JP2011243739A - Stress application device and manufacturing method for mounted substrate using the same - Google Patents

Stress application device and manufacturing method for mounted substrate using the same Download PDF

Info

Publication number
JP2011243739A
JP2011243739A JP2010114390A JP2010114390A JP2011243739A JP 2011243739 A JP2011243739 A JP 2011243739A JP 2010114390 A JP2010114390 A JP 2010114390A JP 2010114390 A JP2010114390 A JP 2010114390A JP 2011243739 A JP2011243739 A JP 2011243739A
Authority
JP
Japan
Prior art keywords
temperature
substrate
mounting
temperature bath
mounting board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114390A
Other languages
Japanese (ja)
Other versions
JP5562719B2 (en
Inventor
Seigo Ishioka
石岡聖悟
Yukio Kanaishi
金石幸男
Satoshi Harada
原田聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tazmo Co Ltd
Original Assignee
Tazmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tazmo Co Ltd filed Critical Tazmo Co Ltd
Priority to JP2010114390A priority Critical patent/JP5562719B2/en
Publication of JP2011243739A publication Critical patent/JP2011243739A/en
Application granted granted Critical
Publication of JP5562719B2 publication Critical patent/JP5562719B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain higher reliability of manufactured mounted substrates against stress due to temperature changes at the time of inline inspection than in a conventional way.SOLUTION: The stress application device includes: a substrate transfer mechanism 16, a high temperature bath 20 and a low temperature bath 21. By alternately charging the high temperature bath 20 and the low temperature bath 21 and applying a temperature cycle in a use temperature range of an electronic component to a mounted substrate w, a distortion difference between a printed circuit board and the electronic component in the mounted substrate w is increased and subsequently, the quality of a solder joint portion of the mounted substrate w is inspected.

Description

本発明は、熱ストレス付与装置、及びプリント基板と電子部品との接続を検査する実装基板の製造方法に関する。 The present invention relates to a thermal stress applying apparatus and a mounting board manufacturing method for inspecting a connection between a printed board and an electronic component.

電子機器の小型化や高性能化に伴い、電子機器に用いられる半導体パッケージやその実装形態が多様化してきている。半導体パッケージには、DIP(Dual In−line Package)に加えて、QFP(Quad Flat Package)やSOP(Small Outline Package)などが存在している。これらのパッケージは入出力端子にリードピンを用いたPGA(Pin Grid Array)パッケージに属するものである。また、入出力端子にボール状の半田バンプを用いて入出力端子の多数化を実現したBGA(Ball Grid Array)パッケージ(単にBGAと呼ぶ。)やCSP(Cip Scale Package)が開発され、広く使用されるようになっている。 Along with the downsizing and higher performance of electronic devices, semiconductor packages used in electronic devices and their mounting forms have been diversified. In addition to DIP (Dual In-line Package), semiconductor packages include QFP (Quad Flat Package), SOP (Small Outline Package), and the like. These packages belong to the PGA (Pin Grid Array) package using lead pins as input / output terminals. Also, BGA (Ball Grid Array) package (simply referred to as BGA) and CSP (Cip Scale Package), which have realized a large number of input / output terminals by using ball-shaped solder bumps for input / output terminals, are widely used. It has come to be.

半導体パッケージのプリント基板への実装は、DIPでは、パッケージの両サイドにあるリードピンをプリント基板の貫通孔(スルホール)に挿入し、スルホールの間隙に半田を充填し、リードピンをプリント基板に接続させるようにしている。QFPやSOPでは、スルホールの代わりにプリント基板上に接続電極(パッド)を形成し、このパッドにパッケージの4辺にあるリードを接続させるようにする表面実装が行われている。そしてBGAでは、リードピンを介さずに半導体パッケージの片面に均等に配置されたボール状の半田バンプでプリント基板上に直接に接合させるようにしている。 For mounting a semiconductor package on a printed circuit board, in DIP, lead pins on both sides of the package are inserted into through holes (through holes) of the printed circuit board, solder is filled in the through holes, and the lead pins are connected to the printed circuit board. I have to. In QFP and SOP, surface mounting is performed in which connection electrodes (pads) are formed on a printed board instead of through holes, and leads on the four sides of the package are connected to the pads. In the BGA, the ball-shaped solder bumps arranged evenly on one side of the semiconductor package are directly joined to the printed circuit board without using a lead pin.

このようにDIP、QFP、SOP、BGA、CSP又はその他の電子部品などを実装された実装基板は自動化された実装基板製造ラインにより製造されている。この実装基板製造ラインにおいては、ロウ付けの完了した実装基板の中への不良品の混入を阻止することが必要である。これに対処するため、プリント基板への電子部品の半田付けが終了した段階で、全ての実装基板について或いは抜き取り的に一部の実装基板についてインサーキット検査を行い、不良品と判断された実装基板を選り出して完成品に含まれないようにすることが行われている(特許文献1参照)。 A mounting board on which DIP, QFP, SOP, BGA, CSP, or other electronic components are mounted in this way is manufactured by an automated mounting board manufacturing line. In this mounting board manufacturing line, it is necessary to prevent a defective product from being mixed into a mounting board that has been brazed. In order to cope with this, when the soldering of the electronic component to the printed circuit board is completed, the in-circuit inspection is performed on all the mounting boards or on a part of the mounting boards, and the mounting board is determined to be defective. Is selected so that it is not included in the finished product (see Patent Document 1).

特開平11-6864号公報Japanese Patent Laid-Open No. 11-6864

半導体パッケージと基板との間の接続に欠陥があると、両者の熱膨張差に起因するストレスにより、予定の耐用年数よりも短い期間で、半田接合箇所が破壊される。 If there is a defect in the connection between the semiconductor package and the substrate, the solder joint location is destroyed in a period shorter than the expected service life due to stress caused by the difference in thermal expansion between the two.

半田接合箇所に欠陥があっても、導通がありさえすれば、電子部品を半田付けされた後のインサーキット検査やファンクション検査などで良好と確認されてしまう。 Even if there is a defect in the soldered portion, if there is electrical continuity, it will be confirmed as good by an in-circuit inspection or a function inspection after the electronic component is soldered.

サンプル品について熱によるストレスを多数回、繰り返して付与して疲労を加速させて、実装基板が破壊されるまでの期間を求めて耐用年数の確認を行うエイジング処理が知られているが、製品全数を対象とすることはできない。 An aging process is known in which the sample product is repeatedly applied with heat many times to accelerate fatigue, and the lifetime until the mounting board is destroyed is determined. Cannot be targeted.

本発明は、このような問題点に対処するため、製造された全ての実装基板について製造ライン中において温度変化によるストレスに対する信頼性を検査(インライン検査)をすることを目的とする。 In order to cope with such a problem, an object of the present invention is to inspect (in-line) reliability of all manufactured mounting boards against stress due to temperature change in a manufacturing line.

上記課題を解決するため、本発明のストレス付与装置は、半導体パッケージが実装された平面状の実装基板を水平姿勢と鉛直姿勢との間で姿勢変更し、鉛直面に沿った方向へ移動させる基板搬送機構と、前記基板搬送機構が実装基板を垂直面に沿って移動させる範囲に設置され、大気温度よりも高い温度に維持される高温槽と、前記基板搬送機構が実装基板を垂直面に沿って移動させる範囲に設置され、大気温度よりも低い温度に維持される低温槽とを備え、水平に移動された実装基板を鉛直姿勢に変更し、前記高温槽と低温槽との間において前記実装基板を繰り返し移動させ、その後水平姿勢に復帰させて送り出する制御回路を有することを特徴とする。 In order to solve the above problems, a stress applying apparatus according to the present invention is a substrate that changes a posture of a planar mounting substrate on which a semiconductor package is mounted between a horizontal posture and a vertical posture, and moves in a direction along the vertical surface. A transport mechanism, a high-temperature bath that is installed in a range in which the substrate transport mechanism moves the mounting substrate along a vertical plane and is maintained at a temperature higher than the atmospheric temperature, and the substrate transport mechanism moves the mounting substrate along the vertical surface. A low temperature bath that is installed in a range to be moved and maintained at a temperature lower than the atmospheric temperature, and the mounting substrate moved horizontally is changed to a vertical posture, and the mounting is performed between the high temperature bath and the low temperature bath. It is characterized by having a control circuit that repeatedly moves the substrate, then returns to the horizontal posture and sends it out.

