 and 31, respectively. When this is applied to the piezoelectric element later, the longitudinal primary vibration mode and the bending fourth vibration mode are simultaneously excited in the machining head, and an ultrasonic elliptic motion 4 is generated on the end face by combining both. The shape and magnitude of the elliptical motion vary depending on the frequency and amplitude of the applied voltage and the phase difference. FIG. 8 shows an actual measurement example of occurrence of elliptical motion on the processing head end face. In the actual measurement, a measurement system consisting of two laser Doppler vibrometers (LV-1610 made by Ono Sokki), one vector computing unit, and a digital microscope (LT364L made by Iwatatsu) was used. As is apparent from the figure, the shape changes greatly depending on the phase difference.

表3の実験条件で図7の装置を用いて加工テストを行った。加工ヘッドへの印加電圧は、その振幅と周波数をそれぞれ150Vと15.3kHzに固定し、位相差をφ=0°,155°,180°に変えた。図9の測定結果からわかるように、位相差をφ=0°,155°,180°にするときに、固定砥粒工具がそれぞれ横振動(B4)、楕円振動(L1B4)、縦振動(L1)など異なるモードで超音波振動する。固定砥粒工具は、粒度#3000のCeO2砥粒を樹脂結合剤で固めた薄いディスク砥石(φ6mm×1mm)で、常温硬化剤で加工ヘッド下端面上に固定している。研磨作業はいずれの位相差でも2時間で行い、研磨後の工作物表面粗さと表面状態を3Dレーザ顕微鏡(キーエンス製VK-8700)で測定・観察した。また研磨領域の研磨深さをもって位相差(振動モード)が材料除去量に及ぼす影響を調べた。
A machining test was performed using the apparatus shown in FIG. 7 under the experimental conditions shown in Table 3. The amplitude and frequency of the applied voltage to the machining head were fixed at 150 V and 15.3 kHz, respectively, and the phase difference was changed to φ = 0 °, 155 °, and 180 °. As can be seen from the measurement results in Fig. 9, when the phase difference is set to φ = 0 °, 155 °, and 180 °, the fixed abrasive tools have transverse vibration (B4), elliptical vibration (L1B4), and longitudinal vibration (L1). ) Ultrasonic vibration in different modes. The fixed abrasive tool is a thin disc grindstone (φ6mm × 1mm) in which CeO 2 abrasive grains with a particle size of # 3000 are hardened with a resin binder, and is fixed on the lower end surface of the processing head with a normal temperature curing agent. Polishing work was performed in 2 hours at any phase difference, and the surface roughness and surface condition of the workpiece after polishing were measured and observed with a 3D laser microscope (VK-8700 manufactured by Keyence). In addition, the influence of the phase difference (vibration mode) on the material removal amount was investigated with the polishing depth of the polishing region.

図9に、超音波振動なしと異なる振動モードで得られた工作物表面粗さと除去深さを示す。図よりわかるように、表面粗さRaと除去深さMRRが超音波援用なし(WithoutUA)ではそれぞれRa0.016μmとMRR0.737μmであるのに対し、超音波ありではそれRa0.005μm(L1B4モード)、Ra0.011μm(L1モード)、Ra0.007μm(B4モード)、MRR1.381μm(L1B4モード)、MRR1.044μm(L1モード)、MRR1.303μm(B4モード)である。いずれのモードでも超音波援用すれば表面粗さが小さくなり、材料除去量が大きくなる。一方、超音波振動モードについて比較すると、L1B4モード(楕円振動)では表面粗さがRa0.005μmと最も小さく、材料除去量がMRR1.381μmと最も大きいことがわかる。超音波楕円振動(L1B4モード)における表面粗さと材料除去量を超音波なし時のそれらと比較すると、超音波楕円振動を援用することによって、表面粗さが69%程度減少し、材料除去量が87%程度増大したことがわかる。 FIG. 9 shows the workpiece surface roughness and removal depth obtained in vibration modes different from those without ultrasonic vibration. As can be seen from the figure, the surface roughness Ra and removal depth MRR are Ra0.016μm and MRR0.737μm without Ultrasonic Assistance (WithoutUA), respectively, while that with Ultrasonic is Ra0.005μm (L1B4 mode). Ra0.011 μm (L1 mode), Ra0.007 μm (B4 mode), MRR1.381 μm (L1B4 mode), MRR1.044 μm (L1 mode), and MRR1.303 μm (B4 mode). In any mode, if ultrasonic waves are used, the surface roughness decreases and the material removal amount increases. On the other hand, comparing the ultrasonic vibration mode, it can be seen that in the L1B4 mode (elliptical vibration), the surface roughness is the smallest Ra0.005 μm and the material removal amount is the largest MRR1.381 μm. Comparing the surface roughness and material removal amount in ultrasonic elliptical vibration (L1B4 mode) with those without ultrasonic waves, by using ultrasonic elliptical vibration, the surface roughness is reduced by about 69% and the material removal amount is reduced. It can be seen that it has increased by about 87%.

