JP2011236094A - High concentration silica sol - Google Patents

High concentration silica sol Download PDF

Info

Publication number
JP2011236094A
JP2011236094A JP2010110188A JP2010110188A JP2011236094A JP 2011236094 A JP2011236094 A JP 2011236094A JP 2010110188 A JP2010110188 A JP 2010110188A JP 2010110188 A JP2010110188 A JP 2010110188A JP 2011236094 A JP2011236094 A JP 2011236094A
Authority
JP
Japan
Prior art keywords
silica
concentration
silica sol
fine particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010110188A
Other languages
Japanese (ja)
Other versions
JP5505900B2 (en
Inventor
Hiroyasu Nishida
広泰 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2010110188A priority Critical patent/JP5505900B2/en
Publication of JP2011236094A publication Critical patent/JP2011236094A/en
Application granted granted Critical
Publication of JP5505900B2 publication Critical patent/JP5505900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide high concentration silica sol in which silica fine particles are dispersed at high concentration in a dispersion medium containing an organic solvent.SOLUTION: The high concentration silica sol is prepared by dispersing silica fine particles satisfying the following conditions (a) to (c) at silica concentration of 20-40 mass% in a dispersion medium containing a nitrogen-containing solvent having a boiling point of ≥100°C and a dipole moment of 1.0-4.2 D (Debye): (a) the silica fine particles have a specific surface area of 560-900 m/g, (b) the silica fine particles have an average particle size of 2-5 nm, and (c) the silica fine particles do not contain a carbon atom therein.

Description

本発明は、代表的には塗料、ハードコート剤又は透明保護膜(フィルム)の充填材(フィラー)、セラミック成形体用のバインダー又は顔料の成分等に利用されるシリカゾルであって、その分散質であるシリカ微粒子が所定の含窒素系溶媒を含む分散媒に高濃度に分散してなる高濃度シリカゾルに関するものである。   The present invention is typically a silica sol used as a paint, a hard coat agent or a filler (filler) of a transparent protective film (film), a binder or a pigment component for a ceramic molded body, and the dispersoid thereof. The present invention relates to a high-concentration silica sol in which silica fine particles are dispersed at a high concentration in a dispersion medium containing a predetermined nitrogen-containing solvent.

一般に、シリカ、アルミナなどの無機酸化物微粒子の有機溶媒分散液(オルガノゾル)を得るには、これらの無機酸化物微粒子の表面を疎水性にすることが必要であり、このため、通常、無機酸化物微粒子の表面を疎水性に改質(修飾)することが行われている。このような無機化合物微粒子の表面改質の方法としては、反応性モノマーまたはシランカップリング剤などの改質剤と、無機酸化物微粒子表面のヒドロキシル基とを反応させ、無機酸化物微粒子表面に疎水性の有機基を導入する方法が知られている。   In general, in order to obtain an organic solvent dispersion (organosol) of inorganic oxide fine particles such as silica and alumina, it is necessary to make the surface of these inorganic oxide fine particles hydrophobic. It has been carried out to modify (modify) the surface of the product fine particles to be hydrophobic. As a method for modifying the surface of such inorganic compound fine particles, a reactive monomer or a modifying agent such as a silane coupling agent and a hydroxyl group on the surface of the inorganic oxide fine particle are reacted to make the surface of the inorganic oxide fine particle hydrophobic. A method for introducing a functional organic group is known.

無機酸化物微粒子表面に疎水性の有機基を導入してオルガノゾルを調製する方法として、例えば、特開平1−42315号公報(特許文献1)には、親水性有機溶媒中に分散しているシリカゾルに表面処理剤を加えてシリカの表面を親油化した後、シリカゾルを遠心分離して溶媒層を除去し、取出した沈降シリカ層に親油性有機溶媒を加えてシリカをこの親油性溶媒中に均一に分散させてなる有機溶媒分散シリカゾルの製造方法が開示されている。   As a method for preparing an organosol by introducing hydrophobic organic groups onto the surface of inorganic oxide fine particles, for example, JP-A-1-42315 (Patent Document 1) discloses a silica sol dispersed in a hydrophilic organic solvent. After adding the surface treatment agent to make the surface of the silica oleophilic, the silica sol is centrifuged to remove the solvent layer, and the extracted precipitated silica layer is added with a lipophilic organic solvent to bring the silica into the lipophilic solvent. A method for producing an organic solvent-dispersed silica sol that is uniformly dispersed is disclosed.

特開平11−43319号公報(特許文献2)には、5.5〜550m/gの比表面積を有する親水性コロイド状シリカを5〜55重量%のSiO濃度で含有し、ジシロキサン化合物及び/又はモノアルコキシシラン化合物であるシリル化剤を、当該親水性コロイド状シリカの表面積100m当たりSi原子として0.03〜2ミリモル量比に含有し、且つその残余として0.1〜12重量%の水溶解度を有する疎水性有機溶媒に対して炭素数1〜3のアルコールは0.05〜20の重量比である混合溶媒と媒体中15重量%以下の水とからなる媒体を含有する反応混合物を、反応混合物中に存在するアルカリが除去され又は当量以上の酸で中和された状態で、0〜100℃で熟成することにより、疎水性コロイド状シリカが分散したシリル化処理シリカゾルを生成させることを含む疎水性オルガノシリカゾルの製造方法が開示されている。 JP-A-11-43319 (Patent Document 2) contains hydrophilic colloidal silica having a specific surface area of 5.5 to 550 m 2 / g at a SiO 2 concentration of 5 to 55% by weight, and contains a disiloxane compound. And / or a silylating agent which is a monoalkoxysilane compound is contained in an amount of 0.03 to 2 mmol as Si atoms per 100 m 2 of the surface area of the hydrophilic colloidal silica, and the balance is 0.1 to 12 wt. The reaction containing a medium composed of a mixed solvent having a weight ratio of 0.05 to 20 to 15 to 20% by weight of water in the medium with respect to the hydrophobic organic solvent having a water solubility of 5%. Hydrophobic colloidal silica is dispersed by aging the mixture at 0 to 100 ° C. with the alkali present in the reaction mixture removed or neutralized with an equivalent or more acid. A method for producing a hydrophobic organosilica sol is disclosed which comprises producing a silylated silica sol.

特開2003−12320号公報(特許文献3)には、平均粒子径が2〜100nmの範囲にあり、多価アルコールで表面が修飾されたシリカ系無機化合物微粒子が有機溶媒に分散してなるオルガノゾルであって、該シリカ系無機化合物微粒子のシリカ源の一部または全部がアルカリ金属珪酸塩に由来するものである無機化合物オルガノゾルが開示されている。この無機化合物オルガノゾルの製法としては、例えば、シリカゾル(水溶媒)に多価アルコール(例えば、エチレングリコール)を加え、加熱蒸留により水分を除去し、続いて有機溶媒を加え、再度加熱蒸留により水分を除去する方法が記載されている。   Japanese Patent Application Laid-Open No. 2003-12320 (Patent Document 3) discloses an organosol in which silica-based inorganic compound fine particles whose average particle diameter is in the range of 2 to 100 nm and whose surface is modified with polyhydric alcohol are dispersed in an organic solvent. An inorganic compound organosol in which part or all of the silica source of the silica-based inorganic compound fine particles is derived from an alkali metal silicate is disclosed. As a method for producing this inorganic compound organosol, for example, a polyhydric alcohol (for example, ethylene glycol) is added to silica sol (aqueous solvent), water is removed by heating distillation, then an organic solvent is added, and moisture is again removed by heating distillation. A method of removal is described.

特開2005−314197号公報(特許文献4)には、シリカ微粒子の粒子径が500nm以下であり、金属不純物含有量が1.0ppm以下であり、該シリカ微粒子を20重量%を超えて含有していても長期安定な高純度疎水性有機溶媒分散シリカゾルが開示されており、この高純度疎水性有機溶媒分散シリカゾルは、アルコキシシランを分散させた親水性溶媒を両親媒性有機溶媒で置換し、得られたシリカゾルを酸性下、シランカップリング剤で表面処理させて製造されることが記載されている。   In JP-A-2005-314197 (Patent Document 4), the particle diameter of silica fine particles is 500 nm or less, the metal impurity content is 1.0 ppm or less, and the silica fine particles are contained in an amount exceeding 20 wt%. However, a long-term stable high-purity hydrophobic organic solvent-dispersed silica sol is disclosed, and this high-purity hydrophobic organic solvent-dispersed silica sol replaces the hydrophilic solvent in which alkoxysilane is dispersed with an amphiphilic organic solvent, It is described that the resulting silica sol is produced by surface treatment with a silane coupling agent under acidic conditions.

また、シリカ微粒子の表面改質を伴うことなく、オルガノシリカゾルを得る方法として、国際公開第2007/18069号パンフレット(特許文献5)には、形状が不均一な異形シリカ微粒子が溶媒に分散した異形シリカゾルが開示されており、この異形シリカゾルを減圧蒸留、限外濾過法などの公知の方法により、分散媒としての水を有機溶媒に置換してオルガノゾルとすることが可能であることが開示されている。そのような有機溶媒としては、アルコール類、グリコール類、エステル類、ケトン類、窒素化合物類、芳香族類などの溶媒を使用することができ、具体的には、メタノール、エタノール、プロパノール、エチレングリコール、プロピレングリコール、グリセリン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、アセトン、メチルエチルケトン、ジメチルホルムアミド、N−メチル−2−ピロリドンなどの有機溶媒が例示されている。   Further, as a method for obtaining an organosilica sol without surface modification of silica fine particles, International Publication No. 2007/18069 pamphlet (Patent Document 5) describes a variant in which irregularly shaped silica fine particles having a non-uniform shape are dispersed in a solvent. Silica sol is disclosed, and it is disclosed that this deformed silica sol can be made into an organosol by replacing water as a dispersion medium with an organic solvent by a known method such as distillation under reduced pressure or ultrafiltration. Yes. As such an organic solvent, solvents such as alcohols, glycols, esters, ketones, nitrogen compounds, and aromatics can be used. Specifically, methanol, ethanol, propanol, ethylene glycol, and the like can be used. And organic solvents such as propylene glycol, glycerin, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, acetone, methyl ethyl ketone, dimethylformamide, and N-methyl-2-pyrrolidone.

特開平1−42315号公報JP-A-1-42315 特開平11−43319号公報JP 11-43319 A 特開2003−12320号公報JP 2003-12320 A 特開2005−314197号公報JP 2005-314197 A 国際公開第2007/18069号International Publication No. 2007/18069

特許文献1〜4は、いずれもシリカ微粒子などの分散質に改質剤(シランカップリング剤、多価アルコール等)による表面処理を行って疎水化し、シリカ微粒子と有機溶媒の親和性を向上させることに特徴がある。しかし、これらの方法では、シリカ微粒子の凝集を充分に抑制できない場合があった。また、特に改質剤としてシランカップリング剤を用いて、シリカ微粒子を疎水化して得られたオルガノシリカゾルでは、オルガノシリカゾルに水分が混入することにより、シリカ微粒子表面から疎水性基が脱離し、オルガノシリカゾルの安定性を低下させることがあった。なお、このようなオルガノシリカゾルの安定性低下によるシリカ微粒子の凝集が、オルガノシリカゾルをフィラーとして含有する塗料用被膜形成剤、ハードコート用被膜形成剤又は成形前のフィルム等において生じた場合、それぞれ塗料、ハードコート又はフィルムの性能及び性状を損なうため、解決が期待されていた。   In each of Patent Documents 1 to 4, the dispersoid such as silica fine particles is hydrophobized by surface treatment with a modifier (silane coupling agent, polyhydric alcohol, etc.) to improve the affinity between the silica fine particles and the organic solvent. There is a special feature. However, these methods sometimes cannot sufficiently suppress the aggregation of silica fine particles. In particular, in an organosilica sol obtained by hydrophobizing silica fine particles using a silane coupling agent as a modifier, when water is mixed in the organosilica sol, hydrophobic groups are detached from the surface of the silica fine particles, and The stability of the silica sol may be reduced. In addition, when such agglomeration of silica fine particles due to a decrease in the stability of the organosilica sol occurs in a coating film forming agent for coating, a coating agent for hard coating, or a film before molding, etc. containing the organosilica sol as a filler, In order to impair the performance and properties of the hard coat or film, a solution has been expected.