また、本発明の実装基板の製造方法は、半導体パッケージが実装された平面状の実装基板を鉛直姿勢に変更し、鉛直面に沿った方向へ移動させ、前記鉛直面に沿った方向に設けられた大気温度よりも前記高温槽と低温槽との間において前記実装基板を繰り返し移動させ、前記高温槽と低温槽とを離脱した位置で水平姿勢に復帰させ、前記実装基板の半田接合部の良否を検査することを特徴とする。
The mounting board manufacturing method of the present invention is provided in a direction along the vertical plane by changing the planar mounting board on which the semiconductor package is mounted to a vertical posture and moving it in a direction along the vertical plane. The mounting substrate is repeatedly moved between the high-temperature bath and the low-temperature bath above the atmospheric temperature, and returned to a horizontal posture at a position where the high-temperature bath and the low-temperature bath are separated from each other. It is characterized by inspecting.

本願発明によれば、電子部品の使用温度範囲内の温度サイクルを付与することにより、半田接合箇所に欠陥を持つ実装基板を破壊して、製造ラインから弾き出すことにより、製品の信頼性を高めることができる。 According to the present invention, by giving a temperature cycle within the operating temperature range of the electronic component, the mounting substrate having a defect at the solder joint location is destroyed and ejected from the production line, thereby improving the reliability of the product. Can do.

本実施例に係るストレス付与装置の組み込まれた実装基板製造ラインを示す平面図である。It is a top view which shows the mounting board manufacturing line in which the stress provision apparatus which concerns on a present Example was integrated. 本実施例に係るストレス付与装置を示す斜視図である。It is a perspective view which shows the stress provision apparatus which concerns on a present Example. ストレス付与装置のローダー部の周辺を示す斜視図である。It is a perspective view which shows the periphery of the loader part of a stress provision apparatus. ストレス付与装置の温度サイクル付与部の周辺を示す斜視図である。It is a perspective view which shows the periphery of the temperature cycle provision part of a stress provision apparatus. ストレス付与装置の温度サイクル付与部を示し、Aは前方から見た要部を示す図で、BはAのx1−x1部を示す図である。The temperature cycle provision part of a stress provision apparatus is shown, A is a figure which shows the principal part seen from the front, B is a figure which shows x1-x1 part of A. ストレス付与装置の案ローダー部の周辺を示す斜視図である。It is a perspective view which shows the periphery of the plan loader part of a stress provision apparatus. 実装基板の平面図である。It is a top view of a mounting substrate. 実装基板の温度や歪量の変化を示す図である。It is a figure which shows the change of the temperature and distortion amount of a mounting substrate. 実装基板の温度や歪差の変化を示す図である。It is a figure which shows the change of the temperature of a mounting board | substrate, and a distortion difference. 半導体パッケージの端子の電気特性を示す図である。It is a figure which shows the electrical property of the terminal of a semiconductor package.

以下、図面を参照して本発明の実施例を説明する。
<本発明の実施例である実装基板製造ラインの全体説明>
本実施例に係る実装基板用のストレス付与装置は、実装基板製造ラインに対しインラインで使用するのが好ましい。
図1において、ストレス付与装置100は、実装基板製造ライン部分101と実装基板製造ライン部分102との間に挟まれて設置されている。
Embodiments of the present invention will be described below with reference to the drawings.
<Overall Description of Mounting Board Manufacturing Line which is an Example of the Present Invention>
The stress applying device for a mounting board according to the present embodiment is preferably used in-line with respect to the mounting board manufacturing line.
In FIG. 1, the stress applying device 100 is sandwiched and installed between a mounting substrate manufacturing line portion 101 and a mounting substrate manufacturing line portion 102.

先ず実装基板製造ライン部分101は、水平姿勢のプリント基板を矢印a1で示すように前側から後側へ向けて自動的に搬送する搬送装置1を備え、この搬送装置1の搬送途中に前側から印刷処理部2、ボンド塗布部3、電子部品搭載部4、及びリフロー部5が設けられている。 First, the mounting board manufacturing line portion 101 includes a transport device 1 that automatically transports a horizontal printed circuit board from the front side to the rear side as indicated by an arrow a1, and printing is performed from the front side during the transport of the transport device 1. A processing unit 2, a bond application unit 3, an electronic component mounting unit 4, and a reflow unit 5 are provided.

ストレス付与装置100は、ローダー部13、温度サイクル付与部14及びアンローダ部15を備え、これら各部間に渡る基板搬送機構部16を備えている。 The stress applying apparatus 100 includes a loader unit 13, a temperature cycle applying unit 14, and an unloader unit 15, and includes a substrate transport mechanism unit 16 that extends between these units.

後側の実装基板製造ライン部分102は、水平姿勢の実装基板を矢印a1で示すように前側から後側へ向けて搬送する搬送装置9を備え、この搬送途中に検査部10及び製品取出し部12が設けられている。 The rear mounting board manufacturing line portion 102 includes a transport device 9 that transports a horizontal mounting board from the front side to the rear side as indicated by an arrow a1, and the inspection unit 10 and the product take-out unit 12 are in the middle of the transport. Is provided.

検査部10は、搬送装置9でこれの検査位置に搬送された実装基板上のデバイスの入力端子にテスト信号を直接に印加し、その結果を直接に実装基板上のデバイスの出力端子から検出し、半田付け不良などを発見し、不良の実装基板を選り出して排除する。 The inspection unit 10 directly applies a test signal to the input terminal of the device on the mounting board that has been transported to the inspection position by the transport device 9, and detects the result directly from the output terminal of the device on the mounting board. , Find soldering defects, etc., select defective mounting boards and eliminate them.

図2にストレス付与装置100を示す。ローダー部13においては、基板搬送機構部16の一部である第一搬送機構16aが配置されている。第一搬送機構16aは、実装基板製造ライン101から水平姿勢の実装基板wを搬送始端b1に受け取り、そのままの姿勢を維持させて自身の搬送終端b2に移動させる。 FIG. 2 shows the stress applying device 100. In the loader unit 13, a first transport mechanism 16 a that is a part of the substrate transport mechanism unit 16 is disposed. The first transport mechanism 16a receives the horizontal mounting substrate w from the mounting substrate manufacturing line 101 at the transport start end b1, maintains the same posture, and moves it to its transport end b2.

第一搬送機構16aは、図3に示すように、左右一対の前後向き案内レール17a、17bと、この案内レール17a、17bに案内されて前後方向a1へ移動される第一基板保持部18a、18bと、この基板保持部18a、18bに搬送力を付与する駆動部19とを備えている。 As shown in FIG. 3, the first transport mechanism 16a includes a pair of left and right guide rails 17a and 17b, and a first substrate holding portion 18a that is guided by the guide rails 17a and 17b and moves in the front and rear direction a1, 18b, and a drive unit 19 that applies conveyance force to the substrate holding units 18a and 18b.

第一搬送機構16aは、実装基板製造ライン101の搬送終端に達した実装基板wを、搬送始端b1において基板保持部18a、18bにより受け取る。続いて、駆動部19が作動して基板保持部18a、18bを第一搬送機構16aの搬送終端b2まで移動させる。基板保持部18a、18bは第一搬送機構16aの搬送始端b1まで復帰する。 The first transport mechanism 16a receives the mounting substrate w that has reached the transport end of the mounting substrate manufacturing line 101 by the substrate holders 18a and 18b at the transport start end b1. Subsequently, the drive unit 19 operates to move the substrate holding units 18a and 18b to the conveyance end b2 of the first conveyance mechanism 16a. The substrate holders 18a and 18b return to the conveyance start end b1 of the first conveyance mechanism 16a.