また各振動モードで加工した工作物の表面顕微鏡写真を図10に示す。図よりわかるように、加工面表面欠陥(図中の黒い点)は、超音波なしでは最も多く観察され、縦振動(L1モード)、横振動(B4モード)、楕円振動(L1B4モード)の順に少なくなるが、楕円振動援用による表面は欠陥がほとんど観察されずに最もよい状態となっている。 Fig. 10 shows surface micrographs of the workpiece processed in each vibration mode. As can be seen from the figure, the surface defects (black dots in the figure) are most often observed without ultrasonic waves, and are in the order of longitudinal vibration (L1 mode), transverse vibration (B4 mode), and elliptical vibration (L1B4 mode). However, the surface with the aid of elliptical vibration is in the best state with almost no defects observed.

本発明は、光電材料や半導体など機能性硬脆材料を2次元(楕円)超音波援用化学・機械複合加工によって高能率で無欠陥の鏡面に加工する技術に関するものである。通常のダイヤモンド研削と比べると無欠陥の鏡面加工が容易に実現され、ダメージフリー加工に適しているメカノケミカル加工と比べると材料除去能率が高い。 The present invention relates to a technique for processing a functional hard and brittle material such as a photoelectric material and a semiconductor into a defect-free mirror surface with high efficiency by two-dimensional (elliptical) ultrasonic-assisted chemical / mechanical composite processing. Compared with ordinary diamond grinding, defect-free mirror surface machining is easily realized, and material removal efficiency is higher than mechanochemical machining suitable for damage-free machining.

したがって、加工物材料と化学反応性のある研磨粒子と添加物を含有する固定加工工具を使用すれば、結晶系太陽光発電セル用単・多結晶シリコン(Si)、半導体薄膜太陽光発電パネル用石英ガラス基板、LED照明用サファイア基板、パワーデバイス用SiC、ファインセラミックス製ピストンリング、アルミニウム基板、フェライトコア、ゲルマニウム(Ge)ウエハ、光・マイクロ波デバイス用化合物半導体材料のヒ素ガリウム(GaAs)など機能性非金属硬脆材料製素子の高能率、高精度、環境にやさしい加工製作に大きな役割を果たすことができる。 Therefore, using fixed processing tools containing abrasive particles and additives that are chemically reactive with the workpiece material, single and polycrystalline silicon (Si) for crystalline photovoltaic cells, for semiconductor thin-film photovoltaic panels Functions such as quartz glass substrate, sapphire substrate for LED lighting, SiC for power devices, fine ceramic piston ring, aluminum substrate, ferrite core, germanium (Ge) wafer, gallium arsenide (GaAs), a compound semiconductor material for optical and microwave devices It can play a major role in high-efficiency, high-accuracy, and environment-friendly fabrication of non-metallic hard and brittle materials.

