JP2011242312A - センサ回路 - Google Patents

センサ回路 Download PDF

Info

Publication number
JP2011242312A
JP2011242312A JP2010115893A JP2010115893A JP2011242312A JP 2011242312 A JP2011242312 A JP 2011242312A JP 2010115893 A JP2010115893 A JP 2010115893A JP 2010115893 A JP2010115893 A JP 2010115893A JP 2011242312 A JP2011242312 A JP 2011242312A
Authority
JP
Japan
Prior art keywords
gauge
constant current
resistance
resistor
sensor circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010115893A
Other languages
English (en)
Inventor
Hideo Nishikawa
英男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010115893A priority Critical patent/JP2011242312A/ja
Publication of JP2011242312A publication Critical patent/JP2011242312A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

【課題】ゲージ抵抗からの出力信号を増大させて、構成の小型化を図ったセンサ回路を提供することを課題とする。
【解決手段】一端が接地され、印加された物理量に応じて抵抗値が変化するゲージ抵抗11−1〜11−4と、ゲージ抵抗11−1〜11−4の他端と電源VCCとの間に接続され、ゲージ抵抗11−1〜11−4に定電流を供給し、ゲージ抵抗11−1〜11−4の他端に電源VCCの電源電圧の半分以上の電圧を印加する定電流供給部12と、ゲージ抵抗11−1〜11−4の抵抗値の変化を電気信号として取り出し、印加された物理量を検出する信号処理部13とを有することを特徴とする。
【選択図】図1

Description

本発明は、圧力や加速度などの物理量の変化を検出するセンサ回路に関する。
従来、この種の技術としては、例えば以下に示す文献に記載されたものが知られている。文献1に記載された技術では、ブリッジ接続された4つのゲージ抵抗の抵抗値が、圧力により変化し、この抵抗値の変化を電気信号として取り出して圧力を検出している。ブリッジ接続された4つのゲージ抵抗には、定電流回路を介して電源から電圧が印加され、電源電圧の半分以下の電圧が各ゲージ抵抗に印加されている。
文献2に記載された技術では、上記文献1と同様に、ブリッジ接続された4つのゲージ抵抗の抵抗値の変化に基づいて圧力を検出している。ブリッジ接続された4つのゲージ抵抗には、定電圧回路を介して電源から電圧が印加され、上記文献1の技術と同様に電源電圧の半分以下の電圧が各ゲージ抵抗に印加されている。
文献3に記載された技術では、上記文献1、2と同様に、ゲージ抵抗の抵抗値の変化に基づいて圧力を検出している。ゲージ抵抗には、定電流回路ならびにカレントミラー回路を介して電源から給電されている。すなわち、電源電圧から定電流回路ならびにカレントミラー回路での電圧降下分を差し引いた電圧がゲージ抵抗に印加されている。
特開昭61−243338号公報 特開昭62−185137号公報 特開平2−311728号公報
上記文献1ならびに文献2に記載された技術では、ゲージ抵抗に印加される電圧は、電源電圧の半分以下となる。このため、ゲージ抵抗から取り出される信号は、電源電圧の半分以上がゲージ抵抗に印加されている場合に比べて小さくなっていた。また、上記文献3に記載された技術では、ゲージ抵抗には、電源電圧から定電流回路ならびにカレントミラー回路での電圧降下分を差し引いた電圧が印加されている。このため、ゲージ抵抗から取り出される信号は、カレントミラー回路が接続されていない場合に比べて小さくなっていた。
したがって、上記各文献1〜3で採用された技術では、ゲージ抵抗から取り出される信号が小さいので、ゲージ抵抗から取り出される信号を処理して圧力を検出するための回路構成が大型化していた。また、ゲージ抵抗から取り出される信号が小さいので、ノイズに対する耐性が低く、ノイズにより検出精度が低下するおそれがあった。
そこで、本発明は、上記に鑑みてなされたものであり、その目的とするところは、ゲージ抵抗からの出力信号を増大させて、構成の小型化を図ったセンサ回路を提供することにある。
上記目的を達成するために、本発明に係るセンサ回路は、一端が接地され、印加された物理量に応じて抵抗値が変化するゲージ抵抗と、ゲージ抵抗の他端と高位電源との間に接続され、ゲージ抵抗に定電流を供給し、ゲージ抵抗の他端に高位電源の電源電圧の半分以上の電圧を印加する定電流供給部と、ゲージ抵抗の抵抗値の変化を電気信号として取り出し、印加された物理量を検出する信号処理部とを有することを特徴とする。
本発明によれば、高位電源の電源電圧の半分以上の電圧をゲージ抵抗に印加するようにしたので、ゲージ抵抗からの出力信号を従来に比べて増大させることができる。これにより、センサ回路の構成を小型化することが可能となる。
本発明の実施形態1に係るセンサ回路の構成を示す図である。 本発明の実施形態1,3に係る定電流回路の一回路構成を示す図である。 センサ部の出力電位と信号処理部の検出信号との関係を示す図である。 本発明の実施形態2に係るセンサ回路の構成を示す図である。
以下、図面を用いて本発明を実施するための実施形態を説明する。
(実施形態1)
図1は本発明の実施形態1に係るセンサ回路の構成を示す図である。図1に示す実施形態1のセンサ回路は、センサ部11、定電流供給部12、信号処理部13を備えて構成されている。
センサ部11は、4つのゲージ抵抗11−1〜11−4を備えて構成されている。各ゲージ抵抗11−1〜11−4は、例えばシリコン等の半導体基板に形成され、印加された圧力や加速度などの物理量に応じて歪みその抵抗値が変化する。ゲージ抵抗11−1,11−4は、圧力などが印加されるとその抵抗値が増加し、ゲージ抵抗11−2,11−3は、圧力などが印加されるとその抵抗値が減少するように配置形成されている。センサ回路は、ゲージ抵抗11−1〜11−4の抵抗値の変化を電気信号として取り出すことで印加された圧力などの物理量を検出する。各ゲージ抵抗11−1〜11−4は、その一端が定電流供給部12に接続され、他端がグランドに接続(接地)されている。
定電流供給部12は、例えば4つの定電流回路12−1〜12−4を備えて構成されている。定電流回路12−1〜12−4は、電源VCCから給電されて対応するゲージ抵抗11−1〜11−4に独立して同一の定電流を供給する。すなわち、定電流回路12−1は、ゲージ抵抗11−1に定電流を供給し、定電流回路12−2は、ゲージ抵抗11−2に定電流を供給し、定電流回路12−3は、ゲージ抵抗11−3に定電流を供給し、定電流回路12−4は、ゲージ抵抗11−4に定電流を供給する。
定電流回路12−1〜12−4は、例えば図2に示すように、OPアンプ21、電流調整用抵抗22ならびに電界効果トランジスタ23を用いたカレントミラー回路で構成することができる。図2に示す定電流回路では、OPアンプ21に入力される入力基準電圧Vと同電圧が電流調整用抵抗22に印加され、電流調整用抵抗22の抵抗値(R)に応じた定電流(I=V/R)を、カレントミラー回路の出力電流(定電流)として得ることができる。なお、定電流供給部12は、各ゲージ抵抗11−1〜11−4に共通に供給される同一の定電流を出力する4つの出力端子を備えた1つの定電流回路として構成するようにしてもよい。
信号処理部13は、ゲージ抵抗11−1〜11−4と定電流供給部12との接続点の電位(V1〜V4、センサ部11の出力電位)を入力し、これらの出力電位を増幅し、ゲージ抵抗11−1〜11−4の抵抗値の変化に応じた検出信号VOを出力する。すなわち、信号処理部13は、出力電位V1と出力電位V2との差(V1−V2)を増幅して第1差増幅出力V12を得て、出力電位V3と出力電位V4との差(V3−V4)を増幅して第2差増幅出力V34を得ている。また、信号処理部13は、第1差増幅出力V12と第2差増幅出力V34との差(V12−V34)を増幅して、印加された圧力などを検出する検出信号VOを得ている。
このような構成において、定電流供給部12から予め設定された所定の定電流が供給されている各ゲージ抵抗11−1〜11−4に圧力などが印加されると、ゲージ抵抗11−1ならびに11−4の抵抗値は印加された圧力などに応じて増加する。一方、ゲージ抵抗11−2ならびに11−3の抵抗値は印加された圧力などに応じて減少する。このため、圧力などが印加される前に比べて信号処理部13に入力されるセンサ部11の出力電位V1ならびにV4は上昇する一方、出力電位V2ならびにV3は低下する。この結果、センサ部11の出力電位V1とV2との差(V1−V2)は増加する一方、出力電位V3とV4との差(V3−V4)は減少する。それぞれの出力電位の差は信号処理部13で増幅され、さらに増幅された差増幅出力は信号処理部13でさらに増幅され、各ゲージ抵抗11−1〜11−4に印加された圧力などに応じた検出信号VOが得られる。
各ゲージ抵抗11−1〜11−4に印加される電位、すなわちセンサ部11の出力電位V1〜V4と、信号処理部13から出力される検出信号VOとの関係は、図3に示すようになる。すなわち、検出信号VOは出力電位V1〜V4の増加にともなって直線的に増加する特性を有している。
このようなセンサ回路では、各ゲージ抵抗11−1〜11−4の一端は定電流供給部12を介して電源VCCに接続され、他端はグランドに接続された構成を採用している。すなわち、電源VCC(高位電源)とグランドとの間には、1つのゲージ抵抗と定電流供給部のみが接続されている。このため、定電流回路もしくは定電圧回路の他に2つのゲージ抵抗が直列接続されている構成に比べて、各ゲージ抵抗11−1〜11−4には、電源VCCの電源電圧の少なくとも半分以上を印加することが可能となる。すなわち、圧力などが各ゲージ抵抗11−1〜11−4に与えられる前のセンサ部11の出力電位V1〜V4は、電源VCCの電源電圧の少なくとも半分以上となる。
したがって、従来に比べてセンサ部11の出力電位V1〜V4を大きくすることができる。これにより、従来に比べて信号処理能力(増幅性能)を高めることなく、すなわち小型な構成で印加された圧力などを十分に検出できる程度の検出信号VOを得ることが可能となる。
また、従来に比べてセンサ部11の出力電位V1〜V4は大きくなるので、ノイズに対する耐性が高められて、検出精度を向上することが可能となる。
一方、電源VCCとグランドとの間には、各ゲージ抵抗11−1〜11−4の他に定電流回路12−1〜12−4しか接続されていない。このため、従来のようにカレントミラー回路などの電位降下を生じさせる構成要件がゲージ抵抗にさらに接続されている場合に比べても、各ゲージ抵抗11−1〜11−4に印加される電位は大きくなる。これにより、カレントミラー回路などの電位降下を生じさせる構成要件がゲージ抵抗に接続されている従来の構成に比べても、上記と同様の有利な効果を得ることができる。
(実施形態2)
図4は本発明の実施形態2に係るセンサ回路の構成を示す図である。
図4において、この実施形態2のセンサ回路では、先の実施形態1で示す信号処理部13を3つの増幅アンプ41、42、43で構成しており、他は実施形態1と同様である。
増幅アンプ41は、センサ部11の出力電位V1と出力電位V2との差(V1−V2)を増幅して第1差増幅出力V12を得て、その第1差増幅出力V12を増幅アンプ43に与える。
増幅アンプ42は、センサ部11の出力電位V3と出力電位V4との差(V3−V4)を増幅して第2差増幅出力V34を得て、その第2差増幅出力V34を増幅アンプ43に与える。
増幅アンプ43は、増幅アンプ41から与えられた第1差増幅出力V12と、増幅アンプ42から与えられた第2差増幅出力V34との差(V12−V34)を増幅して、印加された圧力などに対応した検出信号VOを得ている。
このような構成を採用することで、容易かつ簡単ならびに小型な回路構成で信号処理部を実現することができる。
(実施形態3)
次に、本発明の実施形態3に係るセンサ回路について説明する。
この実施形態3のセンサ回路では、定電流供給部12は、圧力などが印加される前の各ゲージ抵抗11−1〜11−4の抵抗値のばらつきに応じた定電流を各ゲージ抵抗11−1〜11−4にそれぞれ個別に供給する構成を採用している。
センサ回路を製造する際に、ゲージ抵抗11−1〜11−4の抵抗値は設計値に対してばらつきが生ずる場合がある。このような場合に、ゲージ抵抗11−1〜11−4の抵抗値が設計値に比べて大きい場合には、ゲージ抵抗11−1〜11−4に供給される定電流を小さくする。一方、ゲージ抵抗11−1〜11−4の抵抗値が設計値に比べて小さい場合には、ゲージ抵抗11−1〜11−4に供給される定電流値を大きくする。
このような定電流回路としては、例えば先の図2に示す定電流回路で実現することができる。図2に示す定電流回路において、ゲージ抵抗の抵抗値のばらつきと概ね同様にばらつくようにゲージ抵抗に隣接して電流調整用抵抗22を形成する。この電流調整用抵抗22に、OPアンプ21に入力される入力基準電圧Vと同電圧を印加する。これにより、電流調整用抵抗22の抵抗値(R)、すなわちゲージ抵抗11−1〜11−4の抵抗値のばらつきに応じた定電流(I=V/R)を、カレントミラー回路の出力電流として得ることができる。なお、電流調整用抵抗22は、4つのゲージ抵抗11−1〜11−4のそれぞれに対応して4つ設け、もしくは4つのゲージ抵抗11−1〜11−4を代表する1つを設けるようにしてもよい。
このように、ゲージ抵抗11−1〜11−4の抵抗値のばらつき応じて定電流値を調整制御することで、抵抗値にばらつきが生じていない設計値の場合に得られると同等の出力電位V1〜V4を得ることが可能となる。この結果、ゲージ抵抗11−1〜11−4の抵抗値にばらつきが生じている場合であっても、ばらつきが生じていない場合と同等の検出信号V0を得ることができる。すなわち、センサ回路の感度を補正することができる。
(実施形態4)
次に、本発明の実施形態4に係るセンサ回路について説明する。
この実施形態4のセンサ回路では、定電流供給部12は、発生する定電流に対して正の温度特性を有し、温度の上昇に対して発生する定電流量を増加する機能を備えた構成を採用している。定電流供給部12を構成する定電流回路12−1〜12−4が、例えば図2に示すように構成されている場合には、電流調整用抵抗22を、温度特性を持った例えばサーミスタなどの抵抗で構成することで、上記機能を実現することができる。
このような温度特性を有する定電流供給部12を採用することで、温度の上昇とともにゲージ抵抗11−1〜11−4の抵抗値が減少した場合であっても、定電流供給部12からゲージ抵抗11−1〜11−4に供給される定電流が増加する。このときに、抵抗値の変化量と定電流の増加量とを適宜調整設定することで、温度が変化してもセンサ部11の出力電位(V1〜V4)を変化させないようにすることが可能となる。この結果、温度補償機能を備えたセンサ回路を提供することができる。
(実施形態5)
次に、本発明の実施形態5に係るセンサ回路について説明する。
この実施形態5のセンサ回路では、定電流供給部12は、各ゲージ抵抗11−1〜11−4毎に独立して個別に定電流を供給する機能を備えた構成を採用している。定電流供給部12を構成する定電流回路12−1〜12−4が、例えば図2に示すように構成されている場合には、OPアンプ21に入力される入力基準電位Vをそれぞれ可変調整することで発生する定電流をそれぞれ可変制御することが可能となる。
このような定電流供給部12を採用することで、圧力などが印加されていないときの各ゲージ抵抗11−1〜11−4に供給される定電流を個別に調整制御する。すなわち、センサ部11の出力電位V1とV2との差(V1−V2)、ならびにセンサ部11の出力電位V3とV4との差(V3−V4)がともに0となるように定電流を調整制御する。
これにより、オフセット電圧を0にして、零点調整機能を備えたセンサ回路を提供することができる。
なお、本発明の実施形態としては、上記実施形態1または2に対して、実施形態3〜5のいずれか1以上の実施形態を適宜組み合わせて実施することができる。
11…センサ部
11−1〜11−4…ゲージ抵抗
12…定電流供給部
12−1〜12−4…定電流回路
13…信号処理部
21…OPアンプ
22…電流調整用抵抗
23…電界効果トランジスタ
41,42,43…増幅アンプ

Claims (5)

  1. 一端が接地され、印加された物理量に応じて抵抗値が変化するゲージ抵抗と、
    前記ゲージ抵抗の他端と高位電源との間に接続され、前記ゲージ抵抗に定電流を供給し、前記ゲージ抵抗の他端に高位電源の電源電圧の半分以上の電圧を印加する定電流供給部と、
    前記ゲージ抵抗の抵抗値の変化を電気信号として取り出し、印加された物理量を検出する信号処理部と
    を有することを特徴とするセンサ回路。
  2. 前記ゲージ抵抗は、印加された物理量に応じて抵抗値が増加する第1のゲージ抵抗と、印加された物理量に応じて抵抗値が減少する第2のゲージ抵抗とを備え、
    前記信号処理部は、前記第1のゲージ抵抗の他端の出力電位と前記第2ゲージ抵抗の他端の出力電位との差電位を増幅する増幅回路を備えている
    ことを特徴とする請求項1に記載のセンサ回路。
  3. 前記定電流供給部は、前記ゲージ抵抗に物理量が印加されていないときの前記ゲージ抵抗の抵抗値に応じて定電流値を設定し、抵抗値が大きい程定電流値を小さくする
    ことを特徴とする請求項1または2に記載のセンサ回路。
  4. 前記定電流供給部は、前記ゲージ抵抗に供給する定電流に対して正の温度特性を有している
    ことを特徴とする請求項1〜3のいずれか1項に記載のセンサ回路。
  5. 前記定電流供給部は、前記ゲージ抵抗に物理量が印加されていないときに、ゲージ抵抗に供給する定電流を可変調整可能に構成されている
    ことを特徴とする請求項1〜4のいずれか1項に記載のセンサ回路。
JP2010115893A 2010-05-20 2010-05-20 センサ回路 Pending JP2011242312A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115893A JP2011242312A (ja) 2010-05-20 2010-05-20 センサ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115893A JP2011242312A (ja) 2010-05-20 2010-05-20 センサ回路

Publications (1)

Publication Number Publication Date
JP2011242312A true JP2011242312A (ja) 2011-12-01

Family

ID=45409110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115893A Pending JP2011242312A (ja) 2010-05-20 2010-05-20 センサ回路

Country Status (1)

Country Link
JP (1) JP2011242312A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816883B2 (en) 2015-10-19 2017-11-14 Aisin Seiki Kabushiki Kaisha Current source circuit and detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9816883B2 (en) 2015-10-19 2017-11-14 Aisin Seiki Kabushiki Kaisha Current source circuit and detection circuit

Similar Documents

Publication Publication Date Title
JP5363075B2 (ja) センサ回路
TWI442206B (zh) Voltage divider circuit and magnetic sensor circuit
JP5827759B2 (ja) 増幅回路及び増幅回路icチップ
US10197464B2 (en) Semiconductor physical quantity sensor having filter circuits for blocking electromagnetic wave noise
JP5930252B2 (ja) 擬似抵抗回路及び電荷検出回路
US10001424B2 (en) Physical quantity detector
JP2013140133A (ja) 磁気ホールセンサ
US8207778B2 (en) Physical quantity sensor
KR101276947B1 (ko) 저전력, 고정밀, 넓은 온도범위의 온도 센서
WO2015178271A1 (ja) 擬似抵抗回路及び電荷検出回路
JP2010136039A (ja) 信号増幅装置、及び磁気センサ装置
JP4320992B2 (ja) センサ回路
JP2011242312A (ja) センサ回路
JP6586853B2 (ja) 電流源回路及び検出回路
JP6357182B2 (ja) センサ装置
JP6097920B2 (ja) ブラシレスモータ制御装置
JP5856557B2 (ja) センサ閾値決定回路
JP6680509B2 (ja) ブリッジ型センサ素子を使用するセンサおよびセンサ素子のボトム側電圧調整回路
JP2005337861A (ja) 磁気検出装置
US20240061053A1 (en) Sensor device
JP4586708B2 (ja) 差動増幅器
JP2016086230A (ja) センサ装置
JP5443710B2 (ja) センサ回路
JP2021103112A (ja) センサ装置
JP2009081625A (ja) 増幅回路及び信号処理装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120116