温度サイクル付与部14は、基板搬送機構部16の一部である第二搬送機構16bと、基板搬送機構部16の他の一部である第三搬送機構16cと、基板搬送機構部16のさらに他の一部である第四搬送機構16dと、箱体状に形成され内方空間が大気温度よりも高い温度に維持される高温槽20と、箱体状に形成され内方空間が大気温度よりも低い温度に維持される低温槽21とを備えている。   The temperature cycle applying unit 14 includes a second transport mechanism 16 b that is a part of the substrate transport mechanism unit 16, a third transport mechanism 16 c that is another part of the substrate transport mechanism unit 16, and a substrate transport mechanism unit 16. The fourth transport mechanism 16d, which is another part, the high-temperature tank 20 that is formed in a box shape and the inner space is maintained at a temperature higher than the atmospheric temperature, and the inner space that is formed in a box shape and the atmospheric temperature is And a low-temperature tank 21 maintained at a lower temperature.

第二搬送機構16bは第一搬送機構16aの搬送終端b2に到達した実装基板wを受け取り、鉛直姿勢(左右方向a2と垂直方向a3の為す面)に変更させて、第三搬送機構16cに送り込む。第二搬送機構16bは、図3に示すように、回動軸22と駆動部23と左右一対の支持アーム部材24a、24bとチャッキング部材25a、25bとを備えている。回動軸22は支持フレーム26を介して回動可能に支持されており、駆動部23はこの回動軸22を回動させる。支持アーム部材24a、24bは、回動軸22の左右に離れて固定され前方へ水平状に延出しており、左右端縁部の下面を支持する。チャッキング部材25a、25bは、支持アーム部材24a、24bを把持する。回動軸22が駆動部23により90度上方へ回動されることにより、支持アーム部材24a、24b上の実装基板wが水平姿勢から鉛直姿勢に変化し、第二搬送機構16bの搬送終端b3に到達する。 The second transport mechanism 16b receives the mounting substrate w that has reached the transport end b2 of the first transport mechanism 16a, changes the vertical board (the surface formed by the left-right direction a2 and the vertical direction a3), and sends it to the third transport mechanism 16c. . As shown in FIG. 3, the second transport mechanism 16b includes a rotating shaft 22, a drive unit 23, a pair of left and right support arm members 24a and 24b, and chucking members 25a and 25b. The rotation shaft 22 is rotatably supported via a support frame 26, and the drive unit 23 rotates the rotation shaft 22. The support arm members 24a and 24b are fixed to the left and right of the rotation shaft 22 and extend horizontally forward, and support the lower surfaces of the left and right end edges. The chucking members 25a and 25b grip the support arm members 24a and 24b. When the rotation shaft 22 is rotated 90 degrees upward by the drive unit 23, the mounting substrate w on the support arm members 24a and 24b is changed from the horizontal posture to the vertical posture, and the conveyance end b3 of the second conveyance mechanism 16b. To reach.

図4及び図5において、第三送り機構16cは、第二送り機構16bの搬送した実装基板wを鉛直姿勢状態で受け取り、鉛直面に沿って移動させ、最終的にアンローダー部15への送り渡し位置に移動させる。この第三送り機構16cは、上下送り力付与部27と上下案内軌道部28と基板掴み部29とで構成される。上下送り力付与部27は、支持フレーム26の左右各側に複数の案内輪30とリール31とを装設され、左右各側で別々にこれら案内輪30及びリール31に送りワイヤ32が掛け回されて、駆動部33がリール31を回転させている。上下案内軌道部28は、左右各側のワイヤ32、32の送り要部32aを前後から挟むように案内軌道板28a、28bを支持フレーム26に対状に固定している。 4 and 5, the third feeding mechanism 16 c receives the mounting board w conveyed by the second feeding mechanism 16 b in a vertical posture, moves it along the vertical plane, and finally feeds it to the unloader unit 15. Move to the delivery position. The third feed mechanism 16 c includes a vertical feed force applying portion 27, a vertical guide track portion 28, and a substrate gripping portion 29. The vertical feed force imparting portion 27 is provided with a plurality of guide wheels 30 and reels 31 on the left and right sides of the support frame 26, and feed wires 32 are wound around the guide wheels 30 and the reels 31 separately on the left and right sides. Thus, the drive unit 33 rotates the reel 31. In the vertical guide track portion 28, the guide track plates 28a and 28b are fixed to the support frame 26 in a pair so as to sandwich the feed main portions 32a of the wires 32 and 32 on the left and right sides.

基板掴み部29は、左右一対の掴み体29a、29bと左右一対の規制部材34a、34bとからなっている。各掴み体29a、29bはその対応する左右一側の対状の案内軌道板28a、28bの間箇所に位置された摺動体35a、35bを備えている。この摺動体35a、35bは、ワイヤ32に止着され、これの対応する対状の案内軌道板28a、28bを介して垂直方向へ案内される。また各摺動体35a、35bは対向面部に流体圧又は電動モーターなどの駆動力で方向a2へ変位される押圧部材36a、36bを具備しており、該押圧部材36a、36bは支持フレーム幅中央側の垂直面に上下向きの基板用案内溝c1を形成されている。各規制部材34a、34bはその対応する側の摺動体35a又は35bの下部に固定され実装基板wの下端縁を支持する。 The substrate gripping portion 29 is composed of a pair of left and right grip bodies 29a and 29b and a pair of left and right regulating members 34a and 34b. Each gripping body 29a, 29b is provided with a sliding body 35a, 35b positioned at a position between the corresponding pair of guide track plates 28a, 28b on the left and right sides. The sliding bodies 35a and 35b are fixed to the wire 32 and guided in the vertical direction via the corresponding pair of guide track plates 28a and 28b. Each sliding body 35a, 35b is provided with pressing members 36a, 36b which are displaced in the direction a2 by a driving force such as fluid pressure or an electric motor on the opposing surface portion, and the pressing members 36a, 36b are on the center side of the support frame width. A vertical guide groove c1 is formed on the vertical plane. Each regulating member 34a, 34b is fixed to the lower part of the corresponding sliding body 35a or 35b and supports the lower end edge of the mounting board w.

第三搬送機構16cの搬送始端b4に位置された基盤掴み部29は、実装基板wが第二搬送機構16bに搬送されてこれの搬送終端b3に達した後で、しかも未だチャッキング部25a、25bによる把持が解放されていない時点で、左右の押圧部材35a、35bを互いに近接する側へ移動させる。左右の押圧部材35a、35bの基板用案内溝c1は、第二搬送機構16bの搬送終端b3に位置した実装基板wの左右側縁に遊隙の存在する状態で外嵌している。左右の押圧部材35a、35bの外嵌動作が行われると、第二搬送機構16bのチャッキング部材25a、25bは把持している実装基板wを解放する。第二搬送機構16bから解放された実装基板wは、左右の規制部材34a、34bに受け止められて垂直姿勢のまま停止される。この後、左右の押圧部材34a、34bが互いに近接する側へ変位されて、この実装基板wの左右側縁を押圧して挟み付ける。これにより、実装基板wは基板掴み部29に固定状に掴まれた状態となる。 The base gripping portion 29 located at the transport start end b4 of the third transport mechanism 16c is still in the chucking portion 25a, after the mounting board w is transported to the second transport mechanism 16b and reaches its transport end b3. When the gripping by 25b is not released, the left and right pressing members 35a and 35b are moved to the sides close to each other. The board guide grooves c1 of the left and right pressing members 35a and 35b are externally fitted in a state where there is a space on the left and right side edges of the mounting board w located at the conveyance end b3 of the second conveyance mechanism 16b. When the fitting operation of the left and right pressing members 35a and 35b is performed, the chucking members 25a and 25b of the second transport mechanism 16b release the gripped mounting board w. The mounting board w released from the second transport mechanism 16b is received by the left and right regulating members 34a and 34b and stopped in a vertical posture. Thereafter, the left and right pressing members 34a and 34b are displaced to the sides close to each other, and the left and right edges of the mounting board w are pressed and sandwiched. As a result, the mounting substrate w is held in a fixed manner by the substrate gripping portion 29.