特許文献5には、分散媒としての水を有機溶媒に溶媒置換してオルガノシリカゾルとすることが可能であること及びそのような溶媒置換に適用する有機溶媒について開示している。このオルガノシリカゾルは、比表面積が13〜550m/gの範囲のシリカ微粒子が有機溶媒に分散してなるオルガノシリカゾルを対象としており、シリカ微粒子の比表面積が550m/gより大きいシリカゾル(水溶媒)をオルガノシリカゾルとする方法については、開示されていない。 Patent Document 5 discloses that an organic solvent can be obtained by replacing water as a dispersion medium with an organic solvent to form an organosilica sol, and applying such solvent replacement. This organosilica sol, the silica particles ranging specific surface area of 13~550m 2 / g is directed to a organosilica sol obtained by dispersing in an organic solvent, the specific surface area of the silica fine particles 550 meters 2 / g greater than the silica sol (aqueous solvent ) Is not disclosed.

また、テトラエトキシシラン(TEOS)の加水分解工程を含む製造方法により、比表面積が550m/gを超えるシリカ微粒子を分散質とするシリカゾル(水溶媒)を得ることができる。しかしながら、そのようなシリカゾルは濃縮による増粘が生じ易く、NaOHや塩基性有機溶媒等のアルカリ成分と共存することで不安定化し易く、また、熱的影響を受けやすいなどの問題点があり、更に原料(テトラエトキシシラン)が珪酸アルカリ(シリカ微粒子の代表的な製造原料)に比べて高価であることも難点となっていた。
例えば、塗膜、ハードコート膜又は透明保護膜に求められる性能に応じて、それらの充填材として用いられるシリカ微粒子として、より粒子径が小さく、より比表面積が大きいシリカ微粒子であって、特に珪酸アルカリを原料として調製されたシリカ微粒子を分散質としたオルガノシリカゾルが求められていた。
In addition, a silica sol (water solvent) having a silica fine particle having a specific surface area exceeding 550 m 2 / g as a dispersoid can be obtained by a production method including a hydrolysis step of tetraethoxysilane (TEOS). However, such silica sols are prone to thickening due to concentration, are easily destabilized by coexisting with alkali components such as NaOH and basic organic solvents, and are susceptible to thermal effects, Furthermore, the raw material (tetraethoxysilane) is also more expensive than alkali silicate (a typical raw material for producing silica fine particles).
For example, depending on the performance required for the coating film, hard coat film or transparent protective film, the silica fine particles used as the filler thereof are silica fine particles having a smaller particle diameter and a larger specific surface area, particularly silicic acid. There has been a demand for an organosilica sol having silica fine particles prepared using alkali as a raw material as a dispersoid.

なお、珪酸アルカリを原料として得られるシリカ微粒子は、その表面にシラノール基(−Si−OH)が多数存在しており、そのようなシリカ微粒子を分散質とするシリカゾルを濃縮し、高濃度化すると、シリカ微粒子のシラノール基同士が脱水縮合し、ゲル化が生じ易くなることが知られている。また、シリカ微粒子の粒子径が小さくなる程、その比表面積は増大し、その結果、単位質量当り存在するシラノール基の量が増大するので、より粒子径の小さいシリカ微粒子又はより比表面積の大きいシリカ微粒子を分散質とするシリカゾルは、よりいっそう高濃度化によってゲル化が生じ易くなるものと言える。   The silica fine particles obtained using alkali silicate as a raw material have a large number of silanol groups (—Si—OH) on the surface. When the silica sol having such silica fine particles as a dispersoid is concentrated and concentrated, It is known that silanol groups of silica fine particles are dehydrated and condensed, and gelation is likely to occur. Further, the smaller the particle diameter of the silica fine particles, the larger the specific surface area. As a result, the amount of silanol groups present per unit mass increases, so that the silica fine particles having a smaller particle diameter or the silica having a larger specific surface area. It can be said that the silica sol having fine particles as a dispersoid is likely to be gelled by further increasing the concentration.

本発明は上記の問題に鑑みてなされたものであって、珪酸アルカリを原料として得られるシリカ微粒子を分散質とするシリカゾルにおいて、シラノール基の脱水縮合を抑制することにより、シリカゾルのゲル化を抑制することを本質的な課題とするものである。また、より具体的には、珪酸アルカリを原料として得られるシリカ微粒子(比表面積が560m/g以上、平均粒子径が2〜5nm)を分散質とするオルガノシリカゾルであって、シリカ濃度が20〜40質量%の範囲にあるオルガノシリカゾルを提供することを課題とする。 The present invention has been made in view of the above problems, and in a silica sol using silica fine particles obtained from alkali silicate as a dispersoid, the gelation of the silica sol is suppressed by suppressing the dehydration condensation of silanol groups. Doing so is an essential issue. More specifically, it is an organosilica sol having a silica fine particle (specific surface area of 560 m 2 / g or more, average particle diameter of 2 to 5 nm) obtained using alkali silicate as a raw material, and having a silica concentration of 20 It is an object to provide an organosilica sol in the range of ˜40 mass%.

本発明者は、上記の課題を解決すべく鋭意検討した結果、本発明を完成するに至った。すなわち、本発明の課題は下記(1)〜(10)の手段により達成される。
(1)下記の(a)〜(c)の条件を満たすシリカ微粒子が、シリカ濃度20〜40質量%の範囲で、沸点が100℃以上且つ双極子モーメントが1.0〜4.2D(Debye)の範囲にある含窒素系溶媒を含む分散媒に分散してなることを特徴とする高濃度シリカゾル。
(a)前記シリカ微粒子の比表面積が560〜900m/gの範囲
(b)前記シリカ微粒子の平均粒子径が2〜5nmの範囲
(c)前記シリカ微粒子内に炭素原子を含有しない
本発明に係る高濃度シリカゾルにおいては、沸点が100℃以上且つ双極子モーメントが1.0〜4.2D(Debye)の範囲にある前記含窒素系溶媒の窒素原子が、シリカ微粒子表面のシラノール基に配位し、シラノール基同士の脱水縮合を阻害し、ゲル化を抑制する作用を示すので、前記(a)、(b)及び(c)のようにシラノール基を比較的多量に有するシリカ微粒子を分散質とするシリカゾルを安定に保つことができる。
(2)前記分散媒中に、前記含窒素系溶媒が50質量%以上含まれることを特徴とする前記(1)記載の高濃度シリカゾル。本発明に係る高濃度シリカゾルにおいては、その分散媒のうち少なくとも50質量%が前記含窒素系溶媒であれば、シリカ微粒子表面のシラノール基同士の脱水縮合を阻害し、ゲル化を抑制する作用を示すことができる。
(3)前記シリカ微粒子が、珪酸アルカリを原料として調製されたものであることを特徴とする前記(1)又は(2)に記載の高濃度シリカゾル。本発明に係る高濃度シリカゾルの特徴的な効果(従来より高いシリカ濃度において安定であること)は、珪酸アルカリを原料として調製されたシリカ微粒子のようにシラノール基を多量に有するシリカ微粒子を分散質とするシリカゾルにおいて顕著に現れるものである。なお、前記(c)の条件は、本発明に係る高濃度シリカゾルの分散質であるシリカ微粒子が、少なくともアルコキシシランの加水分解反応により調製されたものではないことを表すものであり、このことは必然的に前記シリカ微粒子が珪酸アルカリを原料として調製されたシリカ微粒子であることを表している。
(4)前記シリカ微粒子におけるSiO:MO(Mはアルカリ金属を示す)の質量比が、100:0.2〜100:10の範囲であることを特徴とする前記(1)〜(3)のいずれかに記載の高濃度シリカゾル。本発明に係る高濃度シリカゾルの分散質であるシリカ微粒子として、その組成が前記SiO:MOの質量比範囲であるものが好ましい。
(5)前記含窒素系溶媒が、ジプロピルアミン、N−メチルホルムアミド、N−メチル−2−ピロリドン又はモノエタノールアミンから選ばれる少なくとも1種であることを特徴とする前記(1)〜(4)のいずれかに記載の高濃度シリカゾル。本発明に係る高濃度シリカゾルにおいて、前記含窒素系溶として、これらの含窒素系溶媒を使用した場合、シリカ微粒子表面のシラノール基同士の脱水縮合を阻害し、ゲル化を抑制する作用を良好に示すことができる。
(6)前記分散媒が、水を含むことを特徴とする前記(1)〜(5)のいずれかに記載の高濃度シリカゾル。本発明に係る高濃度シリカゾルの分散媒は、前記のとおり、その少なくとも50質量%が前記含窒素系溶媒であれば、シリカ微粒子表面のシラノール基同士の脱水縮合を阻害し、ゲル化を抑制する作用を示すことができる。含窒素系溶媒以外の分散媒については、格別に制限されるものではないが、例え水分を含むものであっても、シリカ微粒子表面のシラノール基同士の脱水縮合を阻害し、ゲル化を抑制する作用を示すことができる。
(7)25℃での粘度が、5〜300mP・sの範囲にあることを特徴とする前記(1)〜(6)のいずれかに記載の高濃度シリカゾル。本発明に係る高濃度シリカゾルは、前記含窒素系溶媒の作用により、安定性の高いものである。安定性のレベルについては、前記粘度範囲(25℃)を維持できるものとなる。
(8)前記(1)〜(7)のいずれかに記載の高濃度シリカゾルを含有することを特徴とするセラミック成形体用バインダー。本発明に係る高濃度シリカゾルは、その分散質であるシリカ微粒子の比表面積が比較的大きく、シラノール基を比較的多く有するため、例えば、セラミック成形体用バインダーとして好適に使用可能である。
(9)前記(1)〜(7)のいずれかに記載の高濃度シリカゾルを含有することを特徴とする充填材。本発明に係る高濃度シリカゾルは、その分散質であるシリカ微粒子の平均粒子径は2〜5nmと小さく、その比表面積は560〜900m/gと比較的大きく、シラノール基を比較的多く有するため、塗料、ハードコート剤又はフィルムの充填材として有用である。
(10)前記(1)〜(7)のいずれかに記載の高濃度シリカゾルを含有することを特徴とする顔料。本発明に係る高濃度シリカゾルは、その分散質であるシリカ微粒子の平均粒子径は2〜5nmと小さいので、例えば、顔料(例えば、酸化チタン粉末のような黒色顔料)の表面被覆に適用されて、顔料に耐高温酸化特性を付与することができる。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the object of the present invention is achieved by the following means (1) to (10).
(1) Silica fine particles satisfying the following conditions (a) to (c) have a boiling point of 100 ° C. or higher and a dipole moment of 1.0 to 4.2D (Debye) in a silica concentration range of 20 to 40% by mass. A high-concentration silica sol that is dispersed in a dispersion medium containing a nitrogen-containing solvent in the range of
(A) The specific surface area of the silica fine particles is in a range of 560 to 900 m 2 / g. (B) The silica fine particles have an average particle size in the range of 2 to 5 nm. (C) The silica fine particles do not contain carbon atoms. In such high-concentration silica sol, the nitrogen atom of the nitrogen-containing solvent having a boiling point of 100 ° C. or higher and a dipole moment of 1.0 to 4.2 D (Debye) is coordinated to a silanol group on the surface of the silica fine particles. In addition, since it exhibits an action of inhibiting dehydration condensation between silanol groups and suppressing gelation, silica particles having a relatively large amount of silanol groups as in the above (a), (b) and (c) are dispersed. The silica sol can be kept stable.
(2) The high-concentration silica sol as described in (1) above, wherein the nitrogen-containing solvent is contained in an amount of 50% by mass or more in the dispersion medium. In the high-concentration silica sol according to the present invention, if at least 50% by mass of the dispersion medium is the nitrogen-containing solvent, the dehydration condensation between silanol groups on the surface of the silica fine particles is inhibited and gelation is suppressed. Can show.
(3) The high-concentration silica sol according to (1) or (2), wherein the silica fine particles are prepared using alkali silicate as a raw material. The characteristic effect of the high-concentration silica sol according to the present invention (being stable at a higher silica concentration than in the prior art) is that silica fine particles having a large amount of silanol groups such as silica fine particles prepared from alkali silicate as a raw material are dispersed. It appears remarkably in the silica sol. The condition (c) indicates that the silica fine particles that are the dispersoid of the high-concentration silica sol according to the present invention are not prepared at least by the hydrolysis reaction of alkoxysilane. Inevitably, the silica fine particles are silica fine particles prepared using alkali silicate as a raw material.
(4) The mass ratio of SiO 2 : M 2 O (M represents an alkali metal) in the silica fine particles is in the range of 100: 0.2 to 100: 10, (1) to (1) The high concentration silica sol according to any one of 3). The silica fine particles that are the dispersoid of the high-concentration silica sol according to the present invention preferably have a composition in the mass ratio range of SiO 2 : M 2 O.
(5) The nitrogen-containing solvent is at least one selected from dipropylamine, N-methylformamide, N-methyl-2-pyrrolidone or monoethanolamine, (1) to (4) ) High-concentration silica sol according to any of the above. In the high-concentration silica sol according to the present invention, when these nitrogen-containing solvents are used as the nitrogen-containing solvent, the dehydration condensation between silanol groups on the surface of the silica fine particles is inhibited, and the gelation is favorably suppressed. Can show.
(6) The high-concentration silica sol according to any one of (1) to (5), wherein the dispersion medium contains water. As described above, the dispersion medium of the high-concentration silica sol according to the present invention inhibits dehydration condensation between silanol groups on the surface of the silica fine particles and suppresses gelation if at least 50% by mass of the dispersion medium is the nitrogen-containing solvent. The effect can be shown. The dispersion medium other than the nitrogen-containing solvent is not particularly limited, but even if it contains water, it inhibits dehydration condensation between silanol groups on the surface of the silica fine particles and suppresses gelation. The effect can be shown.
(7) The high-concentration silica sol according to any one of (1) to (6), wherein the viscosity at 25 ° C. is in the range of 5 to 300 mP · s. The high concentration silica sol according to the present invention is highly stable due to the action of the nitrogen-containing solvent. As for the level of stability, the viscosity range (25 ° C.) can be maintained.
(8) A binder for a ceramic molded body comprising the high-concentration silica sol according to any one of (1) to (7). The high-concentration silica sol according to the present invention can be suitably used as, for example, a binder for a ceramic molded body because the silica fine particle as a dispersoid has a relatively large specific surface area and a relatively large number of silanol groups.
(9) A filler comprising the high-concentration silica sol according to any one of (1) to (7). The high-concentration silica sol according to the present invention has a silica fine particle as a dispersoid having an average particle diameter as small as 2 to 5 nm, a specific surface area as relatively large as 560 to 900 m 2 / g, and a relatively large number of silanol groups. It is useful as a filler for paints, hard coat agents or films.
(10) A pigment comprising the high-concentration silica sol according to any one of (1) to (7). The high-concentration silica sol according to the present invention has an average particle diameter of 2-5 nm, which is a fine particle of silica fine particles as a dispersoid, and is applied to, for example, surface coating of a pigment (for example, a black pigment such as titanium oxide powder). The pigment can be imparted with high temperature oxidation resistance.