1…2次元(楕円)超音波加工ヘッド
2…固定砥粒工具
3…加工物
4a, 4b,4…超音波横振動, 縦振動, 楕円運動
5…加工ヘッド自転運動
6…工作物自転運動
7…X方向往復運動
8…Y方向送り運動
9…Z方向往復運動
10…ユニットホルダ
10a…リニアモーションウェー
10b…力センサホルダ
10c…弾性支持用コイルばね
11…加工力測定装置
11a…力センサ
11b…記録計
12…自転型加工ヘッド用ホルダ
13, 14…ベアリング
15…加工ヘッド与圧用ばね
16…支持ボディ
17, 18…ブラシ
19…電気モータ
20, 21…スリップリング
22…自転型加工ユニット
23…ユニットホルダ
24…ロータリホルダ
25…ロータリホルダ回転軸
26…ロータリホルダ自転運動
27…自由曲面接線方向
28…ロータリ型真空チャック
29…リニアモーションアクチュエータ
30, 31…電力増幅器
32…信号発生器
1… 2D (elliptical) ultrasonic machining head
2 ... fixed abrasive tools
3 ... Workpiece
4a, 4b, 4… Ultrasonic transverse vibration, longitudinal vibration, elliptical motion
5 ... Machining head rotation
6 Workpiece rotation
7… X-direction reciprocating motion
8… Y direction feed movement
9… Z direction reciprocating motion
10 ... Unit holder
10a… Linear motion way
10b… Force sensor holder
10c ... Coil spring for elastic support
11 ... Processing force measuring device
11a… Force sensor
11b ... Recorder
12 ... Holding holder for rotation type machining head
13, 14… Bearings
15 ... Processing head pressurizing spring
16 ... Support body
17, 18… Brush
19 ... Electric motor
20, 21… Slip ring
22 ... Spindle processing unit
23… Unit holder
24… Rotary holder
25… Rotary holder rotating shaft
26… Rotary holder rotation
27… Free-form surface tangent direction
28 ... Rotary vacuum chuck
29… Linear motion actuator
30, 31… Power amplifier
32 ... Signal generator

Claims (7)