続いて駆動部33が作動されて、リール31が回転されワイヤ32が動作されることにより、基板掴み部29及びこれに固定状に掴まれた実装基板wが上下方向へ移動される。この移動中は、左右の摺動体35a、35bが対状の案内軌道板28a、28bに案内される。先ず搬送始端b4から最上位置へ向けて移動され、次に最下位置へ向けて移動され、次に搬送終端b5へ向けて上方へ移動される。本実施例では搬送始端b4と搬送終端b5とは同一位置としている。 Subsequently, the drive unit 33 is operated, the reel 31 is rotated, and the wire 32 is operated, whereby the board gripping part 29 and the mounting board w gripped in a fixed manner are moved in the vertical direction. During this movement, the left and right sliding bodies 35a and 35b are guided by the pair of guide track plates 28a and 28b. First, it is moved from the conveyance start end b4 toward the uppermost position, then moved toward the lowermost position, and then moved upward toward the conveyance end b5. In this embodiment, the conveyance start end b4 and the conveyance end b5 are at the same position.

第三搬送機構16cは、終端b3に到達した実装基板wを受け取り、水平姿勢に変更させる。この動作は、先に説明した動作と逆の動作である。これら、第一搬送機構16a、第二搬送機構16b、第三搬送機構16cの一連の動作は、制御装置40により制御されている。 The third transport mechanism 16c receives the mounting board w that has reached the terminal end b3 and changes the mounting board w to a horizontal posture. This operation is the reverse of the operation described above. A series of operations of the first transport mechanism 16a, the second transport mechanism 16b, and the third transport mechanism 16c are controlled by the control device 40.

図4において、高温槽20は、基板掴み部29及びこれに保持された実装基板wの全体を収容し得る大きさの直方体状の箱体20aで主要部を形成され、この箱体20aの内側空間の温度を制御するための温度制御装置20bを備えている。箱体20aは第三搬送機構16cの搬送範囲の最上部に設置されている。箱体20aの下面の囲壁には基板掴み部29及びこれに保持された実装基板wを通過させる出入り口20cや、ワイヤ32及び左右各側の対状の案内軌道板28a、28bを挿通させるための透孔が形成されている。この透孔はワイヤ32や案内軌道板28a、28bとの隙間を可及的に少なくするため適宜な介在物(例えば撓曲可能なゴムや合成樹脂材など)を設けるのが好ましい。出入り口20cは基板掴み部29及びこれに保持された実装基板wが通過するときのみその扉部20dが開放される。温度制御装置20bは箱体20aの内方空間を例えば80℃以下に保持している。 In FIG. 4, a high temperature bath 20 is formed of a main part of a rectangular parallelepiped box body 20a having a size capable of accommodating the entire board gripping portion 29 and the mounting substrate w held by the substrate holding section 29, and the inside of the box body 20a. A temperature control device 20b for controlling the temperature of the space is provided. The box 20a is installed at the top of the transport range of the third transport mechanism 16c. An entrance / exit 20c through which the board gripping portion 29 and the mounting board w held thereon are passed, and the wire 32 and paired guide track plates 28a and 28b on the left and right sides are inserted into the surrounding wall of the lower surface of the box 20a. A through hole is formed. This through hole is preferably provided with appropriate inclusions (for example, bendable rubber or synthetic resin material) in order to minimize the gap between the wire 32 and the guide track plates 28a and 28b. The door 20d is opened only when the substrate gripping portion 29 and the mounting substrate w held by the entrance / exit 20c pass therethrough. The temperature control device 20b keeps the inner space of the box 20a at, for example, 80 ° C. or less.

低温槽21は、基板掴み部29及びこれに保持された実装基板wの全体を収容し得る大きさの直方体状の箱体21aで主要部を形成され、この箱体21aの内方空間の温度を制御するための温度制御装置21bとを備えている。箱体21aは第三搬送機構16cの搬送範囲の最下部に位置されている。箱体21aの上面の囲壁には基板掴み部29及びこれに保持された実装基板wを通過させる出入り口21cや、ワイヤ32及び左右各側の対状の案内軌道板28a、28bを挿通させるための透孔が形成されている。この透孔はワイヤ32や案内軌道板28a、28bとの隙間を可及的に少なくするため適宜な介在物(例えば撓曲可能なゴムや合成樹脂材など)を設けるのが好ましい。出入り口20cは基板掴み部29及びこれに保持された実装基板wが通過するときのみその扉部21dが開放される。温度制御装置21bは箱体21aの内方空間を例えば−20℃以下に保持されている。 The cryostat 21 has a main part formed of a rectangular parallelepiped box 21a having a size capable of accommodating the substrate gripping portion 29 and the entire mounting substrate w held by the substrate gripping portion 29, and the temperature of the inner space of the box 21a. And a temperature control device 21b for controlling. The box 21a is located at the lowermost part of the transport range of the third transport mechanism 16c. An entrance / exit 21c for allowing the substrate gripping portion 29 and the mounting substrate w held thereon to pass therethrough, and the wire 32 and the paired guide track plates 28a and 28b on the left and right sides are inserted into the surrounding wall of the upper surface of the box 21a. A through hole is formed. This through hole is preferably provided with appropriate inclusions (for example, bendable rubber or synthetic resin material) in order to minimize the gap between the wire 32 and the guide track plates 28a and 28b. The door 20d is opened only when the substrate gripping portion 29 and the mounting substrate w held by the entrance / exit 20c pass therethrough. The temperature control device 21b holds the inner space of the box 21a at, for example, −20 ° C. or lower.

常温となる位置(終端b3)を挟んで、高温槽20と低温槽21を上下に配置したため、高温槽20と低温槽21との熱が互いに混ざり合わず、かつ実装基板wの投入方向が互いの熱の逃げる方向の逆方向であるので熱流出を抑制できる。また、実装基板wは、鉛直姿勢となって高温槽20または低温槽21に投入されるため、高温槽20と低温槽21の出入り口20c、21cの開口を狭くすることができる。また、高温槽20と低温槽21の設定温度は、半導体パッケージの使用温度範囲内である。 Since the high-temperature tank 20 and the low-temperature tank 21 are arranged above and below across the position (terminal b3) at room temperature, the heat in the high-temperature tank 20 and the low-temperature tank 21 does not mix with each other, and the mounting direction of the mounting substrate w is mutually Since this is the direction opposite to the direction of heat escape, heat outflow can be suppressed. Moreover, since the mounting board | substrate w becomes a vertical attitude | position and is thrown into the high temperature tank 20 or the low temperature tank 21, the opening of the entrance / exit 20c, 21c of the high temperature tank 20 and the low temperature tank 21 can be made narrow. Moreover, the set temperature of the high temperature tank 20 and the low temperature tank 21 is within the operating temperature range of the semiconductor package.

図6において、アンローダー部15は、実装基板wを受け取って基板解放位置b7に移動させ、ここにストックさせるものである。このアンローダー部15は、基板搬送機構部16の一部である第四搬送機構16eとストッカー部41とで構成される。第四搬送機構16eは、左右一対の前後向きコンベア42a、42bと、駆動部44とを備えている。ストッカー部41は第四搬送機構16eが搬送した実装基板wを支持するように上下作動する昇降台45を備えている。 In FIG. 6, the unloader unit 15 receives the mounting board w, moves it to the board release position b7, and stocks it here. The unloader unit 15 includes a fourth transport mechanism 16 e that is a part of the substrate transport mechanism unit 16 and a stocker unit 41. The fourth transport mechanism 16e includes a pair of left and right front and rear conveyors 42a and 42b and a drive unit 44. The stocker unit 41 includes a lifting platform 45 that moves up and down so as to support the mounting substrate w transported by the fourth transport mechanism 16e.