上記(1)の高濃度シリカゾルは、その分散質が前記(a)、(b)及び(c)の条件を満たすシリカ微粒子であり、そのシリカ濃度が20〜40質量%の範囲にあるにも拘わらず、前記含窒素系溶媒の窒素原子が、シリカ微粒子表面のシラノール基に配位し、シラノール基同士の脱水縮合を阻害し、ゲル化を抑制する作用を示すので、従来の高濃度シリカゾル又は高濃度オルガノシリカゾルに比べて、優れた効果、即ち経時での良好な安定性の維持を示すことができる。   The high-concentration silica sol of (1) is a silica fine particle whose dispersoid satisfies the conditions (a), (b) and (c), and the silica concentration is in the range of 20 to 40% by mass. Regardless, since the nitrogen atom of the nitrogen-containing solvent is coordinated to the silanol groups on the surface of the silica fine particles, the dehydration condensation between the silanol groups is inhibited, and the gelation is suppressed. Compared with high-concentration organosilica sol, an excellent effect, that is, maintaining good stability over time can be exhibited.

また、上記(2)〜(7)の何れの高濃度シリカゲルも上記(1)の構成を含むため、経時での良好な安定性を維持することができる。
上記(2)の高濃度シリカゾルは、特にその分散媒の少なくとも50質量%が前記含窒素系溶媒の高濃度シリカゾルである。この高濃度シリカゾルは、分散媒に占める前記含窒素系溶媒の割合が50質量%であっても、前記効果(経時での良好な安定性の維持)を示すことができる。
上記(3)の高濃度シリカゾルは、特にその分散質が珪酸アルカリを原料として調製したシリカ微粒子からなる高濃度シリカゾル場合である。この高濃度シリカゾルは、このような凝集性の高い分散質からなるにも拘わらず、前記効果(経時での良好な安定性の維持)を示すことができる。
上記(4)の高濃度シリカゾルは、特にその分散質の組成が、SiO:MO(Mはアルカリ金属を示す)[質量比]が、100:0.2〜100:10の範囲にある高濃度シリカゾルである。この高濃度シリカゾルは、分散質のシリカ微粒子の組成として特殊な範囲を必要とせず、前記のように典型的な範囲にありながら、前記効果(経時での良好な安定性の維持)を示すことができる。
上記(5)の高濃度シリカゾルは、特にその分散媒がジプロピルアミン、N−メチルホルムアミド、N−メチル−2−ピロリドン又はモノエタノールアミンから選ばれる高濃度シリカゾルである。この高濃度シリカゾルは、前記効果(経時での良好な安定性の維持)を示すことができる。
上記(6)の高濃度シリカゾルは、特にその分散媒が前記含窒素系溶媒の他に水分を含む高濃度シリカゾルである。この高濃度シリカゾルは、分散媒にシリカ微粒子の凝集を助長する水分を含有するにも拘わらず、前記効果(経時での良好な安定性の維持)を示すことができる。
上記(7)の高濃度シリカゾルは、前記効果(経時での良好な安定性の維持)を示し、粘度を経時で5〜300mP・sの範囲で維持することができる。
Moreover, since any high concentration silica gel of said (2)-(7) contains the structure of said (1), the favorable stability over time can be maintained.
The high concentration silica sol (2) is a high concentration silica sol in which at least 50% by mass of the dispersion medium is the nitrogen-containing solvent. This high-concentration silica sol can exhibit the above-described effect (maintaining good stability over time) even when the proportion of the nitrogen-containing solvent in the dispersion medium is 50% by mass.
The high-concentration silica sol of (3) above is particularly a case where the dispersoid is a high-concentration silica sol composed of silica fine particles prepared using alkali silicate as a raw material. This high-concentration silica sol can exhibit the above-described effect (maintaining good stability over time) despite being composed of such a highly cohesive dispersoid.
In the high-concentration silica sol of (4) above, the dispersoid composition is particularly in the range of SiO 2 : M 2 O (M represents an alkali metal) [mass ratio] of 100: 0.2 to 100: 10. A high concentration silica sol. This high-concentration silica sol does not require a special range as the composition of the dispersoidal silica fine particles, and exhibits the above-mentioned effect (maintaining good stability over time) while being in the typical range as described above. Can do.
The high-concentration silica sol (5) is a high-concentration silica sol whose dispersion medium is selected from dipropylamine, N-methylformamide, N-methyl-2-pyrrolidone or monoethanolamine. This high-concentration silica sol can exhibit the above effect (maintaining good stability over time).
The high-concentration silica sol (6) is a high-concentration silica sol in which the dispersion medium contains water in addition to the nitrogen-containing solvent. This high-concentration silica sol can exhibit the above-described effect (maintaining good stability over time) even though the dispersion medium contains water that promotes the aggregation of silica fine particles.
The high-concentration silica sol (7) exhibits the above-described effect (maintaining good stability over time), and can maintain the viscosity within a range of 5 to 300 mP · s over time.

上記(8)のセラミック成形体用バインダーは、分散質であるシリカ微粒子の比表面積が比較的大きく、シラノール基を比較的多く有する高濃度シリカゾルを含有するものである。このセラミック成形体用バインダーは、分散質の前記性状により、セラミック成分のバインダーとして好適である。   The binder for a ceramic molded body according to (8) above contains a high-concentration silica sol having a relatively large specific surface area of silica fine particles as a dispersoid and having a relatively large number of silanol groups. This binder for a ceramic molded body is suitable as a binder for a ceramic component because of the properties of the dispersoid.

上記(9)の充填材は、分散質であるシリカ微粒子の平均粒子径は2〜5nmと小さく、その比表面積は560〜900m/gと比較的大きく、シラノール基を比較的多く有する高濃度シリカゾルを含有するものである。この充填材は、前記性状により、塗料、ハードコート剤又はフィルムの充填材として好適である。 In the filler (9), the silica fine particle as a dispersoid has a small average particle diameter of 2 to 5 nm, a relatively large specific surface area of 560 to 900 m 2 / g, and a high concentration having a relatively large number of silanol groups. It contains silica sol. This filler is suitable as a filler for paints, hard coat agents or films depending on the properties.

上記(10)の顔料は、分散質であるシリカ微粒子の平均粒子径は2〜5nmの高濃度シリカゾルを含有するものである。この高濃度シリカゾルは例えば、顔料(例えば、酸化チタン粉末のような黒色顔料)の表面被覆に適用されて、顔料に耐高温酸化特性を付与することができる。   The pigment of the above (10) contains a high-concentration silica sol having an average particle diameter of 2 to 5 nm of silica fine particles as a dispersoid. This high-concentration silica sol can be applied, for example, to a surface coating of a pigment (for example, a black pigment such as titanium oxide powder) to impart high temperature oxidation resistance to the pigment.

また、前記高濃度シリカゾルを塗料、保護膜、ハードコート剤などのフィラーとして塗料等に配合した場合、塗料への分散性がよく、得られる塗膜は緻密であるとともに基材との密着性に優れ、また粒子の凝集に基づくクラックの発生や透明性の低下などがほとんど起こることがない。このため、該高濃度シリカゾルは、各種塗料、保護膜、ハードコート剤などの他、各種樹脂の充填剤として有用であり、たとえば磁気テープの充填剤、フィルムのブロッキング防止剤などの用途にも好適である。   In addition, when the high-concentration silica sol is blended in a paint or the like as a filler such as a paint, a protective film or a hard coat agent, the dispersibility in the paint is good, and the resulting coating film is dense and has good adhesion to the substrate. It is excellent, and cracks due to particle aggregation and transparency are hardly lowered. For this reason, the high-concentration silica sol is useful as a filler for various resins in addition to various paints, protective films, hard coat agents, and the like, and is also suitable for applications such as a magnetic tape filler and a film anti-blocking agent. It is.

以下、本発明の高濃度シリカゾルについて詳細に説明する。本発明は、シリカ微粒子をシランなどで表面処理することなく、従来、高濃度化が難しかった微小で高比表面積のシリカ微粒子を高濃度で含むシリカオルガノゾルに関するものである。尚、ここで高濃度化が難しかったとは、高濃度シリカゾルを調製しても、経時でゲル化してゾル状態を保てないことを意味する。   Hereinafter, the high concentration silica sol of the present invention will be described in detail. The present invention relates to a silica organosol containing a high concentration of fine silica particles having a high specific surface area, which has conventionally been difficult to increase in concentration, without subjecting the fine silica particles to a surface treatment with silane or the like. Here, “high concentration is difficult” means that even if a high concentration silica sol is prepared, it cannot be kept in a sol state due to gelation over time.

本発明に係る高濃度シリカゾルは、(a)比表面積が560〜900m/g、(b)平均粒子径が2〜5nm、及び(c)微粒子内に炭素原子を含有しないシリカ微粒子を、沸点が100℃以上且つ双極子モーメントが1.0〜4.2D(Debye)の範囲にある含窒素系溶媒を含む分散媒に分散してなるものである。 The high-concentration silica sol according to the present invention has (a) a specific surface area of 560 to 900 m 2 / g, (b) an average particle diameter of 2 to 5 nm, and (c) silica fine particles not containing carbon atoms in the fine particles. Is dispersed in a dispersion medium containing a nitrogen-containing solvent having a dipole moment in the range of 1.0 to 4.2 D (Debye).

