JP2011236494A - Method for manufacturing metal member joined body, and metal member joined body - Google Patents

Method for manufacturing metal member joined body, and metal member joined body Download PDF

Info

Publication number
JP2011236494A
JP2011236494A JP2010220751A JP2010220751A JP2011236494A JP 2011236494 A JP2011236494 A JP 2011236494A JP 2010220751 A JP2010220751 A JP 2010220751A JP 2010220751 A JP2010220751 A JP 2010220751A JP 2011236494 A JP2011236494 A JP 2011236494A
Authority
JP
Japan
Prior art keywords
metal
heating
metal member
semiconductor device
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010220751A
Other languages
Japanese (ja)
Other versions
JP4795483B1 (en
Inventor
Minoru Isshiki
実 一色
Yasumasa Kudo
康全 工藤
Ryoko Masuda
涼子 増田
Daisuke Akama
大介 赤間
Yutaka Ochi
豊 越智
Yasuhiro Kobayashi
靖啓 小林
Hidetomo Asami
英知 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP2010220751A priority Critical patent/JP4795483B1/en
Application granted granted Critical
Publication of JP4795483B1 publication Critical patent/JP4795483B1/en
Publication of JP2011236494A publication Critical patent/JP2011236494A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal member joined, allowing the formation of a heated and sintered object of a predetermined thickness of heated and sintered metal particles between metal members, keeping the heated and sintered objects of the heated and sintered metal particles between the metal members, rigidly joining of the metal members by the heated and sintered object of metal particles, and preventing invasion and passage of liquid or gas in the sintered object, and the metal member joined body.SOLUTION: A pasty metal particle composition made of (A) the heated and sintered metal particles of an average particle size (median diameter D50) of 0.01-50 μm and (B) a volatile dispersant is interposed among the plurality of metal members. By heating under pressure-free condition (1), the volatile dispersant is vaporized, and the metal particles are sintered among them. A porous sintered body is thus generated having a void content at section of 15% or more in terms of area ratio. Using the porous sintered body, the plurality of metal members are joined and then the metal members are heated (2) at a temperature higher than the above heating (1) for reducing the porous content of the porous sintered body below 15%. The metal member joined body is thus obtained.

Description

本発明は、複数の金属製部材が加熱焼結性金属粒子の焼結物により接合された金属製部材接合体の製造方法、および、複数の金属製部材が加熱焼結性金属粒子の焼結物により接合された金属製部材接合体に関する。 The present invention relates to a method for producing a metal member assembly in which a plurality of metal members are joined by a sintered product of heat-sinterable metal particles, and a plurality of metal members are sintered from heat-sinterable metal particles. The present invention relates to a metal member joined body joined by an object.

銀、銅、ニッケルなどの金属粉末を液状熱硬化性樹脂組成物中に分散させてなる導電性・熱伝導性ペーストは、加熱により硬化して導電性・熱伝導性被膜が形成される。したがって、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ,抵抗,ダイオード,メモリ,演算素子(CPU)等のチップ部品の基板への接着、太陽電池の電極の形成、特に、アモルファスシリコン半導体を用いているために,高温処理のできない太陽電池の電極の形成、積層セラミックコンデンサ,積層セラミックインダクタ,積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に使用されている。 A conductive / thermal conductive paste obtained by dispersing a metal powder such as silver, copper, or nickel in a liquid thermosetting resin composition is cured by heating to form a conductive / thermal conductive film. Therefore, formation of conductive circuits on printed circuit boards, formation of electrodes for various electronic components such as resistors and capacitors and various display elements, formation of conductive films for electromagnetic wave shielding, capacitors, resistors, diodes, memories, arithmetic elements (CPU) and other chip parts to substrates, formation of solar cell electrodes, especially the formation of solar cell electrodes that cannot be processed at high temperatures due to the use of amorphous silicon semiconductors, multilayer ceramic capacitors, multilayer ceramic inductors Therefore, it is used for forming external electrodes of chip-type ceramic electronic components such as multilayer ceramic actuators.

近年、チップ部品の高性能化により、チップ部品からの発熱量が増え、電気伝導性はもとより、熱伝導性の向上が要求される。したがって、金属粒子の含有率を可能な限り増加することにより電気伝導性、熱伝導性を向上しようとする。ところが、そうすると、ペーストの粘度が上昇し、作業性が著しく低下するという問題がある。 2. Description of the Related Art In recent years, chip components have increased in performance, and the amount of heat generated from the chip components has increased, and improvement in thermal conductivity as well as electrical conductivity is required. Therefore, it tries to improve electrical conductivity and thermal conductivity by increasing the content of metal particles as much as possible. However, when it does so, there exists a problem that the viscosity of a paste rises and workability | operativity falls remarkably.

このような問題を解決するため、本発明者らは、銀粉末と揮発性分散媒とからなるペースト状銀組成物は、加熱すると当該揮発性分散媒が揮発し銀粉末が焼結して、極めて高い導電性と熱伝導性を有する固形状銀となること、および、金属製部材の接合や,導電回路の形成に有用なことを見出して国際出願した(WO2006/126614、WO2007/034833)。 In order to solve such a problem, the present inventors, when heated, the paste-like silver composition composed of silver powder and a volatile dispersion medium volatilizes the volatile dispersion medium and sinters the silver powder, An international application was filed (WO2006 / 126614, WO2007 / 034833), finding that it was solid silver having extremely high electrical conductivity and thermal conductivity, and that it was useful for joining metal members and forming conductive circuits.

しかしながら、加熱焼結性金属粒子の焼結物は、多数の金属粒子同士が複数の接点で焼結して連結した不規則な網目構造を有する多孔質体であり、多数の空孔や空隙、しかも、連続した空孔や空隙を有しているので、付着した液体(例えば、水)を毛細管現象により内部に吸入しやすく、また、雰囲気のガス(例えば、水蒸気、腐食性有機ガス)を内部に吸入しやすく、金属製の部材や部品が腐食等されるという問題があることに、本発明者らは気付いた。 However, the sintered product of heat-sinterable metal particles is a porous body having an irregular network structure in which a large number of metal particles are sintered and connected at a plurality of contact points, and a large number of pores and voids, Moreover, since it has continuous pores and voids, it is easy to suck the adhering liquid (for example, water) into the inside due to capillary action, and atmospheric gases (for example, water vapor, corrosive organic gas) are inside. The present inventors have found that there is a problem that metal members and parts are easily corroded and corroded.

特開2008−195974には、金属ナノ粒子を被接合部材間の所定の位置に保持した状態で加熱・焼成することにより被接合部材同士を接合する接合方法であって、被接合部材の接合面に、有機保護膜で被覆された金属ナノ粒子とバインダーとが含まれる接合材料を塗布して被接合部材同士を重ね合わせ、前記接合材料がその接合温度以上となるように加熱しながら比較的低圧の加圧力で前記被部材同士を加圧し、前記被接合部材、前記接合材料、及び、それらの周辺雰囲気のいずれかに生じる所定の物理量変化、又は加熱開始からの経過時間を測定し、該物理量変化が一定量に到達した時点又は一定時間経過後において、前記加圧力を比較的高圧へと増圧することを特徴とする接合方法が開示されており、接合強度が向上していると記載されている。 Japanese Patent Application Laid-Open No. 2008-195974 discloses a joining method for joining members to be joined by heating and baking in a state where metal nanoparticles are held at predetermined positions between the members to be joined. In addition, a bonding material containing metal nanoparticles coated with an organic protective film and a binder is applied, the members to be bonded are overlapped, and the bonding material is heated at a relatively low pressure while being heated to the bonding temperature or higher. Pressurizing the members to be pressed with each other and measuring a predetermined physical quantity change occurring in any of the members to be joined, the joining material, and their surrounding atmosphere, or an elapsed time from the start of heating, A joining method characterized by increasing the pressure to a relatively high pressure when the change reaches a certain amount or after a lapse of a certain time is disclosed, and the joining strength is improved. It is.

ところが、前記接合材料は柔らかいペースト状態であるので、比較的低圧の加圧力で前記被部材同士を加圧しても、該接合材料が容易に押しつぶされて厚さが極めて薄くなるという問題があり、そのため加熱・焼成後の被接合部材間の接着強さ・接合強度が不十分であるという問題がある。また、該接合材料が容易に押しつぶされるため、該接合材料が金属製部材間外に食み出して周辺を汚染し、ひいては、接合体である半導体装置等の金属製の部材や部品が腐食されたり、変質したりして半導体装置等の信頼性が低下する、という問題があることに、本発明者らは気付いた。 However, since the bonding material is in a soft paste state, there is a problem that even if the members to be pressed are pressed with a relatively low pressure, the bonding material is easily crushed and becomes extremely thin. Therefore, there exists a problem that the adhesive strength and joining strength between the to-be-joined members after heating and baking are inadequate. In addition, since the bonding material is easily crushed, the bonding material oozes out between the metal members and contaminates the periphery, and as a result, metal members and parts such as a semiconductor device as a bonded body are corroded. The present inventors have found that there is a problem that the reliability of a semiconductor device or the like is reduced due to or deterioration.

WO2006/126614WO2006 / 126614 WO2007/034833WO2007 / 034833 特開2008−195974号公報JP 2008-195974 A

本発明者らは上記の問題点を解決するため鋭意研究した結果、ペースト状金属粒子組成物を金属製部材間の接合に用いた場合、金属製部材間のペースト状金属粒子組成物の加熱焼結物が所定の厚みを確保でき、該ペースト状金属粒子組成物が金属製部材間外に食み出すことがなく、金属粒子が十分に加熱焼結して金属製部材を強固に接合し、かつ、液体(例えば、水)や気体(例えば、水蒸気、腐食性有機ガス)が該焼結物に侵入することがなく、該焼結物を通過することがない、金属製部材接合体の製造方法を見出して、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have found that when a paste-like metal particle composition is used for joining between metal members, the paste-like metal particle composition between metal members is heated and fired. The paste can secure a predetermined thickness, the paste-like metal particle composition does not stick out between the metal members, and the metal particles are sufficiently heated and sintered to firmly join the metal members, In addition, production of a metal member assembly in which liquid (for example, water) or gas (for example, water vapor, corrosive organic gas) does not enter the sintered product and does not pass through the sintered product. The method has been found and the present invention has been reached.

本発明の目的は、複数の金属製部材が加熱焼結性金属粒子の加熱焼結物により接合されてなる金属製部材接合体の製造方法において、金属製部材間のペースト状金属粒子組成物の加熱焼結物が所定の厚みを確保でき、該ペースト状金属粒子組成物が金属製部材間外に食み出すことがなく、金属製部材が強固に接合しており、しかも液体(例えば、水)や気体(例えば、水蒸気、腐食性有機ガス)が該焼結物に侵入することがなく、該焼結物を通過することがない、気密封止が可能な金属製部材接合体の製造方法を提供することにある。さらには、複数の金属製部材が加熱焼結性金属粒子の加熱焼結物により接合されてなる金属製部材接合体において、金属製部材間の加熱焼結性金属粒子の加熱焼結物の厚みが所定の厚みであり、加熱焼結性金属粒子の加熱焼結物が金属製部材間にとどまっており、金属製部材が強固に接合しており、しかも液体(例えば、水)や気体(例えば、水蒸気、腐食性有機ガス)が該焼結物に侵入することがなく、該焼結物を通過することがない、気密封止が可能な金属製部材接合体を提供することにある。 An object of the present invention is to provide a method for producing a metal member assembly in which a plurality of metal members are joined by a heat-sintered product of heat-sinterable metal particles. The heat-sintered product can ensure a predetermined thickness, the paste-like metal particle composition does not protrude between the metal members, the metal members are firmly joined, and liquid (for example, water ) Or gas (for example, water vapor, corrosive organic gas) does not enter the sintered product and does not pass through the sintered product, and a method for producing a metal member assembly that can be hermetically sealed Is to provide. Further, in a metal member assembly in which a plurality of metal members are joined by a heat-sintered product of heat-sinterable metal particles, the thickness of the heat-sintered product of heat-sinterable metal particles between the metal members Is a predetermined thickness, the heat-sintered product of heat-sinterable metal particles stays between the metal members, the metal members are firmly bonded, and liquid (for example, water) or gas (for example, It is an object of the present invention to provide a metal member assembly that can be hermetically sealed so that water vapor, corrosive organic gas) does not enter the sintered product and does not pass through the sintered product.

この目的は、
「[1] (A)平均粒径(メディアン径D50)が0.01μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、無加圧で加熱(1)することにより、該揮発性分散媒を揮散させ、該金属粒子同士を焼結せしめて生成した、断面における空孔率が面積比で15%以上である多孔質焼結物により、複数の金属製部材同士を接合させ、しかる後に、該金属製部材を加熱(1)よりも高い温度で加熱(2)して、該多孔質焼結物の空孔率を15%未満に低減することを特徴とする、金属製部材接合体の製造方法。
[2] 加熱(1)の加熱温度が70℃以上300℃以下であり、加熱(2)の加熱温度が250℃以上であり、かつ加熱(2)の加熱温度が加熱(1)の加熱温度よりも50℃以上高い温度であることを特徴とする、[1]に記載の金属製部材接合体の製造方法。
[3]加熱(2)において、金属製部材接合体の多孔質焼結物に0.001MPa以上の圧力を加えることを特徴とする、[1]に記載の金属製部材接合体の製造方法。
[4] 加熱(1)の加熱温度が70℃以上300℃以下であり、加熱(2)の加熱温度が200℃以上であり、かつ加熱(2)の加熱温度が加熱(1)の加熱温度よりも50℃以上高い温度であることを特徴とする、[3]に記載の金属製部材接合体の製造方法。
[5] 加熱焼結性金属粒子が還元法で製造され、表面が有機化合物で被覆されている銀粒子であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、[1]〜[4]のいずれかに記載の金属製部材接合体の製造方法。
[6] 加熱(2)における雰囲気ガスが、不活性ガスまたは乾燥空気であることを特徴とする[1]〜[5]のいずれかに記載の金属製部材接合体の製造方法。
[7] [1]〜[6]のいずれかに記載の金属製部材接合体の製造方法により製造された、金属製部材接合体。
[8] 複数の金属製部材が、加熱焼結性金属粒子が焼結して生成した断面における空孔率が面積比で15%未満の金属粒子焼結物により接合されていることを特徴とする、[7]記載の金属製部材接合体。
[9] 接合した金属製部材間のせん断接着強さが14MPa以上であることを特徴とする、[8]記載の金属製部材接合体。」により達成される。
This purpose is
“[1] (A) A plurality of paste-like metal particle compositions comprising heat-sinterable metal particles having an average particle diameter (median diameter D50) of 0.01 μm or more and 50 μm or less and (B) a volatile dispersion medium. By interposing between metal members and heating (1) without pressure, the volatile dispersion medium is volatilized and the metal particles are sintered together, and the porosity in the cross section is the area ratio. In the porous sintered product of 15% or more, a plurality of metal members are joined together, and then the metal members are heated (2) at a temperature higher than the heating (1), A method for producing a metal member assembly, wherein the porosity of a sintered product is reduced to less than 15%.
[2] The heating temperature of heating (1) is 70 ° C. or higher and 300 ° C. or lower, the heating temperature of heating (2) is 250 ° C. or higher, and the heating temperature of heating (2) is the heating temperature of heating (1) The method for producing a metal member assembly according to [1], wherein the temperature is higher by 50 ° C. or more.
[3] The method for producing a metal member assembly according to [1], wherein a pressure of 0.001 MPa or more is applied to the porous sintered product of the metal member assembly in the heating (2).
[4] The heating temperature of heating (1) is 70 ° C. or higher and 300 ° C. or lower, the heating temperature of heating (2) is 200 ° C. or higher, and the heating temperature of heating (2) is the heating temperature of heating (1) The method for producing a metal member assembly according to [3], wherein the temperature is higher by 50 ° C. or more.
[5] The heat-sinterable metal particles are silver particles produced by a reduction method and the surface is coated with an organic compound, and the metal of the metal member is copper, silver, gold, platinum, palladium, or The method for producing a metal member joined body according to any one of [1] to [4], which is an alloy of these metals.
[6] The method for producing a metal member assembly according to any one of [1] to [5], wherein the atmospheric gas in the heating (2) is an inert gas or dry air.
[7] A metal member assembly manufactured by the method for manufacturing a metal member assembly according to any one of [1] to [6].
[8] The plurality of metal members are joined by a sintered metal particle having a porosity of less than 15% in area ratio in a cross section formed by sintering the heat-sinterable metal particles. The metal member assembly according to [7].
[9] The metal member joined body according to [8], wherein the shear adhesive strength between the joined metal members is 14 MPa or more. Is achieved.