コンベア42a、42bが水平姿勢の実装基板wを受け取ると、駆動部44が作動して実装基板wを基板解放位置b7まで移動させ、ここで実装基板wを解放し昇降台45上に落下させる。積層処理が繰り返されると昇降台45の上面上に図3に示すように実装基板wが積層される。 When the conveyors 42a and 42b receive the mounting board w in the horizontal posture, the driving unit 44 operates to move the mounting board w to the board release position b7, where the mounting board w is released and dropped onto the lifting platform 45. When the stacking process is repeated, the mounting substrate w is stacked on the upper surface of the lifting platform 45 as shown in FIG.

アンローダー部15の下流には、検査部10が設けられており、コンベア43a、43bにより移動された実装基板wの検査を行う。図中、50は実装基板のパット(ランド)に対して接触する探触針(プローブ、図示せず)を下面に多数配置された検査冶具であり、駆動部52により上下される。51は、テスタである。半導体パッケージの端子には、保護ダイオード(或いは寄生ダイオード)が接地電位との間に設けられている。保護ダイオードは、半導体パッケージ内部において一定以上の電圧が掛かるとショートして、接地電位に過電圧を逃がすものである。テスタは、接地電位と半導体パッケージの端子との間で、保護ダイオードの順方向となる定電圧を印加して、電流値を測定する。半田付箇所に欠陥がある場合、ストレス付与装置100により、その欠陥が拡大し、或いは断線状態となっている。 An inspection unit 10 is provided downstream of the unloader unit 15 and inspects the mounting board w moved by the conveyors 43a and 43b. In the figure, reference numeral 50 denotes an inspection jig in which a number of probe needles (probes, not shown) that contact a pad (land) of the mounting substrate are arranged on the lower surface, and is moved up and down by a drive unit 52. 51 is a tester. A protective diode (or parasitic diode) is provided between the terminal of the semiconductor package and the ground potential. The protection diode is short-circuited when a voltage exceeding a certain level is applied inside the semiconductor package, and releases an overvoltage to the ground potential. The tester measures a current value by applying a constant voltage in the forward direction of the protection diode between the ground potential and the terminal of the semiconductor package. When there is a defect in the soldered portion, the defect is enlarged or disconnected by the stress applying device 100.

断線状態となっている場合には、導通が無いため、不良と直ちに判別できる。一方、拡大された欠陥は電流が流れるため、流れる電流値により欠陥の判定を行う。ダイオードの特性として、順方向電圧よりも大きい電圧を印加しないと電流が流れない。従って、順方向電圧よりも大きな電圧をテスタ52により与える。図10は半導体パッケージの端子の電気特性を示している。正常な実装基板を測定した電流値を図中のN(抵抗0Ω)とすると、半田付箇所に欠陥が生じている実装基板の場合は、これにより抵抗値が増加するため、Fのような電流(抵抗1Ω)となる。テスタにより、定電圧E(2V)を与えたとき、それぞれ0.062A、0.067Aとなり、5mAの差が生じる。従って、誤差を含めて許容できる電流値を定めておけば、半田付箇所に欠陥が生じている実装基板を選別することができる。 In the case of a disconnection state, since there is no continuity, it can be immediately determined as defective. On the other hand, since a current flows through the enlarged defect, the defect is determined based on the flowing current value. As a characteristic of the diode, current does not flow unless a voltage larger than the forward voltage is applied. Therefore, a voltage larger than the forward voltage is given by the tester 52. FIG. 10 shows the electrical characteristics of the terminals of the semiconductor package. Assuming that the current value measured on a normal mounting board is N (resistance 0 Ω) in the figure, in the case of a mounting board in which a defect has occurred in the soldered portion, this increases the resistance value. (Resistance 1Ω). When a constant voltage E (2 V) is applied by the tester, 0.062A and 0.067A are obtained, respectively, resulting in a difference of 5 mA. Therefore, if an allowable current value including an error is determined, it is possible to select a mounting board in which a defect has occurred in a soldered portion.

<温度サイクルの付与動作>
次にストレス付与装置100の温度サイクル付与部14による温度サイクル付与動作を説明する。
<Temperature cycle application operation>
Next, the temperature cycle application operation by the temperature cycle application unit 14 of the stress application device 100 will be described.

a:温度サイクル付与部14による温度サイクル付与時の各部の動作
いま大気温度(常温)は23℃であるとする。高温槽20の箱体20aの内側空間は温度制御装置20bにより70℃に保持される。一方、低温槽21の箱体21aの内側空間は温度制御装置21bにより−20℃に保持される。
a: Operation of each part at the time of temperature cycle application by the temperature cycle application unit 14 It is assumed that the atmospheric temperature (normal temperature) is 23 ° C. The inner space of the box 20a of the high-temperature tank 20 is maintained at 70 ° C. by the temperature controller 20b. On the other hand, the inner space of the box 21a of the low-temperature tank 21 is maintained at -20 ° C. by the temperature controller 21b.

搬送始端b4で実装基板wを受け取った基板掴み部29は実装基板wと一緒に上方へ移動され、先ず高温槽20の箱体20a内にこれの出入り口20cを通じ進入した状態とされる。出入り口20cが閉鎖され、基板掴み部29及びこれに保持された実装基板wは箱体20a内で30秒間70℃の熱に晒される。この30秒間が経過したとき、出入り口20cが開放される。 The substrate gripping portion 29 that has received the mounting substrate w at the transport start end b4 is moved upward together with the mounting substrate w, and first enters the box 20a of the high-temperature tank 20 through the entrance / exit 20c. The entrance / exit 20c is closed, and the substrate gripping portion 29 and the mounting substrate w held thereon are exposed to heat at 70 ° C. for 30 seconds in the box 20a. When 30 seconds have elapsed, the doorway 20c is opened.

次に基板掴み部29及びこれに保持された実装基板wは下方へ移動されて、高温槽20の箱体20a内から退出し、その後、低温槽21の箱体21a内に出入り口21cを通じ進入した状態となる。出入り口21cが閉鎖されると、基板掴み部29及びこれに保持された実装基板wは箱体21a内で30秒間−20℃の熱に晒される。この30秒間が経過したとき、出入り口21cが開放される。 Next, the substrate gripping portion 29 and the mounting substrate w held by the substrate gripping portion 29 are moved downward to withdraw from the box body 20a of the high temperature bath 20, and then enter the box body 21a of the low temperature bath 21 through the entrance / exit 21c. It becomes a state. When the entrance / exit 21c is closed, the substrate gripping portion 29 and the mounting substrate w held by the substrate gripping portion 29 are exposed to heat of −20 ° C. for 30 seconds in the box body 21a. When 30 seconds have elapsed, the doorway 21c is opened.

この後、基板掴み部29及びこれに保持された実装基板wは上方へ移動され、搬送始端b4に戻り、こうして実装基板wは第1周期目の温度サイクルの付与を完了するのである。 Thereafter, the substrate gripping portion 29 and the mounting substrate w held by the substrate gripping portion 29 are moved upward to return to the conveyance start end b4, and thus the mounting substrate w completes the application of the first cycle temperature cycle.

次に再び、基板掴み部29及びこれに保持された実装基板wは、第一周期目と同様に高温槽20及び低温槽21においてこれら箱体20a、21a内でその内方の熱に晒された後に、第三搬送機構16cの搬送終端b5に到達する。こうして第三搬送機構16cで搬送された実装基板wは第2周期目の温度サイクルを付与された状態となる。 Next, the substrate gripping portion 29 and the mounting substrate w held by the substrate gripping portion 29 are again exposed to the heat in the box bodies 20a and 21a in the high temperature tank 20 and the low temperature tank 21, as in the first period. After that, it reaches the conveyance end b5 of the third conveyance mechanism 16c. Thus, the mounting substrate w transported by the third transport mechanism 16c is in a state where a second temperature cycle is applied.

b:温度サイクル付与時の実装基板wの状態
上記のように実装基板wに2周期分の温度サイクルが付与されるときの、実装基板wの状態について図7、図8及び図9を参照して説明する。
b: State of the mounting substrate w when the temperature cycle is applied As described above, refer to FIGS. 7, 8 and 9 for the state of the mounting substrate w when the temperature cycle for two cycles is applied to the mounting substrate w. I will explain.