[シリカ微粒子]
本発明の高濃度シリカゾルの分散質であるシリカ微粒子は、珪酸アルカリを原料として調製されたものが好ましい。ここで珪酸アルカリとしては、珪酸ナトリウム、珪酸カリウム等を好適に使用することができる。
珪酸アルカリを原料として調製されたシリカ微粒子を分散質とするシリカゾルは、濃縮により凝集し易く、高濃度化に難点があった。本発明に係る高濃度シリカゾルは、この問題を解決したものである。なお、本発明に係る高濃度シリカゾルの分散質であるシリカ微粒子として、加水分解性の有機珪素化合物を原料として調製されたシリカ微粒子を使用することに問題は無いが、そのようなシリカ微粒子は、珪酸アルカリを原料として調製されたシリカ微粒子に比べて、凝集性が低いので、必ずしも、本発明を適用する必要はない。
なお、加水分解性の有機珪素化合物を原料として調製されたシリカ微粒子は、該有機珪素化合物の非加水分解性基(アルキル基など)や未反応の加水分解性基が残留するため、その組成中に炭素原子が残留することが知られている。前記(c)の条件(前記シリカ微粒子内に炭素原子を含有しない。)は、この点に鑑み設定したものであり、本発明に係る高濃度シリカゾルの分散質は、珪酸アルカリを原料として調製されたシリカ微粒子であることを意味している。
なお、本発明に係る高濃度シリカゾルは、有機珪素化合物に由来する成分(主として炭素原子)を含まないので、カーボンの存在を嫌う用途に対しては、特に好適に適用される。
また、珪酸アルカリを原料として調製されたシリカ微粒子を分散質とするシリカゾルは、加水分解性の有機珪素化合物を原料として調製されたシリカ微粒子を分散質とするシリカゾルと比べて製造コストが廉価である点もメリットとなる。
[Silica fine particles]
The silica fine particles that are the dispersoid of the high-concentration silica sol of the present invention are preferably prepared from alkali silicate as a raw material. Here, sodium silicate, potassium silicate, and the like can be suitably used as the alkali silicate.
Silica sols containing silica fine particles prepared using alkali silicate as a raw material are easily aggregated by concentration, and there is a difficulty in increasing the concentration. The high concentration silica sol according to the present invention solves this problem. Although there is no problem in using silica fine particles prepared from hydrolyzable organosilicon compounds as silica fine particles that are a dispersoid of the high-concentration silica sol according to the present invention, such silica fine particles are Compared to silica fine particles prepared using alkali silicate as a raw material, the cohesiveness is low, and therefore it is not always necessary to apply the present invention.
In addition, silica fine particles prepared using hydrolyzable organosilicon compounds as raw materials contain non-hydrolyzable groups (such as alkyl groups) and unreacted hydrolyzable groups of the organosilicon compounds. It is known that carbon atoms remain in The condition (c) (containing no carbon atom in the silica fine particles) is set in view of this point, and the dispersoid of the high-concentration silica sol according to the present invention is prepared using alkali silicate as a raw material. This means that it is a fine silica particle.
The high-concentration silica sol according to the present invention does not contain a component derived from an organosilicon compound (mainly carbon atoms), and therefore is particularly preferably applied to applications that dislike the presence of carbon.
In addition, silica sol using silica fine particles prepared using alkali silicate as a raw material as a dispersoid is less expensive to manufacture than silica sol using silica fine particles prepared using a hydrolyzable organosilicon compound as a dispersoid. The point is also a merit.

珪酸アルカリを原料とするシリカゾルの製造方法として、典型的には次の(1)〜(3)の製造方法を挙げることができる。
(1)珪酸液をアルカリ存在下で加熱することにより珪酸を重合する工程を含むシリカゾルの製造方法
この製造方法は、アルカリ金属珪酸塩、第3級アンモニウム珪酸塩、第4級アンモニウム珪酸塩またはグアニジン珪酸塩から選ばれる水溶性珪酸塩を、脱アルカリすることにより得られる珪酸液を、アルカリ存在下で加熱することにより珪酸を重合する工程を含むものである。具体的な例としては、珪酸アルカリ水溶液をシリカ濃度3〜10質量%に水で希釈し、次いでH型強酸性陽イオン交換樹脂に接触させて脱アルカリし、必要に応じてOH型強塩基性陰イオン交換樹脂に接触させて脱アニオンし、活性珪酸を調製する。pHが8以上となるようアルカリ物質を加え、50℃以上に加熱することにより平均粒子径60nm以下のシリカゾルを製造する方法を挙げることができる。
As a method for producing silica sol using alkali silicate as a raw material, the following production methods (1) to (3) can be typically mentioned.
(1) A method for producing a silica sol comprising a step of polymerizing silicic acid by heating a silicic acid solution in the presence of an alkali. This production method comprises alkali metal silicate, tertiary ammonium silicate, quaternary ammonium silicate or guanidine. It includes a step of polymerizing silicic acid by heating a silicic acid solution obtained by dealkalizing a water-soluble silicate selected from silicates in the presence of an alkali. As a specific example, an alkali silicate aqueous solution is diluted with water to a silica concentration of 3 to 10% by mass, and then contacted with an H-type strongly acidic cation exchange resin for dealkalization, and if necessary, OH-type strongly basic An anion exchange resin is contacted to deanion to prepare active silicic acid. An example is a method for producing a silica sol having an average particle diameter of 60 nm or less by adding an alkaline substance so that the pH is 8 or more and heating to 50 ° C. or more.

(2)核粒子分散液に酸性珪酸液を添加することにより、核粒子の粒子成長を行うシリカ
ゾルの製造方法
この製造方法において、核粒子は、粒子成長の基点として機能するものであれば、特に限定されるものではなく、公知のシリカ微粒子又はアルミナ微粒子の分散液を用いることができる。なかでも、本願出願人による特開平5−132309号公報、特開平7−105522号公報等に開示した製造方法により得られたシリカゾル又はシリカ複合酸化物ゾルは粒子径分布が均一であり、実用上好ましいものといえる。ここで、核粒子分散液には予め珪酸アルカリを加えることが好ましい。こうしておくことで、続いて粒子成長用の酸性の珪酸液を加える段階において、前記核粒子分散液に溶解しているシリカ濃度が、珪酸アルカリにより予め高められているので、核粒子への珪酸の析出(粒子成長)が促進される。ここで用いる珪酸アルカリとしては、ケイ酸カリウム(カリ水硝子)、ケイ酸ナトリウム(ナトリウム水硝子)などの水溶液を用いることが好ましい。
なお、予め核粒子が分散していなくても、珪酸アルカリ水溶液に後述する酸性珪酸液を加えていくとシリカ濃度が高くなったところで核粒子が発生するので、このような核粒子分散液も好適に用いることができる。核粒子分散液のシリカ濃度は核粒子の大きさによっても異なるが、0. 005〜20質量%の範囲にあることが好ましい。核粒子の濃度が0. 005質量%未満の場合は、粒子成長を行うために温度を高めた場合核粒子の一部または全部が溶解することがあり、核粒子の全部が溶解すると核粒子分散液を用いる効果が得られず、核粒子の一部が溶解した場合は得られるシリカ粒子の粒子径が不均一になる傾向があり、同様に核粒子分散液を用いる効果が得られないことがある。一方、核粒子の濃度が20質量%を超えると、核粒子当たりの酸性珪酸液の添加割合を低濃度の場合と同一にするには珪酸液の添加速度を速めることになるが、この場合、酸性珪酸液の核粒子表面への析出が追随できず、酸性珪酸液がゲル化することがある。核粒子の平均粒子径は、通常は、調製しようとするシリカ微粒子の大きさに応じて、適宜選択される。
(2) A method for producing a silica sol that causes particle growth of core particles by adding an acidic silicic acid solution to the core particle dispersion. In this manufacturing method, if the core particles function as a starting point for particle growth, The dispersion is not limited, and a known dispersion of silica fine particles or alumina fine particles can be used. Among them, the silica sol or the silica composite oxide sol obtained by the manufacturing method disclosed in JP-A-5-132309, JP-A-7-105522, etc. by the applicant of the present application has a uniform particle size distribution, and is practically used. It can be said that it is preferable. Here, it is preferable to add alkali silicate in advance to the core particle dispersion. In this way, in the subsequent step of adding an acidic silicic acid solution for particle growth, the concentration of silica dissolved in the core particle dispersion is increased beforehand by the alkali silicate, so that the silicic acid to the core particles is increased. Precipitation (particle growth) is promoted. As the alkali silicate used here, an aqueous solution of potassium silicate (potassium water glass), sodium silicate (sodium water glass) or the like is preferably used.
Even if the core particles are not dispersed in advance, if an acidic silicic acid solution described later is added to the alkali silicate aqueous solution, the core particles are generated when the silica concentration is increased. Therefore, such a core particle dispersion is also suitable. Can be used. The silica concentration of the core particle dispersion liquid varies depending on the size of the core particles, but is preferably in the range of 0.005 to 20% by mass. When the concentration of the core particles is less than 0.005% by mass, some or all of the core particles may be dissolved when the temperature is increased to perform particle growth. When all the core particles are dissolved, the core particles are dispersed. If the effect of using the liquid is not obtained, and part of the core particles is dissolved, the particle diameter of the silica particles obtained tends to be non-uniform, and the effect of using the core particle dispersion may not be obtained as well. is there. On the other hand, if the concentration of the core particles exceeds 20% by mass, the addition rate of the silicic acid solution is increased in order to make the addition ratio of the acidic silicic acid solution per core particle low, but in this case, Precipitation of the acidic silicic acid solution on the surface of the core particles cannot follow, and the acidic silicic acid solution may gel. The average particle diameter of the core particles is usually appropriately selected according to the size of the silica fine particles to be prepared.

(3)シリカヒドロゲルを解膠する工程を含むシリカゾルの製造方法
この製造方法は、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加した後、加熱することによりシリカヒドロゲルを解膠する工程を含むものである。この製造方法は解膠法と呼ばれるもので、通常は、珪酸塩の水溶液を酸で中和して、シリカヒドロゲルを調製し、化学的手段または機械的な手段にて、シリカヒドロゲルをスラリー状ないしは分散溶液にする方法として知られている。ここで、化学的手段としては、シリカヒドロゲルにアルカリを添加し、所望により加熱する方法が挙げられる。また、機械的手段としては、攪拌器などの装置を使用する方法を挙げることができる。これらの化学的手段と機械的な手段は併用されても差し支えない。具体的には、珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄して、塩類を除去し、アルカリを添加し、60〜200℃の範囲に加熱することにより、シリカヒドロゲルを解膠して、シリカゾルを調製する。この製造方法で原料として使用する珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましい。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムを、有機塩基としては、テトラエチルアンモニウムなどの第4級アンモニウム塩などのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
(3) A method for producing a silica sol comprising a step of peptizing a silica hydrogel This production method comprises washing a silica hydrogel obtained by neutralizing a silicate with an acid, removing salts, and adding an alkali. It includes a step of peptizing the silica hydrogel by heating. This production method is called a peptization method. Usually, an aqueous solution of silicate is neutralized with an acid to prepare a silica hydrogel, and the silica hydrogel is slurried or mechanically prepared by chemical means or mechanical means. This method is known as a dispersion solution. Here, as a chemical means, the method of adding an alkali to a silica hydrogel and heating as desired is mentioned. Moreover, as a mechanical means, the method of using apparatuses, such as a stirrer, can be mentioned. These chemical means and mechanical means may be used in combination. Specifically, silica hydrogel obtained by neutralizing silicate with acid is washed, salts are removed, alkali is added, and the silica hydrogel is peptized by heating in the range of 60 to 200 ° C. Then, a silica sol is prepared. The silicate used as a raw material in this production method is preferably one or more silicates selected from alkali metal silicates, ammonium silicates, and organic base silicates. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include amines such as a quaternary ammonium salt such as tetraethylammonium. The silicate includes an alkaline solution obtained by adding ammonia, quaternary ammonium hydroxide, an amine compound or the like to a silicate solution.

前記シリカ微粒子は、SiO/MO(Mは、Na又はK)の質量比が100:0.2〜100:10のものを好適に使用することができ、100:0.5〜100:8であることがより好ましく、100:1〜100:5であることが特に好ましい。
SiO100質量部に対し、MOが0.2質量部未満の場合は、アルカリ金属の除去にかかる工程上の負荷が著しく増大する。SiO100質量部に対し、MOが10質量部を超える場合は、本発明に係る高濃度シリカゾルの用途によっては、アルカリ金属(Na又はK)が溶出し、悪影響を与える場合がある。
As the silica fine particles, those having a mass ratio of SiO 2 / M 2 O (M is Na or K) of 100: 0.2 to 100: 10 can be suitably used, and 100: 0.5 to 100 : 8 is more preferable, and 100: 1 to 100: 5 is particularly preferable.
When M 2 O is less than 0.2 parts by mass with respect to 100 parts by mass of SiO 2 , the process load for removing the alkali metal is remarkably increased. When M 2 O exceeds 10 parts by mass with respect to 100 parts by mass of SiO 2 , the alkali metal (Na or K) may be eluted depending on the use of the high-concentration silica sol according to the present invention, which may have an adverse effect.

本発明において、前記シリカ微粒子の比表面積は560〜900m/gの範囲であり、好ましくは、600〜800m/gの範囲であり、より好ましくは650〜750m/gの範囲である。上記範囲の比表面積を有するシリカ微粒子を分散させたシリカゾルは、多量のシラノール基の存在により、経時安定性に問題があったが、本発明に係る高濃度シリカゾルは、そのシリカ微粒子の比表面積が560〜900m/gの範囲であっても良好な経時安定性を示すことができる。なお、シリカゾルの分散質であるシリカ微粒子の比表面積が600m/g未満の場合は、凝集性が比較的高くはないので、本発明を適用する必要性は低い。 In the present invention, the specific surface area of the silica fine particles is in the range of 560~900m 2 / g, preferably in the range of 600~800m 2 / g, more preferably from 650~750m 2 / g. A silica sol in which silica fine particles having a specific surface area in the above range are dispersed has a problem in stability over time due to the presence of a large amount of silanol groups, but the high concentration silica sol according to the present invention has a specific surface area of the silica fine particles. Even if it is the range of 560-900 m < 2 > / g, favorable temporal stability can be shown. In addition, when the specific surface area of the silica fine particle which is a dispersoid of the silica sol is less than 600 m 2 / g, the cohesiveness is not comparatively high, so the necessity of applying the present invention is low.

また、前記シリカ微粒子の平均粒子径は、2〜5nmであり、好ましくは3〜4nmである。上記範囲の平均粒子径を有するシリカ微粒子を分散させたシリカ微粒子分散液は、従来、水系分散媒又は有機系分散媒の何れであっても、経時で増粘又はゲル化する問題があった。しかしながら、本発明に係る高濃度シリカゾルは優れた経時安定性を示すものであり、従来の問題を解決したものである。なお、平均粒子径として2nm未満のシリカ微粒子を調製することは容易ではない。また、平均粒子径5nmを超えるシリカ微粒子は、凝集性が比較的高くないので、本発明を適用する必要性は低い。   The average particle size of the silica fine particles is 2 to 5 nm, preferably 3 to 4 nm. Conventionally, a silica fine particle dispersion in which silica fine particles having an average particle diameter in the above range are dispersed has a problem of thickening or gelling with time regardless of whether the dispersion is an aqueous dispersion medium or an organic dispersion medium. However, the high-concentration silica sol according to the present invention exhibits excellent aging stability and solves the conventional problems. Note that it is not easy to prepare silica fine particles having an average particle diameter of less than 2 nm. In addition, silica fine particles having an average particle diameter of more than 5 nm have a relatively low cohesiveness, so that the necessity of applying the present invention is low.

[分散媒]
前記シリカ微粒子を分散させる分散媒としては、沸点が100℃以上且つ双極子モーメントが1.00〜4.20D(Debye)の範囲にある含窒素系溶媒を用いる。含窒素系溶媒を分散媒とした場合、含窒素系溶媒の窒素原子が、シリカ微粒子表面のシラノール基に配位するため、シラノール基同士の脱水縮合を阻害し、それにより高濃度化してもゲル化し難くなると考えられる。尚、本明細書において、含窒素系溶媒とは、その構造中に窒素原子を含有する溶媒である。
[Dispersion medium]
As the dispersion medium for dispersing the silica fine particles, a nitrogen-containing solvent having a boiling point of 100 ° C. or higher and a dipole moment in the range of 1.00 to 4.20 D (Debye) is used. When a nitrogen-containing solvent is used as the dispersion medium, the nitrogen atoms of the nitrogen-containing solvent are coordinated to the silanol groups on the surface of the silica fine particles, so that the dehydration condensation between the silanol groups is inhibited, so that even if the concentration is increased, the gel It is thought that it becomes difficult to convert. In the present specification, the nitrogen-containing solvent is a solvent containing a nitrogen atom in its structure.

本発明において、沸点が100℃以上の含窒素系溶媒とするのは水系溶媒にシリカ微粒子を分散させた水系溶媒分散シリカゾルの水系溶媒と含窒素系溶媒とを溶媒置換する際に置換しやすくするためであり、水系溶媒よりも沸点が高い溶媒を用いることで溶媒置換を容易に行うことができる。   In the present invention, the nitrogen-containing solvent having a boiling point of 100 ° C. or higher is easily replaced when the aqueous solvent and the nitrogen-containing solvent in the aqueous solvent-dispersed silica sol in which silica fine particles are dispersed in the aqueous solvent are replaced. Therefore, solvent replacement can be easily performed by using a solvent having a boiling point higher than that of the aqueous solvent.

また、本発明において、含窒素系溶媒の双極子モーメントは1.0〜4.2D(Debye)であり、2.0〜4.1Dであることが好ましい。含窒素系溶媒の双極子モーメントが1.0Dよりも低い場合は、溶媒の分極性が小さく、シリカ微粒子の表面シラノール基に含窒素系溶媒が配位する割合が低いので、シラノール基による脱水縮合を阻害する効率が、相対的に低くなり、シリカ微粒子の安定性が低くなり、経時的に安定させることができなくなる場合がある。含窒素系溶媒の双極子モーメントが4.2Dより高い場合は、シリカ微粒子表面のシラノール基に窒素原子で十分に配位されるものの、窒素系溶媒同士の相互作用もあり、高粘度化しやすくなるものと推測され、シリカゾルの粘度が高くなるため、シリカ微粒子を高濃度に分散させることが出来なくなる場合がある。従って、双極子モーメントが1.0〜4.2Dの範囲の含窒素系溶媒を用いることで、シラノール基同士の脱水縮合によるゲル化を阻害しつつ、溶媒の粘度を低くして高濃度化できる。   Moreover, in this invention, the dipole moment of a nitrogen-containing solvent is 1.0-4.2D (Debye), and it is preferable that it is 2.0-4.1D. When the dipole moment of the nitrogen-containing solvent is lower than 1.0D, the polarizability of the solvent is small, and the proportion of the nitrogen-containing solvent coordinated to the surface silanol groups of the silica fine particles is low. In some cases, the efficiency of inhibiting the property becomes relatively low, the stability of the silica fine particles becomes low, and cannot be stabilized over time. When the dipole moment of the nitrogen-containing solvent is higher than 4.2D, the nitrogen atom is sufficiently coordinated to the silanol group on the surface of the silica fine particles, but there is also an interaction between the nitrogen-based solvents, and it becomes easy to increase the viscosity. It is presumed that the silica sol has a high viscosity, so that the silica fine particles may not be dispersed at a high concentration. Therefore, by using a nitrogen-containing solvent having a dipole moment in the range of 1.0 to 4.2D, the viscosity of the solvent can be lowered and the concentration can be increased while inhibiting gelation due to dehydration condensation between silanol groups. .

前記条件を満たす含窒素系溶媒としては、例えば、ジプロピルアミン、N−メチルホルムアミド、N−メチル−2−ピロリドン又はモノエタノールアミン等が挙げられるがこれらに限定されるものではない。これらの含窒素系溶媒は、2種以上を混合して使用しても構わない。   Examples of the nitrogen-containing solvent that satisfies the above conditions include, but are not limited to, dipropylamine, N-methylformamide, N-methyl-2-pyrrolidone, and monoethanolamine. These nitrogen-containing solvents may be used as a mixture of two or more.

本発明において、前記含窒素系溶媒は、分散媒中50質量%以上含有することが好ましい。分散媒中に含窒素系溶媒を50質量%以上配合させることで、高濃度シリカゾルにおけるシリカ濃度又は前記含窒素系溶媒の双極子モーメントに依らず、経時安定性に優れた高濃度シリカゾルを得ることができる。分散媒中の含窒素系溶媒の割合は、70質量%以上含有させることがより好ましく、80質量%以上含有させることが特に好ましく、含窒素系溶媒100質量%が最も好ましい。   In the present invention, the nitrogen-containing solvent is preferably contained in the dispersion medium in an amount of 50% by mass or more. By incorporating 50% by mass or more of the nitrogen-containing solvent in the dispersion medium, a high-concentration silica sol with excellent temporal stability can be obtained regardless of the silica concentration in the high-concentration silica sol or the dipole moment of the nitrogen-containing solvent. Can do. The ratio of the nitrogen-containing solvent in the dispersion medium is more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 100% by mass of the nitrogen-containing solvent.

尚、前記分散媒には、含窒素系溶媒が前記範囲となれば、その他に、水、あるいはエタノールなどの水溶性有機溶媒を含有させることができる。   In addition, if the nitrogen-containing solvent falls within the above range, the dispersion medium may additionally contain water or a water-soluble organic solvent such as ethanol.

本発明の高濃度シリカゾルの製造方法としては、特に限定されず、従来から用いられている方法を採用することができる。
例えば、前記(a)、(b)及び(c)の条件を満たすシリカ微粒子を分散質とする水系溶媒分散シリカゾルを調製するか、あるいは市販品を準備し、この水系溶媒分散シリカゾルを濃縮した後、含窒素系溶媒を含む分散媒を加えて溶媒置換することにより製造することができる。
The method for producing the high-concentration silica sol of the present invention is not particularly limited, and a conventionally used method can be employed.
For example, after preparing an aqueous solvent-dispersed silica sol having silica fine particles satisfying the conditions (a), (b) and (c) as a dispersoid, or preparing a commercial product and concentrating the aqueous solvent-dispersed silica sol It can be produced by adding a dispersion medium containing a nitrogen-containing solvent and replacing the solvent.

前記水系溶媒分散シリカゾル中のシリカ濃度は、例えば、1〜10質量%とするのが好ましく、3〜8質量%がより好ましく、4〜6質量%が特に好ましい。なお、該シリカ濃度が1質量%未満の場合、濃縮による高濃度化処理に要する時間が増えるため、望ましくない。また、該シリカ濃度が10質量%を超える場合は、水系溶媒分散シリカゾルの安定性が低下するので好ましくない。   The silica concentration in the aqueous solvent-dispersed silica sol is, for example, preferably 1 to 10% by mass, more preferably 3 to 8% by mass, and particularly preferably 4 to 6% by mass. In addition, when the silica concentration is less than 1% by mass, the time required for the concentration-enhancing treatment by concentration increases, which is not desirable. Moreover, when the silica concentration exceeds 10% by mass, the stability of the aqueous solvent-dispersed silica sol is lowered, which is not preferable.

次に、前記水系溶媒分散シリカゾルを所望の濃度となるまで濃縮する。水系溶媒分散シリカゾルを濃縮する方法としては、特に限定されないが、例えば、減圧下で加熱濃縮する方法等が挙げられる。水系溶媒分散シリカゾルの濃縮は、本発明の高濃度シリカゾルのシリカ濃度範囲で、所望のシリカ濃度ができる濃度まで濃縮すればよく、20〜40質量%程度となるように濃縮すればよい。   Next, the aqueous solvent-dispersed silica sol is concentrated to a desired concentration. The method for concentrating the aqueous solvent-dispersed silica sol is not particularly limited, and examples thereof include a method of concentrating by heating under reduced pressure. Concentration of the aqueous solvent-dispersed silica sol may be performed to a concentration in which the desired silica concentration can be achieved within the silica concentration range of the high-concentration silica sol of the present invention, and may be concentrated to about 20 to 40% by mass.

次に、前記濃縮した水系溶媒分散シリカゾルに含窒素系溶媒を含む分散媒を添加して溶媒置換を行うが、この分散媒は、分散媒中のシリカ濃度が所望の濃度となるように添加することができる。本発明の高濃度シリカゾルは、シリカゾル中のシリカ濃度が20〜40質量%の範囲、好ましくは30〜40質量%、特に好ましくは32〜37質量%となるように調整するものである。シリカゾル中のシリカ濃度が20〜40質量%であれば、シリカゾル中のシリカ微粒子が凝集してゲル化することなく、安定的に分散させることができるため、高濃度のシリカゾルとすることができる。   Next, a dispersion medium containing a nitrogen-containing solvent is added to the concentrated aqueous solvent-dispersed silica sol to perform solvent substitution. This dispersion medium is added so that the silica concentration in the dispersion medium becomes a desired concentration. be able to. The high concentration silica sol of the present invention is adjusted so that the silica concentration in the silica sol is in the range of 20 to 40% by mass, preferably 30 to 40% by mass, particularly preferably 32 to 37% by mass. If the silica concentration in the silica sol is 20 to 40% by mass, the silica fine particles in the silica sol can be stably dispersed without agglomeration and gelation, so that a high concentration silica sol can be obtained.

また、本発明の高濃度シリカゾルは、含窒素系溶媒の窒素原子がシリカ微粒子のシラノール基同士の凝集を阻害する作用により凝集が抑制されるので、25℃における粘度を5〜300mP・sの範囲に維持することができる。該粘度は6〜200mP・sの範囲がより好ましく、10〜100mP・sの範囲が特に好ましい。
25℃における粘度が300mP・sを超えると、例えば、本発明の高濃度シリカゾルをフィルム成形用の原料樹脂の充填剤として用いた場合に粘度が高くなりすぎ、混合性が低下するため好ましくない。
Moreover, since the high concentration silica sol of this invention suppresses aggregation by the effect | action which the nitrogen atom of a nitrogen-containing type | system | group solvent inhibits aggregation of the silanol groups of a silica particle, the viscosity in 25 degreeC is the range of 5-300 mP * s. Can be maintained. The viscosity is more preferably in the range of 6 to 200 mP · s, and particularly preferably in the range of 10 to 100 mP · s.
When the viscosity at 25 ° C. exceeds 300 mP · s, for example, when the high-concentration silica sol of the present invention is used as a filler for a raw material resin for forming a film, the viscosity becomes too high, and the mixing property is lowered.

また、本発明の高濃度シリカゾルは、25℃におけるpH値がpH7.0〜11.0の範囲であることが好ましく、pH7.5〜10.5がより好ましく、pH8.0〜10.0が特に好ましい。pHが11.0を超える場合、高濃度シリカゾルは増粘し易くなる。また、pHが7.0未満の場合もやはり増粘しやすくなる。   The high-concentration silica sol of the present invention preferably has a pH value at 25 ° C. in the range of pH 7.0 to 11.0, more preferably pH 7.5 to 10.5, and pH 8.0 to 10.0. Particularly preferred. When the pH exceeds 11.0, the high-concentration silica sol tends to thicken. In addition, when the pH is less than 7.0, the viscosity tends to increase.

本発明の高濃度シリカゾルは、セラミック形成体用バインダー、塗料用充填材、ハードコート剤用充填材、フィルム用充填材又は顔料等に用いることができる。   The high-concentration silica sol of the present invention can be used as a binder for ceramic formed bodies, a filler for paints, a filler for hard coat agents, a filler for films, a pigment, and the like.

以下、実施例及び比較例を示して本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

実施例及び比較例における分析又は定量の方法を以下に記す。   Methods for analysis or quantification in Examples and Comparative Examples are described below.

[高濃度シリカゾル中のシリカ微粒子の比表面積および平均粒子径]
高濃度シリカゲルの分散質であるシリカ微粒子の比表面積の測定および平均粒子径の測定は、以下の〔I〕シアーズ法(滴定法)、または〔II〕BET法(窒素吸着法)を用いて行った。
[Specific surface area and average particle diameter of silica fine particles in high-concentration silica sol]
The measurement of the specific surface area and the average particle size of silica fine particles, which are dispersoids of high-concentration silica gel, are carried out using the following [I] Sears method (titration method) or [II] BET method (nitrogen adsorption method). It was.

〔I〕シアーズ法(滴定法)
1)SiOとして15gに相当する試料をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mlにする。(以下の操作は、25℃に保持した恒温反応槽中にて行った。)
2)pH3.6になるように0.1モル/L塩酸水溶液を加える。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌する。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整する。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7〜9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作る。
6)下記式(1)からSiO15g当たりのpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、下記式(2)に従って比表面積SA(m/g)を求めた。
V=(A×f×100×15)/(W×C) ・・・(1)
(式(1)において、A:SiO15g当たりpH4.0〜9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)、f:0.1モル/L水酸化ナトリウム溶液の力価、C:試料のSiO濃度(%)、W:試料採取量(g)である。)
SA=29.0V−28 ・・・(2)
7)上記6)で求めた比表面積SAより平均粒子径D1(nm)を、下記式(3)から求めた。
D1=6000/(ρ×SA) ・・・(3)
(式(3)において、ρは粒子の密度(g/cm)である。シリカの場合は2.2を代入する。)
[I] Sears method (titration method)
1) A sample corresponding to 15 g as SiO 2 is collected in a beaker, and then transferred to a constant temperature reaction vessel (25 ° C.), and pure water is added to make a liquid volume of 90 ml. (The following operations were performed in a constant temperature reaction tank maintained at 25 ° C.)
2) Add 0.1 mol / L hydrochloric acid aqueous solution so that pH becomes 3.6.
3) Add 30 g of sodium chloride, dilute to 150 ml with pure water and stir for 10 minutes.
4) A pH electrode is set, and 0.1 mol / L sodium hydroxide solution is added dropwise with stirring to adjust the pH to 4.0.
5) The sample adjusted to pH 4.0 was titrated with 0.1 mol / L sodium hydroxide solution, and the titer and pH value in the range of pH 8.7 to 9.3 were recorded at 4 points or more. A calibration curve is prepared, where X is the titer of 1 mol / L sodium hydroxide solution and Y is the pH value at that time.
6) The consumption V (ml) of the 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 15 g of SiO 2 is obtained from the following formula (1), and the ratio is determined according to the following formula (2). The surface area SA (m 2 / g) was determined.
V = (A × f × 100 × 15) / (W × C) (1)
(In formula (1), A: titration amount of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 15 g of SiO 2 (ml), f: 0.1 mol / L hydroxylation (The titer of the sodium solution, C: SiO 2 concentration (%) of the sample, W: sampling amount (g).)
SA = 29.0V-28 (2)
7) The average particle diameter D1 (nm) was determined from the following formula (3) from the specific surface area SA determined in 6) above.
D1 = 6000 / (ρ × SA) (3)
(In the formula (3), ρ is the particle density (g / cm 3 ). In the case of silica, 2.2 is substituted.)

〔II〕BET法(窒素吸着法)
高濃度シリカゾル50mlをHNOでpH3.5に調整し、1−プロパノール40mlを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス株式会社製、型番マルチソーブ12)を用いてBET法(窒素吸着法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。具体的には、試料0.5gを測定セルに取り、窒素30vol%/ヘリウム70vol%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、比表面積SA(m/g)を算出した。
また、得られた比表面積SAを上記式(3)に代入して平均粒子径D1(nm)を求めた。
[II] BET method (nitrogen adsorption method)
A sample of 50 ml of high-concentration silica sol adjusted to pH 3.5 with HNO 3 , added with 40 ml of 1-propanol, dried at 110 ° C. for 16 hours, pulverized in a mortar, calcined in a muffle furnace at 500 ° C. for 1 hour, and measured A sample was prepared. And the specific surface area was computed by the BET 1 point method from the adsorption amount of nitrogen using the BET method (nitrogen adsorption method) using the specific surface area measuring apparatus (The Yuasa Ionics Co., Ltd. make, model number multisorb 12). Specifically, 0.5 g of a sample is placed in a measurement cell, degassed at 300 ° C. for 20 minutes in a mixed gas stream of nitrogen 30 vol% / helium 70 vol%, and then the sample is liquid in the mixed gas stream. Keep nitrogen temperature and allow nitrogen to equilibrate to sample. Next, the sample temperature was gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area SA (m 2 / g) was calculated from a calibration curve prepared in advance. .
Further, the obtained specific surface area SA was substituted into the above formula (3) to obtain the average particle diameter D1 (nm).

[高濃度シリカゾル中のSiO/NaO比(質量比)]
下記(A)及び(B)の測定結果から、SiO/NaO比(質量比)を算定した。
(A)Naの含有量測定方法は以下の通りである。
1)高濃度シリカゾル約10gを白金皿に採取し、0.1mgまで秤量する。
2)硝酸5mlと弗化水素酸20mlを加えて、サンドバス上で加熱し、蒸発乾固する。
3)液量が少なくなったら、更に弗化水素酸20mlを加えてサンドバス上で加熱し、蒸発乾固する。
4)室温まで冷却後、硝酸2mlと水を約50ml加えて、サンドバス上で加熱溶解する。
5)室温まで冷却後、フラスコ(100ml)に入れ、水で100mlに希釈して試料溶液とする。
6)試料溶液中に存在するナトリウムの含有量を、原子吸光分光光度計(商品名:Z−5300、株式会社日立製作所製)により、測定モード:原子吸光測定波長範囲190〜900nm、検出波長:589.0nmで測定した。フレームにより試料を原子蒸気化し、その原子蒸気層に適当な波長の光を照射した際に、原子によって吸収された光の強さを測定し、これにより試料中の元素濃度を定量した。
(B)シリカ微粒子中のシリカ含有量測定
高濃度シリカゾル10gに50%硫酸水溶液2mlを加え、白金皿上にて蒸発乾固し、得られた固形物を1000℃にて1時間焼成後、冷却して秤量する。次に、秤量した固形物を微量の50%硫酸水溶液に溶かし、更にフッ化水素酸20mlを加えてから、白金皿上にて蒸発乾固し、1000℃にて15分焼成後、冷却して秤量する。これらの重量差よりシリカ微粒子中のシリカ含有量を求めた。
(A)及び(B)の測定結果より、SiO:NaOの質量比を算定した。
[SiO 2 / Na 2 O ratio (mass ratio) in high concentration silica sol]
From the measurement results of (A) and (B) below, the SiO 2 / Na 2 O ratio (mass ratio) was calculated.
(A) The content measurement method of Na is as follows.
1) About 10 g of high-concentration silica sol is collected in a platinum dish and weighed to 0.1 mg.
2) Add 5 ml of nitric acid and 20 ml of hydrofluoric acid, heat on a sand bath and evaporate to dryness.
3) When the amount of liquid decreases, add 20 ml of hydrofluoric acid and heat on a sand bath to evaporate to dryness.
4) After cooling to room temperature, add 2 ml of nitric acid and about 50 ml of water and dissolve by heating on a sand bath.
5) After cooling to room temperature, place in a flask (100 ml) and dilute to 100 ml with water to make the sample solution.
6) The content of sodium present in the sample solution was measured with an atomic absorption spectrophotometer (trade name: Z-5300, manufactured by Hitachi, Ltd.), measurement mode: atomic absorption measurement wavelength range 190 to 900 nm, detection wavelength: Measurement was performed at 589.0 nm. The sample was atomized by a flame, and when the atomic vapor layer was irradiated with light of an appropriate wavelength, the intensity of light absorbed by the atoms was measured, thereby quantifying the element concentration in the sample.
(B) Measurement of silica content in silica fine particles 2 ml of 50% sulfuric acid aqueous solution is added to 10 g of high-concentration silica sol, evaporated to dryness on a platinum pan, and the obtained solid is baked at 1000 ° C. for 1 hour and then cooled. And weigh. Next, dissolve the weighed solid in a small amount of 50% aqueous sulfuric acid, add 20 ml of hydrofluoric acid, evaporate to dryness on a platinum pan, bake at 1000 ° C. for 15 minutes, and cool. Weigh. The silica content in the silica fine particles was determined from these weight differences.
From the measurement results of (A) and (B), the mass ratio of SiO 2 : Na 2 O was calculated.

[粘度]
粘度計(東機産業株式会社製、TV−10)にて、室温で高濃度シリカゾルの粘度測定を行った。粘度は、粘度計のローターの回転数60rpmにて測定した。各実施例及び比較例で調製した高濃度シリカゾル(シリカ濃度35質量%)300gを円筒型のガラス製保存ビン(高さ20cm)に注入し、製造初期、25℃で30日保存時、及び、25℃で100日保存時に粘度を測定した。
[viscosity]
The viscosity of the high-concentration silica sol was measured at room temperature with a viscometer (manufactured by Toki Sangyo Co., Ltd., TV-10). The viscosity was measured at a rotational speed of the viscometer rotor of 60 rpm. 300 g of high-concentration silica sol (silica concentration 35 mass%) prepared in each example and comparative example was poured into a cylindrical glass storage bottle (height 20 cm), at the initial stage of manufacture, when stored at 25 ° C. for 30 days, and The viscosity was measured during storage at 25 ° C. for 100 days.

[pH]
測定用サンプル約50gをポリエチレン製のサンプル瓶に採取し、これを25℃の恒温槽に30分以上浸漬した後、pH4、7および9の標準液で更正が完了した株式会社堀場製作所製のpHメータF22のガラス電極を挿入して、pHを測定した。
[PH]
About 50 g of a sample for measurement was collected in a polyethylene sample bottle, immersed in a thermostatic bath at 25 ° C. for 30 minutes or more, and then corrected with standard solutions of pH 4, 7 and 9, and the pH manufactured by Horiba Ltd. The glass electrode of meter F22 was inserted and pH was measured.

[炭素含有量]
炭素含有量については、EMIA−320V(HORIBA社製)にて測定した。
[Carbon content]
About carbon content, it measured by EMIA-320V (made by HORIBA).

<水系溶媒分散シリカゾルの調製>
合成例1.[水系溶媒分散シリカゾル(平均粒子径5nm)の調製]
珪酸ナトリウム水溶液(シリカ濃度24質量%)を純水で希釈してシリカ濃度5質量%とした後、陽イオン交換塔に通液し、珪酸液(シリカ濃度4.5質量%)を得た。次に純水469gと珪酸ナトリウム水溶液(シリカ濃度24質量%)31gを混合して、希釈珪酸ナトリウム水溶液(シリカ濃度1.5質量%)500gを調製した。この希釈珪酸ナトリウム水溶液500gに、珪酸液(シリカ濃度4.5質量%)222gを混合し、60℃で1時間加熱した。その後60℃を保持しつつ、更に珪酸液(シリカ濃度4.5質量%)945gを6時間かけて徐々に添加して、水系溶媒分散シリカゾルを得た。
この水系溶媒分散シリカゾルをロータリーエバポレーターにて、500gまで濃縮した。この水系溶媒分散シリカゾルはシリカ濃度10質量%で、平均粒子径5nmであった。
<Preparation of aqueous solvent-dispersed silica sol>
Synthesis Example 1 [Preparation of aqueous solvent-dispersed silica sol (average particle size: 5 nm)]
A sodium silicate aqueous solution (silica concentration: 24% by mass) was diluted with pure water to a silica concentration of 5% by mass, and then passed through a cation exchange tower to obtain a silicic acid solution (silica concentration: 4.5% by mass). Next, 469 g of pure water and 31 g of a sodium silicate aqueous solution (silica concentration: 24 mass%) were mixed to prepare 500 g of a diluted sodium silicate aqueous solution (silica concentration: 1.5 mass%). To 500 g of this diluted sodium silicate aqueous solution, 222 g of a silicic acid solution (silica concentration: 4.5 mass%) was mixed and heated at 60 ° C. for 1 hour. Thereafter, 945 g of a silicic acid solution (silica concentration: 4.5% by mass) was gradually added over 6 hours while maintaining 60 ° C. to obtain an aqueous solvent-dispersed silica sol.
This aqueous solvent-dispersed silica sol was concentrated to 500 g using a rotary evaporator. This aqueous solvent-dispersed silica sol had a silica concentration of 10% by mass and an average particle size of 5 nm.

合成例2.[水系溶媒分散シリカゾル(平均粒子径2nm)の調製]
珪酸ナトリウム水溶液(シリカ濃度24質量%)を純水で希釈してシリカ濃度5質量%とした後、陽イオン交換塔に通液し、珪酸液(シリカ濃度4.5質量%)を得た。次に純水438gと珪酸ナトリウム水溶液(シリカ濃度24質量%)62gを混合して、希釈珪酸ナトリウム水溶液(シリカ濃度3.0質量%)500gを調製した。この希釈珪酸ナトリウム水溶液500gに、珪酸液(シリカ濃度4.5質量%)222gを混合し、50℃で1時間加熱した。その後50℃を保持しつつ、更に珪酸液(シリカ濃度4.5質量%)945gを6時間かけて徐々に添加して、水系溶媒分散シリカゾルを得た。
この水系溶媒分散シリカゾルをロータリーエバポレーターにて、500gまで濃縮した。この水系溶媒分散シリカゾルはシリカ濃度10質量%で、平均粒子径2nmであった。
Synthesis Example 2 [Preparation of aqueous solvent-dispersed silica sol (average particle size 2 nm)]
A sodium silicate aqueous solution (silica concentration: 24% by mass) was diluted with pure water to a silica concentration of 5% by mass, and then passed through a cation exchange tower to obtain a silicic acid solution (silica concentration: 4.5% by mass). Next, 438 g of pure water and 62 g of a sodium silicate aqueous solution (silica concentration: 24 mass%) were mixed to prepare 500 g of a diluted sodium silicate aqueous solution (silica concentration: 3.0 mass%). To 500 g of this diluted sodium silicate aqueous solution, 222 g of a silicic acid solution (silica concentration: 4.5 mass%) was mixed and heated at 50 ° C. for 1 hour. Thereafter, 945 g of a silicic acid solution (silica concentration: 4.5% by mass) was gradually added over 6 hours while maintaining 50 ° C. to obtain an aqueous solvent-dispersed silica sol.
This aqueous solvent-dispersed silica sol was concentrated to 500 g using a rotary evaporator. This aqueous solvent-dispersed silica sol had a silica concentration of 10% by mass and an average particle diameter of 2 nm.

合成例3.[水系溶媒分散シリカゾル(平均粒子径3nm)の調製]
珪酸ナトリウム水溶液(シリカ濃度24質量%)を純水で希釈してシリカ濃度5質量%とした後、陽イオン交換塔に通液し、珪酸液(シリカ濃度4.5質量%)を得た。次に純水453gと珪酸ナトリウム水溶液(シリカ濃度24質量%)47gを混合して、希釈珪酸ナトリウム水溶液(シリカ濃度2.3質量%)500gを調製した。この希釈珪酸ナトリウム水溶液500gに、珪酸液(シリカ濃度4.5質量%)222gを混合し、60℃で1時間加熱した。その後60℃を保持しつつ、更に珪酸液(シリカ濃度4.5質量%)945gを6時間かけて徐々に添加して、水系溶媒分散シリカゾルを得た。
この水系溶媒分散シリカゾルをロータリーエバポレーターにて、500gまで濃縮した。この水系溶媒分散シリカゾルはシリカ濃度10質量%で、平均粒子径3nmであった。
Synthesis Example 3 [Preparation of aqueous solvent-dispersed silica sol (average particle size: 3 nm)]
A sodium silicate aqueous solution (silica concentration: 24% by mass) was diluted with pure water to a silica concentration of 5% by mass, and then passed through a cation exchange tower to obtain a silicic acid solution (silica concentration: 4.5% by mass). Next, 453 g of pure water and 47 g of a sodium silicate aqueous solution (silica concentration: 24% by mass) were mixed to prepare 500 g of a diluted sodium silicate aqueous solution (silica concentration: 2.3% by mass). To 500 g of this diluted sodium silicate aqueous solution, 222 g of a silicic acid solution (silica concentration: 4.5 mass%) was mixed and heated at 60 ° C. for 1 hour. Thereafter, 945 g of a silicic acid solution (silica concentration: 4.5% by mass) was gradually added over 6 hours while maintaining 60 ° C. to obtain an aqueous solvent-dispersed silica sol.
This aqueous solvent-dispersed silica sol was concentrated to 500 g using a rotary evaporator. This aqueous solvent-dispersed silica sol had a silica concentration of 10% by mass and an average particle size of 3 nm.

合成例4.[水系溶媒分散シリカゾル(平均粒子径9nm)の調製]
珪酸ナトリウム水溶液(シリカ濃度24質量%)を純水で希釈してシリカ濃度5質量%とした後、陽イオン交換塔に通液し、珪酸液(シリカ濃度4.5質量%)を得た。次に純水484gと珪酸ナトリウム水溶液(シリカ濃度24質量%)16gを混合して、希釈珪酸ナトリウム水溶液(シリカ濃度0.8質量%)500gを調製した。この希釈珪酸ナトリウム水溶液500gに、珪酸液(シリカ濃度4.5質量%)222gを混合し、80℃で1時間加熱した。その後80℃を保持しつつ、更に珪酸液(シリカ濃度4.5質量%)945gを10時間かけて徐々に添加して、水系溶媒分散シリカゾルを得た。
水系溶媒分散シリカゾルをロータリーエバポレーターを用いて、500gまで濃縮した。この水系溶媒分散シリカゾルはシリカ濃度10質量%で、平均粒子径9nmであった。
Synthesis Example 4 [Preparation of aqueous solvent-dispersed silica sol (average particle size: 9 nm)]
A sodium silicate aqueous solution (silica concentration: 24% by mass) was diluted with pure water to a silica concentration of 5% by mass, and then passed through a cation exchange tower to obtain a silicic acid solution (silica concentration: 4.5% by mass). Next, 484 g of pure water and 16 g of a sodium silicate aqueous solution (silica concentration: 24 mass%) were mixed to prepare 500 g of a diluted sodium silicate aqueous solution (silica concentration of 0.8 mass%). To 500 g of this diluted sodium silicate aqueous solution, 222 g of a silicic acid solution (silica concentration: 4.5% by mass) was mixed and heated at 80 ° C. for 1 hour. Thereafter, 945 g of a silicic acid solution (silica concentration: 4.5 mass%) was gradually added over 10 hours while maintaining 80 ° C. to obtain an aqueous solvent-dispersed silica sol.
The aqueous solvent-dispersed silica sol was concentrated to 500 g using a rotary evaporator. This aqueous solvent-dispersed silica sol had a silica concentration of 10% by mass and an average particle size of 9 nm.

(実施例1)
合成例1で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにNMP(N−メチル−2−ピロリドン)を209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、NMPを加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
Example 1
209 g of NMP (N-methyl-2-pyrrolidone) was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 1 (silica concentration: 10% by mass) and stirred for 10 minutes, and the pressure was reduced at a bath temperature of 80 ° C. using a rotary evaporator. It concentrated to the silica concentration of 37 mass% on the conditions of the degree of 740 mmHg. Subsequently, NMP was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(実施例2)
合成例1で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにジプロピルアミンを209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、ジプロピルアミンを加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Example 2)
209 g of dipropylamine was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 1 (silica concentration: 10% by mass), stirred for 10 minutes, and the silica concentration was adjusted using a rotary evaporator at a bath temperature of 80 ° C. and a reduced pressure of 740 mmHg. Concentrated to 37% by weight. Subsequently, dipropylamine was added and diluted to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(実施例3)
合成例3で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにN−メチルホルムアミドを209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、N−メチルホルムアミドを加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Example 3)
209 g of N-methylformamide was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 3 (silica concentration: 10% by mass), stirred for 10 minutes, and the silica was used with a rotary evaporator at a bath temperature of 80 ° C. and a vacuum of 740 mmHg. Concentrated to a concentration of 37% by weight. Subsequently, N-methylformamide was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(実施例4)
合成例2で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにNMP(N−メチル−2−ピロリドン)を209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度45質量%まで濃縮した。続いて、NMPを加えて希釈し、シリカ濃度37質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
Example 4
209 g of NMP (N-methyl-2-pyrrolidone) was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 2 (silica concentration: 10% by mass) and stirred for 10 minutes, and the pressure was reduced at a bath temperature of 80 ° C. using a rotary evaporator. It was concentrated to a silica concentration of 45% by mass under the condition of a degree of 740 mmHg. Subsequently, NMP was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 37% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(比較例1)
合成例4で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにNMP(N−メチル−2−ピロリドン)を230g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、イオン交換水を加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Comparative Example 1)
230 g of NMP (N-methyl-2-pyrrolidone) was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 4 (silica concentration: 10% by mass) and stirred for 10 minutes, and the pressure was reduced at a bath temperature of 80 ° C. using a rotary evaporator. It concentrated to the silica concentration of 37 mass% on the conditions of the degree of 740 mmHg. Subsequently, ion-exchanged water was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(比較例2)
合成例2で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにトリエチルアミンを209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、トリエチルアミンを加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Comparative Example 2)
209 g of triethylamine was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 2 (silica concentration: 10 mass%), stirred for 10 minutes, and the silica concentration was 37 mass using a rotary evaporator at a bath temperature of 80 ° C. and a reduced pressure of 740 mmHg. Concentrated to%. Subsequently, triethylamine was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(比較例3)
合成例2で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにN−メチルアセトアミドを209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、N−メチルアセトアミドを加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Comparative Example 3)
209 g of N-methylacetamide was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 2 (silica concentration: 10% by mass) and stirred for 10 minutes. Silica was then used with a rotary evaporator at a bath temperature of 80 ° C. and a vacuum of 740 mmHg. Concentrated to a concentration of 37% by weight. Subsequently, N-methylacetamide was added and diluted to obtain a high concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(比較例4)
合成例3で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにエチレングリコールを209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。つづいて、エチレングリコールを加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Comparative Example 4)
209 g of ethylene glycol was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 3 (silica concentration: 10% by mass) and stirred for 10 minutes, and the silica concentration was 37 using a rotary evaporator at a bath temperature of 80 ° C. and a reduced pressure of 740 mmHg. Concentrated to mass%. Subsequently, ethylene glycol was added and diluted to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(比較例5)
合成例1で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにNMP(N−メチル−2−ピロリドン)を209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度45質量%まで濃縮した。続いて、NMPを加えて希釈し、シリカ濃度42質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Comparative Example 5)
209 g of NMP (N-methyl-2-pyrrolidone) was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 1 (silica concentration: 10% by mass) and stirred for 10 minutes, and the pressure was reduced at a bath temperature of 80 ° C. using a rotary evaporator. It was concentrated to a silica concentration of 45% by mass under the condition of a degree of 740 mmHg. Subsequently, NMP was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 42% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

(比較例6)
合成例1で調製した水系溶媒分散シリカゾル(シリカ濃度10質量%)1300gにNMP(N−メチル−2−ピロリドン)を209g添加して10分間攪拌し、ロータリーエバポレーターを用いてバス温度80℃、減圧度740mmHgの条件でシリカ濃度37質量%まで濃縮した。続いて、イオン交換水を加えて希釈し、シリカ濃度35質量%の高濃度有機溶媒分散シリカゾルを得た。この高濃度有機溶媒分散シリカゾルについて、シリカ微粒子の比表面積、平均粒子径、SiO/NaO比(質量比)、pH、粘度を測定した。結果を表1に示す。
(Comparative Example 6)
209 g of NMP (N-methyl-2-pyrrolidone) was added to 1300 g of the aqueous solvent-dispersed silica sol prepared in Synthesis Example 1 (silica concentration: 10% by mass) and stirred for 10 minutes, and the pressure was reduced at a bath temperature of 80 ° C. using a rotary evaporator. It concentrated to the silica concentration of 37 mass% on the conditions of the degree of 740 mmHg. Subsequently, ion-exchanged water was added for dilution to obtain a high-concentration organic solvent-dispersed silica sol having a silica concentration of 35% by mass. With respect to this high-concentration organic solvent-dispersed silica sol, the specific surface area, average particle diameter, SiO 2 / Na 2 O ratio (mass ratio), pH, and viscosity of the silica fine particles were measured. The results are shown in Table 1.