加工工具の2次元超音波微振動がヘッドの加工面に垂直な方向の縦振動と加工面に平行な方向の横振動の同時発生によって引き起こされる加工法において、固定砥粒加工工具を貼り付けた2次元超音波振動加工ヘッドを用いて定圧か定切込加工を行うことを特徴とする加工法。 A fixed abrasive tool was pasted in a machining method in which two-dimensional ultrasonic micro-vibration of a machining tool was caused by simultaneous occurrence of longitudinal vibration in a direction perpendicular to the machining surface of the head and lateral vibration in a direction parallel to the machining surface. A processing method characterized by performing constant pressure or constant cutting using a two-dimensional ultrasonic vibration processing head. 請求項1における加工工具は工作物材料と化学反応を示す砥粒と添加剤およびこれら粒子を固めるための結合剤から構成されるものであって、各構成成分の種類と混合比率は、工作物と化学反応が発生しやすいように決定され、また、薄い円盤形、四角形、リング状などの形状を有する加工工具。 The processing tool according to claim 1 is composed of abrasives and additives that show a chemical reaction with the workpiece material, and a binder for solidifying these particles, and the types and mixing ratios of the components are determined by the workpiece. This is a machining tool that is determined so that a chemical reaction easily occurs and has a thin disk shape, square shape, ring shape, or the like. 一定の圧力を加えるかもしくは一定の切込量を与えるかによって、加工工具と工作物を干渉させて、工作物を自転させながら加工工具を工作物周速に垂直な方向に往復運動をさせることによって加工を行うことを特徴とする超音波援用化学・機械複合加工法。 Depending on whether a certain pressure is applied or a certain depth of cut is applied, the machining tool and the workpiece are caused to interfere with each other and the machining tool is reciprocated in the direction perpendicular to the workpiece circumferential speed while rotating the workpiece. Ultrasonic-assisted chemical / mechanical compound processing method characterized by performing processing by a method. 一定の圧力を加えるかもしくは一定の切込量を与えるかによって、加工工具と工作物を干渉させて、加工工具と工作物とも自転させながら加工工具を工作物周速に垂直な方向に往復運動をさせることによって加工を行うことを特徴とする超音波援用化学・機械複合加工法。 Depending on whether a constant pressure is applied or a constant depth of cut is applied, the machining tool and the workpiece are caused to interfere with each other, and the machining tool and the workpiece rotate while reciprocating in the direction perpendicular to the workpiece circumferential speed. Ultrasonic-assisted chemical / mechanical combined machining method characterized in that machining is performed by causing 一定の圧力を加えるかもしくは一定の切込量を与えるかによって、加工工具と工作物を干渉させて、加工工具を自転させながら工作物加工面上に適宜な二次元走査運動をさせることによって加工を行うことを特徴とする超音波援用化学・機械複合加工法。 Machining by causing the machining tool and the workpiece to interfere with each other depending on whether a certain pressure is applied or a certain depth of cut is applied, and by rotating the machining tool to perform an appropriate two-dimensional scanning motion on the workpiece machining surface. Ultrasonic-assisted chemical / mechanical combined machining method characterized by 一定の圧力を加えるかもしくは一定の切込量を与えることによって加工工具と工作物を干渉させて、円盤状工作物を自転させながら一定の傾斜角を持つ工作物のエッジ部に沿って加工工具を適宜な速度で往復運動させることによってエッジ部加工を行うことを特徴とする超音波援用化学・機械複合加工法。 A machining tool is applied along the edge of a workpiece having a certain inclination angle while rotating the disk-shaped workpiece by causing the machining tool and the workpiece to interfere by applying a certain pressure or giving a certain cutting depth. An ultrasonic-assisted chemical / mechanical combined machining method characterized in that the edge part is machined by reciprocating at a suitable speed. 一定の圧力を加えるかもしくは一定の切込量を与えることによって、加工工具と工作物を干渉させて、加工工具を自転させながら三次元形状の工作物表面上に適宜な三次元走査運動を相対的にさせることによって加工を行うことを特徴とする超音波援用化学・機械複合加工法。 By applying a certain pressure or giving a certain cutting depth, the machining tool and the workpiece are caused to interfere with each other, and an appropriate three-dimensional scanning motion is relatively moved on the surface of the three-dimensional workpiece while rotating the machining tool. Ultrasonic-assisted chemical / mechanical combined processing method characterized by performing processing by making it normal.
JP2010119235A 2010-05-25 2010-05-25 Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device Pending JP2011245574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010119235A JP2011245574A (en) 2010-05-25 2010-05-25 Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010119235A JP2011245574A (en) 2010-05-25 2010-05-25 Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device

Publications (2)

Publication Number Publication Date
JP2011245574A true JP2011245574A (en) 2011-12-08
JP2011245574A5 JP2011245574A5 (en) 2013-11-28

Family

ID=45411466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010119235A Pending JP2011245574A (en) 2010-05-25 2010-05-25 Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device

Country Status (1)