図7はこの実施例で製造される実装基板wの一例を示している。図7中、d1はプリント基板であり、d2はプリント基板d1に表面実装されたQFPやBGAなどのICパッケージである。またe1aはプリント基板d1の表面のうちICパッケージd2の実装された側でICパッケージd2の左側箇所を示し、以下単に基板左箇所と呼称する。e1bはプリント基板d1の表面のうちICパッケージd2の実装された側でICパッケージd2の右側箇所を示し、以下単に基板右箇所と呼称する。e2はICパッケージd2の封止材の表面であってプリント基板d1に当接される面の反対側となる面(裏面)を示している。 FIG. 7 shows an example of a mounting board w manufactured in this embodiment. In FIG. 7, d1 is a printed circuit board, and d2 is an IC package such as QFP or BGA mounted on the surface of the printed circuit board d1. Further, e1a indicates the left side portion of the IC package d2 on the side of the surface of the printed circuit board d1 where the IC package d2 is mounted, and is simply referred to as the left side portion of the substrate. Reference numeral e1b denotes a right side portion of the IC package d2 on the side of the surface of the printed board d1 where the IC package d2 is mounted. e2 indicates a surface (back surface) which is the surface of the sealing material of the IC package d2 and which is opposite to the surface which is in contact with the printed circuit board d1.

図8は実装基板wの各部の温度tや歪量εの変化を示しており、左縦軸は温度t(単位は℃)を表し、右縦軸は歪量ε(単位はmm)を表し、横軸は経過時間s(単位は秒)を表す。図9は実装基板wにおけるICパッケージd2の温度の変化や、各部の歪量の差(歪差)の変化を示し、左縦軸は温度t(単位は℃)を表し、右縦軸は歪差Δεを表し、横軸は時間s(単位は秒)を表す。 FIG. 8 shows changes in the temperature t and the strain amount ε of each part of the mounting substrate w, the left vertical axis represents the temperature t (unit: ° C.), and the right vertical axis represents the strain amount ε (unit: mm). The horizontal axis represents the elapsed time s (unit: seconds). FIG. 9 shows changes in the temperature of the IC package d2 on the mounting substrate w and changes in the strain amount difference (strain difference) of each part, the left vertical axis represents the temperature t (unit: ° C.), and the right vertical axis represents the strain. The difference Δε is represented, and the horizontal axis represents time s (unit: second).

上記したICパッケージd2の温度t1や歪量ε1は表面箇所e2に固定させたセンサーを介して測定しており、また基板左箇所e1の温度t2や歪量ε2、及び、基板右箇所e1bの温度t3や歪量ε3はそれぞれの箇所に固定させたセンサーを介して測定したものである。なお、図8中の歪量ε1、ε2、ε3についてはセンサーの温度変化に起因した伸縮による明確な測定誤差が含まれている。 The temperature t1 and strain amount ε1 of the IC package d2 described above are measured through a sensor fixed to the surface location e2, and the temperature t2 and strain amount ε2 of the substrate left location e1 and the temperature of the substrate right location e1b are measured. The t3 and the strain amount ε3 are measured through sensors fixed at the respective locations. Note that the distortion amounts ε1, ε2, and ε3 in FIG. 8 include clear measurement errors due to expansion and contraction due to temperature changes of the sensor.

上記のように温度サイクル付与部14で実装基板wに温度サイクルを付与している期間中において、ICパッケージd2の温度t1、基板左箇所e1aの温度t2、及び、基板右箇所e1bの温度t3のそれぞれは、図7に示すように、ほぼ曲線g(t1、t2、t3)で示すように変化する。即ち、温度サイクルの第一周期目f1では、実装基板wが高温槽20の箱体20a内に進入を開始した時点s1から箱体20aの外方への退出を開始する時点s2までは次第に上昇していく。そして実装基板wが箱体20a内から退出を開始した時点s2から箱体20a内からの退出を完了し、続いて低温槽21の箱体21a内に進入し、さらに箱体21a内からの退出を開始する時点s3までは次第に下降する。そして、箱体21a内から退出を開始した時点s3から箱体21a内からの退出を完了する時点s4までは次第に上昇していく。温度サイクルの第二周期目f2でも各温度t1、t2、t3は第一周期目f1とほぼ同様に変化する。 During the period in which the temperature cycle is applied to the mounting substrate w by the temperature cycle application unit 14 as described above, the temperature t1 of the IC package d2, the temperature t2 of the substrate left location e1a, and the temperature t3 of the substrate right location e1b. As shown in FIG. 7, each of them changes as shown by a curve g (t1, t2, t3). That is, in the first cycle f1 of the temperature cycle, the temperature gradually increases from the time point s1 when the mounting substrate w starts to enter the box body 20a of the high-temperature tank 20 to the time point s2 when the outward movement of the box body 20a starts. I will do it. Then, from the time point s2 at which the mounting substrate w starts to exit from the box body 20a, the exit from the box body 20a is completed, then enters the box body 21a of the low-temperature tank 21, and further exits from the box body 21a. It gradually descends until the time point s3 at which the operation is started. Then, it gradually rises from the time point s3 at which the exit from the box 21a is started to the time point s4 at which the exit from the box 21a is completed. In the second cycle f2 of the temperature cycle, the temperatures t1, t2, and t3 change in substantially the same manner as the first cycle f1.

上記のように温度サイクルを付与している期間中、ICパッケージd2の歪量ε1は曲線g(ε1)で示すように変化する。曲線g(ε1)が示すように、温度サイクルの第一周期目f1では、ICパッケージd2の歪量ε1は、実装基板wが高温槽20の箱体20a内に進入を開始した時点s1から箱体20aの外方への退出を開始する時点s2までの期間において、その初期段階では比較的急激な傾斜で増大していき、その後はほぼ一定大きさを維持される。そして実装基板wが高温槽20の箱体20a内から退出を開始した時点s2からこの退出が完了する時点s2aまでは比較的急な傾斜で減少していく。これから後、歪量の逆転現象が生じる。即ち、箱体20a内からの退出を完了した時点s2aから低温槽21の箱体21a内への進入が完了した後の時点s2bまでは比較的急激な傾斜で増大していく。そして実装基板wが低温槽21の箱体21a内に進入した後、この箱体21a内からの退出を完了する時点s4までは比較的大きい状態を維持しながら極めて緩やかな傾斜で継続して増大していく。また温度サイクルの第二周期目f2では、実装基板wが高温槽20の箱体20a内に進入を開始した時点s4からこの箱体の外方への退出を完了した後の時点s5までは、比較的急な傾斜で減少していく。そして実装基板wが低温槽21の箱体21a内への進入を開始した時点s5の直後から箱体21a内への進入を完了する時点s6まで、急激な傾斜で増大していく。そして実装基板wが低温槽21の箱体21a内に進入した後、この箱体21a内からの退出を完了する時点s7まで比較的大きい状態をほぼ維持する。このようなICパッケージd2の歪量ε1について逆転が起きるのはICパッケージd2の熱容量が大きいことに由来すると考えられる。 During the period in which the temperature cycle is applied as described above, the strain amount ε1 of the IC package d2 changes as shown by the curve g (ε1). As shown by the curve g (ε1), in the first cycle f1 of the temperature cycle, the strain amount ε1 of the IC package d2 is the box from the time s1 when the mounting substrate w starts to enter the box 20a of the high-temperature tank 20. In the period up to the time point s2 at which the body 20a starts to move outward, it increases at a relatively steep slope in the initial stage, and thereafter, it remains substantially constant. Then, it decreases with a relatively steep slope from the time point s2 at which the mounting substrate w starts to leave the box 20a of the high-temperature tank 20 to the time point s2a at which the exit is completed. After this, a reverse phenomenon of distortion occurs. That is, it increases at a relatively steep slope from the time point s2a when the exit from the box 20a is completed to the time point s2b after the entry of the low temperature tank 21 into the box 21a is completed. Then, after the mounting board w enters the box 21a of the low temperature tank 21, it continues to increase at a very gentle inclination while maintaining a relatively large state until the time s4 when the exit from the box 21a is completed. I will do it. Further, in the second period f2 of the temperature cycle, from the time s4 when the mounting substrate w starts to enter the box 20a of the high-temperature tank 20 to the time s5 after completing the outward exit of the box, It decreases with a relatively steep slope. The mounting substrate w increases with a steep slope from immediately after time s5 when the low temperature bath 21 starts to enter the box 21a until time s6 when the entry into the box 21a is completed. Then, after the mounting substrate w enters the box 21a of the low-temperature tank 21, the relatively large state is substantially maintained until time s7 when the exit from the box 21a is completed. It is considered that the reverse of the strain amount ε1 of the IC package d2 is caused by the large heat capacity of the IC package d2.