Figure 2011236094
Figure 2011236094

表1の結果より、実施例1〜4の高濃度シリカゾルは経時的にゲル化することはなく、また、その粘度も一定であり、経時安定性に優れていた。それに対し、シリカ微粒子の平均粒子径が9nmである比較例1、沸点が100℃未満であり、双極子モーメントが1.0未満の含窒素系溶媒を用いた比較例2、双極子モーメントが本発明の範囲を超えた含窒素系溶媒を用いた比較例3、並びに含窒素系溶媒以外の有機溶媒を用いた比較例4は、いずれも経時的にゲル化することが確認できた。また、シリカ濃度が42質量%の比較例5も経時的にゲル化する傾向にあり、分散性が安定的ではない。そして、分散媒に占める含窒素系溶媒の含有量が50質量%より少ない比較例6は、比較例1〜5に比べて30日程度では分散性を保つことができるが、100日後にはゲル化することがわかった。   From the results shown in Table 1, the high-concentration silica sols of Examples 1 to 4 did not gel with time, had a constant viscosity, and were excellent in stability over time. On the other hand, Comparative Example 1 in which the average particle diameter of silica fine particles is 9 nm, Comparative Example 2 using a nitrogen-containing solvent having a boiling point of less than 100 ° C. and a dipole moment of less than 1.0, and the dipole moment are It was confirmed that both Comparative Example 3 using a nitrogen-containing solvent exceeding the scope of the invention and Comparative Example 4 using an organic solvent other than the nitrogen-containing solvent gelated with time. Further, Comparative Example 5 having a silica concentration of 42% by mass also tends to gel with time, and the dispersibility is not stable. And Comparative Example 6 in which the content of the nitrogen-containing solvent in the dispersion medium is less than 50% by mass can maintain dispersibility in about 30 days compared to Comparative Examples 1 to 5, but after 100 days the gel I found out that

本発明の高濃度シリカゾルは、有機溶媒中に微細かつ高比表面積なシリカ微粒子が高濃度で安定的に分散しているので、各種塗料、保護膜、ハードコート剤などの他、各種樹脂の充填材、セラミック成形体のバインダー、顔料の成分等として有用であり、たとえば磁気テープの充填剤、フィルムのブロッキング防止剤などの用途にも好適である。
また、本発明に係る高濃度シリカゾルは、比較的高いシリカ濃度にて、保管又は運送に供された場合でも、安定性が維持されるものである。このため、シリカゾルを使用する多くの分野において、保管スペースの節約又は運送コストの節約の効果を示すことができる。
In the high-concentration silica sol of the present invention, fine silica particles having a high specific surface area are stably dispersed at a high concentration in an organic solvent, so that various paints, protective films, hard coat agents, etc., as well as filling various resins It is useful as a component of a material, a binder of a ceramic molded body, a pigment, and the like, and is also suitable for applications such as a magnetic tape filler and a film anti-blocking agent.
Further, the high-concentration silica sol according to the present invention maintains stability even when it is stored or transported at a relatively high silica concentration. For this reason, in many fields using silica sol, the effect of saving storage space or saving transportation costs can be shown.

Claims (10)

下記の(a)〜(c)の条件を満たすシリカ微粒子が、シリカ濃度20〜40質量%の範囲で、沸点が100℃以上且つ双極子モーメントが1.0〜4.2D(Debye)の範囲にある含窒素系溶媒を含む分散媒に分散してなることを特徴とする高濃度シリカゾル。
(a)前記シリカ微粒子の比表面積が560〜900m/gの範囲
(b)前記シリカ微粒子の平均粒子径が2〜5nmの範囲
(c)前記シリカ微粒子内に炭素原子を含有しない
Silica fine particles satisfying the following conditions (a) to (c) have a silica concentration of 20 to 40% by mass, a boiling point of 100 ° C. or higher, and a dipole moment of 1.0 to 4.2 D (Debye). A high-concentration silica sol which is dispersed in a dispersion medium containing a nitrogen-containing solvent as described above.
(A) The specific surface area of the silica fine particles is in the range of 560 to 900 m 2 / g. (B) The silica fine particles have an average particle size in the range of 2 to 5 nm. (C) The silica fine particles do not contain carbon atoms.
前記分散媒中に、前記含窒素系溶媒が50質量%以上含まれることを特徴とする請求項1に記載の高濃度シリカゾル。   2. The high-concentration silica sol according to claim 1, wherein the nitrogen-containing solvent is contained in an amount of 50% by mass or more in the dispersion medium. 前記シリカ微粒子が、珪酸アルカリを原料として調製されたものであることを特徴とする請求項1又は請求項2に記載の高濃度シリカゾル。   The high-concentration silica sol according to claim 1 or 2, wherein the silica fine particles are prepared using alkali silicate as a raw material. 前記シリカ微粒子におけるSiO:MO(Mはアルカリ金属を示す)の質量比が、100:0.2〜100:10の範囲であることを特徴とする請求項1〜請求項3のいずれか1項に記載の高濃度シリカゾル。 The mass ratio of SiO 2 : M 2 O (M represents an alkali metal) in the silica fine particles is in the range of 100: 0.2 to 100: 10, any one of claims 1 to 3 2. The high-concentration silica sol according to item 1. 前記含窒素系溶媒が、ジプロピルアミン、N−メチルホルムアミド、N−メチル−2−ピロリドン又はモノエタノールアミンから選ばれる少なくとも1種であることを特徴とする請求項1〜請求項4のいずれか1項に記載の高濃度シリカゾル。   The nitrogen-containing solvent is at least one selected from dipropylamine, N-methylformamide, N-methyl-2-pyrrolidone, or monoethanolamine. 2. The high concentration silica sol according to item 1. 前記分散媒が、水を含むことを特徴とする請求項1〜請求項5のいずれか1項に記載の高濃度シリカゾル。   The high-concentration silica sol according to any one of claims 1 to 5, wherein the dispersion medium contains water. 25℃での粘度が、5〜300mP・sの範囲にあることを特徴とする請求項1〜請求項6のいずれか1項に記載の高濃度シリカゾル。   The high-concentration silica sol according to any one of claims 1 to 6, wherein the viscosity at 25 ° C is in the range of 5 to 300 mP · s. 請求項1〜請求項7のいずれか1項に記載の高濃度シリカゾルを含有することを特徴とするセラミック成形体用バインダー。   A binder for a ceramic molded body comprising the high-concentration silica sol according to any one of claims 1 to 7. 請求項1〜請求項7のいずれか1項に記載の高濃度シリカゾルを含有することを特徴とする充填材。   A filler comprising the high-concentration silica sol according to any one of claims 1 to 7. 請求項1〜請求項7のいずれか1項に記載の高濃度シリカゾルを含有することを特徴とする顔料。   A pigment comprising the high-concentration silica sol according to any one of claims 1 to 7.
JP2010110188A 2010-05-12 2010-05-12 High concentration silica sol Active JP5505900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110188A JP5505900B2 (en) 2010-05-12 2010-05-12 High concentration silica sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110188A JP5505900B2 (en) 2010-05-12 2010-05-12 High concentration silica sol

Publications (2)

Publication Number Publication Date
JP2011236094A true JP2011236094A (en) 2011-11-24
JP5505900B2 JP5505900B2 (en) 2014-05-28

Family

ID=45324501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110188A Active JP5505900B2 (en) 2010-05-12 2010-05-12 High concentration silica sol

Country Status (1)

Country Link
JP (1) JP5505900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117430117A (en) * 2023-10-25 2024-01-23 阳江市惠尔特新材料科技有限公司 Silica sol and manufacturing method and application thereof
JP7424867B2 (en) 2019-03-12 2024-01-30 東曹産業株式会社 Silicate-based aqueous solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143319A (en) * 1997-05-26 1999-02-16 Nissan Chem Ind Ltd Production of hydrophobic organo silica sol
JP2003012320A (en) * 2001-06-28 2003-01-15 Catalysts & Chem Ind Co Ltd Organosol of silica base inorganic compound
JP2009143741A (en) * 2007-12-11 2009-07-02 Jgc Catalysts & Chemicals Ltd Method for producing ammonium-containing silica-based sol
JP2009242115A (en) * 2008-03-28 2009-10-22 Jgc Catalysts & Chemicals Ltd Silica sol and production method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143319A (en) * 1997-05-26 1999-02-16 Nissan Chem Ind Ltd Production of hydrophobic organo silica sol
JP2003012320A (en) * 2001-06-28 2003-01-15 Catalysts & Chem Ind Co Ltd Organosol of silica base inorganic compound
JP2009143741A (en) * 2007-12-11 2009-07-02 Jgc Catalysts & Chemicals Ltd Method for producing ammonium-containing silica-based sol
JP2009242115A (en) * 2008-03-28 2009-10-22 Jgc Catalysts & Chemicals Ltd Silica sol and production method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424867B2 (en) 2019-03-12 2024-01-30 東曹産業株式会社 Silicate-based aqueous solution
CN117430117A (en) * 2023-10-25 2024-01-23 阳江市惠尔特新材料科技有限公司 Silica sol and manufacturing method and application thereof

Also Published As

Publication number Publication date
JP5505900B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
EP3081531B1 (en) Silica particles, manufacturing method for same, and silica sol
JP5591530B2 (en) Method for producing silica-based fine particle dispersed sol, silica-based fine particle dispersed sol, coating composition containing the dispersed sol, curable coating film, and substrate with curable coating film
JP5334385B2 (en) Production and use of polysilicate particulate material
US20080025900A1 (en) Silica and method for producing the same
JP6284443B2 (en) Method for producing colloidal silica containing core-shell type silica particles
TWI741116B (en) Silica particle dispersion liquid and its manufacturing method
JP2008297183A (en) Porous oxide particle and its production method
JP5811620B2 (en) Method for producing silica particles
JP6323861B2 (en) Method for producing surface-modified mesoporous silica nanoparticles
KR100744976B1 (en) Inorganic oxide
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
JP5505900B2 (en) High concentration silica sol
JP2003201111A (en) Low thickening fumed silica and its slurry
JP4211115B2 (en) Method for producing hollow particles
JP2003226516A (en) Silica and method for producing the same
JP4936720B2 (en) Anisotropic shaped alumina hydrate sol and process for producing the same
JP5356209B2 (en) Organic solvent dispersed high concentration silicic acid solution
JP7132827B2 (en) Hollow silica particles and method for producing the same
JP7470079B2 (en) Method for producing a dispersion of spinous alumina-silica composite fine particles
JP2005022894A (en) Silica and method of manufacturing the same
JP7107321B2 (en) Dispersions and airgel particles
JP2003226515A (en) Silica and method for producing the same
KR20240033263A (en) Surface treated silica particle dispersion sol and method for producing the same
JP2012246201A (en) Composition for forming antireflection film, the antireflection film, and laminate including the antireflection film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5505900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250