Country Link
JP (1) JP2011245574A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873594A (en) * 2012-09-27 2013-01-16 厦门大学 Height-adjustable inclination type ultrasonic vibration machining device
CN105563271A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Tool wheels used for elastic emission machining
CN107009200A (en) * 2017-05-22 2017-08-04 东北大学 A kind of five axle multi-dimensional ultrasound burnishing devices of high accuracy
KR101812417B1 (en) * 2016-07-19 2017-12-27 에스케이실트론 주식회사 Silicon wafer edge's angle polishing apparatus and its mechanical damage depth measuring method using the same
JP2018194396A (en) * 2017-05-16 2018-12-06 株式会社東芝 Scintillator array, and radiation detector and radiation inspection device each using the same, and method for manufacturing scintillator array
CN113001325A (en) * 2021-03-25 2021-06-22 中国科学院国家天文台南京天文光学技术研究所 Array grinding method based on active pressure modulation
CN114974478A (en) * 2022-06-10 2022-08-30 山东大学 Crystal metal material right-angle micro-cutting modeling method and system considering strain rate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355763A (en) * 2001-03-27 2002-12-10 Tokyo Diamond Kogu Seisakusho:Kk Synthetic grinding wheel
JP2008023693A (en) * 2006-07-25 2008-02-07 Disco Abrasive Syst Ltd Grinding device and grinding wheel
JP2008068327A (en) * 2006-09-12 2008-03-27 Yuha Go Wafer edge polisher and wafer edge polishing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355763A (en) * 2001-03-27 2002-12-10 Tokyo Diamond Kogu Seisakusho:Kk Synthetic grinding wheel
JP2008023693A (en) * 2006-07-25 2008-02-07 Disco Abrasive Syst Ltd Grinding device and grinding wheel
JP2008068327A (en) * 2006-09-12 2008-03-27 Yuha Go Wafer edge polisher and wafer edge polishing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873594A (en) * 2012-09-27 2013-01-16 厦门大学 Height-adjustable inclination type ultrasonic vibration machining device
CN102873594B (en) * 2012-09-27 2014-08-06 厦门大学 Height-adjustable inclination type ultrasonic vibration machining device
CN105563271A (en) * 2015-12-21 2016-05-11 中国科学院长春光学精密机械与物理研究所 Tool wheels used for elastic emission machining
KR101812417B1 (en) * 2016-07-19 2017-12-27 에스케이실트론 주식회사 Silicon wafer edge's angle polishing apparatus and its mechanical damage depth measuring method using the same
JP2018194396A (en) * 2017-05-16 2018-12-06 株式会社東芝 Scintillator array, and radiation detector and radiation inspection device each using the same, and method for manufacturing scintillator array
CN107009200A (en) * 2017-05-22 2017-08-04 东北大学 A kind of five axle multi-dimensional ultrasound burnishing devices of high accuracy
CN113001325A (en) * 2021-03-25 2021-06-22 中国科学院国家天文台南京天文光学技术研究所 Array grinding method based on active pressure modulation
CN114974478A (en) * 2022-06-10 2022-08-30 山东大学 Crystal metal material right-angle micro-cutting modeling method and system considering strain rate
CN114974478B (en) * 2022-06-10 2024-05-31 山东大学 Crystal metal material right angle micro-cutting modeling method and system considering strain rate

Similar Documents

Publication Publication Date Title
JP2011245574A (en) Two-dimensional (oval) ultrasonic-assisted chemical mechanical composite machining method and device
Liang et al. Experimental study on brittle–ductile transition in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain
JP5843155B2 (en) Polishing brush
CN100577355C (en) Precision machining method
CN1650404A (en) Semiconductor wafer manufacturing method and wafer
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
JP2011183510A (en) Ultrasonic-vibration-assisted grinding method and device therefor
JP3052201B2 (en) Precision plane processing machine
CN205111466U (en) End -face grinding mill is assisted to jumbo size axial supersound
Li et al. Chemo-mechanical manufacturing of fused silica by combining ultrasonic vibration with fixed-abrasive pellets
JP2007245325A (en) Ultrasonic grinding device and grindstone for use therein
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
JP6804209B2 (en) Chamfering device and chamfering method
JP7035153B2 (en) Chamfering device and chamfering method
CN105150033A (en) Large-size axial ultrasound-assisted end face grinding abrasive disk
CN105150034B (en) Grinding head capable of achieving end face ultrasound-assisted grinding and polishing
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
JP2017170541A (en) Chamfering device and chamfering method
JP2001328065A (en) Precision machining device
Wu et al. A new centerless grinding technique without employing a regulating wheel
JP2001007064A (en) Grinding method of semiconductor wafer
JP2008055589A (en) Grinding wheel used for polishing machine
CN105729250A (en) Self-adjustment magnetorheological flexible polishing abrasive wheel and polishing method thereof
Liang et al. Two-dimensional ultrasonically assisted grinding of monocrystal silicon
Wu et al. A fundamental investigation on ultrasonic assisted fixed abrasive CMP (UF-CMP) of silicon wafer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610