一方、基板左箇所e1aの歪量ε2は、曲線g(ε2)で示すように変化し、また基板右箇所e1bの歪量ε3は曲線g(ε3)で示すように変化する。これらの曲線g(ε2)、g(ε3)から判断されるように、基板左箇所e1a及び基板右箇所e1bの何れもその歪量ε2、ε3は時間の経過と共にほぼ同じように変化していく。即ち、温度サイクルの第一周期目f1では、基板左箇所e1a及び基板右箇所e1bの何れもその歪量ε2、ε3は、実装基板wが高温槽20の箱体20a内に進入を開始した時点s1から箱体20aの外方への退出を開始するs2までの期間においてはその初期段階で比較的急激な傾斜で増大し、その後はほぼ一定大きさを維持される。そして実装基板wが高温槽20の箱体20a内から退出を開始した時点s2から箱体20a内からの退出を完了し、続いて低温槽21の箱体21a内に進入した後の時点s2bまでは比較的急な傾斜で減少し続いて負値となってその絶対値が増大していく。そして実装基板wが低温槽21の箱体21a内に進入した後の時点s2bから、この箱体21a内からの退出を開始する時点s3までは前記絶対値が比較的緩やかに増大していく。そして低温槽21の箱体21a内からの退出を開始した時点s3からその箱体21a内からの退出を完了する時点s4までは比較的急激な傾斜で前記絶対値は増大していく。また温度サイクルの第二周期目f2でも、基板左箇所e1a及び基板右箇所e1bの何れもその歪量ε2、ε3は、第一周期目f1のときとほぼ同じように変化していく。 On the other hand, the strain amount ε2 of the substrate left portion e1a changes as shown by a curve g (ε2), and the strain amount ε3 of the substrate right portion e1b changes as shown by a curve g (ε3). As judged from these curves g (ε2) and g (ε3), the strain amounts ε2 and ε3 of the substrate left portion e1a and the substrate right portion e1b change in substantially the same manner with time. . That is, in the first period f1 of the temperature cycle, the distortion amounts ε2 and ε3 of both the substrate left portion e1a and the substrate right portion e1b are determined when the mounting substrate w starts to enter the box 20a of the high-temperature bath 20. In the period from s1 to s2 when the outward movement of the box 20a is started, it increases at a relatively steep slope in the initial stage, and thereafter, it is maintained at a substantially constant size. Then, from the time point s2 when the mounting substrate w starts to leave the box body 20a of the high-temperature tank 20, the exit from the box body 20a is completed, and then to the time point s2b after entering the box body 21a of the low-temperature tank 21. Decreases at a relatively steep slope and then becomes a negative value and its absolute value increases. The absolute value increases relatively gradually from time s2b after the mounting substrate w enters the box 21a of the low-temperature tank 21 to time s3 at which withdrawal from the box 21a starts. The absolute value increases with a relatively steep slope from the time point s3 at which the retreat of the low-temperature tank 21 is started from the inside of the box body 21a to the time point s4 at which the retreat from the box body 21a is completed. In the second cycle f2 of the temperature cycle, the strain amounts ε2 and ε3 of the substrate left portion e1a and the substrate right portion e1b change in substantially the same manner as in the first cycle f1.

本実施例では、低温、高温の温度はさほど高くは無いが、基板とICパッケージとの収縮・膨張の方向を互いに逆方向に振らすことにより、半田付け箇所に欠陥が生じていると容易に破壊することができる。 In this embodiment, the temperature of the low temperature and the high temperature is not so high, but by causing the shrinkage and expansion directions of the substrate and the IC package to be opposite to each other, it is easy to have a defect in the soldering location. Can be destroyed.

図9は実装基板wに上記のように温度サイクルを付与したときの、実装基板wの温度の変化をICパッケージd2の温度t1の変化で代表的に示し、またICパッケージd2とプリント基板d1表面との間の歪差Δεの変化を示している。この図9中、左の縦軸は温度(単位は℃)を示し、右の縦軸は単位長さの歪差(単位はmm)を示している。 FIG. 9 representatively shows a change in the temperature of the mounting board w when the temperature cycle is applied to the mounting board w as described above by a change in the temperature t1 of the IC package d2, and the surface of the IC package d2 and the printed board d1. The change in strain difference Δε between the two is shown. In FIG. 9, the left vertical axis represents temperature (unit: ° C.), and the right vertical axis represents unit length strain difference (unit: mm).

温度サイクルを付与したとき、ICパッケージd2の温度t1は曲線g(t1)で示すように変化する。またICパッケージd2の歪量ε1と基板左箇所e1aの歪量ε2との差である歪差Δε1は曲線g(Δε1)で示すように変化し、一方、ICパッケージd2の歪量ε1と基板右箇所e1bの歪量ε3との差である歪差Δε2は曲線g(Δε2)で示すように変化する。 When the temperature cycle is applied, the temperature t1 of the IC package d2 changes as shown by the curve g (t1). Further, the strain difference Δε1, which is the difference between the strain amount ε1 of the IC package d2 and the strain amount ε2 of the left portion e1a of the substrate, changes as shown by a curve g (Δε1), while the strain amount ε1 of the IC package d2 and the substrate right side The strain difference Δε2, which is the difference from the strain amount ε3 at the location e1b, changes as shown by the curve g (Δε2).

これらの曲線g(Δε1)、g(Δε2)から判断されるように、上記のように付与した温度サイクルの第一周期目f1における高温時の最大の歪差Δεは約450×10−6mmとなり、低温時の最大の歪差は約1050×10−6mmとなる。またこの温度サイクルの第二周期目f2における高温時の最大の歪差Δεは600×10−6mmとなり、低温時の最大の歪差Δεは1000×10−6mmとなる。このように、高温時、低温時に渡って歪(特に低温時の歪差Δεは高温時のそれよりも大きい)を起こさせることができる。 As judged from these curves g (Δε1) and g (Δε2), the maximum strain difference Δε at high temperature in the first period f1 of the temperature cycle applied as described above is about 450 × 10 −6 mm. The maximum strain difference at low temperature is about 1050 × 10 −6 mm. Further, the maximum strain difference Δε at high temperature in the second period f2 of this temperature cycle is 600 × 10 −6 mm, and the maximum strain difference Δε at low temperature is 1000 × 10 −6 mm. In this way, strain can be caused at high temperatures and low temperatures (especially, the strain difference Δε at low temperatures is larger than that at high temperatures).

上記本実施例によれば、高温槽20は80℃以下に保持され、低温槽21は−20℃以上に保持しており、この温度はICパッケージd2の使用許容温度範囲内の温度サイクルである。この温度の範囲内で、ICパッケージd2とプリント基板d1との歪差Δεを得ることができる。   According to the present embodiment, the high-temperature tank 20 is held at 80 ° C. or lower, and the low-temperature tank 21 is held at −20 ° C. or higher, and this temperature is a temperature cycle within the allowable use temperature range of the IC package d2. . Within this temperature range, the strain difference Δε between the IC package d2 and the printed circuit board d1 can be obtained.