本発明の金属製部材接合体の製造方法によると、金属製部材間のペースト状金属粒子組成物の加熱焼結物が所定の厚みを確保でき、該ペースト状金属粒子組成物が金属製部材間外に食み出すことがなく、金属製部材同士が加熱焼結性金属粒子の加熱焼結物により強固に接合しており、かつ、液体(例えば、水)や気体(例えば、水蒸気、腐食性有機ガス)が該焼結物に侵入することがなく、該焼結物を通過することがないという、気密封止性の金属製部材接合体を製造することができる。 According to the method for producing a metal member assembly of the present invention, the heat-sintered paste-like metal particle composition between the metal members can ensure a predetermined thickness, and the paste-like metal particle composition is between the metal members. The metal members are not sticking out to the outside, and are firmly joined to each other by a heat-sintered product of heat-sinterable metal particles, and liquid (for example, water) or gas (for example, water vapor, corrosiveness) It is possible to produce a hermetic sealing metal member assembly in which the organic gas does not enter the sintered product and does not pass through the sintered product.

製造される金属製部材接合体が半導体装置(例えば金属製のケースと蓋の接合体)である場合に、加圧によって食み出たペースト状金属粒子組成物の一部が半導体装置の内部に落下した状態で密閉されて該ペースト中の揮発性分散媒の熱分解により発生したガスにより半導体装置の耐熱性が低下するということがない。 When the metal member assembly to be manufactured is a semiconductor device (for example, a metal case and lid assembly), a part of the paste-like metal particle composition that protrudes by pressurization is contained in the semiconductor device. The heat resistance of the semiconductor device is not lowered by the gas generated by the thermal decomposition of the volatile dispersion medium in the paste which is sealed in the fall state.

本発明の金属製部材接合体は、金属製部材間の加熱焼結性金属粒子の加熱焼結物の厚みが所定の厚みであり、加熱焼結性金属粒子の加熱焼結物が金属製部材間にとどまっており、金属製部材同士が加熱焼結性金属粒子の加熱焼結物により強固に接合しており、かつ、液体(例えば、水)や気体(例えば、水蒸気、腐食性有機ガス)が該焼結物に侵入することがなく、該焼結物を通過することがない。 In the metal member assembly of the present invention, the thickness of the heat-sintered metal particles between the metal members is a predetermined thickness, and the heat-sintered metal particle heat-sintered material is the metal member. The metal members are firmly joined to each other by the heat-sintered metal particles, and liquid (for example, water) or gas (for example, water vapor or corrosive organic gas) Does not enter the sintered product and does not pass through the sintered product.

本発明の金属製部材接合体が半導体装置(例えば金属製のケースと蓋の接合体)である場合に、加熱焼結性金属粒子の加熱焼結物が半導体装置の内部に密閉されておらず、半導体装置の耐熱性が低下するということがない。 When the metal member assembly of the present invention is a semiconductor device (for example, a metal case and lid assembly), the heat-sintered metal particles are not sealed inside the semiconductor device. The heat resistance of the semiconductor device is not reduced.

実施例1の、半導体装置(1)のケースと蓋を接合している空孔率(1)を有する多孔質焼結物および比較例1の半導体装置(1)のケースと蓋を接合している空孔率(1)を有する多孔質焼結物の断面部分拡大写真である。The porous sintered body having porosity (1) joining the case and lid of the semiconductor device (1) of Example 1 and the case and lid of the semiconductor device (1) of Comparative Example 1 were joined. 2 is an enlarged photograph of a cross-section of a porous sintered product having a porosity (1). 実施例2の、半導体装置(1)のケースと蓋を接合している空孔率(1)を有する多孔質焼結物の断面部分拡大写真である。6 is a cross-sectional enlarged photograph of a porous sintered product having porosity (1) joining a case and a lid of a semiconductor device (1) in Example 2. FIG. 実施例1の、半導体装置(2)のケースと蓋を接合している空孔率(2)を有する焼結物の断面部分拡大写真である。4 is a cross-sectional enlarged photograph of a sintered product having a porosity (2) joining a case and a lid of a semiconductor device (2) in Example 1. 実施例2の、半導体装置(2)のケースと蓋を接合している空孔率(2)を有する焼結物の断面部分拡大写真である。6 is a cross-sectional enlarged photograph of a sintered product having a porosity (2) joining a case and a lid of a semiconductor device (2) in Example 2. 実施例3の、半導体装置(2)のケースと蓋を接合している空孔率(2)を有する焼結物の断面部分拡大写真である。6 is a cross-sectional enlarged photograph of a sintered product having a porosity (2) joining a case and a lid of a semiconductor device (2) in Example 3. FIG. 実施例4の、半導体装置(2)のケースと蓋を接合している空孔率(2)を有する焼結物の断面部分拡大写真である。6 is a cross-sectional enlarged photograph of a sintered product having porosity (2) joining a case and a lid of a semiconductor device (2) in Example 4. 比較例2の、半導体装置(1)のケースと蓋を接合している空孔率(1)を有する多孔質焼結物の断面部分拡大写真である。6 is a cross-sectional enlarged photograph of a porous sintered product having a porosity (1) joining a case and a lid of a semiconductor device (1) in Comparative Example 2. 実施例、比較例におけるせん断接着強さ測定用試験体(1)、せん断接着強さ測定用試験体(2)の平面図である。銀基板1と銀チップ3とが、銀粒子の加熱焼結物である固体状銀により接合されている。FIG. 2 is a plan view of a test specimen (1) for measuring shear bond strength and a test specimen (2) for measuring shear bond strength in Examples and Comparative Examples. The silver substrate 1 and the silver chip 3 are joined by solid silver which is a heat-sintered product of silver particles. 図8におけるX−X線断面図である。It is the XX sectional view taken on the line in FIG. 実施例、比較例における半導体装置(1)、半導体装置(2)の断面図である。It is sectional drawing of the semiconductor device (1) in a Example and a comparative example, and a semiconductor device (2).

本発明の金属製部材接合体の製造方法は、(A)平均粒径が0.01μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、無加圧で加熱(1)することにより、該揮発性分散媒を揮散させ、該金属粒子同士を焼結せしめて生成した、断面における空孔率が面積比で15%以上である多孔質焼結物により複数の金属製部材同士を接合させ、しかる後に、該金属製部材を加熱(1)よりも高い温度で加熱(2)して、該多孔質焼結物の断面における空孔率が面積比で15%未満となるように低減することを特徴とする。本発明の金属製部材接合体の製造方法によれば、加熱(1)により生成した多孔質焼結物は、その空孔や空隙が外部と連通しているので、焼結物内部に入り込んだ揮発状態の揮発性分散媒(B)が外部に自然に排出され、その内部が清浄になった後で、加熱(2)により多孔質焼結物の穴孔や空隙を塞いで気密にすることが可能である。 The method for producing a metal member assembly of the present invention comprises a paste-like metal particle composition comprising (A) heat-sinterable metal particles having an average particle diameter of 0.01 μm or more and 50 μm or less and (B) a volatile dispersion medium. The product is interposed between a plurality of metal members and heated (1) without pressure to volatilize the volatile dispersion medium and sinter the metal particles to generate pores in the cross section. A plurality of metal members are joined together by a porous sintered product having a ratio of 15% or more in area ratio, and then the metal members are heated (2) at a temperature higher than heating (1), The porosity in the cross section of the porous sintered product is reduced so as to be less than 15% in area ratio. According to the method for producing a metal member assembly of the present invention, the porous sintered product produced by heating (1) has entered the inside of the sintered product because its pores and voids communicate with the outside. After the volatile dispersion medium (B) in the volatile state is naturally discharged to the outside and the inside is cleaned, the holes and voids of the porous sintered product are closed and airtight by heating (2). Is possible.

平均粒径(メディアン径D50)が0.01μm以上50μm以下である加熱焼結性金属粒子(A)における平均粒径(メディアン径D50)は、レーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径(メディアン径D50)である。メディアン径D50は、レーザー回折法50%粒径と称されたり(特開2003−55701参照)、体積累積粒径D50と称されてもいる(特開2007−84860参照)。
レーザー回折散乱式粒度分布測定法は、金属粒子にレーザービームを照射し、その金属粒子の大きさに応じて様々な方向へ発せられる回折光や散乱光のレーザー光の強度を測定することにより一次粒子の粒径を求めるという汎用の測定方法である。数多くの測定装置が市販されており(例えば、株式会社島津製作所製レーザ回折式粒度分布測定装置SALD、日機装株式会社製レーザー回折散乱式粒度分布測定装置マイクロトラック)、これらを用いて容易に平均粒径(メディアン径D50)を測定することができる。なお金属粒子の凝集が強い場合には、ホモジナイザーにより一次粒子の状態に分散してから測定することが好ましい。
The average particle diameter (median diameter D50) in the heat-sinterable metal particles (A) having an average particle diameter (median diameter D50) of 0.01 μm or more and 50 μm or less is a primary particle obtained by a laser diffraction scattering type particle size distribution measuring method. Average particle diameter (median diameter D50). The median diameter D50 is also referred to as a laser diffraction method 50% particle size (see Japanese Patent Application Laid-Open No. 2003-55701) or a volume cumulative particle size D50 (see Japanese Patent Application Laid-Open No. 2007-84860).
The laser diffraction / scattering particle size distribution measurement method is a method of irradiating a metal beam with a laser beam and measuring the intensity of the diffracted light or scattered light emitted in various directions depending on the size of the metal particle. This is a general-purpose measurement method for determining the particle size of particles. Many measuring devices are commercially available (for example, a laser diffraction particle size distribution measuring device SALD manufactured by Shimadzu Corporation, a laser diffraction scattering particle size distribution measuring device Microtrac manufactured by Nikkiso Co., Ltd.), and using these, the average particle size can be easily obtained. The diameter (median diameter D50) can be measured. In the case where the aggregation of the metal particles is strong, it is preferably measured after being dispersed in a primary particle state by a homogenizer.

加熱焼結性金属粒子(A)の平均粒径(メディアン径D50)は0.01μm以上50μm以下である。平均粒径(メディアン径D50)が50μmを越えると、加熱焼結性金属粒子(A)の焼結性が低下するため平均粒径(メディアン径D50)はそれより小さい方が好ましい。このため20μm以下であることが好ましく、特には10μm以下であることが好ましい。しかし、平均粒径(メディアン径D50)が0.01μm未満であると金属粒子は表面活性が強すぎて、ペースト状金属粒子組成物の保存安定性が低下し、加熱焼結時の接合強度が不均一になるため、平均粒径(メディアン径D50)は0.01μm以上であり、0.1μm以上であることが好ましく、特には0.7μm以上であることが好ましい。 The average particle diameter (median diameter D50) of the heat-sinterable metal particles (A) is from 0.01 μm to 50 μm. If the average particle diameter (median diameter D50) exceeds 50 μm, the sinterability of the heat-sinterable metal particles (A) is lowered, so the average particle diameter (median diameter D50) is preferably smaller. For this reason, it is preferable that it is 20 micrometers or less, and it is especially preferable that it is 10 micrometers or less. However, if the average particle diameter (median diameter D50) is less than 0.01 μm, the metal particles have too high surface activity, the storage stability of the paste-like metal particle composition is lowered, and the bonding strength during heat sintering is low. In order to be non-uniform, the average particle diameter (median diameter D50) is 0.01 μm or more, preferably 0.1 μm or more, and particularly preferably 0.7 μm or more.

加熱焼結性金属粒子(A)の材質は、常温で固体であり、加熱により焼結しやすければよく、金、銀、銅、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示され、さらには金属化合物が例示される。
これらの材質のうちでは、加熱焼結性、焼結物の熱伝導性および導電性の点で、銀、銅、ニッケルが好ましく、銀、銀合金、銅、銅合金がより好ましく、銀が特に好ましい。銀粒子は、表面や内部が酸化銀または過酸化銀であってもよいが、その割合は50%以下であることが好ましく、20%以下であることがより好ましく、5%以下であることが特に好ましい。銅粒子は、表面や内部が酸化銅であってもよいがその割合は50%以下であることが好ましく、20%以下であることがより好ましく、5%以下であることが特に好ましい。
The material of the heat-sinterable metal particles (A) is solid at room temperature and needs only to be easily sintered by heating. Gold, silver, copper, palladium, nickel, tin, aluminum, and alloys of these metals are used. Exemplified are metal compounds.
Among these materials, silver, copper, and nickel are preferable, silver, silver alloy, copper, and copper alloy are more preferable, and silver is particularly preferable in terms of heat-sinterability, thermal conductivity of the sintered product, and conductivity. preferable. The silver particles may have silver oxide or silver peroxide on the surface or inside, but the ratio is preferably 50% or less, more preferably 20% or less, and preferably 5% or less. Particularly preferred. The copper particles may have copper oxide on the surface or inside, but the ratio is preferably 50% or less, more preferably 20% or less, and particularly preferably 5% or less.

また加熱焼結性金属粒子(A)は、通常、単独の材質からなるが、複数の材質の粒子の混合物であってもよい。加熱焼結性金属粒子(A)は、それら加熱焼結性金属(例えば銀)により表面がメッキされた金属(例えば、銅、ニッケルまたはアルミニウム)粒子、それら加熱焼結性金属(例えば、銀)により表面がメッキされた樹脂(例えば、エポキシ樹脂、ポリエーテルサルフォン樹脂)粒子であってもよい。 The heat-sinterable metal particles (A) are usually composed of a single material, but may be a mixture of particles of a plurality of materials. Heat-sinterable metal particles (A) are metal (for example, copper, nickel or aluminum) particles whose surfaces are plated with these heat-sinterable metals (for example, silver), those heat-sinterable metals (for example, silver) Resin (for example, epoxy resin, polyether sulfone resin) particles whose surface is plated by the above may be used.

加熱焼結性金属粒子(A)の形状は、加熱焼結性があれば特に限定されず、球状,針状,角状,樹枝状,繊維状,フレーク状(片状),粒状,不規則形状,涙滴状が例示される(JIS Z2500:2000参照)。さらには楕円球状,海綿状,ぶどう状,紡錘状,略立方体状等が例示される。
その形状は、多孔質焼結物を形成しやすい点で球状、粒状およびフレーク状が好ましい。
ここで言う球状とは、ほぼ球に近い形状である(JIS Z2500:2000参照)。必ずしも真球状である必要はなく、粒子の長径(DL)と短径(DS)との比(DL)/(DS)(球状係数と言うことがある)が1.0〜1.2の範囲にあるものが好ましい。
The shape of the heat-sinterable metal particle (A) is not particularly limited as long as it has heat-sinterability, and is spherical, needle-like, angular, dendritic, fibrous, flake-like (single), granular, irregular Examples are the shape and teardrop shape (see JIS Z2500: 2000). Further examples include an oval shape, a spongy shape, a grape shape, a spindle shape, and a substantially cubic shape.
The shape is preferably spherical, granular or flaky from the viewpoint of easily forming a porous sintered product.
The spherical shape referred to here is a shape that is almost a sphere (see JIS Z2500: 2000). The spherical shape is not necessarily required, and the ratio of the major axis (DL) to the minor axis (DS) of the particle (DL) / (DS) (sometimes referred to as the spherical coefficient) is in the range of 1.0 to 1.2. Are preferred.

粒状とは、不規則形状のものではなくほぼ等しい寸法をもつ形状である(JIS Z2500:2000参照)。
フレーク状(片状)とは、板のような形状であり(JIS Z2500:2000参照)、鱗のように薄い板状であることから鱗片状とも言われるものである。いずれの形状であっても粒度分布は限定されない。
好ましい加熱焼結性金属粒子(A)は、還元法で作られた銀粒子である。なお、還元法による銀粒子の製造方法は多く提案されており、通常、硝酸銀水溶液に水酸化ナトリウム水溶液を加えて酸化銀を調製し、これにホルマリンのような還元剤の水溶液を加えることにより酸化銀を還元して銀粒子分散液とし、分散液をろ過し、ろ過残渣を水洗し、乾燥をおこなうことにより製造される。
Granular is not an irregular shape but a shape with almost equal dimensions (see JIS Z2500: 2000).
The flake shape (strip shape) is a plate-like shape (see JIS Z2500: 2000) and is also called a scale shape because it is a thin plate shape like a scale. No matter the shape, the particle size distribution is not limited.
Preferred heat-sinterable metal particles (A) are silver particles produced by a reduction method. Many methods for producing silver particles by the reduction method have been proposed. Usually, an aqueous solution of a reducing agent such as formalin is added to an aqueous solution of silver nitrate by adding an aqueous solution of sodium hydroxide to an aqueous solution of silver nitrate. It is produced by reducing silver to form a silver particle dispersion, filtering the dispersion, washing the filtration residue with water, and drying.

加熱焼結性金属粒子(A)は、加熱焼結性金属粒子の凝集防止のため表面が有機物で被覆ないし処理されていることが好ましく、特に撥水性有機物で被覆ないし処理されていることが好ましい。そのような撥水性有機物としては、高・中級脂肪酸、高・中級脂肪酸金属塩、高・中級脂肪酸アミド、高・中級脂肪酸エステルおよび高・中級アルキルアミンが例示される。被覆効果、処理効果の点で特には高・中級脂肪酸が好ましい。高・中級脂肪酸は加熱焼結性金属粒子表面に化学結合していることがあり得る。 The surface of the heat-sinterable metal particles (A) is preferably coated or treated with an organic substance to prevent aggregation of the heat-sinterable metal particles, and particularly preferably coated or treated with a water-repellent organic substance. . Examples of such water-repellent organic substances include high / intermediate fatty acids, high / intermediate fatty acid metal salts, high / intermediate fatty acid amides, high / intermediate fatty acid esters, and high / intermediate alkylamines. High and intermediate fatty acids are particularly preferred in terms of coating effect and treatment effect. High and intermediate fatty acids may be chemically bonded to the surface of the heat-sinterable metal particles.

高級脂肪酸は、炭素原子数15以上の脂肪酸であり、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、12−ヒドロキシオクタデカン酸(12−ヒドロキシステアリン酸)、エイコサン酸(アラキン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)、ヘキサコサン酸(セロチン酸)、オクタコサン酸(モンタン酸)等の直鎖飽和脂肪酸;2−ペンチルノナン酸、2−ヘキシルデカン酸、2−ヘプチルドデカン酸、イソステアリン酸等の分枝飽和脂肪酸;パルミトレイン酸、オレイン酸、イソオレイン酸、エライジン酸、リノール酸、リノレン酸、リシノール酸、ガドレン酸、エルカ酸、セラコレイン酸等の不飽和脂肪酸が例示される。 The higher fatty acid is a fatty acid having 15 or more carbon atoms, such as pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), 12-hydroxyoctadecanoic acid (12-hydroxystearic acid), eicosanoic acid ( Linear saturated fatty acids such as arachidic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexacosanoic acid (serotic acid), octacosanoic acid (montanic acid); 2-pentylnonanoic acid, 2-hexyldecanoic acid, 2- Examples are branched saturated fatty acids such as heptyldodecanoic acid and isostearic acid; unsaturated fatty acids such as palmitoleic acid, oleic acid, isooleic acid, elaidic acid, linoleic acid, linolenic acid, ricinoleic acid, gadrenic acid, erucic acid, and ceracoleic acid The

中級脂肪酸は、炭素原子数が6〜14の脂肪酸であり、ヘキサン酸(カプロン酸)、ヘプタン酸、オクタン酸(カプリル酸)、ノナン酸(ペラルゴン酸)、デカン酸(カプリン酸)、ウンデカン酸、ドデカン酸(ラウリン酸)、トリデカン酸、テトラデカン酸(ミリスチン酸)等の直鎖飽和脂肪酸;イソヘキサン酸、イソヘプタン酸、2−エチルヘキサン酸、イソオクタン酸、イソノナン酸、2−プロピルヘプタン酸、イソデカン酸、イソウンデカン酸、2−ブチルオクタン酸、イソドデカン酸、イソトリデカン酸等の分枝飽和脂肪酸;10−ウンデセン酸等の不飽和脂肪酸が例示される。 Intermediate fatty acids are fatty acids having 6 to 14 carbon atoms, such as hexanoic acid (caproic acid), heptanoic acid, octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), undecanoic acid, Linear saturated fatty acids such as dodecanoic acid (lauric acid), tridecanoic acid, tetradecanoic acid (myristic acid); isohexanoic acid, isoheptanoic acid, 2-ethylhexanoic acid, isooctanoic acid, isononanoic acid, 2-propylheptanoic acid, isodecanoic acid, Illustrative examples include branched saturated fatty acids such as isoundecanoic acid, 2-butyloctanoic acid, isododecanoic acid and isotridecanoic acid; and unsaturated fatty acids such as 10-undecenoic acid.

有機物の被覆量は、金属粒子の粒径、比表面積、形状などにより変わるが、加熱焼結性金属粒子(A)の0.01〜5重量%が好ましく、0.1〜2重量%がより好ましい。少なすぎると加熱焼結性金属粒子(A)が凝集しやすくなって保存安定性が低下し、ひいては加熱焼結時の接合強度が不均一になり、多すぎると加熱焼結性金属粒子(A)の加熱焼結性が低下するからである。 The coating amount of the organic matter varies depending on the particle size, specific surface area, shape, etc. of the metal particles, but is preferably 0.01 to 5% by weight, more preferably 0.1 to 2% by weight of the heat-sinterable metal particles (A). preferable. If the amount is too small, the heat-sinterable metal particles (A) tend to agglomerate and the storage stability is lowered.As a result, the bonding strength at the time of heat-sintering becomes uneven, and if too large, the heat-sinterable metal particles (A) This is because the heat sinterability of) decreases.

有機物の被覆量は通常の方法で測定できる。例えば、窒素ガス中で有機物の揮発温度または熱分解温度以上に加熱して重量減少を測定する方法、加熱焼結性金属粒子(A)を酸素気流中で加熱して加熱焼結性金属粒子(A)に付着していた有機物中の炭素を炭酸ガスに変え、赤外線吸収スペクトル法により定量分析する方法が例示される。 The coating amount of the organic substance can be measured by a usual method. For example, a method of measuring weight loss by heating above the volatilization temperature or pyrolysis temperature of organic matter in nitrogen gas, heat-sinterable metal particles (A) are heated in an oxygen stream and heat-sinterable metal particles ( An example is a method in which carbon in the organic matter adhering to A) is changed to carbon dioxide and quantitative analysis is performed by infrared absorption spectroscopy.

有機物で被覆したフレーク状加熱焼結性金属粒子は、例えば、ボールミル中に球状のような形状の金属粒子と有機物を投入して、ボールにより金属粒子を殴打することにより製造することができる(特公昭40−6971、特開2000−234107の[0004]参照)。
具体的には、粒状の加熱焼結性金属粒子と、高・中級脂肪酸、高・中級脂肪酸金属塩、高・中級脂肪酸エステル、高・中級脂肪酸アミド等の有機物とを、セラミック製のボールとともに、回転式ドラム装置(例えばボールミル)に投入し、ボールで金属粒子を殴打することにより、該有機物が付着したフレーク状加熱焼結性金属粒子を製造することができる。この際、潤滑性向上のための高・中級脂肪酸、高・中級脂肪酸金属塩(ただし、アルカリ金属塩を除く)、高・中級脂肪酸エステル、高・中級脂肪酸アミド、高・中級アルキルアミン等の有機物が、フレーク状加熱焼結性金属粒子表面に付着する。表面を有機物で被覆した加熱焼結性金属粒子(A)は、該有機物の溶液中に加熱焼結性金属粒子を浸漬した後、該金属粒子を取り出して乾燥することにより製造することもできる。
The flaky heat-sinterable metal particles coated with an organic material can be produced, for example, by putting metal particles having a spherical shape and an organic material into a ball mill and hitting the metal particles with a ball (special feature). No. 40-6971 and JP-A 2000-234107 [0004]).
Specifically, granular heat-sinterable metal particles and organic substances such as high / intermediate fatty acids, high / intermediate fatty acid metal salts, high / intermediate fatty acid esters, and high / intermediate fatty acid amides, together with ceramic balls, The flaky heat-sinterable metal particles to which the organic matter is adhered can be produced by putting them into a rotary drum device (for example, a ball mill) and striking the metal particles with a ball. At this time, organic substances such as high / intermediate fatty acids, high / intermediate fatty acid metal salts (excluding alkali metal salts), high / intermediate fatty acid esters, high / intermediate fatty acid amides, and high / intermediate alkylamines for improving lubricity Adheres to the surface of the flaky heat-sinterable metal particles. The heat-sinterable metal particles (A) whose surfaces are coated with an organic material can also be produced by immersing the heat-sinterable metal particles in a solution of the organic material, and then taking out the metal particles and drying them.

加熱焼結性金属粒子(A)表面は、このような高・中級脂肪酸等の有機物により半分以上が被覆されていればよいが、全部が被覆されていることが好ましい。金属表面が撥水性有機物により被覆された場合には、加熱焼結性金属粒子(A)は撥水性を示す。 The surface of the heat-sinterable metal particles (A) may be covered with more than half of the organic material such as high / intermediate fatty acid, but it is preferable that the surface is covered entirely. When the metal surface is coated with a water-repellent organic material, the heat-sinterable metal particles (A) exhibit water repellency.

揮発性分散媒(B)は、粉状である加熱焼結性金属粒子をペースト状にするために配合される。なお、ペースト状はクリーム状やスラリー状を含むものである。加熱時に加熱焼結性金属粒子が焼結可能とするため、あるいは、ペースト状金属粒子組成物を加熱による接合剤として使用可能にするためには、常温常圧において非揮発性ではなく、揮発性であることが必要である。特に、加熱焼結性金属粒子(A)が銀粒子や銅粒子の場合、焼結する際に分散媒が揮散すると、銀粒子や銅粒子が焼結しやすくなり、接合剤として利用しやすくなるからである。揮発性分散媒の沸点は、常圧において60℃〜300℃であることが好ましい。沸点が60℃未満であると、ペースト状金属粒子組成物を調製する作業中に溶媒が揮散しやすく、沸点が300℃より大であると、加熱後も揮発性分散媒(B)が残留しかねないからである。 The volatile dispersion medium (B) is blended in order to form powdery heat-sinterable metal particles into a paste. The paste form includes a cream form and a slurry form. In order to make the heat-sinterable metal particles sinterable during heating, or to make the paste-like metal particle composition usable as a bonding agent by heating, it is not non-volatile at normal temperature and pressure and is volatile. It is necessary to be. In particular, when the heat-sinterable metal particles (A) are silver particles or copper particles, if the dispersion medium is volatilized during sintering, the silver particles and copper particles are easily sintered and can be easily used as a bonding agent. Because. The boiling point of the volatile dispersion medium is preferably 60 ° C to 300 ° C at normal pressure. When the boiling point is less than 60 ° C., the solvent easily evaporates during the preparation of the paste-like metal particle composition, and when the boiling point is higher than 300 ° C., the volatile dispersion medium (B) remains even after heating. Because it might be.

そのような揮発性分散媒(B)は、炭素原子および水素原子からなる揮発性炭化水素化合物、炭素原子,水素原子および酸素原子からなる揮発性有機化合物、炭素原子,水素原子および窒素原子からなる揮発性有機化合物、炭素原子,水素原子,酸素原子および窒素原子からなる揮発性有機化合物、前記揮発性有機化合物のうちの親水性揮発性有機化合物と水との混合物などから選択される。これらはいずれも常温において液状である。
水は純水が好ましく、その電気伝導度は100μS/cm以下が好ましく、10μS/cm以下がより好ましい。純水の製造方法は、通常の方法で良く、イオン交換法、逆浸透法、蒸留法が例示される。
Such a volatile dispersion medium (B) is composed of a volatile hydrocarbon compound composed of carbon atoms and hydrogen atoms, a volatile organic compound composed of carbon atoms, hydrogen atoms and oxygen atoms, and a carbon atom, hydrogen atoms and nitrogen atoms. It is selected from a volatile organic compound, a volatile organic compound comprising carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms, a mixture of a hydrophilic volatile organic compound of the volatile organic compounds and water, and the like. These are all liquid at room temperature.
The water is preferably pure water, and its electric conductivity is preferably 100 μS / cm or less, more preferably 10 μS / cm or less. The pure water production method may be a normal method, and examples include an ion exchange method, a reverse osmosis method, and a distillation method.

具体的には、炭素原子,水素原子および酸素原子からなる揮発性有機化合物として、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール等の揮発性一価アルコール;エチレングリコールモノメチルエーテル(メチルセロソルブ、メチルカルビトール)、エチレングリコールモノエチルエーテル(エメチルセロソルブ、エチルカルビトール)、エチレングリコールモノプロピルエーテル(プロピルセロソルブ、プロピルカルビトール)、エチレングリコールモノブチルエーテル(ブチルセロソルブ、ブチルカルビトール)、プロピレングリコールモノメチルエーテル、メチルメトキシブタノール等のエーテル結合を有する揮発性一価アルコール;ベンジルアルコール、2−フェニルエチルアルコールなどの揮発性アラルキルアルコール;テルピネオール等のテルペン系アルコール;エチレングリコール、プロピレングリコール、グリセリンなどの揮発性多価脂肪族アルコールが例示される。 Specifically, as volatile organic compounds composed of carbon atoms, hydrogen atoms and oxygen atoms, volatilization of ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, etc. Monohydric alcohol: ethylene glycol monomethyl ether (methyl cellosolve, methyl carbitol), ethylene glycol monoethyl ether (emethyl cellosolve, ethyl carbitol), ethylene glycol monopropyl ether (propyl cellosolve, propyl carbitol), ethylene glycol mono Ethers such as butyl ether (butyl cellosolve, butyl carbitol), propylene glycol monomethyl ether, methylmethoxybutanol Examples include volatile monohydric alcohols having a bond; volatile aralkyl alcohols such as benzyl alcohol and 2-phenylethyl alcohol; terpene alcohols such as terpineol; and volatile polyhydric aliphatic alcohols such as ethylene glycol, propylene glycol, and glycerin. The

さらにはアセトン、メチルエチルケトン、メチルイゾブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3、5、5−トリメチル−2−シクロヘキセン−1−オン)、ジイブチルケトン(2、6−ジメチル−4−ヘプタノン)等の揮発性脂肪族ケトン;酢酸エチル(エチルアセテート)、酢酸ブチル、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2−ジアセトキシエタンのような揮発性脂肪族カルボン酸エステル;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2−ビス(2−ジエトキシ)エタン、1,2−ビス(2−メトキシエトキシ)エタン等の揮発性脂肪族エーテルが例示される。その他に、酢酸2−(2−ブトキシエトキシ)エタンのようなエステルエーテル、2−(2−メトキシエトキシ)エタノール等のエーテルアルコールが例示される。 Furthermore, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexene-1- ON), volatile aliphatic ketones such as dibutylketone (2,6-dimethyl-4-heptanone); ethyl acetate (ethyl acetate), butyl acetate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octoate, decane Volatile aliphatic carboxylic acid esters such as methyl acid, methyl cellosolve acetate, propylene glycol monomethyl ether acetate, 1,2-diacetoxyethane; tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol Volatile aliphatic ethers such as ethyl diethyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxyethyl ether, 1,2-bis (2-diethoxy) ethane, 1,2-bis (2-methoxyethoxy) ethane Illustrated. Other examples include ester ethers such as 2- (2-butoxyethoxy) ethane acetate and ether alcohols such as 2- (2-methoxyethoxy) ethanol.

炭素原子および水素原子からなる揮発性炭化水素化合物として、n−パラフィン、イソパラフィン等の揮発性脂肪族炭化水素;リモネンなどのテルペン系炭化水素;トルエン、キシレン等の揮発性芳香族炭化水素が例示される。 Examples of volatile hydrocarbon compounds composed of carbon atoms and hydrogen atoms include volatile aliphatic hydrocarbons such as n-paraffin and isoparaffin; terpene hydrocarbons such as limonene; and volatile aromatic hydrocarbons such as toluene and xylene. The

炭素原子、水素原子および窒素原子からなる揮発性有機化合物として、アセトニトリル、プロピオニトリルのような揮発性アルキルニトリルが例示される。
炭素原子、水素原子、酸素原子および窒素原子からなる揮発性有機化合物として、アセトアミド、N、N-ジメチルホルムアミドのような揮発性カルボン酸アミドが例示される。その他に、低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイルが例示される。
Examples of volatile organic compounds composed of carbon atoms, hydrogen atoms and nitrogen atoms include volatile alkyl nitriles such as acetonitrile and propionitrile.
Examples of volatile organic compounds composed of carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms include volatile carboxylic acid amides such as acetamide and N, N-dimethylformamide. Other examples include low molecular weight volatile silicone oils and volatile organic modified silicone oils.

揮発性分散媒(B)の配合量は、加熱焼結性金属粒子(A)を常温においてペースト状にするのに十分な量である。加熱焼結性金属粒子(A)の粒径、比表面積、形状など、および、揮発性分散媒(B)の種類、粘度などにより、ペースト状にするのに十分な量は変動するが、具体的には、例えば、加熱焼結性金属粒子(A)100重量部当たり3〜30重量部である。
本発明で使用するペースト状金属粒子組成物は、本発明の目的に反せず、本発明の効果を阻害しない限り、加熱焼結性金属粒子(A)以外の金属系または非金属系の粉体、金属化合物、金属錯体、チクソ剤、安定剤、着色剤等の添加物を少量ないし微量含有しても良い。なお、本発明で使用するペースト状金属粒子組成物は、バインダー、特には有機樹脂バインダーを含むと、加熱焼結性金属粒子(A)の加熱焼結性が低下するので、バインダー、特には有機樹脂バインダーを含まないものである。
The blending amount of the volatile dispersion medium (B) is an amount sufficient to make the heat-sinterable metal particles (A) into a paste at room temperature. Depending on the particle size, specific surface area, shape, etc. of the heat-sinterable metal particles (A), and the type, viscosity, etc. of the volatile dispersion medium (B), the amount sufficient to make a paste varies, but Specifically, for example, the amount is 3 to 30 parts by weight per 100 parts by weight of the heat-sinterable metal particles (A).
The paste-like metal particle composition used in the present invention is not contrary to the object of the present invention, and unless it inhibits the effect of the present invention, metal-based or non-metallic powder other than the heat-sinterable metal particles (A) In addition, additives such as metal compounds, metal complexes, thixotropic agents, stabilizers, colorants, and the like may be contained in small or trace amounts. Note that when the paste-like metal particle composition used in the present invention contains a binder, particularly an organic resin binder, the heat-sinterability of the heat-sinterable metal particles (A) is lowered, so that the binder, particularly organic It does not contain a resin binder.

本発明で使用するペースト状金属粒子組成物は、(A)平均粒径が0.01μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒を、ミキサーに投入し、均一なペースト状になるまで撹拌混合することにより、容易に製造することができる。 In the paste-like metal particle composition used in the present invention, (A) heat-sinterable metal particles having an average particle diameter of 0.01 μm or more and 50 μm or less and (B) a volatile dispersion medium are charged into a mixer and uniformly mixed. It can be easily produced by stirring and mixing until it becomes a paste.

本発明で使用するペースト状金属粒子組成物は、加熱焼結性金属粒子(A)と揮発性分散媒(B)との混合物であり、常温でペースト状である。なお、ペースト状はクリーム状やスラリー状を含む。ペースト化することによりシリンダーやノズルから細い線状に吐出でき、また、メタルマスクによる印刷塗布が容易である。複数の金属製部材間に介在させるペースト状金属粒子組成物の厚さは、加熱焼結性金属粒子(A)の加熱焼結により必要な接合強度が発現する厚さであれば、特に限定されない。通常、5μm以上、1200μm以下である。 The paste-like metal particle composition used in the present invention is a mixture of heat-sinterable metal particles (A) and a volatile dispersion medium (B), and is paste-like at room temperature. The paste form includes a cream form and a slurry form. By making it into a paste, it can be discharged in a thin line from a cylinder or nozzle, and printing with a metal mask is easy. The thickness of the paste-like metal particle composition interposed between a plurality of metal members is not particularly limited as long as the necessary bonding strength is exhibited by heat sintering of the heat sinterable metal particles (A). . Usually, it is 5 μm or more and 1200 μm or less.

本発明で使用する金属製部材は、塗布されたペースト状金属粒子組成物が加熱により該組成物中の揮発性分散媒が揮発し、加熱焼結性金属粒子同士(A)が焼結して接合する被接合体である。金属製部材の材質としては、金、銀、銅、白金、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示される。これらのうちでは導電性、接合性の点で、銅、銀、金、白金、パラジウムまたはこれら各金属の合金が好ましい。金属製部材は前記金属で全体または一部をメッキされたものであってもよく、本発明においては、前記金属で全体または一部をメッキされたものも金属製部材である。そのような金属製部材として、セラミック製部材、樹脂製部材を前記金属で全体または一部をメッキしたものが例示される。金属製部材としては、全体または一部が金属で形成されたリードフレーム、プリント基板、半導体チップ、半導体チップ封止用のキャン、ケース、キャップおよびリッド、放熱板が例示される。 In the metal member used in the present invention, the applied paste-like metal particle composition volatilizes the volatile dispersion medium in the composition by heating, and the heat-sinterable metal particles (A) sinter. It is a to-be-joined body to join. Examples of the material of the metal member include gold, silver, copper, platinum, palladium, nickel, tin, aluminum, and alloys of these metals. Among these, copper, silver, gold, platinum, palladium, or an alloy of these metals is preferable in terms of conductivity and bondability. The metal member may be entirely or partially plated with the metal, and in the present invention, the metal member is entirely or partially plated with the metal. Examples of such a metal member include a ceramic member and a resin member plated entirely or partially with the metal. Examples of the metal member include a lead frame, a printed board, a semiconductor chip, a can for sealing a semiconductor chip, a case, a cap and a lid, and a heat sink, all or part of which is made of metal.

本発明の金属製部材接合体の製造方法では、(A)平均粒径が0.01μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、加熱(1)により、該揮発性分散媒を揮散させ、該金属粒子同士を焼結せしめて生成した、断面における空孔率が面積比で15%以上である多孔質焼結物により複数の金属製部材同士を接合させ、しかる後に、該金属製部材に加熱(1)よりも高い温度で加熱(2)して、該多孔質焼結物の空孔率を15%未満に低減する。 In the method for producing a metal member assembly of the present invention, a paste-like metal particle composition comprising (A) a heat-sinterable metal particle having an average particle diameter of 0.01 μm to 50 μm and (B) a volatile dispersion medium. An object is interposed between a plurality of metal members, and by heating (1), the volatile dispersion medium is volatilized and the metal particles are sintered with each other. %, A plurality of metal members are joined to each other, and then the metal member is heated (2) at a temperature higher than that of heating (1). Is reduced to less than 15%.

このときの雰囲気ガスは、加熱焼結性金属粒子の焼結を阻害しなければ特に限定されないが、加熱焼結性金属粒子および金属製部材が銅または銅合金のように酸化されやすい材質の場合には、酸素ガスを含まない、窒素ガス等の不活性ガス、水素ガスを含む還元性ガスが好ましい。このうち水素ガス5〜25体積%と窒素ガス95〜75体積%からなるフォーミングガスと称される還元性ガスが特に好ましい。
加熱焼結性金属粒子および金属製部材が銀または銀合金からなる場合は、酸素ガスを含む酸化性ガス、特には乾燥空気または、窒素ガス等の不活性ガスが好ましい。乾燥空気としては23℃において相対湿度10%以下のものが好ましく、5%以下が特に好ましい。なお、接合に使用するペースト状金属粒子組成物中の加熱焼結性金属粒子(A)と金属製部材の表面金属は、同一の金属もしくは金属合金でも良く、合金を形成しやすい金属であっても良い。
The atmosphere gas at this time is not particularly limited as long as it does not inhibit the sintering of the heat-sinterable metal particles, but the heat-sinterable metal particles and the metal member are easily oxidized such as copper or copper alloy. In this case, an inert gas such as nitrogen gas and a reducing gas containing hydrogen gas, which do not contain oxygen gas, are preferable. Of these, a reducing gas called a forming gas comprising 5 to 25% by volume of hydrogen gas and 95 to 75% by volume of nitrogen gas is particularly preferable.
When the heat-sinterable metal particles and the metal member are made of silver or a silver alloy, an oxidizing gas containing oxygen gas, particularly dry air or an inert gas such as nitrogen gas is preferable. The dry air preferably has a relative humidity of 10% or less at 23 ° C., particularly preferably 5% or less. Note that the heat-sinterable metal particles (A) in the paste-like metal particle composition used for bonding and the surface metal of the metal member may be the same metal or metal alloy, and a metal that easily forms an alloy. Also good.

本発明で使用するペースト状金属粒子組成物は、加熱することにより揮発性分散媒が揮散する。本発明で使用するペースト状金属粒子組成物は、加熱焼結性金属粒子(A)の焼結温度以上の温度に加熱(1)することにより、揮発性分散媒(B)が揮散して、該金属粒子同士(A)が焼結し、導電性と熱伝導性が優れた固形状の金属となり金属製部材同士を接合する。このようにして金属製部材間での加熱焼結性金属粒子同士の焼結物は、多孔質であり、図1または図2に示されるように、数多くの微細な空孔や空隙、しかも、連続した空孔すなわち、細孔を有している。 The paste-like metal particle composition used in the present invention volatilizes the volatile dispersion medium by heating. The paste-like metal particle composition used in the present invention is heated (1) to a temperature equal to or higher than the sintering temperature of the heat-sinterable metal particles (A), whereby the volatile dispersion medium (B) is volatilized, The metal particles (A) are sintered to form a solid metal having excellent conductivity and thermal conductivity, and the metal members are joined together. Thus, the sintered product of the heat-sinterable metal particles between the metal members is porous, and as shown in FIG. 1 or FIG. 2, many fine pores and voids, It has continuous pores, that is, pores.

その空孔率は断面における面積比で15%以上であることが必要である。多孔質焼結物の空孔率が15%未満であると、該多孔質焼結物は空孔や空隙同士の連結がなく,あるいは,乏しいため、該ペースト状金属粒子組成物中の揮発性分散媒(B)や該金属粒子(A)を被覆している有機物が該多孔質焼結物中に閉じ込められて残留してしまうという問題がある。また、該ペースト状金属粒子組成物を半導体チップ等の電子部品を気密封止する際のキャンまたはケースとキャップまたはリッドとの接合に用いた場合は、封止したキャンまたはケース内に揮発性分散媒(B)や該金属粒子(A)を被覆している有機物が閉じ込められてしまい、内部にある金属製部材や金属製部品を腐食する不具合が起こるためである。 The porosity needs to be 15% or more in terms of the area ratio in the cross section. When the porosity of the porous sintered product is less than 15%, the porous sintered product has no connection between pores or voids or is poor, and therefore the volatile property in the paste-like metal particle composition is poor. There is a problem that the organic material covering the dispersion medium (B) and the metal particles (A) is trapped in the porous sintered product and remains. In addition, when the paste-like metal particle composition is used for joining a can or case and a cap or lid when airtightly sealing an electronic component such as a semiconductor chip, volatile dispersion is contained in the sealed can or case. This is because the organic substance covering the medium (B) and the metal particles (A) is trapped, and a problem of corroding a metal member or metal part inside occurs.

その空孔率は断面における面積比で20%以上であることが好ましい。
多孔質焼結物の空孔率が大きすぎると、該多孔質焼結物がもろくなり、金属製部材同士を強固に接合できなくなるため、断面における面積比で空孔率は60%以下であることが好ましく、50%以下であることがよりより好ましく、40%以下であることが特に好ましい。なおペースト状金属粒子組成物を加熱(1)する際に、このような問題がない範囲で超音波振動を加えても良い。
The porosity is preferably 20% or more in terms of the area ratio in the cross section.
If the porosity of the porous sintered product is too large, the porous sintered product becomes brittle and the metal members cannot be firmly bonded to each other. Therefore, the porosity is 60% or less in terms of the area ratio in the cross section. Preferably, it is more preferable that it is 50% or less, and it is especially preferable that it is 40% or less. In addition, when the paste-like metal particle composition is heated (1), ultrasonic vibration may be applied within a range not causing such a problem.

この際、揮発性分散媒(B)が揮散し、ついで加熱焼結性金属粒子(A)同士が焼結してもよく、揮発性分散媒(B)の揮散と共に加熱焼結性金属粒子(A)同士が焼結してもよい。特に加熱焼結性金属粒子(A)が銀粒子の場合は、銀が本来大きな強度と極めて高い電気伝導性と熱伝導性を有するため、銀粒子同士の焼結物も、大きな強度ときわめて高い電気伝導性と熱伝導性を有する。また加熱焼結性金属粒子(A)が銅粒子の場合は、銅が本来極めて高い電気伝導性と熱伝導性を有するため、銅粒子同士の焼結物も、きわめて高い電気伝導性と熱伝導性を有する。 At this time, the volatile dispersion medium (B) is volatilized, and then the heat-sinterable metal particles (A) may be sintered together, and with the volatilization of the volatile dispersion medium (B), the heat-sinterable metal particles ( A) may be sintered together. In particular, when the heat-sinterable metal particles (A) are silver particles, since silver has inherently high strength and extremely high electrical and thermal conductivity, the sintered product of silver particles also has high strength and extremely high. It has electrical conductivity and thermal conductivity. Also, when the heat-sinterable metal particles (A) are copper particles, copper inherently has extremely high electrical and thermal conductivity, so the sintered product of copper particles also has extremely high electrical and thermal conductivity. Have sex.

この際の加熱(1)の温度は、揮発性分散媒(B)が揮散し、加熱焼結性金属粒子(A)が焼結して、断面における空孔率が面積比で15%以上となる温度であればよく、通常70℃以上であり、150℃以上がより好ましい。しかし、300℃を越えると、加熱焼結性金属粒子(A)が焼結性に優れる場合、該空孔率が15%未満になる可能性があり、また、揮発性分散媒が突沸的に蒸発して、多孔質焼結物の形状へ悪影響が出る恐れがあるため、300℃以下であることが好ましく、250℃以下であることがより好ましい。 The temperature of the heating (1) at this time is such that the volatile dispersion medium (B) is volatilized, the heat-sinterable metal particles (A) are sintered, and the porosity in the cross section is 15% or more by area ratio. What is necessary is just the temperature which becomes, and is 70 degreeC or more normally, and 150 degreeC or more is more preferable. However, when the temperature exceeds 300 ° C., when the heat-sinterable metal particles (A) are excellent in sinterability, the porosity may be less than 15%, and the volatile dispersion medium may be bumpy. Since it may evaporate and adversely affect the shape of the porous sintered product, the temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.

加熱(1)においては、ペースト状金属粒子組成物に圧力を加えない。加熱(1)において、ペースト状金属粒子組成物は柔らかいペースト状であり、この際に加圧すると該ペースト状金属粒子組成物が容易に押しつぶされて金属製部材間からはみ出し、その結果、加熱(1)後の焼結物の厚さが所定の厚さより低下し、金属製部材間の接着強さが低下するためである。また、該ペースト状金属粒子組成物が容易に押しつぶされた場合、金属製部材間からはみ出した該ペースト状金属粒子組成物が周辺の部材を汚染するからである。 In the heating (1), no pressure is applied to the paste-like metal particle composition. In heating (1), the paste-like metal particle composition is a soft paste, and when pressed at this time, the paste-like metal particle composition is easily crushed and protrudes from between the metal members. 1) This is because the thickness of the subsequent sintered product is lower than the predetermined thickness, and the adhesive strength between the metal members is reduced. Further, when the paste-like metal particle composition is easily crushed, the paste-like metal particle composition protruding from between the metal members contaminates the surrounding members.

なお、複数、例えば2枚の金属製部材を積み重ね、それら部材間にペースト状金属粒子組成物を介在させて加熱焼結する場合は、上側の金属製部材の重量がペースト状金属粒子組成物にかかるが、ペースト状金属粒子組成物を容易に押しつぶさない限り、そのような重量は加圧に含めないものとする。 In addition, when a plurality of, for example, two metal members are stacked, and the paste-like metal particle composition is interposed between the members and heat-sintered, the weight of the upper metal member is reduced to the paste-like metal particle composition. However, such weight is not included in the pressure unless the pasty metal particle composition is easily crushed.

金属製部材接合体が半導体装置(例えば金属製のケースと蓋)である場合に、加圧によってはみ出たペースト状金属粒子組成物の一部が半導体装置の内部に落下した状態で密閉されて該ペースト中の揮発性分散媒の熱分解により発生したガスにより半導体装置の耐熱性が低下するからである。 When the metal member assembly is a semiconductor device (for example, a metal case and lid), a part of the paste-like metal particle composition protruding by pressurization is sealed in a state where it falls into the semiconductor device. This is because the heat resistance of the semiconductor device is reduced by the gas generated by the thermal decomposition of the volatile dispersion medium in the paste.

空孔率は焼結体の断面における空孔の割合を面積の比率を百分率で示したもので、その測定方法は通常の測定方法が利用できる。例えば、焼結体の断面を電子顕微鏡等の顕微鏡で写真撮影し、画像解析ソフトにより、金属部分と空間部分の面積比率を求める方法、あるいは、顕微鏡により撮影した写真を均質な紙等に印刷し、金属部分と空間部分をはさみ等で切り分けて各々の重量を測定し、その重量比率を面積比率とする方法が例示される。この場合の紙等は、実質的に均一な材質および厚さであることが好ましい。 The porosity is the percentage of the pores in the cross section of the sintered body, and the area ratio is expressed as a percentage, and a normal measurement method can be used as the measurement method. For example, a cross section of the sintered body can be photographed with a microscope such as an electron microscope, and the area ratio between the metal part and the space part can be obtained by image analysis software, or the photograph taken with a microscope can be printed on homogeneous paper. An example is a method in which the metal portion and the space portion are separated with scissors or the like and the respective weights are measured and the weight ratio is set to the area ratio. In this case, the paper or the like is preferably made of a substantially uniform material and thickness.

なお、図1または図2に示されるように、空孔や空隙の形状や大きさは、種々様々である。焼結前の焼結性金属粒子間の空孔や空隙が主に細孔になるので、通常0.01〜50μmであるが、連続的な細孔は50μmよりはるかに長い可能性がある。 In addition, as FIG. 1 or FIG. 2 shows, the shape and magnitude | size of a void | hole and a space | gap are various. Since pores and voids between sinterable metal particles before sintering are mainly pores, they are usually 0.01-50 μm, but continuous pores can be much longer than 50 μm.

焼結物が多孔質であると機械的な強度が出にくいという問題があり、また、水等の液体や水蒸気、有機ガス等の気体と接触すると、毛細管現象や呼吸作用によりにより液体やガスが侵入して焼結物の内部に取り込まれる。この際、液体やガスが水、水蒸気、腐食性の有機ガスの場合、該焼結物を腐食してマイグレーションの原因となりかねない。また、その成分が半導体チップ等の電子部品の腐食や信頼性低下の原因となる場合がある。さらに、粉じん等の微細な異物の場合、半導体チップ等が光学部品の場合は、光透過率の変動や低下等により機能が低下する場合がある。そこで、本発明ではこのような金属製部材接合体間の多孔質焼結物の空孔率を、加熱(2)により低減することを特徴とする。空孔率を低減するための加熱(2)の温度は、加熱(1)よりも高い温度であることが必要である。 When the sintered product is porous, there is a problem that mechanical strength is difficult to be obtained, and when it comes into contact with a liquid such as water, or a gas such as water vapor or organic gas, the liquid or gas is caused by capillary action or respiration. It penetrates and is taken inside the sintered product. At this time, when the liquid or gas is water, water vapor, or a corrosive organic gas, the sintered product may be corroded to cause migration. Moreover, the component may cause corrosion of electronic parts such as semiconductor chips and a decrease in reliability. Further, in the case of fine foreign matters such as dust, when the semiconductor chip or the like is an optical component, the function may be deteriorated due to fluctuation or reduction in light transmittance. Therefore, the present invention is characterized in that the porosity of the porous sintered product between such metal member assemblies is reduced by heating (2). The temperature of heating (2) for reducing the porosity needs to be higher than that of heating (1).

この際、加熱(2)の温度は加熱(1)の温度よりも50℃以上高いことが好ましく、特には100℃以上高いことが好ましい。加熱(2)の温度が加熱(1)の温度よりも低いと、加熱時間を長くしても空孔率を低減することができないためである。加熱(2)の温度は加熱焼結性金属粒子の焼結性によって変わるが250℃以上であることが好ましく、300℃以上であることがより好ましく、350℃以上であることが特に好ましい。加熱(2)の上限温度は接合する被金属製部材の耐熱温度であるので、特に限定されるものではないが、400℃以下が好ましい。 At this time, the temperature of the heating (2) is preferably 50 ° C. or more higher than the temperature of the heating (1), particularly preferably 100 ° C. or more. This is because if the temperature of heating (2) is lower than the temperature of heating (1), the porosity cannot be reduced even if the heating time is extended. The temperature of the heating (2) varies depending on the sinterability of the heat-sinterable metal particles, but is preferably 250 ° C. or higher, more preferably 300 ° C. or higher, and particularly preferably 350 ° C. or higher. Since the upper limit temperature of the heating (2) is the heat resistant temperature of the metal member to be joined, it is not particularly limited, but is preferably 400 ° C. or lower.

本発明では、多孔質焼結物の断面における空孔率を面積比で15%未満に低減せしめて空孔や空隙、特には連結した空孔を塞いでいるので、液体、気体および微粒子状固体の侵入、通過を防止することができる。また、空孔率が低減した加熱焼結性金属粒子の焼結物は、金属製部材同士をより強固に接合するので、該焼結物による複数の金属製部材同士の接合強度は更に向上している。このときの焼結物では、ペースト状金属粒子組成物中の揮発性分散媒(B)はすでに加熱(1)により揮発してしまっているので、焼結物の空孔率を15%未満にしても、揮発性分散媒(B)が金属製部材接合体の内部に残留することはない。このようにして焼結物の空孔率を15%未満に低減した例を図3〜図6に示す。その空孔率は断面における面積比で0〜10%であることが好ましく、0%が最も好ましい。 In the present invention, the porosity in the cross-section of the porous sintered product is reduced to less than 15% by area ratio to close the pores and voids, particularly the connected pores. Can be prevented from entering and passing through. In addition, since the sintered product of heat-sinterable metal particles with reduced porosity joins metal members more firmly, the joining strength of a plurality of metal members by the sintered product is further improved. ing. In the sintered product at this time, since the volatile dispersion medium (B) in the paste-like metal particle composition has already volatilized by heating (1), the porosity of the sintered product is set to less than 15%. However, the volatile dispersion medium (B) does not remain inside the metal member assembly. Examples of reducing the porosity of the sintered product to less than 15% in this way are shown in FIGS. The porosity is preferably 0 to 10% by area ratio in the cross section, and most preferably 0%.

このとき、金属製部材接合体の多孔質焼結物に圧力を加えながら加熱(2)すれば、空孔率をより低減することができるため、加熱(2)の温度を下げることが可能である。このときの圧力は0.001MPa以上であり、0.01MPa以上であることが好ましく、0.1MPa以上であることがより好ましく、特には1MPa以上であることが好ましい。圧力の上限は特に限定されないが、加熱(1)後の金属製部材接合体の多孔質焼結物が変形や破壊をしない範囲である。 At this time, if heating (2) is performed while applying pressure to the porous sintered product of the metal member assembly, the porosity can be further reduced, so the temperature of heating (2) can be lowered. is there. The pressure at this time is 0.001 MPa or more, preferably 0.01 MPa or more, more preferably 0.1 MPa or more, and particularly preferably 1 MPa or more. The upper limit of the pressure is not particularly limited, but is within a range where the porous sintered product of the metal member assembly after heating (1) is not deformed or broken.

加熱(1)後の金属製部材接合体の多孔質焼結物に圧力を加える方法は限定されないが、加熱(1)後の金属製部材接合体の多孔質焼結物は、複数の金属製部材間に介在しているので、複数の金属製部材を介して圧力を加える方法が好ましい。したがって、加熱(1)後の金属製部材接合体に錘を載せる方法、または、プレス機により加熱(1)後の金属製部材接合体をはさむ方法等が例示される。この際、加熱(1)後の金属製部材接合体の多孔質焼結物全体に均一に圧力が加わることが好ましく、また、加熱(1)後の金属製部材接合体と接する錘やプレス機の天地板は温度調整できることが好ましい。 The method of applying pressure to the porous sintered body of the metal member assembly after heating (1) is not limited, but the porous sintered body of the metal member assembly after heating (1) is made of a plurality of metals. Since it exists between members, the method of applying a pressure via a some metal member is preferable. Therefore, a method of placing a weight on the metal member assembly after heating (1), a method of sandwiching the metal member assembly after heating (1) with a press machine, etc. are exemplified. At this time, it is preferable that pressure is uniformly applied to the entire porous sintered product of the metal member assembly after heating (1), and a weight or press machine that contacts the metal member assembly after heating (1) The top plate is preferably temperature adjustable.

加熱(1)後の金属製部材接合体の多孔質焼結物に圧力を加える場合の加熱(2)の温度は、加熱焼結性金属粒子の焼結性によって変わるが、200℃以上であることが好ましく、300℃以上であることがより好ましい。加熱(1)後の金属製部材接合体の多孔質焼結物に圧力を加える場合の加熱(2)の上限温度は、接合する被金属製部材の耐熱温度であるので、特に限定されるものではないが、400℃以下が好ましい。 The temperature of heating (2) when pressure is applied to the porous sintered product of the metal member assembly after heating (1) varies depending on the sinterability of the heat-sinterable metal particles, but is 200 ° C. or higher. It is preferable, and it is more preferable that it is 300 degreeC or more. The upper limit temperature of heating (2) when pressure is applied to the porous sintered product of the metal member assembly after heating (1) is the heat resistance temperature of the metal member to be joined, and is particularly limited However, it is preferably 400 ° C. or lower.

かくして得られた金属製部材接合体は、金属製部材間の加熱焼結性金属粒子の加熱焼結物の厚みが所定の厚みであり、加熱焼結性金属粒子の加熱焼結物が金属製部材間にとどまっており、金属粒子の加熱焼結物の硬さや接合強度が向上し、または、冷熱サイクルにおける熱応力による該焼結物の破壊および金属製部材との剥離が低減し、強固な接合強度を維持できるという特徴も有する。 In the metal member assembly thus obtained, the thickness of the heat-sintered metal particles between the metal members is a predetermined thickness, and the heat-sintered metal particle heat-sintered product is made of metal. It stays between the members, and the hardness and bonding strength of the heat-sintered metal particles are improved, or the destruction of the sintered material due to thermal stress in the thermal cycle and the separation from the metal members are reduced, resulting in a strong It also has a feature that the bonding strength can be maintained.

本発明で使用するペースト状金属粒子組成物は、加熱(1)により揮発性分散媒(B)が揮散し、加熱焼結性金属粒子(A)同士が焼結する。複数の金属製部材間の接合に用いた場合、加熱焼結物は、焼結時に接触していた金属製部材、例えば金メッキ基板、銀基板、銀メッキ金属基板、銅基板、アルミニウム基板、ニッケルメッキ基板、スズメッキ金属基板等の金属系基板、金,銀,銅などの金属メッキセラミック部材へ強固に接着し、電気絶縁性基板上の電極等金属部分へ強固に接着する。さらに該金属製部材を加熱(1)よりも高い温度で加熱(2)しているので、更に強固に接着する。このため本発明の金属製部材接合体の製造方法は、金属系基板や金属部分を有する電子部品、電子装置、電気部品、電気装置等の金属製部材接合体の製造に有用である。 In the paste-like metal particle composition used in the present invention, the volatile dispersion medium (B) is volatilized by heating (1), and the heat-sinterable metal particles (A) are sintered together. When used for joining a plurality of metal members, the heat-sintered material is a metal member that was in contact with the sintered material, for example, a gold-plated substrate, a silver substrate, a silver-plated metal substrate, a copper substrate, an aluminum substrate, or nickel-plated It adheres firmly to metal substrates such as substrates, tin-plated metal substrates, and metal-plated ceramic members such as gold, silver, and copper, and firmly adheres to metal parts such as electrodes on the electrically insulating substrate. Further, since the metal member is heated (2) at a temperature higher than that of the heating (1), it is more strongly bonded. For this reason, the manufacturing method of the metal member assembly of the present invention is useful for manufacturing a metal member assembly such as an electronic component, an electronic device, an electrical component, and an electrical device having a metal substrate and a metal portion.

そのような接合として、コンデンサ,抵抗等のチップ部品と回路基板との接合、ダイオード,メモリ,IC,CPU等の半導体チップとリードフレームもしくは回路基板との接合、半導体チップや電子部品または光学部品を搭載したキャンまたはケースとキャップまたはリッドとの接合、高発熱のCPUチップと冷却板との接合等が例示される。 Such bonding includes bonding of chip parts such as capacitors and resistors to circuit boards, bonding of semiconductor chips such as diodes, memories, ICs, and CPUs to lead frames or circuit boards, semiconductor chips, electronic components, or optical components. Examples include bonding of a mounted can or case and a cap or lid, bonding of a high heat generating CPU chip and a cooling plate, and the like.

本発明の金属製部材接合体は、複数の金属製部材が、加熱焼結性金属粒子が焼結して生成した断面における空孔率が面積比で15%以上の多孔質焼結物の空孔率を15%未満に低減した焼結物により接合されており、多孔質焼結物の空孔や空隙、特には連結した空孔を塞ぐことにより液体および気体が侵入、通過しないことを特徴とする。また、該焼結物の硬さ等の機械的特性、接着強度・接合強度が優れていることを特徴とする。
接合した金属製部材間のせん断接着強さは、実施例で規定した方法で測定した場合に14MPa以上であり、好ましくは20MPa以上であることを特徴とする。
In the metal member assembly of the present invention, a plurality of metal members are made of a porous sintered body having a porosity of 15% or more in area ratio in a cross section formed by sintering the heat-sinterable metal particles. It is joined by a sintered product whose porosity is reduced to less than 15%, and liquid and gas do not invade or pass by closing the pores and voids of the porous sintered product, especially the connected pores. And In addition, the sintered product is characterized by excellent mechanical properties such as hardness, adhesive strength and bonding strength.
The shear bond strength between the joined metal members is 14 MPa or more, preferably 20 MPa or more when measured by the method defined in the examples.

金属製部材、加熱焼結性金属粒子、加熱焼結条件、多孔質焼結物、空孔や空隙の形状や大きさ、空孔率、加圧条件、雰囲気ガス、金属製部材間の加熱焼結性金属粒子の加熱焼結物の厚み、加熱焼結性金属粒子の加熱焼結物が金属製部材間にとどまりなどについては、金属製部材接合体の製造方法に関して説明したとおりである。複数の金属製部材間に介在している加熱焼結した金属層の厚さは、必要な接合強度が発現する厚さであれば、特に限定されない。通常、3μm以上、1000μm以下である。 Metal parts, heat-sinterable metal particles, heat-sintering conditions, porous sintered products, shape and size of pores and voids, porosity, pressurization conditions, atmosphere gas, heat-firing between metal parts The thickness of the heat-sintered product of the coherent metal particles, the heat-sintered product of the heat-sinterable metal particles staying between the metal members, and the like are as described for the method for producing the metal member assembly. The thickness of the heat-sintered metal layer interposed between the plurality of metal members is not particularly limited as long as the necessary bond strength is exhibited. Usually, it is 3 μm or more and 1000 μm or less.

本発明の金属製部材接合体は、複数の金属製部材間で、平均粒径が0.01μm以上50μm以下である加熱焼結性金属粒子が加熱焼結し、さらに、該多孔質焼結物の空孔や空隙、特に連結した空孔が塞がれているので、液体や気体が残留、侵入、通過することなく金属製部材がより強固に接合している。そのような接合体として、コンデンサ、抵抗等のチップ部品と回路基板との接合体、ダイオード,メモリ,IC,CPU等の半導体チップとリードフレームもしくは回路基板との接合体、半導体チップや電子部品または光学部品を搭載したキャンまたはケースとキャップまたはリッドとの接合、高発熱のCPUチップと冷却板との接合体等の金属製部材接合体が例示される。 In the metal member joined body of the present invention, heat-sinterable metal particles having an average particle diameter of 0.01 μm or more and 50 μm or less are heated and sintered between a plurality of metal members, and the porous sintered product Therefore, the metal members are more firmly bonded to each other without any liquid, gas remaining, intruding, or passing through. As such a joined body, a joined body of a chip component such as a capacitor or a resistor and a circuit board, a joined body of a semiconductor chip such as a diode, memory, IC, or CPU and a lead frame or a circuit board, a semiconductor chip or an electronic component or Examples include metal member assemblies such as a junction between a can or a case on which an optical component is mounted and a cap or lid, and a junction between a high heat generating CPU chip and a cooling plate.

また、本発明の金属製部材接合体のうち、半導体チップ等の電子部品または光学部品等を搭載した金属製などのキャンまたはセラミック製のケース等と、それらを気密封止するためのキャップまたはリッドを接合した、気密封止された金属製部材接合体の気密性は、通常の方法で測定することができる。そのような方法として、金属製部材接合体を水没させたときに出てくる泡を測定する水没試験、ヘリウム等の低分子量ガスを使用したリーク試験、水および水蒸気を使用した恒温恒湿試験またはプレッシャークッカー試験、フッ素系の不活性液体を使用したリーク試験、液状の蛍光染料による含浸試験、X線や超音波を使用した断層撮影検査等が例示される。 Further, of the metal member assembly according to the present invention, a metal can or ceramic case carrying an electronic component such as a semiconductor chip or an optical component, or a ceramic case, and a cap or lid for hermetically sealing them. The hermeticity of a hermetically sealed metal member joined body in which is bonded can be measured by a usual method. As such a method, a submergence test for measuring bubbles generated when a metal member assembly is submerged, a leak test using a low molecular weight gas such as helium, a constant temperature and humidity test using water and steam, or Examples include a pressure cooker test, a leak test using a fluorine-based inert liquid, an impregnation test using a liquid fluorescent dye, and a tomographic examination using X-rays and ultrasonic waves.

本発明の実施例と比較例を掲げる。実施例と比較例中、部と記載されているのは、重量部を意味する。実施例における乾燥空気は、23℃において相対湿度5%のものである。 Examples and comparative examples of the present invention will be given. In the examples and comparative examples, “parts” means “parts by weight”. The dry air in the examples has a relative humidity of 5% at 23 ° C.

金属製部材接合体(1)(接合強度測定用試験体(1)と称する)および半導体装置(1)を、ペースト状銀粒子組成物中の加熱焼結性銀粒子の加熱(1)によって接合することにより、後述のとおり作製した。
金属製部材接合体(1)(接合強度測定用試験体(1)と称する)および半導体装置(1)の次の項目について、後述のとおりに測定した。なお、測定時の温度として特に記載のない場合の温度は23℃である。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1および半導体装置(1)のケースと蓋を接合している焼結物の厚さa2
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している焼結物の空孔率(1)、気密性および耐熱性
A metal member joined body (1) (referred to as a joint strength measurement specimen (1)) and a semiconductor device (1) are joined by heating (1) of heat-sinterable silver particles in a paste-like silver particle composition. By doing so, it was produced as described later.
The following items of the metal member bonded body (1) (referred to as bonding strength measuring test body (1)) and the semiconductor device (1) were measured as described below. The temperature at the time of measurement is 23 ° C. unless otherwise specified.
-Heating of paste-like silver particle composition between case and lid of semiconductor device (1) (1) thickness a1 before and thickness a2 of sintered material joining the case and lid of semiconductor device (1)
・ Shear bond strength of metal member assembly (1) (joint strength measurement specimen (1)) ・ Porosity of sintered product joining case and lid of semiconductor device (1) (1) Airtight and heat resistant

また、金属製部材接合体(2)(接合強度測定用試験体(2)と称する)および半導体装置(2)を、加熱(1)後の金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)を加熱(2)することにより、後述のとおり作製した。
金属製部材接合体(2)(接合強度測定用試験体(2)と称する)および半導体装置(2)の次の項目について、後述のとおりに測定した。なお、測定時の温度として特に記載のない場合の温度は23℃である。
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している焼結物の空孔率(2)、気密性および耐熱性
Further, the metal member joined body (2) (referred to as a joint strength measuring test body (2)) and the semiconductor device (2) are heated (1) after the metal member joined body (1) (for joining strength measurement). The test body (1)) and the semiconductor device (1) were heated (2) to produce as described below.
The following items of the metal member bonded body (2) (referred to as bonding strength measuring test body (2)) and the semiconductor device (2) were measured as described below. The temperature at the time of measurement is 23 ° C. unless otherwise specified.
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2)
・ Shear bond strength of metal parts (2) (joint strength measurement specimen (2)) ・ Porosity of sintered material joining the case and lid of the semiconductor device (2) (2) Airtight and heat resistant

[半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無の測定方法]
半導体ダミーチップ4を、電気的な接続が可能な外部リード端子5を有するセラミック製ケース6のタブ7上に設け、この半導体チップの上端部に設けられたボンディングパッド8と外部リード端子5を金製のボンディングワイヤ9により電気的に接続した。次いで、このセラミック製ケース上部の金メッキ10を施した外周部にペースト状銀粒子組成物11を塗布厚さが100μmとなる量をディスペンス塗布し、セラミック製の蓋12(ペースト状銀粒子組成物11と接する面には金メッキ10が施されている)を載せた。
[Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered material joining case and lid of semiconductor device (1) And a method for measuring the presence or absence of protrusion of the paste-like silver particle composition in the semiconductor device (1)]
The semiconductor dummy chip 4 is provided on a tab 7 of a ceramic case 6 having an external lead terminal 5 that can be electrically connected, and the bonding pad 8 and the external lead terminal 5 provided at the upper end of the semiconductor chip are connected to a gold. Electrical connection was made by a bonding wire 9 made of metal. Next, the paste-like silver particle composition 11 is dispensed on the outer periphery of the ceramic case on which the gold plating 10 has been applied in an amount of 100 μm, and the ceramic lid 12 (the paste-like silver particle composition 11 is applied). The surface in contact with the surface is gold-plated 10).

この状態で半導体装置(1)の全体の厚さをマイクロメーターで測定し、そこから予め測定したセラミック製ケース6の厚さ、金メッキ10の厚さ、および、蓋12の厚さを差し引いて、半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1とした。 In this state, the total thickness of the semiconductor device (1) is measured with a micrometer, and the thickness of the ceramic case 6, the thickness of the gold plating 10, and the thickness of the lid 12 measured in advance are subtracted therefrom. The thickness a1 before heating (1) of the paste-like silver particle composition between the case and the lid of the semiconductor device (1) was set.

次に、加熱(1)後の半導体装置(1)の全体の厚さをマイクロメーターで測定し、そこから予め測定したセラミック製ケース6の厚さ、金メッキ10の厚さ、および、蓋12の厚さを差し引いて、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2とした。この際、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無を目視で観察した。 Next, the total thickness of the semiconductor device (1) after the heating (1) is measured with a micrometer, and the thickness of the ceramic case 6, the thickness of the gold plating 10 and the thickness of the lid 12 measured in advance from there are measured. The thickness was subtracted to obtain the thickness a2 of the sintered product joining the case and lid of the semiconductor device (1). At this time, the presence or absence of protrusion of the pasty silver particle composition in the semiconductor device (1) was visually observed.

[加熱(1)による接合強度測定用試験体(1)の作製方法および接合強度測定用試験体(1)のせん断接着強さの測定方法]
幅25mm×長さ70mm、厚さ1.0mmの銀基板1(銀純度99.99%)上に、10mmの間隔をおいて4つの開口部(2.5mm×2.5mm)を有する100μm厚のメタルマスクを用いて、ペースト状銀粒子組成物2を印刷塗布し、その上にサイズが2.5mm×2.5mm×0.5mmの銀チップ3(銀純度99.99%)を搭載した。これを熱風循環式オーブン内で、加熱(1)を所定の温度で1時間おこなって、銀基板1と銀チップ3を接合することにより、金属製部材接合体(1)を作製した。
[Method for producing test specimen (1) for bonding strength measurement by heating (1) and measuring shear bond strength of test specimen for bonding strength (1)]
100 μm thickness having four openings (2.5 mm × 2.5 mm) at an interval of 10 mm on a silver substrate 1 (silver purity 99.99%) of width 25 mm × length 70 mm and thickness 1.0 mm The paste-like silver particle composition 2 was printed and applied using a metal mask, and a silver chip 3 (silver purity 99.99%) having a size of 2.5 mm × 2.5 mm × 0.5 mm was mounted thereon. . This was performed in a hot air circulation oven for 1 hour at a predetermined temperature, and the silver substrate 1 and the silver chip 3 were joined to produce a metal member joined body (1).

加熱(1)の際に加圧をする場合は、銀基板1にペースト状銀粒子組成物2を印刷塗布し、銀チップ3を搭載した後、銀チップの上面に所定の質量の錘を載せることによりおこなった。 When pressure is applied during heating (1), the paste-like silver particle composition 2 is printed and applied to the silver substrate 1, and the silver chip 3 is mounted, and then a weight having a predetermined mass is placed on the upper surface of the silver chip. It was done by

かくして得られた金属製部材接合体(1)を接合強度測定用試験体(1)として、該接合強度測定用試験体(1)を接着強さ試験機の試験体取付け具にセットし、該銀チップ3の側面を接着強さ試験機の押圧棒により押厚速度23mm/分で押圧し、接合部がせん断破壊したときの荷重をもって接着強さ(単位;MPa)とした。4個の平均値をせん断接着強さとした。
なお、せん断接着強さ測定用試験体(1)の平面図を図8に示し、該平面図におけるX−X線断面図を図9に示す。
The metal member joined body (1) thus obtained was used as a joint strength measurement test body (1), and the joint strength measurement test body (1) was set on a test body fixture of an adhesive strength tester, The side surface of the silver chip 3 was pressed at a pressing speed of 23 mm / min with a pressing bar of an adhesive strength tester, and the load when the joint was sheared was determined as the adhesive strength (unit: MPa). The average value of the four pieces was taken as the shear bond strength.
In addition, the top view of the test body (1) for a shear bond strength measurement is shown in FIG. 8, and the XX sectional view in the top view is shown in FIG.

[加熱(1)による半導体装置(1)の作製方法および半導体装置(1)のケースと蓋を接合している焼結物の空孔率(1)の測定方法]
半導体装置(1)を次の方法により作製した。
半導体ダミーチップ4を、電気的な接続が可能な外部リード端子5を有するセラミック製ケース6のタブ7上に設け、この半導体チップの上端部に設けられたボンディングパッド8と外部リード端子5を金製のボンディングワイヤ9により電気的に接続した。次いで、このセラミック製ケース上部の金メッキ10を施した外周部にペースト状銀粒子組成物11をディスペンス塗布し、セラミック製の蓋12(ペースト状銀粒子組成物11と接する面には金メッキ10が施されている)を載せた。これを熱風循環式オーブン内で、加熱(1)を所定の温度で1時間おこなって、セラミック製ケース6とセラミック製の蓋12を接合することにより、半導体装置(1)を作製した。なお、半導体装置(1)は金属製部材接合体である。半導体装置(1)の断面図を図10に示す。
[Method for Manufacturing Semiconductor Device (1) by Heating (1) and Method for Measuring Porosity (1) of Sintered Material Joining Case and Lid of Semiconductor Device (1)]
The semiconductor device (1) was produced by the following method.
The semiconductor dummy chip 4 is provided on a tab 7 of a ceramic case 6 having an external lead terminal 5 that can be electrically connected, and the bonding pad 8 and the external lead terminal 5 provided at the upper end of the semiconductor chip are connected to a gold. Electrical connection was made by a bonding wire 9 made of metal. Next, the paste-like silver particle composition 11 is dispense-applied to the outer periphery of the ceramic case that has been plated with gold 10. The ceramic lid 12 (the surface in contact with the paste-like silver particle composition 11 is plated with gold 10). It has been). This was performed in a hot air circulation oven for 1 hour at a predetermined temperature, and the ceramic case 6 and the ceramic lid 12 were joined together to fabricate the semiconductor device (1). The semiconductor device (1) is a metal member assembly. A cross-sectional view of the semiconductor device (1) is shown in FIG.

加熱(1)の際に加圧をする場合は、このセラミック製ケース上部の金メッキ10を施した外周部にペースト状銀粒子組成物11をディスペンス塗布し、セラミックの蓋12を載せた後、セラミックの蓋12の上面に所定の質量の錘を載せることによりおこなった。 When pressure is applied during the heating (1), the paste-like silver particle composition 11 is dispensed on the outer periphery of the ceramic case with the gold plating 10 applied thereon, and the ceramic lid 12 is placed thereon. This was performed by placing a weight having a predetermined mass on the upper surface of the lid 12.

かくして得られた半導体装置(1)のセラミック製ケース6とセラミック製の蓋12を接合している銀粒子焼結物の断面を顕微鏡で撮影し、PPC用紙(上質紙・中性紙)に印刷した。次いで、写真の空孔部分と非空孔部分を切り分けてそれぞれの質量を測定し、空孔部分の割合を面積として算出し、その百分率を空孔率とした。 The cross section of the silver particle sintered product joining the ceramic case 6 and the ceramic lid 12 of the semiconductor device (1) thus obtained was photographed with a microscope and printed on PPC paper (quality paper / neutral paper). did. Subsequently, the hole part and the non-hole part of the photograph were separated and the respective masses were measured, the ratio of the hole part was calculated as the area, and the percentage was defined as the porosity.

[半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無の測定方法]
半導体装置(1)を加熱(2)して作成した半導体装置(2)の全体の厚さをマイクロメーターで測定し、そこから予め測定したセラミック製ケース6の厚さ、金メッキ10の厚さ、および、蓋12の厚さを差し引いて、半導体装置(2)のケースと蓋を接合している焼結物の厚さa3とした。この際、半導体装置(2)における焼結物の食み出しの有無を目視で観察した。
[Measurement Method of Thickness a3 of Sintered Material Joining Case and Lid of Semiconductor Device (2), and Presence / No Extrusion of Sintered Product in Semiconductor Device (2)]
The total thickness of the semiconductor device (2) prepared by heating (2) the semiconductor device (1) is measured with a micrometer, and from this, the thickness of the ceramic case 6 and the thickness of the gold plating 10 are measured in advance. Then, the thickness of the lid 12 was subtracted to obtain the thickness a3 of the sintered product joining the case and lid of the semiconductor device (2). At this time, the presence or absence of protrusion of the sintered product in the semiconductor device (2) was visually observed.

[加熱(1)と加熱(2)とによる接合強度測定用試験体(2)の作製方法および接合強度測定用試験体(2)のせん断接着強さの測定方法]
[加熱(1)による接合強度測定用試験体(1)の作製方法および接合強度測定用試験体(1)のせん断接着強さの測定方法]で作製した加熱(1)後の金属製部材接合体(1)を、次の通り加熱(2)した。
この金属製部材接合体(1)の銀粒子焼結物に圧力を加えて加熱(2)する場合は、金属製部材接合体(1)を加熱可能なプレス機に上下方向から挟み、所定の圧力を加えながら加熱(2)を所定の温度で1時間おこなって、空孔率を低減した銀粒子焼結物を形成することにより、金属製部材接合体(2)を作製した。金属製部材接合体(1)の銀粒子焼結物に圧力を加えないで加熱(2)する場合は、金属製部材接合体(1)を電気炉中で加熱(2)を所定の温度で1時間おこなって空孔率を低減した銀粒子焼結物を形成することにより、金属製部材接合体(2)を作製した。
[Method for preparing test specimen (2) for bonding strength measurement by heating (1) and heating (2) and method for measuring shear bond strength of test specimen for bonding strength (2)]
Joining of metal parts after heating (1) prepared in [Method of preparing test specimen (1) for bonding strength measurement by heating (1) and method of measuring shear bond strength of test specimen for bonding strength (1)] Body (1) was heated (2) as follows.
In the case of heating (2) by applying pressure to the silver particle sintered product of the metal member assembly (1), the metal member assembly (1) is sandwiched from above and below in a heatable press, and a predetermined amount is obtained. While applying pressure, heating (2) was performed at a predetermined temperature for 1 hour to form a sintered silver particle having a reduced porosity, thereby producing a metal member assembly (2). When heating (2) without applying pressure to the silver particle sintered product of the metal member assembly (1), heat the metal member assembly (1) in an electric furnace (2) at a predetermined temperature. A metal member joined body (2) was produced by forming a silver particle sintered product with reduced porosity after 1 hour.

かくして得られた金属製部材接合体(2)を接合強度測定用試験体(2)として、該接合強度測定用試験体(2)を接着強さ試験機の試験体取付け具にセットし、該銀チップ3の側面を接着強さ試験機の押圧棒により押厚速度23mm/分で押圧し、接合部がせん断破壊したときの荷重をもって接着強さ(単位;MPa)とした。4個の平均値をせん断接着強さとした。なお、せん断接着強さ測定用試験体(2)の平面図、該平面図におけるX−X線断面図は、せん断接着強さ測定用試験体(1)のものと同様である。 The metal member joined body (2) thus obtained was used as a joint strength measurement specimen (2), and the joint strength measurement specimen (2) was set on a specimen fixture of an adhesive strength tester. The side surface of the silver chip 3 was pressed at a pressing speed of 23 mm / min with a pressing bar of an adhesive strength tester, and the load when the joint was sheared was determined as the adhesive strength (unit: MPa). The average value of the four pieces was taken as the shear bond strength. The plan view of the test specimen for measuring shear bond strength (2) and the cross-sectional view taken along the line XX in the plan view are the same as those of the test specimen for measuring shear bond strength (1).

[加熱(1)と加熱(2)とによる半導体装置(2)の作製方法および半導体装置のケースと蓋を接合している焼結物の空孔率(2)の測定方法]
[加熱(1)による半導体装置(1)の作製方法および半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)の測定方法]で作製した加熱(1)後の半導体装置(1)の銀粒子焼結物に、圧力を加えて加熱(2)する場合は、半導体装置(1)を加熱可能なプレス機に上下方向から挟み、所定の圧力を加えながら加熱(2)を所定の温度で1時間おこなって、空孔率を低減した銀粒子焼結物を形成することにより、半導体装置(2)を作製した。
半導体装置(1)の焼結物に圧力を加えないで加熱(2)する場合は、電気炉中で加熱(2)を所定の温度で1時間おこなって、空孔率を低減した銀粒子焼結物を形成することにより、半導体装置(2)を作製した。なお、半導体装置(2)は金属製部材接合体である。半導体装置(2)の断面図は半導体装置(1)とものと同様である。
[Method for Manufacturing Semiconductor Device (2) by Heating (1) and Heating (2) and Method for Measuring Porosity (2) of Sintered Material Joining Case and Lid of Semiconductor Device]
[Method of manufacturing semiconductor device (1) by heating (1) and method of measuring porosity (1) of sintered silver particles joining the case and lid of semiconductor device (1)] 1) When heating (2) by applying pressure to the silver particle sintered product of the subsequent semiconductor device (1), the semiconductor device (1) is sandwiched from above and below by a press machine capable of heating, and a predetermined pressure is applied. While adding, heating (2) was performed at a predetermined temperature for 1 hour to form a sintered silver particle having a reduced porosity, thereby producing a semiconductor device (2).
When heating (2) without applying pressure to the sintered product of the semiconductor device (1), heating (2) is carried out in an electric furnace at a predetermined temperature for 1 hour to sinter silver particles with reduced porosity. A semiconductor device (2) was produced by forming a binder. The semiconductor device (2) is a metal member assembly. The cross-sectional view of the semiconductor device (2) is the same as that of the semiconductor device (1).

かくして得られた半導体装置(2)のセラミック製ケース6とセラミック製の蓋12を接合している銀粒子焼結物の断面を顕微鏡で撮影し、PPC用紙(上質紙・中性紙)に印刷した。次いで、写真の空孔部分と非空孔部分を切り分けてそれぞれの質量を測定し、空孔部分の割合を面積として算出し、その百分率を空孔率とした。 The cross section of the silver particle sintered product joining the ceramic case 6 and the ceramic lid 12 of the semiconductor device (2) thus obtained was photographed with a microscope and printed on PPC paper (quality paper / neutral paper). did. Subsequently, the hole part and the non-hole part of the photograph were separated and the respective masses were measured, the ratio of the hole part was calculated as the area, and the percentage was defined as the porosity.

[半導体装置の気密性]
後述する各実施例、比較例において、半導体装置(2)20個(比較例1においては、半導体装置(1)20個である。)を121℃のプレッシャークッカーオーブン中で96時間加熱した後、この半導体装置の外部端子に電流を流して、外部端子間のリーク電流を測定して、リーク電流に変化があった半導体装置の個数の割合(%)を不良率とした。これをもってこの半導体装置の気密性の評価とした。
[Airtightness of semiconductor devices]
In each of Examples and Comparative Examples described later, 20 semiconductor devices (2) (20 semiconductor devices (1) in Comparative Example 1) were heated in a pressure cooker oven at 121 ° C. for 96 hours. A current was passed through the external terminals of this semiconductor device to measure the leakage current between the external terminals, and the ratio (%) of the number of semiconductor devices in which the leakage current changed was defined as the defect rate. This was used to evaluate the airtightness of this semiconductor device.

[半導体装置の耐熱性]
後述する各実施例、比較例において、半導体装置(2)20個(比較例1においては、半導体装置(1)20個である。)を200℃の熱風循環式オーブン中で1000時間加熱した後、この半導体装置の外部端子に電流を流して、外部端子間のリーク電流を測定して、リーク電流に変化があった半導体装置の個数の割合(%)を不良率とした。これをもって半導体装置の耐熱性の評価とした。
[Heat resistance of semiconductor devices]
In each of Examples and Comparative Examples described later, 20 semiconductor devices (2) (20 semiconductor devices (1) in Comparative Example 1) were heated in a hot air circulation oven at 200 ° C. for 1000 hours. The current was passed through the external terminals of this semiconductor device, the leakage current between the external terminals was measured, and the ratio (%) of the number of semiconductor devices in which the leakage current changed was defined as the defect rate. This was used as an evaluation of the heat resistance of the semiconductor device.

[実施例1]
特開昭54−121270の実施例に準じて還元法で製造され、表面がオレイン酸で被覆された銀粒子(形状:粒状、1次粒子の平均粒径:0.9μm、オレイン酸量:0.6重量%)100部に、揮発性分散媒として酢酸2−(2−ブトキシエトキシ)エタン(和光純薬工業株式会社製、試薬1級)8部を添加し、ヘラを用いて均一に混合することによりペースト状銀粒子組成物を調製した。
[Example 1]
Silver particles produced by a reduction method according to the example of JP-A-54-121270 and coated with oleic acid on the surface (shape: granular, average particle size of primary particles: 0.9 μm, amount of oleic acid: 0 .6 wt%) To 100 parts of volatile dispersion medium, 8 parts of 2- (2-butoxyethoxy) ethane acetate (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) is added and mixed uniformly using a spatula. By doing so, a paste-like silver particle composition was prepared.

該ペースト状銀粒子組成物を用いて、加熱(1)の加熱温度を200℃として、金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)を前記作製方法で作製した。さらには、加熱(2)の加熱温度を350℃として、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を前記作製方法で作製した。 Using the paste-like silver particle composition, the heating temperature of heating (1) is set to 200 ° C., and the metal member bonded body (1) (bonding strength measuring test body (1)) and the semiconductor device (1) are It was produced by the production method. Furthermore, the heating temperature of the heating (2) was set to 350 ° C., and the metal member bonded body (2) (bonding strength measuring test body (2)) and the semiconductor device (2) were manufactured by the manufacturing method.

次の項目について、測定をし、結果を表1および表2にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 1 and 2.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、本発明の金属製部材接合体の製造方法は、半導体装置のケースと蓋を接合している焼結物の厚さが所定の厚さであり、焼結物が半導体装置のケースと蓋間から食み出しておらず、金属製部材同士を強固に接合し、気密性の優れた金属製部材接合体の製造に有用なことがわかった。 Based on the above results, in the method for manufacturing a metal member assembly according to the present invention, the thickness of the sintered product joining the case and the lid of the semiconductor device is a predetermined thickness, and the sintered product is the semiconductor device It has been found that the metal member does not protrude from between the case and the lid, and the metal members are firmly bonded to each other, which is useful for manufacturing a metal member assembly having excellent airtightness.

[実施例2]
市販の,還元法で製造された銀粒子をフレーク化し,表面がステアリン酸で被覆されたフレーク状銀粒子(1次粒子の平均粒径:6.5μm、ステアリン酸量:0.3重量%)100部に、揮発性分散媒として酢酸2−(2−ブトキシエトキシ)エタン(和光純薬工業株式会社製、試薬1級)8部を添加し、ヘラを用いて均一に混合することによりペースト状銀粒子組成物を調製した。
[Example 2]
Commercially available silver particles produced by the reduction method are flaked and the surfaces thereof are coated with stearic acid (flaky silver particles having an average primary particle size: 6.5 μm, stearic acid content: 0.3% by weight) To 100 parts, 8 parts of acetic acid 2- (2-butoxyethoxy) ethane (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) is added as a volatile dispersion medium, and the mixture is uniformly mixed using a spatula to form a paste. A silver particle composition was prepared.

該ペースト状銀粒子組成物を用いて、加熱(1)の加熱温度を200℃として、金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)を前記作製方法で作製した。さらには、加熱(2)の加熱温度を350℃として、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を前記作製方法で作製した。 Using the paste-like silver particle composition, the heating temperature of heating (1) is set to 200 ° C., and the metal member bonded body (1) (bonding strength measuring test body (1)) and the semiconductor device (1) are It was produced by the production method. Furthermore, the heating temperature of the heating (2) was set to 350 ° C., and the metal member bonded body (2) (bonding strength measuring test body (2)) and the semiconductor device (2) were manufactured by the manufacturing method.

次の項目について、測定をし、結果を表1および表2にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 1 and 2.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、本発明の金属製部材接合体の製造方法は、半導体装置のケースと蓋を接合している焼結物の厚さが所定の厚さであり、焼結物が半導体装置のケースと蓋間から食み出しておらず、金属製部材同士を強固に接合し、気密性の優れた金属製部材接合体の製造に有用なことがわかった。 Based on the above results, in the method for manufacturing a metal member assembly according to the present invention, the thickness of the sintered product joining the case and the lid of the semiconductor device is a predetermined thickness, and the sintered product is the semiconductor device It has been found that the metal member does not protrude from between the case and the lid, and the metal members are firmly bonded to each other, which is useful for manufacturing a metal member assembly having excellent airtightness.

[実施例3]
実施例1において、金属製部材接合体(1)および半導体装置(1)に圧力を加えないで加熱(2)する代わりに、金属製部材接合体(1)および半導体装置(1)に2.0MPaの圧力を加えて加熱(2)(加熱温度300℃)して、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Example 3]
In Example 1, instead of heating (2) the metal member assembly (1) and the semiconductor device (1) without applying pressure, the metal member assembly (1) and the semiconductor device (1) are subjected to 2. A metal member joined body (2) (joint strength measurement specimen (2)) and a semiconductor device (2) were manufactured by applying pressure (0 MPa) and heating (2) (heating temperature 300 ° C.).

次の項目について、測定をし、結果を表1および表2にまとめて示した。
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)
なお、表1中の次の項目については、実施例1の測定結果である。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
表2中の次の項目については、実施例1の測定結果である。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1
The following items were measured and the results are summarized in Tables 1 and 2.
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of specimen for bonding strength measurement (2)) Porosity of sintered silver particles joining the case and lid of semiconductor device (2) (2)
The following items in Table 1 are the measurement results of Example 1.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
The following items in Table 2 are measurement results of Example 1.
・ Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1)

以上の結果により、この金属製部材接合体の製造方法は、半導体装置のケースと蓋を接合している焼結物の厚さが所定の厚さであり、焼結物が半導体装置のケースと蓋間から食み出しておらず、金属製部材同士を強固に接合し、気密性の優れた金属製部材接合体の製造に有用なことがわかった。 Based on the above results, in this method of manufacturing a metal member assembly, the thickness of the sintered product joining the case and the lid of the semiconductor device is a predetermined thickness, and the sintered product is the same as the case of the semiconductor device. It was found that the metal members did not protrude from between the lids, and the metal members were strongly bonded to each other, which was useful for the production of a metal member assembly having excellent airtightness.

[実施例4]
実施例2において、金属製部材接合体(1)に圧力を加えないで加熱(2)した代わりに、窒素ガス中で金属製部材接合体(1)および半導体装置(1)に2.0MPaの圧力を加えて加熱(2)(加熱温度300℃)して、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Example 4]
In Example 2, instead of heating (2) without applying pressure to the metal member assembly (1), 2.0 MPa was applied to the metal member assembly (1) and the semiconductor device (1) in nitrogen gas. The metal member joined body (2) (joint strength measurement specimen (2)) and the semiconductor device (2) were manufactured by applying pressure and heating (2) (heating temperature 300 ° C.).

次の項目について、測定をし、結果を表1および表2にまとめて示した。
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
なお、表1中の次の項目については、実施例2の測定結果である。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
表2中の次の項目については、実施例2の測定結果である。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1
The following items were measured and the results are summarized in Tables 1 and 2.
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles bonding the case and lid of the semiconductor device (2), airtightness and heat resistance The following items in Table 1 are the measurement results of Example 2.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
The following items in Table 2 are measurement results of Example 2.
・ Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1)

以上の結果により、この金属製部材接合体の製造方法は、半導体装置のケースと蓋を接合している焼結物の厚さが所定の厚さであり、焼結物が半導体装置のケースと蓋間から食み出しておらず、金属製部材同士を強固に接合し、気密性の優れた金属製部材接合体の製造に有用なことがわかった。 Based on the above results, in this method of manufacturing a metal member assembly, the thickness of the sintered product joining the case and the lid of the semiconductor device is a predetermined thickness, and the sintered product is the same as the case of the semiconductor device. It was found that the metal members did not protrude from between the lids, and the metal members were strongly bonded to each other, which was useful for the production of a metal member assembly having excellent airtightness.

[実施例5]
実施例1において、揮発性分散媒として用いた酢酸2−(2−ブトキシエトキシ)エタンの代わりに、揮発性炭化水素であるイソパラフィン(新日本石油株式会社製、アイソゾール400(アイソゾールは登録商標である。)を用いて調製したペースト状銀粒子組成物を用いて、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Example 5]
In Example 1, instead of 2- (2-butoxyethoxy) ethane acetate used as a volatile dispersion medium, isoparaffin (made by Nippon Oil Co., Ltd., Isosol 400 (Isolol is a registered trademark), which is a volatile hydrocarbon, is used. .) Was used to prepare a metal member joined body (2) (joint strength measurement specimen (2)) and a semiconductor device (2).

次の項目について、測定をし、結果を表1および表2にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 1 and 2.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、この金属製部材接合体の製造方法は、半導体装置のケースと蓋を接合している焼結物の厚さが所定の厚さであり、焼結物が半導体装置のケースと蓋間から食み出しておらず、金属製部材同士を強固に接合し、気密性の優れた金属製部材接合体の製造に有用なことがわかった。 Based on the above results, in this method of manufacturing a metal member assembly, the thickness of the sintered product joining the case and the lid of the semiconductor device is a predetermined thickness, and the sintered product is the same as the case of the semiconductor device. It was found that the metal members did not protrude from between the lids, and the metal members were strongly bonded to each other, which was useful for the production of a metal member assembly having excellent airtightness.

[比較例1]
実施例1における、加熱(2)を行っていない半導体装置(1)の気密性および耐熱性の測定をし、結果を表3および表4にまとめて示した。以上の結果により、この金属製部材接合体の加熱(2)を行わない製造方法では、金属製部材接合体である半導体装置を十分に気密封止することができないことがわかった。
なお、表3中の次の項目については、実施例1の測定結果である。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
[Comparative Example 1]
The airtightness and heat resistance of the semiconductor device (1) not subjected to heating (2) in Example 1 were measured, and the results are summarized in Tables 3 and 4. From the above results, it was found that the semiconductor device that is the metal member assembly cannot be sufficiently hermetically sealed by the manufacturing method that does not perform the heating (2) of the metal member assembly.
The following items in Table 3 are the measurement results of Example 1.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)

[比較例2]
実施例1において、加熱(1)の温度を400℃とした以外は同様にして、金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Comparative Example 2]
In Example 1, except that the temperature of heating (1) was set to 400 ° C., a metal member joined body (1) (joint strength measuring specimen (1)), a semiconductor device (1), and a metal A member joined body (2) (joint strength measuring test body (2)) and a semiconductor device (2) were produced.

次の項目について、測定をし、結果を表3および表4にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 3 and 4.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、この金属製部材接合体の製造方法では、半導体装置(1)が気密封止され、ケースと蓋を接合している焼結物の空孔率が極めて小さく気体を通過できないため、ペースト状銀粒子組成物が加熱(1)された際に揮発して半導体装置(1)の内部に閉じ込められた該ペースト状銀粒子組成物中の揮発性分散媒が外部に排出されることなく残留し、加熱(2)した後もそのまま半導体装置(2)の内部に残留して金属製部材接合体である半導体装置の信頼性が低下することがわかった。 Based on the above results, in this method of manufacturing a metal member assembly, the semiconductor device (1) is hermetically sealed, and the porosity of the sintered product joining the case and the lid is extremely small and cannot pass gas. The volatile dispersion medium in the paste-like silver particle composition volatilized when the paste-like silver particle composition is heated (1) and trapped inside the semiconductor device (1) is discharged to the outside. It was found that even after heating (2), it remains in the semiconductor device (2) as it is, and the reliability of the semiconductor device, which is a metal member joined body, decreases.

[比較例3]
実施例1において調製したペースト状銀粒子組成物を用いて、加熱(1)の加熱温度を150℃とし、かつ、10MPaの圧力を加えながら加熱することにより、金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)を作製した。さらに、加熱(2)の加熱温度を150℃のまま、30MPaの圧力を加えながら加熱することにより、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Comparative Example 3]
Using the paste-like silver particle composition prepared in Example 1, the heating temperature of heating (1) is set to 150 ° C. and heating is performed while applying a pressure of 10 MPa, so that the metal member assembly (1) ( A specimen (1)) for measuring the bonding strength and a semiconductor device (1) were produced. Furthermore, the metal member joined body (2) (joint strength measuring test body (2)) and the semiconductor device (2) are heated by applying a pressure of 30 MPa while maintaining the heating temperature of the heating (2) at 150 ° C. ) Was produced.

次の項目について、測定をし、結果を表3および表4にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 3 and 4.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、この金属製部材接合体の製造方法では、半導体装置のケースと蓋を接合している焼結物の厚さがきわめて薄く、半導体装置のケースと蓋の接合強度が低く、また、焼結物が半導体装置のケースと蓋間から食み出して周辺を汚染し、金属製部材接合体である半導体装置の信頼性が低下することがわかった。 Based on the above results, in this metal member assembly manufacturing method, the thickness of the sintered product joining the case and lid of the semiconductor device is extremely thin, the joint strength between the case and lid of the semiconductor device is low, and It was found that the sintered product oozes out between the case and the lid of the semiconductor device and contaminates the periphery, and the reliability of the semiconductor device which is a metal member assembly is lowered.

[比較例4]
実施例1において調製したペースト状銀粒子組成物を用いて、加熱(1)の加熱温度を200℃とし、かつ、10MPaの圧力を加えながら加熱することにより、金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)を作製した。さらに、加熱(2)の加熱温度を200℃のまま、30MPaの圧力を加えながら加熱することにより、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Comparative Example 4]
Using the paste-like silver particle composition prepared in Example 1, the heating temperature of heating (1) is set to 200 ° C. and heating is performed while applying a pressure of 10 MPa, so that the metal member assembly (1) ( A specimen (1)) for measuring the bonding strength and a semiconductor device (1) were produced. Furthermore, the metal member joined body (2) (joint strength measuring test body (2)) and the semiconductor device (2) are heated by applying a pressure of 30 MPa while the heating temperature of the heating (2) is kept at 200 ° C. ) Was produced.

次の項目について、測定をし、結果を表3および表4にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 3 and 4.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、この金属製部材接合体の製造方法では、半導体装置のケースと蓋を接合している焼結物の厚さがきわめて薄く、半導体装置のケースと蓋の接合強度が低く、また、焼結物が半導体装置のケースと蓋間から食み出して周辺を汚染し、金属製部材接合体である半導体装置の信頼性が低下することがわかった。 Based on the above results, in this metal member assembly manufacturing method, the thickness of the sintered product joining the case and lid of the semiconductor device is extremely thin, the joint strength between the case and lid of the semiconductor device is low, and It was found that the sintered product oozes out between the case and the lid of the semiconductor device and contaminates the periphery, and the reliability of the semiconductor device which is a metal member assembly is lowered.

[比較例5]
実施例1において調製したペースト状銀粒子組成物を用いて、加熱(1)の加熱温度を250℃とし、かつ、10MPaの圧力を加えながら加熱することにより、金属製部材接合体(1)(接合強度測定用試験体(1))および半導体装置(1)を作製した。さらに、加熱(2)の加熱温度を250℃のまま、30MPaの圧力を加えながら加熱することにより、金属製部材接合体(2)(接合強度測定用試験体(2))および半導体装置(2)を作製した。
[Comparative Example 5]
Using the paste-like silver particle composition prepared in Example 1, the heating temperature of heating (1) was set to 250 ° C. and heating while applying a pressure of 10 MPa, so that the metal member joined body (1) ( A specimen (1)) for measuring the bonding strength and a semiconductor device (1) were produced. Furthermore, the metal member joined body (2) (joint strength measurement specimen (2)) and the semiconductor device (2) are heated by applying a pressure of 30 MPa while maintaining the heating temperature of the heating (2) at 250 ° C. ) Was produced.

次の項目について、測定をし、結果を表3および表4にまとめて示した。
・半導体装置(1)のケースと蓋間のペースト状銀粒子組成物の加熱(1)前の厚さa1、半導体装置(1)のケースと蓋を接合している焼結物の厚さa2、および、半導体装置(1)におけるペースト状銀粒子組成物の食み出しの有無
・金属製部材接合体(1)(接合強度測定用試験体(1))のせん断接着強さ
・半導体装置(1)のケースと蓋を接合している銀粒子焼結物の空孔率(1)
・半導体装置(2)のケースと蓋を接合している焼結物の厚さa3、および、半導体装置(2)における焼結物の食み出しの有無
・金属製部材接合体(2)(接合強度測定用試験体(2))のせん断接着強さ
・半導体装置(2)のケースと蓋を接合している銀粒子焼結物の空孔率(2)、気密性および耐熱性
The following items were measured and the results are summarized in Tables 3 and 4.
Thickness a1 before heating (1) of paste-like silver particle composition between case and lid of semiconductor device (1), thickness a2 of sintered product joining case and lid of semiconductor device (1) , And presence or absence of paste-like silver particle composition in semiconductor device (1), shear bonding strength of metal member joined body (1) (joint strength measurement specimen (1)), semiconductor device ( Porosity of sintered silver particles joining the case and lid of 1) (1)
-Thickness a3 of the sintered product joining the case and lid of the semiconductor device (2), and the presence or absence of protrusion of the sintered product in the semiconductor device (2)-Metal member assembly (2) ( Shear bond strength of test specimen for bonding strength measurement (2)), porosity of sintered silver particles joining case and lid of semiconductor device (2), airtightness and heat resistance

以上の結果により、この金属製部材接合体の製造方法では、半導体装置のケースと蓋を接合している焼結物の厚さがきわめて薄く、半導体装置のケースと蓋の接合強度が低く、また、焼結物が半導体装置のケースと蓋間から食み出して周辺を汚染し、金属製部材接合体である半導体装置の信頼性が低下することがわかった。 Based on the above results, in this metal member assembly manufacturing method, the thickness of the sintered product joining the case and lid of the semiconductor device is extremely thin, the joint strength between the case and lid of the semiconductor device is low, and It was found that the sintered product oozes out between the case and the lid of the semiconductor device and contaminates the periphery, and the reliability of the semiconductor device which is a metal member assembly is lowered.

本発明の金属製部材接合体の製造方法は、金属製部材が加熱焼結性金属粒子の焼結物により強固に接合され、該焼結物に液体や気体が侵入・通過することのない、気密封止可能な金属製部材接合体を製造するのに有用である。本発明の金属製部材接合体の製造方法は、コンデンサ,抵抗等のチップ部品と回路基板との接合体、ダイオード,メモリ,IC,CPU等の半導体チップとリードフレームもしくは回路基板との接合体、半導体チップや電子部品または光学部品を搭載したキャンまたはケースとキャップまたはリッドとの接合体、高発熱のCPUチップと冷却板の接合体などの製造に有用である。
本発明の金属製部材接合体は、電子部品、電子装置、電気部品、電気装置などに有用である。
In the method for producing a metal member assembly of the present invention, a metal member is firmly bonded by a sintered product of heat-sinterable metal particles, and liquid or gas does not enter or pass through the sintered product. It is useful for manufacturing a metal member assembly that can be hermetically sealed. The method for manufacturing a metal member assembly of the present invention includes a junction between a chip component such as a capacitor and a resistor and a circuit board, a junction between a semiconductor chip such as a diode, memory, IC, and CPU and a lead frame or a circuit board, The present invention is useful for manufacturing a bonded body of a can or case and a cap or a lid on which a semiconductor chip, an electronic component or an optical component is mounted, a bonded body of a CPU chip and a cooling plate having a high heat generation.
The metal member assembly of the present invention is useful for electronic components, electronic devices, electrical components, electrical devices, and the like.

A せん断接着強さ測定用試験体(1)、せん断接着強さ測定用試験体(2)
1 銀基板
2 ペースト状銀粒子組成物(加熱焼結後は、焼結物である固体状銀)
3 銀チップ
B 半導体装置(1)、半導体装置(2)
4 半導体ダミーチップ
5 外部リード端子
6 セラミック製ケース
7 タブ
8 ボンディングパッド
9 ボンディングワイヤ
10 金メッキ
11 ペースト状銀粒子組成物(加熱焼結後は、焼結物である固体状銀)
12 蓋
A Test specimen for measuring shear bond strength (1), Test specimen for measuring shear bond strength (2)
1 Silver substrate 2 Paste-like silver particle composition (after heat-sintering, solid silver which is a sintered product)
3 Silver chip B Semiconductor device (1), Semiconductor device (2)
4 Semiconductor dummy chip 5 External lead terminal 6 Ceramic case 7 Tab 8 Bonding pad 9 Bonding wire 10 Gold plating 11 Pasty silver particle composition (solid silver which is sintered after heat sintering)
12 lid

Claims (9)

(A)平均粒径(メディアン径D50)が0.01μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、無加圧で加熱(1)することにより、該揮発性分散媒を揮散させ、該金属粒子同士を焼結せしめて生成した、断面における空孔率が面積比で15%以上である多孔質焼結物により、複数の金属製部材同士を接合させ、しかる後に、該金属製部材を加熱(1)よりも高い温度で加熱(2)して、該多孔質焼結物の空孔率を15%未満に低減することを特徴とする、金属製部材接合体の製造方法。 A paste-like metal particle composition comprising (A) a heat-sinterable metal particle having an average particle diameter (median diameter D50) of 0.01 μm or more and 50 μm or less and (B) a volatile dispersion medium, a plurality of metal members By interposing and heating (1) without pressure, the volatile dispersion medium is volatilized and the metal particles are sintered together, and the porosity in the cross section is 15% or more in area ratio. A plurality of metal members are joined together by the porous sintered product, and then the metal member is heated (2) at a temperature higher than the heating (1), A method for producing a metal member assembly, wherein the porosity is reduced to less than 15%. 加熱(1)の加熱温度が70℃以上300℃以下であり、加熱(2)の加熱温度が250℃以上であり、かつ加熱(2)の加熱温度が加熱(1)の加熱温度よりも50℃以上高い温度であることを特徴とする、請求項1に記載の金属製部材接合体の製造方法。 The heating temperature of heating (1) is 70 ° C. or higher and 300 ° C. or lower, the heating temperature of heating (2) is 250 ° C. or higher, and the heating temperature of heating (2) is 50 higher than the heating temperature of heating (1). The method for producing a metal member assembly according to claim 1, wherein the temperature is higher by at least ° C. 加熱(2)において、金属製部材接合体の多孔質焼結物に0.001MPa以上の圧力を加えることを特徴とする、請求項1に記載の金属製部材接合体の製造方法。 The method for producing a metal member assembly according to claim 1, wherein, in the heating (2), a pressure of 0.001 MPa or more is applied to the porous sintered product of the metal member assembly. 加熱(1)の加熱温度が70℃以上300℃以下であり、加熱(2)の加熱温度が200℃以上であり、かつ加熱(2)の加熱温度が加熱(1)の加熱温度よりも50℃以上高い温度であることを特徴とする、請求項3に記載の金属製部材接合体の製造方法。 The heating temperature of heating (1) is 70 ° C. or higher and 300 ° C. or lower, the heating temperature of heating (2) is 200 ° C. or higher, and the heating temperature of heating (2) is 50 higher than the heating temperature of heating (1). The method for producing a metal member assembly according to claim 3, wherein the temperature is higher by at least ° C. 加熱焼結性金属粒子が還元法で製造され、表面が有機化合物で被覆されている銀粒子であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、請求項1〜請求項4のいずれか1項に記載の金属製部材接合体の製造方法。 The heat-sinterable metal particles are silver particles produced by a reduction method and the surface is coated with an organic compound, and the metal of the metal member is copper, silver, gold, platinum, palladium, or each of these metals The method for producing a metal member bonded body according to any one of claims 1 to 4, wherein the metal member bonded body is an alloy of the above. 加熱(2)における雰囲気ガスが、不活性ガスまたは乾燥空気であることを特徴とする請求項1〜請求項5のいずれか1項に記載の金属製部材接合体の製造方法。 The method for producing a metal member assembly according to any one of claims 1 to 5, wherein the atmospheric gas in the heating (2) is an inert gas or dry air. 請求項1〜請求項6のいずれか1項に記載の金属製部材接合体の製造方法により製造された、金属製部材接合体。 A metal member assembly manufactured by the method for manufacturing a metal member assembly according to any one of claims 1 to 6. 複数の金属製部材が、加熱焼結性金属粒子が焼結して生成した断面における空孔率が面積比で15%未満の金属粒子焼結物により接合されていることを特徴とする、請求項7記載の金属製部材接合体。 A plurality of metal members are joined by a sintered metal particle having a porosity of an area ratio of less than 15% in a cross section generated by sintering heat-sinterable metal particles. Item 8. A metal member assembly according to Item 7. 接合した金属製部材間のせん断接着強さが14MPa以上であることを特徴とする、請求項8記載の金属製部材接合体。 The metal member joined body according to claim 8, wherein a shear bond strength between the joined metal members is 14 MPa or more.
JP2010220751A 2010-04-12 2010-09-30 Method for manufacturing metal member assembly and metal member assembly Active JP4795483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010220751A JP4795483B1 (en) 2010-04-12 2010-09-30 Method for manufacturing metal member assembly and metal member assembly

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010091626 2010-04-12
JP2010091626 2010-04-12
JP2010220751A JP4795483B1 (en) 2010-04-12 2010-09-30 Method for manufacturing metal member assembly and metal member assembly

Publications (2)

Publication Number Publication Date
JP4795483B1 JP4795483B1 (en) 2011-10-19
JP2011236494A true JP2011236494A (en) 2011-11-24

Family

ID=44946754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010220751A Active JP4795483B1 (en) 2010-04-12 2010-09-30 Method for manufacturing metal member assembly and metal member assembly

Country Status (1)

Country Link
JP (1) JP4795483B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211358A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Electronic device, manufacturing method of the same, and electronic apparatus
WO2015052791A1 (en) * 2013-10-09 2015-04-16 古河電気工業株式会社 Joining method for metal body and joining structure for metal body
JP2015104748A (en) * 2013-11-29 2015-06-08 国立大学法人大阪大学 Copper material bonding method
CN105592971A (en) * 2013-05-17 2016-05-18 丰田自动车株式会社 Metal paste for joining, joining method and joined body
JPWO2014002949A1 (en) * 2012-06-25 2016-05-30 イビデン株式会社 Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
EP2908333A4 (en) * 2012-10-09 2016-06-08 Mitsubishi Materials Corp Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
JP2016107290A (en) * 2014-12-04 2016-06-20 国立大学法人大阪大学 Metal material joining method
WO2017006531A1 (en) * 2015-07-08 2017-01-12 バンドー化学株式会社 Joining composition and joining method
KR20180050713A (en) * 2015-09-07 2018-05-15 히타치가세이가부시끼가이샤 Junction body and semiconductor device
JP2018534430A (en) * 2015-09-15 2018-11-22 サフラン エレクトロニクス アンド ディフェンス Manufacturing method by pressureless silver sintering
JP2021038427A (en) * 2019-09-02 2021-03-11 株式会社大阪ソーダ Sintered compact of silver particle
JP2021179416A (en) * 2019-07-24 2021-11-18 ニホンハンダ株式会社 Method for calculating average thickness of silver particle sintered part, and method for selecting volatile dispersion medium for paste-like silver particle composition
JP7396398B2 (en) 2015-09-07 2023-12-12 株式会社レゾナック Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device
US11894286B2 (en) * 2019-06-13 2024-02-06 Bae Systems Information And Electronic Systems Integration Inc. Hermetically sealed electronics module with enhanced cooling of core integrated circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652353B (en) 2014-06-30 2019-03-01 日商日鐵化學材料股份有限公司 Nickel particle composition, joint material, and joining method using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065728A1 (en) * 2006-11-29 2008-06-05 Nihon Handa Co., Ltd. Sintering metal particle composition having plasticity, method of producing the same, bonding agent and bonding method
JP2010053377A (en) * 2008-08-26 2010-03-11 Nippon Handa Kk Method for joining metallic member and method for producing metallic member-joined body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008065728A1 (en) * 2006-11-29 2008-06-05 Nihon Handa Co., Ltd. Sintering metal particle composition having plasticity, method of producing the same, bonding agent and bonding method
JP2010053377A (en) * 2008-08-26 2010-03-11 Nippon Handa Kk Method for joining metallic member and method for producing metallic member-joined body

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211358A (en) * 2012-03-30 2013-10-10 Seiko Epson Corp Electronic device, manufacturing method of the same, and electronic apparatus
JPWO2014002949A1 (en) * 2012-06-25 2016-05-30 イビデン株式会社 Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
EP2908333A4 (en) * 2012-10-09 2016-06-08 Mitsubishi Materials Corp Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method
US9401340B2 (en) 2012-10-09 2016-07-26 Mitsubishi Materials Corporation Semiconductor device and ceramic circuit substrate, and producing method of semiconductor device
KR101780139B1 (en) * 2013-05-17 2017-10-10 도요타 지도샤(주) Metal paste for joining, joining method and joined body
CN105592971A (en) * 2013-05-17 2016-05-18 丰田自动车株式会社 Metal paste for joining, joining method and joined body
WO2015052791A1 (en) * 2013-10-09 2015-04-16 古河電気工業株式会社 Joining method for metal body and joining structure for metal body
JPWO2015052791A1 (en) * 2013-10-09 2017-03-09 古河電気工業株式会社 Metal body joining method and metal body joining structure
JP2015104748A (en) * 2013-11-29 2015-06-08 国立大学法人大阪大学 Copper material bonding method
JP2016107290A (en) * 2014-12-04 2016-06-20 国立大学法人大阪大学 Metal material joining method
WO2017006531A1 (en) * 2015-07-08 2017-01-12 バンドー化学株式会社 Joining composition and joining method
JPWO2017006531A1 (en) * 2015-07-08 2017-07-20 バンドー化学株式会社 Bonding composition and bonding method
KR20180050713A (en) * 2015-09-07 2018-05-15 히타치가세이가부시끼가이샤 Junction body and semiconductor device
KR102545990B1 (en) 2015-09-07 2023-06-20 가부시끼가이샤 레조낙 junctions and semiconductor devices
JP7396398B2 (en) 2015-09-07 2023-12-12 株式会社レゾナック Copper paste for bonding, method for manufacturing bonded body, and method for manufacturing semiconductor device
JP2018534430A (en) * 2015-09-15 2018-11-22 サフラン エレクトロニクス アンド ディフェンス Manufacturing method by pressureless silver sintering
US11894286B2 (en) * 2019-06-13 2024-02-06 Bae Systems Information And Electronic Systems Integration Inc. Hermetically sealed electronics module with enhanced cooling of core integrated circuit
JP2021179416A (en) * 2019-07-24 2021-11-18 ニホンハンダ株式会社 Method for calculating average thickness of silver particle sintered part, and method for selecting volatile dispersion medium for paste-like silver particle composition
JP2021038427A (en) * 2019-09-02 2021-03-11 株式会社大阪ソーダ Sintered compact of silver particle

Also Published As

Publication number Publication date
JP4795483B1 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4795483B1 (en) Method for manufacturing metal member assembly and metal member assembly
JP4870223B1 (en) Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP4685145B2 (en) Method for manufacturing metal member assembly and metal member assembly
JP4470193B2 (en) Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP4633857B1 (en) Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly
JP5425962B2 (en) Heat-sinterable silver particle production method, paste-like silver particle composition, solid silver production method, metal member joining method, printed wiring board production method, and electrical circuit connection bump production method
WO2009122467A1 (en) Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection
JP6819598B2 (en) Copper paste for bonding, manufacturing method of bonded body and manufacturing method of semiconductor device
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
JP2010131669A (en) Joining agent for metal component, method of producing metal component joined article, metal component joined article, and method of manufacturing bump for electric circuit connection
JP2010053377A (en) Method for joining metallic member and method for producing metallic member-joined body
JP6118489B2 (en) Paste-like metal particle composition, method for producing metal member assembly, and method for producing porous metal particle sintered product
JP7436906B2 (en) semiconductor equipment
JP5375343B2 (en) Bonding material, manufacturing method thereof, and mounting method using the same
JP2012191238A (en) Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same
JP2010248617A (en) Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
JP6722679B2 (en) Conductive paste
JP6556302B1 (en) Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin
WO2012053034A1 (en) Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
JP6944734B2 (en) Joins and electronics
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
JP6624620B1 (en) Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body
JP6823856B1 (en) Manufacturing method of joint

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4795483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250