また、高温槽20及び低温槽21が上下配置され、かつ高温槽20が下面に実装基板wを通過させるための出入り口20cを有し、また低温槽21が上面に実装基板を通過させるための出入り口21cを有しているため、エネルギーの損失を低減することができる。
Moreover, the high temperature tank 20 and the low temperature tank 21 are arranged vertically, and the high temperature tank 20 has an entrance / exit 20c for allowing the mounting substrate w to pass through the lower surface, and the entrance / exit for allowing the low temperature bath 21 to pass the mounting substrate through the upper surface. Since it has 21c, the loss of energy can be reduced.

100 ストレス付与装置
101 前方側の実装基板製造ライン
16 基板搬送機構部
16a 第一搬送機構
16b 第二搬送機構
16c 第三搬送機構
16e 第四搬送機構
20 高温槽
20c 出入り口
20d 蓋体
21 低温槽
21c 出入り口
21d 蓋体
d1 プリント基板
d2 ICパッケージ
w 実装基板
DESCRIPTION OF SYMBOLS 100 Stress application apparatus 101 Front mounting board manufacturing line 16 Substrate conveyance mechanism part 16a First conveyance mechanism 16b Second conveyance mechanism 16c Third conveyance mechanism 16e Fourth conveyance mechanism 20 High temperature tank 20c Entrance / exit 20d Lid 21 Low temperature tank 21c Entrance / exit 21d Lid d1 Printed circuit board d2 IC package w Mounting board

Claims (3)

半導体パッケージが実装された平面状の実装基板を水平姿勢と鉛直姿勢との間で姿勢変更し、鉛直面に沿った方向へ移動させる基板搬送機構と、
前記基板搬送機構が実装基板を垂直面に沿って移動させる範囲に設置され、大気温度よりも高い温度に維持される高温槽と、
前記基板搬送機構が実装基板を垂直面に沿って移動させる範囲に設置され、大気温度よりも低い温度に維持される低温槽とを備え、
水平に移動された実装基板を鉛直姿勢に変更し、前記高温槽と低温槽との間において前記実装基板を繰り返し移動させ、その後水平姿勢に復帰させて送り出する制御回路を有することを特徴とするストレス付与装置。
A substrate transport mechanism that changes the orientation of a planar mounting substrate on which a semiconductor package is mounted between a horizontal orientation and a vertical orientation, and moves it in a direction along the vertical plane;
The substrate transport mechanism is installed in a range in which the mounting substrate is moved along a vertical plane, and a high-temperature bath maintained at a temperature higher than the atmospheric temperature;
The substrate transport mechanism is installed in a range in which the mounting substrate is moved along the vertical plane, and includes a low-temperature tank maintained at a temperature lower than the atmospheric temperature,
The mounting board moved horizontally is changed to a vertical posture, and the mounting substrate is repeatedly moved between the high temperature bath and the low temperature bath, and then returned to the horizontal posture and sent out. Stress applying device.
請求項1記載のストレス付与装置であって、前記高温槽及び前記低温槽は、基板搬送機構が実装基板を水平姿勢と鉛直姿勢との間で姿勢変更する位置を挟んで上下配置されていることを特徴とするストレス付与装置。   2. The stress applying apparatus according to claim 1, wherein the high-temperature bath and the low-temperature bath are arranged vertically across a position where the board transport mechanism changes the posture of the mounting board between a horizontal posture and a vertical posture. A stress applying device characterized by the above. 半導体パッケージが実装された平面状の実装基板を鉛直姿勢に変更し、鉛直面に沿った方向へ移動させ、前記鉛直面に沿った方向に設けられた大気温度よりも前記高温槽と低温槽との間において前記実装基板を繰り返し移動させ、前記高温槽と低温槽とを離脱した位置で水平姿勢に復帰させ、前記実装基板の半田接合部の良否を検査することを特徴とする実装基板の製造方法。 A planar mounting board on which a semiconductor package is mounted is changed to a vertical posture, moved in a direction along the vertical plane, and the high-temperature bath and the low-temperature bath than the atmospheric temperature provided in the direction along the vertical plane The mounting board is manufactured by repeatedly moving the mounting board between the high temperature bath and the low temperature bath to return to a horizontal posture and inspecting the solder joints of the mounting board. Method.
JP2010114390A 2010-05-18 2010-05-18 Stress applying apparatus and mounting board manufacturing method using the same Expired - Fee Related JP5562719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114390A JP5562719B2 (en) 2010-05-18 2010-05-18 Stress applying apparatus and mounting board manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114390A JP5562719B2 (en) 2010-05-18 2010-05-18 Stress applying apparatus and mounting board manufacturing method using the same

Publications (2)

Publication Number Publication Date
JP2011243739A true JP2011243739A (en) 2011-12-01
JP5562719B2 JP5562719B2 (en) 2014-07-30

Family

ID=45410105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114390A Expired - Fee Related JP5562719B2 (en) 2010-05-18 2010-05-18 Stress applying apparatus and mounting board manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP5562719B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003478A (en) * 2003-06-11 2005-01-06 Espec Corp Sample container release mechanism of thermal shock testing apparatus
JP2006008311A (en) * 2004-06-24 2006-01-12 Sharp Corp Substrate carrier device
JP2006284512A (en) * 2005-04-05 2006-10-19 Hutech Corp Liquid tank type thermal shock testing device
JP2006329949A (en) * 2005-05-30 2006-12-07 Espec Corp Testing device for cold thermal shock
JP2009146932A (en) * 2007-12-11 2009-07-02 Ulvac Japan Ltd Substrate transfer apparatus, substrate transfer method, and vacuum processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003478A (en) * 2003-06-11 2005-01-06 Espec Corp Sample container release mechanism of thermal shock testing apparatus
JP2006008311A (en) * 2004-06-24 2006-01-12 Sharp Corp Substrate carrier device
JP2006284512A (en) * 2005-04-05 2006-10-19 Hutech Corp Liquid tank type thermal shock testing device
JP2006329949A (en) * 2005-05-30 2006-12-07 Espec Corp Testing device for cold thermal shock
JP2009146932A (en) * 2007-12-11 2009-07-02 Ulvac Japan Ltd Substrate transfer apparatus, substrate transfer method, and vacuum processing apparatus

Also Published As

Publication number Publication date
JP5562719B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
TWI549219B (en) Test sorting machine and its propulsion device, test tray and test machine interface board
US8240541B2 (en) Apparatus for mounting semiconductor chip
US20110232082A1 (en) Apparatus for mounting semiconductor device
US8404497B2 (en) Semiconductor device and method of manufacturing the same
KR20050014810A (en) Probe pin zero-point detecting method and probe device
JPWO2009004968A1 (en) Test equipment
JP7444077B2 (en) Contact terminals, inspection jigs, and inspection equipment
TW200826213A (en) Discharging apparatus, discharging method, and program recording medium
CN113495189B (en) Test method for evaluating reliability of electronic assembly material
KR102231146B1 (en) Transfer tool module, needle pin assembly, and device handler having the same
KR20050066313A (en) Handler for testing semiconductor
JP5562719B2 (en) Stress applying apparatus and mounting board manufacturing method using the same
TWI605004B (en) Electronic component transporting device
JP4986130B2 (en) Board inspection equipment
US9013201B2 (en) Method of testing an object and apparatus for performing the same
KR100439309B1 (en) Apparatus and method for testing wire-bonded chip
KR102254026B1 (en) Method of manufacturing a semiconductor package
KR20230031755A (en) Test apparatus for semiconductor package
JP2010276621A (en) Test device and test method for semiconductor device
JP2011185746A (en) Method for inspecting printed circuit board, and inspection device used for it
KR20120022272A (en) Apparatus for inspecting surface of substrate
JPH0329335A (en) Semiconductor chip prober
KR101864939B1 (en) Apparatus for testing semiconductor devices
JP2750448B2 (en) Semiconductor inspection equipment
JP2901651B2 (en) Inspection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees