JP2011235570A - Member formed by bonding metal body and resin body, and method for manufacturing the same - Google Patents

Member formed by bonding metal body and resin body, and method for manufacturing the same Download PDF

Info

Publication number
JP2011235570A
JP2011235570A JP2010110016A JP2010110016A JP2011235570A JP 2011235570 A JP2011235570 A JP 2011235570A JP 2010110016 A JP2010110016 A JP 2010110016A JP 2010110016 A JP2010110016 A JP 2010110016A JP 2011235570 A JP2011235570 A JP 2011235570A
Authority
JP
Japan
Prior art keywords
metal
resin
metal body
laser light
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010110016A
Other languages
Japanese (ja)
Other versions
JP5569932B2 (en
Inventor
Kinji Hirai
勤二 平井
Isamu Akiyama
勇 秋山
Kiyoshi Miura
清 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU KENKYUSHO KK
Original Assignee
SHINGIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU KENKYUSHO KK filed Critical SHINGIJUTSU KENKYUSHO KK
Priority to JP2010110016A priority Critical patent/JP5569932B2/en
Publication of JP2011235570A publication Critical patent/JP2011235570A/en
Application granted granted Critical
Publication of JP5569932B2 publication Critical patent/JP5569932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1619Mid infrared radiation [MIR], e.g. by CO or CO2 lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member which is formed by bonding a metal body and a resin body, which can suppress deformation and discoloration of the metal body and in which strong bonding force acts on between the metal body and the resin body, and to provide a method for manufacturing the member.SOLUTION: The bonded member 100 is formed by bonding the metal body 1 made of a metal and the resin body 4 made of a resin. A bonding part between the metal body 1 and the resin body 4, in order from a metal body 1 side, has: a metal compound film which includes at least one chosen from a group comprising hydroxide, hydrous oxide, ammonium salt, amine compound, carboxylate, phosphate, carbonate, sulfate, silicate and fluoride; and a molecular adhesive which comprises a dehydrated silanol-containing triazine thiol derivative. A part in which the resin body 4 comes into contact with the molecular adhesive has a local re-hardened part 4a which is formed by hardening after local melting of the resin body 4.

Description

本発明は、金属体と樹脂体とを接合して一体化した部材およびその製造方法に関する。   The present invention relates to a member obtained by joining and integrating a metal body and a resin body and a method for manufacturing the member.

電子・電気機器や自動車部品等を含む多くの用途において、強度、剛性または耐熱性等の所定の性能を確保しながら、より軽量化した部材が求められている。
このような要求に対応するために、従来金属を用いていた部材の一部を樹脂化した部材および樹脂で形成した部材を金属部材で補強した部材のように、金属体と樹脂体とを接合して一体化した部材が用いられている。
In many applications including electronic / electrical equipment, automobile parts, and the like, there is a demand for a member that is lighter while ensuring predetermined performance such as strength, rigidity, and heat resistance.
In order to meet such demands, a metal body and a resin body are joined together such as a member obtained by converting a part of a member that has conventionally used a metal into a resin, and a member that is formed from a resin and reinforced with a metal member. Thus, an integrated member is used.

金属体と樹脂体を接合する方法として、金属体の表面に例えば凹凸を形成する等の処理を施した後、金属体を金型内に挿入し、金型のキャビティー内に樹脂を射出成形する方法が知られている(例えば、特許文献1、2)。この方法では、射出成形時に溶融(軟化)状態の樹脂が、金属表面の凹凸内に侵入しその後の冷却過程でも樹脂が凹凸内に残存することから、アンカー効果により金属体と樹脂体の接着強度を確保して一体化できる。   As a method of joining the metal body and the resin body, after performing a treatment such as forming irregularities on the surface of the metal body, the metal body is inserted into the mold and the resin is injection molded into the cavity of the mold. There are known methods (for example, Patent Documents 1 and 2). In this method, the molten (softened) resin penetrates into the irregularities on the metal surface during injection molding, and the resin remains in the irregularities during the subsequent cooling process. Can be integrated.

また、金属体と樹脂体を予め別々に作製した後、金属体を樹脂の溶融温度以上に加熱し、金属体の表面に樹脂を接触させて樹脂体の金属接触部を溶融して接合する熱溶着法が知られている。   Also, after the metal body and the resin body are prepared separately in advance, the metal body is heated to a temperature higher than the melting temperature of the resin, the resin is brought into contact with the surface of the metal body, and the metal contact portion of the resin body is melted and joined. A welding method is known.

さらに、金属体の表面のみをレーザーで加熱する方法として、金属板と金属板の間に樹脂より成るガスケット(樹脂体)を挿入した積層体を形成し、2枚の金属板により樹脂体に圧縮応力が付与されるように、かしめ加工を積層体に行った後、レーザー光を金属板または樹脂体の表面に照射して樹脂体表面を溶融させて、金属板と樹脂との密着性を向上する方法が知られている(特許文献3)   Furthermore, as a method of heating only the surface of the metal body with a laser, a laminated body in which a gasket (resin body) made of a resin is inserted between the metal plate and the resin body is compressed by two metal plates. A method of improving the adhesion between the metal plate and the resin by applying a laser beam to the surface of the metal plate or the resin body to melt the surface of the resin body after performing the caulking process on the laminated body as given Is known (Patent Document 3)

国際公開第WO2004/041532号公報International Publication No. WO2004 / 041532 特開2007−203585号公報JP 2007-203585 A 特開2009−123516号公報JP 2009-123516 A

しかし、溶着法では、金属体全体を樹脂の溶融温度以上(例えば200℃以上)に加熱するため、金属表面からの輻射熱で、樹脂部品の溶着部以外の部分が変形する場合があるという問題があった。また、この温度上昇に伴い金属体表面が酸化等に起因し変色する場合があるという問題があった。
また射出成形法では、得ようとする部材の形状が複雑な場合、金属体を挿入する金型の製作が難しく、また、例え金型を製作することが可能であっても、多額の製作費がかかるという問題もあった。
However, in the welding method, since the entire metal body is heated to a temperature higher than the melting temperature of the resin (for example, 200 ° C. or higher), there is a problem that portions other than the welded portion of the resin part may be deformed by radiant heat from the metal surface. there were. Further, there is a problem that the surface of the metal body may be discolored due to oxidation or the like as the temperature rises.
In addition, in the injection molding method, when the shape of the member to be obtained is complicated, it is difficult to manufacture a mold for inserting a metal body, and even if it is possible to manufacture a mold, a large amount of production cost is required. There was also a problem that it took.

一方、レーザー光を金属体または樹脂体の表面に照射し樹脂表面を溶融させる方法では、殆どの場合、金属体と樹脂体との間に十分に接着力が得られないという問題があった。
例えば引用文献3に示す例では、レーザーにより樹脂を溶融し、凝固(硬化)させた部分は、樹脂と金属との隙間を埋めて密着性を向上させるのに寄与するものである。すなわち、上述のように、かしめ加工を行って、2枚の金属板で樹脂をかしめて金属体を樹脂体に押し当てることによって、金属体と樹脂体とを一体にしており、レーザーによる溶融・凝固部分は接合強度の確保には殆ど寄与するものではない。
On the other hand, in the method of irradiating the surface of a metal body or resin body with laser light to melt the resin surface, in most cases, there is a problem that sufficient adhesive force cannot be obtained between the metal body and the resin body.
For example, in the example shown in Cited Document 3, a portion obtained by melting and solidifying (curing) a resin with a laser contributes to improving the adhesion by filling the gap between the resin and the metal. That is, as described above, the metal body and the resin body are integrated by performing caulking processing and caulking the resin with two metal plates and pressing the metal body against the resin body. The solidified portion hardly contributes to securing the bonding strength.

従って、本願発明は樹脂体の変形および金属体の変色を抑制でき、かつ金属体と樹脂体との間に強い接合力が作用している、金属体と樹脂体を接合した部材およびその製造方法を提供することを目的とする。   Therefore, the invention of the present application can suppress deformation of the resin body and discoloration of the metal body, and a strong bonding force acts between the metal body and the resin body, and a member for manufacturing the member bonded to the metal body and the resin body The purpose is to provide.

本発明の態様1は、金属より成る金属体と樹脂より成る樹脂体とが接合された接合部材であって、前記金属体と前記樹脂体との接合部に、前記金属体側から順に水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩およびフッ化物より成る群から選ばれる少なくとも1つを含む金属化合物皮膜と、脱水シラノール含有トリアジンチオール誘導体を含んで成る分子接着剤とを有し、前記樹脂体が前記分子接着剤と接する部分に、前記樹脂体が局部的に溶融した後硬化して形成される局部再硬化部を有することを特徴とする部材である。   Aspect 1 of the present invention is a joining member in which a metal body made of metal and a resin body made of resin are joined, and a hydroxide is sequentially formed at a joint portion between the metal body and the resin body from the metal body side. Hydrated oxide, ammonium salt, amine compound, carboxylate, phosphate, carbonate, sulfate, silicate and metal compound film comprising at least one selected from the group consisting of fluoride and dehydrated silanol A molecular adhesive comprising a triazine thiol derivative containing, and a portion where the resin body is in contact with the molecular adhesive has a local recuring portion formed by curing after the resin body is locally melted It is a member characterized by having.

本発明の態様2は、前記樹脂が波長300〜2,000nmのレーザー光の光透過率が80%以上であるレーザー光透過型樹脂であることを特徴とする態様1に記載の部材である。   Aspect 2 of the present invention is the member according to aspect 1, characterized in that the resin is a laser light transmission type resin whose light transmittance of laser light having a wavelength of 300 to 2,000 nm is 80% or more.

本発明の態様3は、前記樹脂が波長300〜2,000nmのレーザー光の光透過率が80%未満のレーザー光非透過型樹脂であることを特徴とする態様1に記載の部材である。   Aspect 3 of the present invention is the member according to aspect 1, wherein the resin is a laser light non-transmissive resin having a light transmittance of less than 80% for laser light having a wavelength of 300 to 2,000 nm.

本発明の態様4は、前記金属化合物皮膜が、金属の水和酸化物および水酸化物の少なくとも一方を含むことを特徴とする態様1〜3のいずれかに記載の部材である。   Aspect 4 of the present invention is the member according to any one of aspects 1 to 3, wherein the metal compound film contains at least one of a metal hydrated oxide and a hydroxide.

本発明の態様5は、前記金属化合物皮膜が、リン酸水素金属塩、リン酸二水素金属塩およびリン酸金属塩より成る群から選択される少なくとも1つのリン酸塩を含むことを特徴とする態様1〜3のいずれかに記載の部材である。   Aspect 5 of the present invention is characterized in that the metal compound film includes at least one phosphate selected from the group consisting of a metal hydrogen phosphate, a metal dihydrogen phosphate, and a metal phosphate. It is a member in any one of aspects 1-3.

本発明の態様6は、前記金属体の表面の一部に波長域300〜2,000nmのレーザー光の光吸収率が前記金属より高い光吸収剤が塗布されていることを特徴とする態様1〜5のいずれか1項に記載の部材である。   Aspect 6 of the present invention is characterized in that a part of the surface of the metal body is coated with a light absorber having a light absorption rate of laser light having a wavelength region of 300 to 2,000 nm higher than that of the metal. It is a member of any one of -5.

本発明の態様7は、前記樹脂体がシートモールディングコンパウンドまたはバルクモールディングコンパウンドであることを特徴とする態様1〜6のいずれかに記載の部材である。   Aspect 7 of the present invention is the member according to any one of the aspects 1 to 6, wherein the resin body is a sheet molding compound or a bulk molding compound.

本発明の態様8は、金属より成る金属体と樹脂より成る樹脂体とが接合された接合部材の製造方法であって、1)水蒸気、またはI族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩、アンモニア、アンモニウム塩、ヒドラジン、ヒドラジン誘導体、アミン類、リン酸、リン酸塩、炭酸塩、硫酸、硫酸塩、カルボン酸、カルボン酸塩、ケイ酸、ケイ酸塩およびフッ化物から選択される少なくとも1つの水溶液を用いて、前記金属体の表面の少なくとも一部分に、水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩およびフッ化物より成る群から選ばれる少なくとも1つを含む金属化合物皮膜を前記金属体表面に形成する工程と、2)前記金属化合物皮膜の表面にアルコキシシラン含有トリアジンチオール誘導体を含んで成る分子接着剤を接触させる工程と、3)前記分子接着剤と前記樹脂体の表面を接触させた後、レーザー光を照射して前記樹脂体の接合しようとする表面を溶融する工程と、を含むことを特徴とする製造方法である。   Aspect 8 of the present invention is a method of manufacturing a joining member in which a metal body made of metal and a resin body made of resin are joined, and 1) water vapor, a hydroxide of a group I element, a salt of a group I element , Group II element hydroxide, Group II element salt, ammonia, ammonium salt, hydrazine, hydrazine derivatives, amines, phosphoric acid, phosphate, carbonate, sulfuric acid, sulfate, carboxylic acid, carboxylate, Using at least one aqueous solution selected from silicic acid, silicate and fluoride, hydroxide, hydrated oxide, ammonium salt, amine compound, carboxylate, Forming a metal compound film containing at least one selected from the group consisting of phosphate, carbonate, sulfate, silicate and fluoride on the surface of the metal body; and 2) forming a surface of the metal compound film. A A step of contacting a molecular adhesive comprising a alkoxysilane-containing triazine thiol derivative; and 3) contacting the surface of the resin body with the molecular adhesive and then irradiating a laser beam to join the resin body. And a step of melting the surface.

本発明の態様9は、前記レーザー光を前記金属体に照射して、前記金属体の接合しようとする表面からの熱伝達により、前記樹脂体の接合しようとする表面を溶融することを特徴とする態様8に記載の製造方法である。   Aspect 9 of the present invention is characterized in that the surface to be joined of the resin body is melted by irradiating the metal body with the laser light and transferring heat from the surface to be joined of the metal body. It is a manufacturing method of the aspect 8 to do.

本発明の態様10は、前記樹脂が、前記レーザー光の透過率が80%以上であるレーザー光透光性樹脂であり、前記レーザー光が前記透光性樹脂を透過して前記金属体の前記接合しようとする面を加熱することを特徴とする態様9に記載の製造方法である。   In the tenth aspect of the present invention, the resin is a laser light transmitting resin having a laser light transmittance of 80% or more, and the laser light is transmitted through the light transmitting resin so that the metal body has the light transmittance. 10. The manufacturing method according to aspect 9, wherein the surfaces to be joined are heated.

本発明の態様11は、前記樹脂が、前記レーザー光の透過率が80%未満であるレーザー光非透光型樹脂であり、前記レーザー光を前記金属体の接合しようとする面と反対側の面に照射することを特徴とする態様9に記載の製造方法である。   According to an eleventh aspect of the present invention, the resin is a laser light non-transparent resin having a laser light transmittance of less than 80%, and the laser light is opposite to a surface to which the metal body is to be joined. The manufacturing method according to aspect 9, wherein the surface is irradiated.

本発明の態様12は、前記樹脂が、前記レーザー光の透過率が80%未満であるレーザー非透光型樹脂であり、前記レーザー光を前記金属体の接合しようとする面に隣接し露出した面に照射することを特徴とする態様9に記載の製造方法である。   According to a twelfth aspect of the present invention, the resin is a laser non-transparent resin having a laser light transmittance of less than 80%, and the laser light is exposed adjacent to a surface to which the metal body is to be joined. The manufacturing method according to aspect 9, wherein the surface is irradiated.

本発明の態様13は、前記金属体の前記レーザー光を照射する部分に前記レーザー光の光吸収率が前記金属より高い光吸収剤を塗布することを特徴とする態様9〜12のいずれかに記載の部材である。   According to a thirteenth aspect of the present invention, in any one of the ninth to twelfth aspects, the light absorption rate of the laser light is higher than that of the metal on a portion of the metal body that is irradiated with the laser light. It is a member of description.

本発明の態様14は、前記樹脂体がシートモールディングコンパウンドまたはバルクモールディングコンパウンドであることを特徴とする態様8〜13のいずれかに記載の部材である。   A fourteenth aspect of the present invention is the member according to any one of the eighth to thirteenth aspects, wherein the resin body is a sheet molding compound or a bulk molding compound.

本願発明の製造方法を用いることで、金属体の一部分のみを加熱し、全体を加熱することなく、金属体と樹脂体と間に強い接合力を確保した部材を得ることができる。
本願発明に係る金属体と樹脂体を一体化した部材は、溶着時および溶着後の冷却過程における金属体の変形および変色を抑制することができる。
また、本願発明の製造方法を用いると金型を用いることなく金属体と樹脂体を溶着することが可能となる。
By using the manufacturing method of the present invention, it is possible to obtain a member that ensures a strong bonding force between the metal body and the resin body without heating only a part of the metal body and heating the whole.
The member in which the metal body and the resin body according to the present invention are integrated can suppress deformation and discoloration of the metal body during the cooling process during and after the welding.
Moreover, if the manufacturing method of this invention is used, it will become possible to weld a metal body and a resin body, without using a metal mold | die.

図1は、本発明に係る金属体1と樹脂体4とを接合した接合部材100の一部分を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a part of a joining member 100 obtained by joining a metal body 1 and a resin body 4 according to the present invention. 図2は、実施形態1に係る、レーザーを用いた樹脂体の接合処理により、金属体1と樹脂体4を接合した接合部材100を得る方法を説明する模式断面図である。FIG. 2 is a schematic cross-sectional view for explaining a method of obtaining the joining member 100 in which the metal body 1 and the resin body 4 are joined by the joining process of the resin body using the laser according to the first embodiment. 図3は、実施形態2に係る、レーザーを用いた樹脂体の接合処理により金属体と樹脂体を一体化した接合部材100Aを得る方法を説明する模式断面図である。FIG. 3 is a schematic cross-sectional view illustrating a method for obtaining a joining member 100A in which a metal body and a resin body are integrated by a joining process of a resin body using a laser according to the second embodiment. 図4は、実施形態3に係る、レーザーを用いた樹脂体の接合処理により金属体と樹脂体を一体化した接合部材100Bを得る方法を説明する模式断面図である。FIG. 4 is a schematic cross-sectional view illustrating a method of obtaining a joining member 100B in which a metal body and a resin body are integrated by a joining process of a resin body using a laser according to the third embodiment. 図5は、実施例4で用いた引張り試験片100Cを示す模式図である。FIG. 5 is a schematic view showing a tensile test piece 100 </ b> C used in Example 4.

以下、図面に基づいて本発明の実施形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は、図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は、同一の部分又は部材を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction and position (for example, “up”, “down”, “right”, “left” and other terms including those terms) are used as necessary. These terms are used for easy understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meaning of these terms. Moreover, the part of the same code | symbol which appears in several drawing shows the same part or member.

本願発明者らは、樹脂体と金属体との接合強度を確保するために、金属体と樹脂体の間にアルコキシシラン含有トリアジンチオール誘導体を含有する分子接着剤(単に「接着剤」という場合がある)を挿入して接合強度の向上を試みたが、これだけでは十分な接合強度を得られなかった。   In order to ensure the bonding strength between the resin body and the metal body, the inventors of the present application provide a molecular adhesive containing an alkoxysilane-containing triazine thiol derivative between the metal body and the resin body (sometimes simply referred to as “adhesive”). Attempts were made to improve the bonding strength by inserting a certain amount, but this alone did not provide sufficient bonding strength.

そこで、検討を行った結果、金属表面に前処理を行って金属化合物皮膜(「化合物皮膜」ともいう)を形成した後、この金属化合物皮膜の上に分子接着剤を塗布し、その上に樹脂体を配置することで、樹脂体と金属体との間に高い接合力を得ることができることを見出した。   Therefore, as a result of the examination, a metal compound film (also referred to as “compound film”) is formed by pretreatment on the metal surface, and then a molecular adhesive is applied on the metal compound film, and a resin is formed thereon. It has been found that by arranging the body, a high bonding force can be obtained between the resin body and the metal body.

詳細は後述するが、金属化合物皮膜の上に塗布された分子接着剤中に含有されるアルコキシシラン含有トリアジンチオール誘導体は、以下のように変化することで、金属体(金属化合物皮膜を介して)と樹脂体とを強力に接合するものと考えられる。
但し、このメカニズムは、得られた結果より予想したものであり、本願発明の範囲を限定するものではない。
As will be described in detail later, the alkoxysilane-containing triazine thiol derivative contained in the molecular adhesive applied on the metal compound film changes as follows, so that the metal body (via the metal compound film) And the resin body are considered to be strongly bonded.
However, this mechanism is expected from the obtained results, and does not limit the scope of the present invention.

金属化合物皮膜に塗布された分子接着剤中に含有されるアルコキシシラン含有トリアジンチオール誘導体は、まず加水分解によりシラノール含有トリアジンチオール誘導体となる。これにより金属化合物皮膜との間に水素結合的な緩い結合を生じる。
次に、金属体を所定温度に加熱することでシラノール含有トリアジンチオール誘導体のシラノール部分と金属化合物皮膜に含まれる水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸およびフッ化物等の少なくとも1つとの間に脱水または脱ハロゲン結合反応が起こり、シラノール含有トリアジンチオール誘導体は、脱水シラノール含有トリアジンチオール誘導体に変わる。この結果、分子接着剤は金属化合物皮膜と化学的に結合する。
そして、加熱され、溶融した状態の樹脂が、分子接着剤と接触して脱水シラノール含有トリアジンチオール誘導体3のトリアジンチオール誘導体部分(トリアジンチオール金属塩部分またはビスマレイミド類を結合したトリアジンチオール誘導体)との間に化学的結合を生じる。
The alkoxysilane-containing triazine thiol derivative contained in the molecular adhesive applied to the metal compound film is first converted into a silanol-containing triazine thiol derivative by hydrolysis. As a result, a hydrogen bond-like loose bond is generated between the metal compound film and the metal compound film.
Next, by heating the metal body to a predetermined temperature, the silanol part of the silanol-containing triazine thiol derivative and the hydroxide, hydrated oxide, ammonium salt, amine compound, carboxylate, phosphate contained in the metal compound film Then, a dehydration or dehalogenation bond reaction occurs with at least one of carbonate, sulfate, silicic acid, fluoride, and the like, and the silanol-containing triazine thiol derivative is changed to a dehydrated silanol-containing triazine thiol derivative. As a result, the molecular adhesive is chemically bonded to the metal compound film.
Then, the heated and melted resin is brought into contact with the molecular adhesive and the triazine thiol derivative portion of the dehydrated silanol-containing triazine thiol derivative 3 (triazine thiol metal salt portion or triazine thiol derivative combined with bismaleimides) A chemical bond is formed between them.

本願発明は、樹脂を溶融させて分子接着剤と接触させる際に、レーザーを用いて金属体表面の限られた部分を局部的にかつ急激に加熱することで、樹脂体の特定個所の表面部のみを溶融させることを特徴としている。
これにより上述した本願発明の効果を得るものである。
In the present invention, when the resin is melted and brought into contact with the molecular adhesive, a limited portion of the surface of the metal body is locally and rapidly heated using a laser, so that the surface portion of a specific portion of the resin body It is characterized by melting only.
Thereby, the effect of the present invention described above is obtained.

なお、本明細書において用いる用語「分子接着剤」とは、アルコキシシラン含有トリアジンチオール誘導体、シラノール含有トリアジンチオール誘導体および脱水シラノール含有トリアジンチオール誘導体から成る群より選択される少なくとも1つを含んで成る分子層を意味する。   As used herein, the term “molecular adhesive” refers to a molecule comprising at least one selected from the group consisting of an alkoxysilane-containing triazine thiol derivative, a silanol-containing triazine thiol derivative, and a dehydrated silanol-containing triazine thiol derivative. Means layer.

以下に本願発明の詳細を説明する。
図1は、本発明に係る金属体1と樹脂体4とを接合した接合部材100の一部分を模式的に示す断面図である。金属体1と樹脂体4とが、詳細を後述する金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体を含有する分子接着剤3とを介して接合(接着)している。
Details of the present invention will be described below.
FIG. 1 is a cross-sectional view schematically showing a part of a joining member 100 obtained by joining a metal body 1 and a resin body 4 according to the present invention. The metal body 1 and the resin body 4 are joined (adhered) via a metal compound film 2 described later in detail and a molecular adhesive 3 containing a dehydrated silanol-containing triazine thiol derivative.

このような接合部材100を得るために以下の工程(処理)を実施する必要がある。
1.金属体1の表面に金属化合物皮膜2を形成する金属化合物処理
2.金属化合物皮膜2のうえにアルコキシシラン含有トリアジンチオール誘導体を含む分子接着剤を塗布し、金属化合物皮膜2の上に脱水シラノール含有トリアジンチオール誘導体を含む分子接着剤3を形成する分子接着剤処理
3.分子接着剤と溶融した樹脂を接触させて金属体1と樹脂体4を接合する接合処理
以下、これらの処理を順に詳述する。
In order to obtain such a joining member 100, it is necessary to perform the following steps (processes).
1. 1. Metal compound treatment for forming a metal compound film 2 on the surface of the metal body 1 2. Molecular adhesive treatment in which a molecular adhesive containing an alkoxysilane-containing triazine thiol derivative is applied on the metal compound film 2 to form a molecular adhesive 3 containing a dehydrated silanol-containing triazine thiol derivative on the metal compound film 2. Bonding process in which the molecular adhesive is brought into contact with the molten resin to bond the metal body 1 and the resin body 4 Hereinafter, these processes will be described in detail.

1.金属化合物処理
金属化合物皮膜(「化合物皮膜」ともいう)とは、水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩、およびフッ化物より成る群から選ばれる少なくとも1つを含む皮膜を意味する。
好ましくは、これらの水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩、およびフッ化物の合計が金属化合物皮膜の主成分(例えば質量比で金属化合物皮膜2の50%以上)となっている。
1. Metal compound treatment Metal compound film (also referred to as “compound film”) is a hydroxide, hydrated oxide, ammonium salt, amine compound, carboxylate, phosphate, carbonate, sulfate, silicate, And a film containing at least one selected from the group consisting of fluorides.
Preferably, the total of these hydroxides, hydrated oxides, ammonium salts, amine compounds, carboxylates, phosphates, carbonates, sulfates, silicates, and fluorides is the main component of the metal compound film (For example, 50% or more of the metal compound film 2 by mass ratio).

以下に金属化合物処理の詳細を示す。   Details of the metal compound treatment are shown below.

1−1.金属体
本発明に係る金属体1には各種の金属を用いることが可能である。
金属体1に用いる、好ましい金属として、鉄及びその合金、鋼(合金鋼を含む)、ステンレス鋼、アルミニウム及びその合金、銅及びその合金、マグネシウム及びその合金、チタン及びその合金、これら金属および合金のメッキ品を例示できる。
これらの好適な金属より成る金属体1は金属化合物皮膜2の形成が容易だからである。すなわちこれらの好適な金属は、その電位−pH図に示されるように、酸、アルカリに反応するpH範囲が広く、金属化合物皮膜の形成が比較的容易である。さらに、得られた金属化合物皮膜2が優れた安定性を有するという利点もある。
金属体1の形成には、プレス加工、鍛造加工、鋳造、ダイカスト、焼結などの各種の方法を用いることができる。また、これらの方法で成形後得られた成形材に機械加工を加えて形状、寸法等を調整してもよい。
金属体1の形状は、板(シート)状、管状、円筒状、直方体状、円錐状、角錐状を含む如何なる形状であってもよい。
1-1. Metal body Various metals can be used for the metal body 1 according to the present invention.
Preferred metals used for the metal body 1 include iron and its alloys, steel (including alloy steel), stainless steel, aluminum and its alloys, copper and its alloys, magnesium and its alloys, titanium and its alloys, these metals and alloys. The plated product can be exemplified.
This is because the metal body 1 made of these suitable metals can easily form the metal compound film 2. That is, as shown in the potential-pH diagram, these suitable metals have a wide pH range that reacts with acids and alkalis, and it is relatively easy to form a metal compound film. Furthermore, there is an advantage that the obtained metal compound film 2 has excellent stability.
Various methods such as press working, forging, casting, die casting, and sintering can be used for forming the metal body 1. Moreover, you may adjust a shape, a dimension, etc. by adding machining to the molding material obtained after shaping | molding by these methods.
The shape of the metal body 1 may be any shape including a plate (sheet) shape, a tubular shape, a cylindrical shape, a rectangular parallelepiped shape, a conical shape, and a pyramid shape.

1−2.洗浄処理
金属体1の表面は、製造工程で生じる偏析、酸化被膜により不均一となったり、加工成形時に使用した圧延油、切削油、プレス油などが付着したり、あるいは搬送時に、発錆、指紋の付着等などで汚れる場合がある。このため、金属体1の表面の状態によっては適切な洗浄方法を用いて洗浄処理を行うのが好ましい。但し、洗浄は必須の処理ではない。
1-2. Cleaning treatment The surface of the metal body 1 becomes non-uniform due to segregation and oxide film generated in the manufacturing process, or the rolling oil, cutting oil, pressing oil, etc. used during the processing and molding are attached, or rusting occurs during transportation. It may get dirty due to fingerprints. For this reason, depending on the state of the surface of the metal body 1, it is preferable to perform a cleaning process using an appropriate cleaning method. However, cleaning is not an essential process.

洗浄方法には、研削、バフ研磨、ショットブラストなどの物理的方法、例えばアルカリ性の脱脂液中で電解処理を行い、発生する水素や酸素を利用して洗浄を行う電気化学的方法、アルカリ性、酸性および中性の溶剤(洗浄剤)による化学的方法を用いることができる。   Cleaning methods include physical methods such as grinding, buffing, and shot blasting, for example, electrochemical methods in which electrolytic treatment is performed in an alkaline degreasing liquid and cleaning is performed using generated hydrogen and oxygen, alkaline and acidic methods. Further, a chemical method using a neutral solvent (cleaning agent) can be used.

操作の簡便性、コストの優位性から、化学的洗浄法を用いるのが好ましい。化学洗浄に用いる洗浄剤としては、硫酸−フッ素系、硫酸−リン酸系、硫酸系、硫酸−シュウ酸系、硝酸系のような酸性洗浄剤や水酸化ナトリウム系、炭酸ナトリウム系、重炭酸ナトリウム系、ホウ酸−リン酸系、リン酸ナトリウム系、縮合リン酸系、フッ化物系、ケイ酸塩系のようなアルカリ性洗浄剤を含む工業的に使用可能ないずれの洗浄剤を用いてもよい。安価であること、操作性が良いこと、金属体1表面を荒らさないことから、縮合リン酸系、リン酸ナトリウム系、重炭酸ナトリウム系のような弱アルカリ性水溶液(弱アルカリ性洗浄剤)を用いるのが好ましい。   It is preferable to use a chemical cleaning method from the viewpoint of simplicity of operation and cost advantage. Cleaning agents used for chemical cleaning include acidic cleaning agents such as sulfuric acid-fluorine, sulfuric acid-phosphoric acid, sulfuric acid, sulfuric acid-oxalic acid, and nitric acid, sodium hydroxide, sodium carbonate, and sodium bicarbonate. Any industrially usable cleaning agent may be used, including alkaline cleaners, such as alkaline, boric acid-phosphoric acid, sodium phosphate, condensed phosphoric acid, fluoride, silicate. . Because it is inexpensive, has good operability, and does not roughen the surface of the metal body 1, a weak alkaline aqueous solution (weak alkaline detergent) such as condensed phosphoric acid, sodium phosphate, or sodium bicarbonate is used. Is preferred.

洗浄処理を行った後、必要に応じて表面の粗面化処理を行った後、後述する金属化合物処理により、金属体1の表面に所望の金属化合物皮膜2を形成することが不可欠である。従って、その前工程である洗浄処理では、金属体1の表面の付着物を除去し、次工程での処理が阻害されない程度に、金属の酸化物皮膜を除去し、均一化しておくとともに、金属体1が洗浄時に溶解等により過度に損傷しないことが好ましい。このため、金属体1が鉄、ステンレス系材料、アルミニウム合金材またはチタン材より成る場合、金属体1の溶解が僅かであるオルソケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸ナトリウムのような弱エッチングタイプを用いるのが好ましく、表面を溶解しない非エッチングタイプを用いることがさらに好ましい。   After performing the cleaning treatment, it is indispensable to form a desired metal compound film 2 on the surface of the metal body 1 by performing a surface roughening treatment as necessary, and then performing a metal compound treatment described later. Therefore, in the cleaning process that is the previous process, the deposits on the surface of the metal body 1 are removed, and the metal oxide film is removed and homogenized to the extent that the process in the next process is not hindered. It is preferable that the body 1 is not excessively damaged by dissolution or the like during washing. For this reason, when the metal body 1 is made of iron, a stainless steel material, an aluminum alloy material, or a titanium material, a weak etching type such as sodium orthosilicate, sodium metasilicate, or sodium phosphate in which the metal body 1 is slightly dissolved is used. It is preferable to use a non-etching type that does not dissolve the surface.

非エッチングタイプの洗浄剤としては、縮合リン酸塩を主体とした洗浄剤を用いるのが好ましい。縮合リン酸塩としては、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム等を用いることができ、例えば、アルカリ成分が30g/L(そのうち縮合リン酸塩の占める割合が50〜60%)のpH約9.5の水溶液を用いることができる。処理温度は、40〜90℃、処理時間5〜20分程度で良好な洗浄を行うことができる。洗浄後には、水洗を行う。アルカリ成分の好ましい濃度20〜100g/L、より好ましくは20〜60g/L、最も好ましくは20〜40g/Lであり、好ましいpHは9〜12、好ましい温度は40℃〜60℃である。このような条件を満たす弱アルカリ性水溶液中に金属体1を浸漬することで、表面の洗浄および均一化を行うことができる。   As the non-etching type cleaning agent, it is preferable to use a cleaning agent mainly composed of condensed phosphate. As the condensed phosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, and the like can be used. For example, the alkali component is 30 g / L (of which the condensed phosphate accounts for 50-60%). An aqueous solution having a pH of about 9.5 can be used. A good cleaning can be performed at a treatment temperature of 40 to 90 ° C. and a treatment time of about 5 to 20 minutes. After washing, wash with water. The preferred concentration of the alkali component is 20 to 100 g / L, more preferably 20 to 60 g / L, most preferably 20 to 40 g / L, the preferred pH is 9 to 12, and the preferred temperature is 40 ° C. to 60 ° C. By immersing the metal body 1 in a weak alkaline aqueous solution that satisfies such conditions, the surface can be cleaned and made uniform.

上記以外にも、オルソケイ酸ナトリウム、ケイ酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、ホウ砂のようなナトリウム塩または第1リン酸ナトリウム、第2リン酸ナトリウム、第3リン酸ナトリウム等の各種リン酸ナトリウム、ヘキサメタリン酸ナトリウムのようなリン酸塩類を用いてもよい。   In addition to the above, various phosphoric acids such as sodium orthosilicate, sodium silicate, sodium carbonate, sodium bicarbonate, sodium salt such as borax or primary sodium phosphate, secondary sodium phosphate, tertiary sodium phosphate Phosphate salts such as sodium and sodium hexametaphosphate may be used.

金属体1に銅または銅合金を用いる場合、上記のような弱エッチングタイプまたは弱酸を使用することが出来る。例えば、硫酸、塩酸、リン酸のような鉱酸の1%未満の溶液およびそれらの混合溶液で、温度30〜50℃で洗浄することが出来る。   When copper or a copper alloy is used for the metal body 1, the above weak etching type or weak acid can be used. For example, it can be washed at a temperature of 30 to 50 ° C. with a solution of less than 1% of a mineral acid such as sulfuric acid, hydrochloric acid or phosphoric acid and a mixed solution thereof.

一方、金属体1としてアルカリと反応し難いマグネシウムまたはマグネシウム合金を用いる場合は、上記の洗浄剤のほか、水酸化ナトリウム、水酸化カリウム等のアルカリを使用することが出来る。好ましい脱脂条件は、例えば、濃度10〜100g/L、温度50〜90℃の水酸化ナトリウム水溶液を使用する。   On the other hand, when magnesium or a magnesium alloy that does not easily react with alkali is used as the metal body 1, an alkali such as sodium hydroxide or potassium hydroxide can be used in addition to the above-described cleaning agent. Preferable degreasing conditions use, for example, a sodium hydroxide aqueous solution having a concentration of 10 to 100 g / L and a temperature of 50 to 90 ° C.

1−3.粗面化処理
詳細を後述する金属化合物処理の前処理として、金属体1の表面を粗面化する(荒らす)ことが好ましい。金属体1の表面が粗面化されていると、その表面に微小な凹凸を生じ、そこに形成される金属化合物皮膜2および分子接着剤3の付着面積が拡大し、結合する分子数が増えることで、接合効果が高まる。そして、接合される樹脂体4が金属体1の表面の凹部に入り込むことにより、所謂アンカー効果が生じて接合強度をよりいっそう向上することができる。
1-3. Roughening treatment As a pretreatment for the metal compound treatment described in detail later, it is preferable to roughen (roughen) the surface of the metal body 1. When the surface of the metal body 1 is roughened, minute irregularities are formed on the surface, the adhesion area of the metal compound film 2 and the molecular adhesive 3 formed thereon is expanded, and the number of molecules to be bonded is increased. This increases the bonding effect. And since the resin body 4 to be joined enters the recesses on the surface of the metal body 1, a so-called anchor effect is generated, and the joining strength can be further improved.

粗面化の好ましい方法の1つは、金属体1に用いる金属の電位−pH図に基づいて、溶液への溶解による腐食域のpHで、酸またはアルカリ溶液でエッチング処理する。すなわち、金属体1を構成する金属が溶解する酸性またはアルカリ性のpH領域で、金属体1を処理して、表面を粗面化する方法である。例えば金属体1が鉄、ステンレス系材料の場合は、pH3以下、好ましくは、pH1以下の酸性溶液と接触去る。金属体1がアルミニウム等の両性金属であればその特性を利用し、pHが2以下、好ましくはpH0〜2の酸性溶液またはpHが12以上、好ましくはpH12〜14のアルカリ性溶液と接触させる。金属体1が銅および銅合金の場合は、pH0〜6およびpH13〜14、好ましくは、pH6以下の酸性溶液と接触させる。金属体1がマグネシウム合金の場合、pH6以下で、好ましくは、pH1〜3の酸性溶液を用いて処理する。金属体1がチタン材の場合は、酸化皮膜が強固に存在するので、フッ酸またはフッ化アンモニウム溶液で酸化皮膜を除去した後、pH3以下、好ましくは、pH2以下の酸性溶液を用いて処理する。   One preferred method of roughening is etching with an acid or alkali solution at the pH of the corrosive zone due to dissolution in the solution based on the potential-pH diagram of the metal used for the metal body 1. That is, the surface of the metal body 1 is roughened by treating the metal body 1 in an acidic or alkaline pH region where the metal constituting the metal body 1 is dissolved. For example, when the metal body 1 is an iron or stainless steel material, it is left in contact with an acidic solution having a pH of 3 or less, preferably 1 or less. If the metal body 1 is an amphoteric metal such as aluminum, its characteristics are utilized and contacted with an acidic solution having a pH of 2 or less, preferably pH 0 to 2, or an alkaline solution having a pH of 12 or more, preferably pH 12 to 14. When the metal body 1 is copper and a copper alloy, it is brought into contact with an acidic solution having a pH of 0 to 6 and a pH of 13 to 14, preferably a pH of 6 or less. When the metal body 1 is a magnesium alloy, the treatment is performed using an acidic solution having a pH of 6 or less, preferably a pH of 1 to 3. When the metal body 1 is a titanium material, since the oxide film is firmly present, the oxide film is removed with a hydrofluoric acid or ammonium fluoride solution, and then treated with an acidic solution having a pH of 3 or less, preferably a pH of 2 or less. .

pH6以下の酸性領域での粗面化には、リン酸、塩酸、硫酸、硝酸、硫酸−フッ酸、硫酸−リン酸、硫酸−シュウ酸等を用いるのが好ましい。例えば、塩酸10〜20gを1リットルの水に溶解しpHを1以下とし、この塩酸水溶液を温度40℃に加熱し金属体1を0.5〜2分浸漬し、その後、水洗する。pH12以上のアルカリ領域での粗面化には、水酸化ナトリウム、水酸化カリウム、アンモニア、炭酸ナトリウム等を用いるのが好ましい。例えば、水酸化ナトリウム10〜20gを1リットルの水に溶解しpH13以上とし、40℃で金属体1を0.5〜2分浸漬し、その後、水洗する。これらの処理により、日本工業規格(JIS B0601:2001)で規定される算術平均粗さ(表面粗さ)Raを0.1〜0.6μmとすることが好ましい。より好ましい表面粗さRaは、0.1〜0.4μmである。   It is preferable to use phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, sulfuric acid-hydrofluoric acid, sulfuric acid-phosphoric acid, sulfuric acid-oxalic acid, etc. for roughening in the acidic region at pH 6 or lower. For example, 10 to 20 g of hydrochloric acid is dissolved in 1 liter of water to adjust the pH to 1 or less, the aqueous hydrochloric acid solution is heated to a temperature of 40 ° C., the metal body 1 is immersed for 0.5 to 2 minutes, and then washed with water. Sodium hydroxide, potassium hydroxide, ammonia, sodium carbonate, or the like is preferably used for roughening in the alkaline region at pH 12 or higher. For example, 10-20 g of sodium hydroxide is dissolved in 1 liter of water to a pH of 13 or more, the metal body 1 is immersed at 40 ° C. for 0.5-2 minutes, and then washed with water. By these treatments, the arithmetic average roughness (surface roughness) Ra specified by Japanese Industrial Standard (JIS B0601: 2001) is preferably 0.1 to 0.6 μm. A more preferable surface roughness Ra is 0.1 to 0.4 μm.

これ以外にも金属の粗面化に用いられているショットブラストまたはレーザー加工のような機械的な方法および電解研磨のような電気化学的な方法を用いてもよい。   In addition to this, a mechanical method such as shot blasting or laser processing used for roughening a metal and an electrochemical method such as electrolytic polishing may be used.

1−4.金属化合物処理
必要に応じて上述の洗浄処理および/または粗面化処理を実施した後、金属体1の表面に、金属化合物処理(「化合物処理」ともいう)を実施して、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩およびフッ化物の少なくとも1つを含む金属化合物皮膜2を形成する。
金属化合物処理は以下に示す化合物、酸等の少なくとも1つを用いて、例えばこれらの水溶液に浸漬することにより実施する。
1-4. Metal Compound Treatment After performing the above-described cleaning treatment and / or roughening treatment as necessary, the surface of the metal body 1 is subjected to a metal compound treatment (also referred to as “compound treatment”) to obtain a hydroxide, A metal compound film 2 containing at least one of hydrated oxide, ammonium salt, carboxylate, phosphate, carbonate, sulfate, silicate and fluoride is formed.
The metal compound treatment is performed by immersing in, for example, an aqueous solution of at least one of the following compounds and acids.

なお、本明細書に示す「金属化合物被膜」の「金属」とは、金属体1に含まれる金属および詳細を以下に示す金属化合物処理に用いる溶液(金属化合物処理液)に含まれる金属のうちの少なくとも一種を意味する。   The “metal” in the “metal compound coating” shown in this specification refers to the metal contained in the metal body 1 and the metal contained in the solution (metal compound treatment liquid) used for the metal compound treatment described below in detail. Means at least one of

金属化合物処理は、アルカリ性の溶液を用いるアルカリ処理と、酸性の溶液を用いる酸性処理に大別できる。以下にそれぞれの詳細を示す。   The metal compound treatment can be roughly divided into an alkali treatment using an alkaline solution and an acid treatment using an acidic solution. Details of each are shown below.

アルカリ処理は詳細を以下に示す中性またはアルカリ性を示す溶液を用いて、例えばこれらの溶液に浸漬することにより金属化合物処理を行う。アルカリ処理ではpH7〜12の中性から弱アルカリ性を示す、化合物の水溶液を用いるのが好ましい。   The alkali treatment is performed by using a solution showing neutrality or alkalinity described in detail below, for example, by immersing in these solutions. In the alkali treatment, it is preferable to use an aqueous solution of a compound exhibiting neutral to weak alkalinity at pH 7-12.

酸性処理とは詳細を以下に示す酸性を示す溶液を用いて、例えばこれらの溶液に浸漬することにより金属化合物処理を行う。酸性処理ではpH2〜5の弱酸性を示す、化合物の水溶液を用いるのが好ましい。
アルカリ処理および酸性処理について、以下に具体的に用いる溶液を示して説明する。
With the acid treatment, a metal compound treatment is performed by immersing in a solution having the acidity described below in detail, for example. In the acid treatment, it is preferable to use an aqueous solution of a compound exhibiting weak acidity of pH 2 to 5.
The alkali treatment and the acid treatment will be described with reference to the solutions specifically used below.

1−4−1.アルカリ処理
アルカリ処理に用いる金属化合物処理液(アルカリ化合物の水溶液)に金属体1を浸漬し金属化合物処理を行うことができる。
1-4-1. Alkali treatment The metal compound 1 can be treated by immersing the metal body 1 in a metal compound treatment solution (an aqueous solution of an alkali compound) used for the alkali treatment.

(1)I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩
リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムのようなI族元素(周期律表でI族の元素)の水酸化物;I族元素の塩;ベリリウム、マグネシウム、カルシウム、ストロンチウムまたはバリウムのようなII族元素(周期律表でII族の元素)の水酸化物およびII族元素の塩の水溶液を用いることができる。これらの何れかを用いることにより、金属体1の表面に、水酸化物を主成分とする金属化合物皮膜2が生成する。このような金属化合物皮膜2の主成分となる水酸化物の例として金属水酸化物(金属は金属体1に含まれる金属)がある。また、金属化合物皮膜2として、金属水酸化物に代えて或いは金属水酸化物とともに金属水和酸化物が生成する。
(1) Group I element hydroxides, Group I element salts, Group II element hydroxides, Group II element salts Group I elements such as lithium, sodium, potassium, rubidium or cesium (in the periodic table) Group I element hydroxides; Group I element salts; Group II elements (group II elements in the periodic table) such as beryllium, magnesium, calcium, strontium or barium; An aqueous salt solution can be used. By using any of these, the metal compound film 2 mainly composed of hydroxide is generated on the surface of the metal body 1. An example of a hydroxide that is a main component of such a metal compound film 2 is a metal hydroxide (where the metal is a metal contained in the metal body 1). Further, as the metal compound film 2, a metal hydrated oxide is generated instead of or together with the metal hydroxide.

金属化合物処理に用いるI族元素の水酸化物、I族元素の塩、II族元素の水酸化物およびII族元素の塩をより詳細に示す。
I族元素の水酸化物として、水酸化ナトリウム、水酸化カリウムが例示される。例えば、水酸化ナトリウムの水溶液を用いて金属化合物処理を行う場合、水酸化ナトリウムの濃度0.04〜100g/L、温度30〜80℃で処理を行うのが好ましい。これにより、金属基体1の表面には、金属水酸化物および/または金属水和酸化物を主成分とする金属化合物皮膜2が形成される。
The group I element hydroxide, group I element salt, group II element hydroxide and group II element salt used in the metal compound treatment are shown in more detail.
Examples of group I element hydroxides include sodium hydroxide and potassium hydroxide. For example, when the metal compound treatment is performed using an aqueous solution of sodium hydroxide, the treatment is preferably performed at a sodium hydroxide concentration of 0.04 to 100 g / L and a temperature of 30 to 80 ° C. Thereby, a metal compound film 2 mainly composed of metal hydroxide and / or metal hydrated oxide is formed on the surface of the metal substrate 1.

I族元素の塩とは、I族元素と酸とにより生ずる塩であり、その水溶液がアルカリ性を示す金属塩である。主に弱酸とI族元素とが結合して生じる塩であり、このようなI族元素の塩としては、オルソケイ酸ナトリウム、メタケイ酸ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、酢酸ナトリウム、酢酸カリウム、ラウリン酸ナトリウム、ラウリン酸カリウム、パルミチン酸ナトリウム、パルミチン酸カリウム、ステアリン酸ナトリウム、およびステアリン酸カリウムが例示される。例えば、炭酸カリウムの水溶液を用いて金属化合物処理を行う場合、炭酸カリウムの濃度0.05〜100g/L、温度30〜80℃で処理を行うのが好ましい。これにより、金属基体1の表面には、金属炭酸塩、金属水酸化物および/または金属水和酸化物を主成分とする金属化合物皮膜2が形成される。   The salt of a group I element is a salt generated by a group I element and an acid, and an aqueous solution of the salt is a metal salt exhibiting alkalinity. It is a salt mainly formed by combining weak acid and Group I element, and as such Group I element salt, sodium orthosilicate, sodium metasilicate, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, Examples include sodium acetate, potassium acetate, sodium laurate, potassium laurate, sodium palmitate, potassium palmitate, sodium stearate, and potassium stearate. For example, when the metal compound treatment is performed using an aqueous solution of potassium carbonate, the treatment is preferably performed at a potassium carbonate concentration of 0.05 to 100 g / L and a temperature of 30 to 80 ° C. Thereby, a metal compound film 2 mainly composed of metal carbonate, metal hydroxide and / or metal hydrated oxide is formed on the surface of the metal substrate 1.

II族元素の水酸化物として、水酸化カルシウム、水酸化バリウムが例示される。例えば、水酸化バリウム八水和物の水溶液を用いて金属化合物処理を行う場合、水酸化バリウム八水和物の濃度0.05〜5g/L、温度30〜80℃で処理を行うのが好ましい。
また、II族元素の塩とは、II族元素と弱酸とにより生ずる塩であり、その水溶液がアルカリ性を示す金属塩である。主に弱酸とII族元素とが結合して生じる塩であり、このようなII族元素の塩としては、酢酸カルシウム、酢酸ストロンチウム、および酢酸バリウムが例示される。例えば、酢酸バリウムの水溶液を用いて金属化合物処理を行う場合、酢酸バリウムの濃度0.05〜100g/L、温度30〜80℃で処理を行うのが好ましい。これにより、金属基体1の表面には、金属カルボン酸塩、金属水酸化物および/または金属水和酸化物を主成分とする金属化合物皮膜2が形成される。
Examples of Group II element hydroxides include calcium hydroxide and barium hydroxide. For example, when the metal compound treatment is performed using an aqueous solution of barium hydroxide octahydrate, the treatment is preferably performed at a concentration of barium hydroxide octahydrate of 0.05 to 5 g / L and a temperature of 30 to 80 ° C. .
Further, the salt of a group II element is a salt generated by a group II element and a weak acid, and a metal salt whose aqueous solution shows alkalinity. The salt is mainly formed by combining a weak acid and a Group II element. Examples of the Group II element salt include calcium acetate, strontium acetate, and barium acetate. For example, when the metal compound treatment is performed using an aqueous solution of barium acetate, the treatment is preferably performed at a barium acetate concentration of 0.05 to 100 g / L and a temperature of 30 to 80 ° C. Thereby, a metal compound film 2 mainly composed of a metal carboxylate, a metal hydroxide and / or a metal hydrated oxide is formed on the surface of the metal substrate 1.

例えばI族元素の塩およびII族元素の塩として、オルソケイ酸ナトリウム、メタケイ酸ナトリウム、ケイ酸カリウム等のような、I族元素のケイ酸塩の水溶液を用いて金属化合物処理を行った場合は、形成された金属化合物皮膜2は主成分として水酸化物に加えケイ酸塩も含む場合が多い。なお、このようなケイ酸塩の例として金属ケイ酸塩(金属は金属体1に含まれる金属)がある。例えば、オルソケイ酸ナトリウムの水溶液を用いて金属化合物処理を行う場合、オルソケイ酸ナトリウムの濃度は0.05〜100g/L、温度は30〜80℃であることが好ましい。これにより、金属基体1の表面には、金属ケイ酸塩、金属水酸化物および/または金属水和酸化物を主成分とする金属化合物皮膜2が形成される。   For example, when a metal compound treatment is performed using an aqueous solution of a silicate of a group I element such as sodium orthosilicate, sodium metasilicate, potassium silicate, etc. as a salt of a group I element and a salt of a group II element The formed metal compound film 2 often contains silicate as a main component in addition to hydroxide. In addition, there exists metal silicate (a metal is a metal contained in the metal body 1) as an example of such a silicate. For example, when the metal compound treatment is performed using an aqueous solution of sodium orthosilicate, the concentration of sodium orthosilicate is preferably 0.05 to 100 g / L and the temperature is preferably 30 to 80 ° C. Thereby, a metal compound film 2 mainly composed of metal silicate, metal hydroxide and / or metal hydrated oxide is formed on the surface of the metal substrate 1.

(2)アンモニア、ヒドラジン、ヒドラジン誘導体または水溶性アミン化合物
アンモニア、ヒドラジン、ヒドラジン誘導体または水溶性アミンの化合物の水溶液もアルカリ性を示す。これらの水溶液に金属体1を浸漬しても金属化合物皮膜を形成できる。これらの水溶液の場合は、金属体1の表面に、金属水酸化物(金属は金属体1に含まれる金属)のような水酸化物を主成分とする金属化合物皮膜2が生成し、かつその極性から金属体1にアミン錯体の形成および/または吸着が生じる。ただし、アンモニアの場合は、アルミニウムに対しては錯体を形成しない。また、アンモニアは、例えばアルミニウムと反応し水酸化物との複合塩であるアンモニウム塩を形成する。アンモニア、ヒドラジン、ヒドラジン誘導体、水溶性アミンは、広い意味でのアミン系化合物であり、アンモニア、ヒドラジン以外ではヒドラジン誘導体として加水ヒドラジン、炭酸ヒドラジン等を、水溶性アミンとしてメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、アリルアミン等を用いることができる。例えば、ヒドラジンの水溶液を用いて金属化合物処理を行う場合、ヒドラジンの濃度0.5〜100g/L、温度30〜80℃であることが好ましい。これにより、金属基体1の表面には、水酸化物を主成分とする金属化合物皮膜2に加え、金属とヒドラジンの錯体の形成および/またはヒドラジンの吸着による金属化合物皮膜2が形成される。
(2) Ammonia, hydrazine, hydrazine derivatives or water-soluble amine compounds Aqueous solutions of ammonia, hydrazine, hydrazine derivatives or water-soluble amine compounds are also alkaline. Even if the metal body 1 is immersed in these aqueous solutions, a metal compound film can be formed. In the case of these aqueous solutions, a metal compound film 2 mainly composed of a hydroxide such as a metal hydroxide (metal is a metal contained in the metal body 1) is formed on the surface of the metal body 1, and From the polarity, formation and / or adsorption of an amine complex occurs in the metal body 1. However, ammonia does not form a complex with aluminum. Ammonia reacts with, for example, aluminum to form an ammonium salt which is a complex salt with hydroxide. Ammonia, hydrazine, hydrazine derivatives, and water-soluble amines are amine compounds in a broad sense. Other than ammonia and hydrazine, hydrazine, hydrazine carbonate and the like as hydrazine derivatives, and methylamine, dimethylamine, trimethylamine as water-soluble amines, Ethylamine, diethylamine, triethylamine, ethanolamine, diethanolamine, triethanolamine, ethylenediamine, allylamine and the like can be used. For example, when the metal compound treatment is performed using an aqueous solution of hydrazine, it is preferable that the concentration of hydrazine is 0.5 to 100 g / L and the temperature is 30 to 80 ° C. As a result, in addition to the metal compound film 2 containing hydroxide as a main component, the metal compound film 2 is formed on the surface of the metal substrate 1 by forming a complex of metal and hydrazine and / or adsorbing hydrazine.

以上に説明した「(1)I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩」および「(2)アンモニア、ヒドラジン、ヒドラジン誘導体または水溶性アミン化合物」の具体例は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウムのような炭酸塩を含む。これらの炭酸塩の水溶液を用いて金属化合物処理を行うことで、金属体1の表面に、これら炭酸塩、炭酸水素塩及び/または水酸化物を主成分とする金属化合物皮膜2が形成される。これらの炭酸塩、炭酸水素塩および/または水酸化物は、炭酸金属塩(金属は金属体1に含まれる金属)を含んでもよい。また、種類の異なる金属の炭酸塩を混合した溶液中で金属化合物処理を行うことにより、金属体1に含まれる金属の炭酸塩以外の複数の炭酸塩を形成してもよい。
例えば、炭酸ナトリウムの水溶液を用いて金属化合物処理を行う場合、水溶液は炭酸ナトリウムの濃度:0.05〜100g/L、温度:30〜90℃の範囲内であることが好ましい。これにより、金属基体1の表面には、金属炭酸塩および/または金属水和酸化物を主成分とする金属化合物皮膜2が形成される。
“(1) Group I element hydroxides, Group I element salts, Group II element hydroxides, Group II element salts” and “(2) Ammonia, hydrazine, hydrazine derivatives or water-solubility described above. Specific examples of “amine compounds” include carbonates such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate. By performing a metal compound treatment using an aqueous solution of these carbonates, a metal compound film 2 mainly composed of these carbonates, bicarbonates and / or hydroxides is formed on the surface of the metal body 1. . These carbonates, hydrogen carbonates and / or hydroxides may contain a metal carbonate (metal is a metal contained in the metal body 1). Moreover, you may form several carbonate other than the metal carbonate contained in the metal body 1 by performing a metal compound process in the solution which mixed the carbonate of the metal from which a kind differs.
For example, when the metal compound treatment is performed using an aqueous solution of sodium carbonate, the aqueous solution is preferably in a range of sodium carbonate concentration: 0.05 to 100 g / L and temperature: 30 to 90 ° C. Thereby, a metal compound film 2 mainly composed of metal carbonate and / or metal hydrated oxide is formed on the surface of the metal substrate 1.

1−4−2.酸性処理
以下に酸性処理に用いる金属化合物処理液の具体例を示す。
(1)リン酸、リン酸塩
リン酸、例えばリン酸水素亜鉛、リン酸水素マンガン、リン酸水素カルシウムのようなリン酸水素金属塩、例えばリン酸二水素カルシウムのようなリン酸二水素金属塩、および例えばリン酸亜鉛、リン酸マンガン、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸ジルコニウムのようなリン酸金属塩等の−HPO、−HPOまたは−POを含有するリン酸およびリン酸塩の溶液を用い、金属化合物処理を行う。なお、本明細書でいうリン酸とはオルトリン酸、メタリン酸、ピロリン酸等を含む広義の酸性のリン酸であり、リン酸塩とは、オルトリン酸、メタリン酸、ピロリン酸等の広義の酸性のリン酸の化合物を含む概念である。
1-4-2. Acid treatment Specific examples of the metal compound treatment solution used for the acid treatment are shown below.
(1) Phosphoric acid, phosphate Phosphoric acid, metal hydrogen phosphate such as zinc hydrogen phosphate, manganese hydrogen phosphate, calcium hydrogen phosphate, metal dihydrogen phosphate such as calcium dihydrogen phosphate salts and, for example zinc phosphate, manganese phosphate, calcium phosphate, sodium calcium phosphate, -H 2 PO 4, such as phosphoric acid metal salts such as zirconium phosphate, phosphoric acid and phosphate containing -HPO 4 or -PO 4 The metal compound treatment is performed using a salt solution. In this specification, phosphoric acid is a broadly defined acidic phosphoric acid including orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, etc., and a phosphate is a broadly acidic acid such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, etc. It is a concept including a compound of phosphoric acid.

リン酸を用いることで、金属体1の表面にリン酸金属塩および/または水酸化物を主成分とする金属化合物皮膜2が形成される。   By using phosphoric acid, the metal compound film 2 containing a metal phosphate and / or hydroxide as a main component is formed on the surface of the metal body 1.

一方、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素金属塩、リン酸二水素金属塩、リン酸金属塩、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸ジルコニウム、リン酸バナジウム、リン酸ジルコニウムバナジウムのようなリン酸塩(リン酸の金属塩)の水溶液を用いて金属化合物処理を行うことにより、金属体1の表面に、これらリン酸塩および/または水酸化物を主成分とする金属化合物皮膜2を形成できる。これらのリン酸塩および/または水酸化物の金属化合物皮膜2は、金属体1に含まれる金属のリン酸金属塩を含んでもよい。また、種類の異なる金属のリン酸塩を混合した溶液中で金属化合物処理を行うことにより、複数のリン酸塩を形成してもよい。   Meanwhile, zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, metal hydrogen phosphate, metal dihydrogen phosphate, metal phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium phosphate By carrying out a metal compound treatment using an aqueous solution of a phosphate (metal salt of phosphoric acid) such as calcium sodium phosphate, zirconium phosphate, vanadium phosphate, zirconium vanadium phosphate, The metal compound film 2 mainly composed of phosphate and / or hydroxide can be formed. These phosphate and / or hydroxide metal compound film 2 may include a metal phosphate metal salt contained in metal body 1. Moreover, you may form a some phosphate by performing a metal compound process in the solution which mixed the phosphate of the metal from which a kind differs.

例えば、リン酸ジルコニウムの水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:1〜100g/L、温度:20〜90℃であることが好ましい。また、これ以外のリン酸、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素金属塩、リン酸二水素金属塩、リン酸金属塩、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウムのようなリン酸、リン酸塩の水溶液を用いる場合は、水溶液は、濃度:5〜30g/L、温度:20〜90℃であるのことが好ましく、温度については25℃〜75℃であることがより好ましい。一方、リン酸ジルコニウム、リン酸バナジウム、リン酸ジルコニウムバナジウムの水溶液を用いる場合は、水溶液は、濃度:0.2〜2g/L、温度:30〜70℃であるのことが好ましく、温度については50℃〜70℃であることがより好ましい。   For example, when the metal compound treatment is performed using an aqueous solution of zirconium phosphate, the aqueous solution preferably has a concentration of 1 to 100 g / L and a temperature of 20 to 90 ° C. Other than this, phosphoric acid, zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, hydrogen phosphate metal salt, dihydrogen phosphate metal salt, metal phosphate phosphate, calcium hydrogen phosphate, phosphorus When using an aqueous solution of phosphoric acid and phosphate such as calcium dihydrogen phosphate and calcium phosphate, the aqueous solution preferably has a concentration of 5 to 30 g / L and a temperature of 20 to 90 ° C. It is more preferable that the temperature is from 75 ° C to 75 ° C. On the other hand, when an aqueous solution of zirconium phosphate, vanadium phosphate, or zirconium vanadium phosphate is used, the aqueous solution preferably has a concentration of 0.2 to 2 g / L and a temperature of 30 to 70 ° C. It is more preferable that it is 50 degreeC-70 degreeC.

(2)カルボン酸、カルボン酸塩
タンニン酸のようなカルボン酸水溶液を用い、ア金属体1に金属化合物処理を行う。これにより、金属体1の表面に、カルボン酸の金属塩、および/または水酸化物を主成分とする金属化合物皮膜が生成する。
(2) Carboxylic acid, carboxylate salt A metal body 1 is treated with a metal compound using an aqueous carboxylic acid solution such as tannic acid. As a result, a metal compound film mainly composed of a metal salt of carboxylic acid and / or a hydroxide is formed on the surface of the metal body 1.

ギ酸、酢酸、シュウ酸、コハク酸の金属塩の水溶液を用いて金属化合物処理を行ってもよい。この場合、金属体1の表面には、金属塩とその一部に水酸基が付いた塩基性の金属化合物皮膜2が生成する。例えばシュウ酸金属塩水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:0.5〜100g/L、温度30〜70℃であることが好ましい。   The metal compound treatment may be performed using an aqueous solution of a metal salt of formic acid, acetic acid, oxalic acid, or succinic acid. In this case, a basic metal compound film 2 having a metal salt and a hydroxyl group on a part of the metal salt 1 is formed on the surface of the metal body 1. For example, when the metal compound treatment is performed using an aqueous metal oxalate salt solution, the aqueous solution preferably has a concentration of 0.5 to 100 g / L and a temperature of 30 to 70 ° C.

(3)フッ化物
フッ化水素酸、フッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、フッ化水素アンモニウム、ケイフッ化水素酸、ケイフッ化アンモニウム、ホウフッ化水素酸、ホウフッ化アンモニウムのようなフッ化物水溶液に金属体1を浸漬しても金属化合物皮膜を形成ができる。これにより、金属体1の表面に、金属フッ化物および/または金属体1に含まれる金属の水酸化物のような水酸化物を主成分とする金属化合物皮膜2が形成される。例えば、フッ化水素アンモニウム水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:1〜60g/L、温度:30〜70℃であることが好ましい。
(3) Fluoride aqueous solution of fluoride such as hydrofluoric acid, sodium fluoride, potassium fluoride, ammonium fluoride, ammonium hydrogen fluoride, silicofluoric acid, ammonium silicofluoride, borohydrofluoric acid, ammonium borofluoride Even if the metal body 1 is immersed in the metal compound film, the metal compound film can be formed. As a result, a metal compound film 2 mainly composed of a metal fluoride and / or a hydroxide such as a metal hydroxide contained in the metal body 1 is formed on the surface of the metal body 1. For example, when the metal compound treatment is performed using an aqueous ammonium hydrogen fluoride solution, the aqueous solution preferably has a concentration of 1 to 60 g / L and a temperature of 30 to 70 ° C.

(4)硫酸、硫酸塩
硫酸、または硫酸ナトリウム、硫酸マンガン、硫酸カルシウム、硫酸チタニル、硫酸ジルコニウム、硫酸カリウム、硫酸ナトリウムのような硫酸の金属塩水溶液を用い、金属化合物処理を行う。これらの硫酸、硫酸塩を用いた場合には、金属硫酸塩を主成分とする金属化合物皮膜2が金属基体1の表面に形成される。
例えば、硫酸カリウム金属塩の水溶液を用いて金属塩化合物処理を行う場合、水溶液は、濃度0.5〜30g/L、温度30〜60℃であることが好ましい。
(4) Sulfuric acid, sulfate salt Metal compound treatment is performed using sulfuric acid or an aqueous metal salt solution of sulfuric acid such as sodium sulfate, manganese sulfate, calcium sulfate, titanyl sulfate, zirconium sulfate, potassium sulfate, sodium sulfate. When these sulfuric acids and sulfates are used, a metal compound film 2 containing metal sulfate as a main component is formed on the surface of the metal substrate 1.
For example, when the metal salt compound treatment is performed using an aqueous solution of potassium sulfate metal salt, the aqueous solution preferably has a concentration of 0.5 to 30 g / L and a temperature of 30 to 60 ° C.

以上に示した示す金属化合物処理の中でも金属体1が、鉄及びその合金、鋼、ステンレス鋼、マグネシウム及びその合金、ならびに銅及びその合金から成る群から選択されるいずれかである場合、酸性処理の「(1)リン酸、リン酸塩」に記載の方法を用いるのが好ましい。
金属体1がアルミニウムまたはその合金である場合、アルカリ処理の「(1)I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩」およびならびに酸性処理の「(1)リン酸、リン酸塩」に記載の方法を用いるのが好ましい。
金属体1がチタンまたはその合金では、酸性処理の「(3)フッ化物」に記載の方法を用いるのが好ましい。
リン酸、リン酸塩による処理が好ましい理由は、金属化合物皮膜2として形成されるリン酸塩化合物が大きな極性を有し、トリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと結合しやすいためと考えられる。
I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩を用いた処理が好ましい理由は、水酸化物、水和酸化物が金属体表面に密に形成されやすく、そのOH基および酸基がトリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと結合しやすいこと、及びその結合強度が大きいからであると考えられる。
フッ化物による処理が好ましい理由は、形成される金属のフッ化物のフッ素が活性で、トリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと結合しやすいためと考えられる。
Among the metal compound treatments shown above, when the metal body 1 is any one selected from the group consisting of iron and its alloys, steel, stainless steel, magnesium and its alloys, and copper and its alloys, an acid treatment It is preferable to use the method described in “(1) Phosphoric acid, phosphate”.
When metal body 1 is aluminum or an alloy thereof, alkali treatment “(1) Group I element hydroxide, Group I element salt, Group II element hydroxide, Group II element salt” and acidity It is preferable to use the method described in “(1) Phosphoric acid, phosphate” of the treatment.
When the metal body 1 is titanium or an alloy thereof, the method described in “(3) Fluoride” of the acid treatment is preferably used.
The reason why the treatment with phosphoric acid and phosphate is preferable is that the phosphate compound formed as the metal compound film 2 has a large polarity and easily binds to silanol formed by hydrolysis of the alkoxysilane of the triazine thiol derivative. This is probably because of this.
The reason why treatment with a hydroxide of a group I element, a salt of a group I element, a hydroxide of a group II element, or a salt of a group II element is preferable is that the hydroxide and the hydrated oxide are dense on the surface of the metal body. This is probably because the OH group and the acid group are easily bonded to silanol formed by hydrolysis of the alkoxysilane of the triazine thiol derivative, and the bond strength is high.
The reason why the treatment with fluoride is preferable is considered to be that fluorine of the metal fluoride formed is active, and the alkoxysilane of the triazine thiol derivative is easily bonded to silanol formed by hydrolysis.

分子接着剤中のアルコキシシラン含有トリアジンチオール誘導体が金属化合物皮膜2に浸透して、金属化合物皮膜2と反応するサイトが多くなり、トリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと金属化合物皮膜2の水酸基、水和酸化物、アンモニウム基、リン酸基、炭酸基、硫酸基、ケイ酸基、カルボン酸基、またはフッ化物とが、加熱処理によって脱水反応または脱ハロゲン反応を起こし、化学的に結合する。この様にして、生成する脱水シラノール含有トリアジンチオール誘導体被覆と金属化合物皮膜2との間に、より強固な結合を得ることができる。   Silanol and metal compound formed by the alkoxysilane-containing triazine thiol derivative in the molecular adhesive penetrating into the metal compound film 2 and increasing the number of sites that react with the metal compound film 2, and the alkoxysilane of the triazine thiol derivative is hydrolyzed. The hydroxyl group, hydrated oxide, ammonium group, phosphoric acid group, carbonic acid group, sulfuric acid group, silicic acid group, carboxylic acid group, or fluoride of the film 2 undergoes a dehydration reaction or a dehalogenation reaction by heat treatment. Join. In this way, a stronger bond can be obtained between the resulting dehydrated silanol-containing triazine thiol derivative coating and the metal compound film 2.

さらに、樹脂体(樹脂)4が接合後に冷却されて収縮する際に、金属化合物皮膜2が樹脂体4と金属化合物皮膜2との間に生じる応力を分散吸収し、樹脂体4の剥離および金属化合物皮膜2のクラックの発生を防ぐ効果を有する。   Further, when the resin body (resin) 4 is cooled and contracts after being joined, the metal compound film 2 disperses and absorbs the stress generated between the resin body 4 and the metal compound film 2, and the resin body 4 is peeled off and the metal It has the effect of preventing the occurrence of cracks in the compound film 2.

なお、上記の溶液を用いた金属化合物処理は、金属体1の全体または一部を、溶液(金属化合物処理液)に浸漬することのみでなく、金属体1の表面の全部または一部を、スプレー、塗布等により溶液で被覆すること、または溶液と接触させることも含む。   In addition, the metal compound process using said solution not only immerses the whole or a part of metal body 1 in a solution (metal compound processing liquid), but also the whole or a part of the surface of the metal body 1, It includes coating with a solution by spraying, coating, etc., or contacting with a solution.

従って、上記からも明らかなように、金属化合物皮膜2は、必ずしも金属体1の表面全体に形成される必要はなく、適宜、必要な部分にのみ形成してもよい。
本願発明では、後述するように局部的に加熱することが可能なレーザーを用いることで樹脂体4の表面の一部分のみを加熱し、金属体1の表面の一部分のみを樹脂体4と容易に接合させることができる。この場合、接合しようとする所望の部分にのみ金属化合物皮膜2を形成することが好ましい。
Therefore, as is clear from the above, the metal compound film 2 is not necessarily formed on the entire surface of the metal body 1 and may be formed only on a necessary portion as appropriate.
In the present invention, only a part of the surface of the resin body 4 is heated by using a laser that can be locally heated as described later, and only a part of the surface of the metal body 1 is easily joined to the resin body 4. Can be made. In this case, it is preferable to form the metal compound film 2 only on desired portions to be joined.

また、上述した金属化合物被膜を形成する方法を2つ以上組み合わせて、金属化合物処理としてもよいことは言うまでもない。
すなわち、複数の上述した金属化合物処理に用いる溶液(金属化合物処理液)を混合した溶液を用いて金属化合物皮膜を形成してもよい。また、上述した金属化合物処理に用いる溶液(金属化合物処理液)のうちの一種類を用いて金属化合物処理を行った後、別の種類の金属化合物処理液を用いて更に金属化合物処理を行ってもよい。
It goes without saying that the metal compound treatment may be performed by combining two or more methods of forming the metal compound film described above.
That is, the metal compound film may be formed by using a solution obtained by mixing a plurality of solutions used for the metal compound treatment (metal compound treatment liquid). Moreover, after performing a metal compound process using one kind of the solution (metal compound process liquid) used for the metal compound process mentioned above, a metal compound process is further performed using another kind of metal compound process liquid. Also good.

上述の金属化合物処理により得られた金属化合物被膜2は、粗面化している場合が多い。すなわち、金属化合物被膜2の表面粗さは金属化合物処理を行う前の金属体1の表面粗さより粗くなっている。
例えば、表面粗さRaが0.10μm以下である金属体1の表面に、上述した粗面化処理を行って、Raを0.12〜0.60μmとした後、更に上述の金属化合物処理を施すことで、Raが0.15μm以上の金属化合物皮膜2を形成することができる。また、粗面化処理を行わない場合、すなわち例えばRaが0.10μm以下である金属体1の表面に粗面化処理を行わずに金属化合物処理を行った場合、形成された金属化合物皮膜2の表面粗さRaは0.15μm未満である。
金属化合物被膜2の表面粗面化は、金属化合物被膜2の上に形成される脱水シラノール含有トリアジンチオール誘導体被膜と金属化合物皮膜2との接触面積を増加できることから、接合強度の向上に寄与する。
The metal compound film 2 obtained by the above-described metal compound treatment is often roughened. That is, the surface roughness of the metal compound coating 2 is rougher than the surface roughness of the metal body 1 before the metal compound treatment.
For example, the surface of the metal body 1 having a surface roughness Ra of 0.10 μm or less is subjected to the above-described roughening treatment to Ra of 0.12 to 0.60 μm, and then the above-described metal compound treatment is further performed. By applying, the metal compound film 2 having Ra of 0.15 μm or more can be formed. Further, when the roughening treatment is not performed, that is, for example, when the metal compound treatment is performed without performing the roughening treatment on the surface of the metal body 1 where Ra is 0.10 μm or less, the formed metal compound film 2 is formed. The surface roughness Ra is less than 0.15 μm.
Since the surface roughening of the metal compound coating 2 can increase the contact area between the dehydrated silanol-containing triazine thiol derivative coating formed on the metal compound coating 2 and the metal compound coating 2, it contributes to the improvement of the bonding strength.

2.分子接着剤処理
上述の方法により、金属体1の表面に金属化合物皮膜2を形成した後、金属化合物皮膜2の上に分子接着剤3を塗布する。
分子接着剤3は、金属化合物皮膜2に塗布する時点でアルコキシシラン含有トリアジンチオール誘導体を含んでいる(好ましくは質量%で50%以上含んでいる。)
分子接着剤3は、アルコキシシラン含有トリアジンチオール誘導体以外に例えばトリアジンチオールを含んでもよい。
2. Molecular Adhesive Treatment After the metal compound film 2 is formed on the surface of the metal body 1 by the method described above, the molecular adhesive 3 is applied on the metal compound film 2.
The molecular adhesive 3 contains an alkoxysilane-containing triazine thiol derivative when applied to the metal compound film 2 (preferably contains 50% or more by mass%).
The molecular adhesive 3 may contain, for example, triazine thiol in addition to the alkoxysilane-containing triazine thiol derivative.

分子接着剤3に用いるアルコキシシラン含有トリアジンチオール誘導体は、例えばアルコキシシラン含有トリアジンチオール金属塩のような、既知のものでよい。
即ち、以下の(式1)または(式2)に示した一般式で表される。
The alkoxysilane-containing triazine thiol derivative used for the molecular adhesive 3 may be a known one such as an alkoxysilane-containing triazine thiol metal salt.
That is, it is represented by the general formula shown in the following (Formula 1) or (Formula 2).

Figure 2011235570
Figure 2011235570

Figure 2011235570
Figure 2011235570

式中のR、RおよびRは炭化水素である。Rは、例えば、H−、CH−、C−、CH=CHCH−、C−、C−、C13−のいずれかである。Rは、例えば、−CHCH−、−CHCHCH−、−CHCHCHCHCHCH−、−CHCHSCHCH−、−CHCHNHCHCHCH−のいずれかである。Rは、例えば、−(CHCHCHOCONHCHCHCH−、または、−(CHCHN−CHCHCH−であり、この場合、NとRとが環状構造となる。 R 1 , R 2 and R 3 in the formula are hydrocarbons. R 1 is, for example, any one of H—, CH 3 —, C 2 H 5 —, CH 2 ═CHCH 2 —, C 4 H 9 —, C 6 H 5 —, and C 6 H 13 —. R 2 is, for example, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH. 2 CH 2 NHCH 2 CH 2 CH 2 —. R 3 is, for example, — (CH 2 CH 2 ) 2 CHOCONHCH 2 CH 2 CH 2 — or — (CH 2 CH 2 ) 2 N—CH 2 CH 2 CH 2 —, in which case N and R 3 is a ring structure.

式中のXは、CH−、C−、n−C−、i−C−、n−C−、i−C−、t−C−のいずれかである。Yは、CHO−、CO−、n−CO−、i−CO−、n−CO−、i−CO−、t−CO−等のアルコキシ基である。式中のnは1、2、3のいずれかの数字である。Mはアルカリ金属であり、好ましくはLi、Na、KまたはCeである。 X in the formula is, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, t- One of C 4 H 9 —. Y is, CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O- a t-C 4 H 9 O- and alkoxy groups. N in a formula is either 1, 2, or 3 numbers. M is an alkali metal, preferably Li, Na, K or Ce.

金属化合物皮膜2を被覆形成した後、金属化合物皮膜2の表面にアルコキシシラン含有トリアジンチオール誘導体の被覆を形成するためにアルコキシシラン含有トリアジンチオール誘導体の溶液を作製する。用いる溶媒は、アルコキシシラン含有トリアジンジチオール誘導体が溶解するものであればよく、水およびアルコール系溶剤がこれに該当する。例えば、水、メタノール、エタノール、プロパノール、カルビトール、エチレングリコール、ポリエチレングリコールおよびこれらの混合溶媒も使用可能である。アルコキシシラン含有トリアジンジチオール誘導体の好ましい濃度は0.001g〜20g/Lであり、より好ましい濃度は0.01g〜10g/Lである。   After coating the metal compound film 2, a solution of the alkoxysilane-containing triazine thiol derivative is prepared in order to form a coating of the alkoxysilane-containing triazine thiol derivative on the surface of the metal compound film 2. The solvent to be used is not particularly limited as long as the alkoxysilane-containing triazine dithiol derivative can be dissolved, and water and alcohol solvents correspond to this. For example, water, methanol, ethanol, propanol, carbitol, ethylene glycol, polyethylene glycol, and a mixed solvent thereof can be used. A preferable concentration of the alkoxysilane-containing triazine dithiol derivative is 0.001 g to 20 g / L, and a more preferable concentration is 0.01 g to 10 g / L.

得られた、アルコキシシラン含有トリアジンジチオール誘導体溶液中に、金属化合物皮膜2を備えた金属体1を浸漬する。溶液の好ましい温度範囲、より好ましい温度範囲は、それぞれ0℃〜100℃、20℃〜80℃である。一方、浸漬時間は、1分〜200分が好ましく、3分〜120分がより好ましい。   The metal body 1 provided with the metal compound film 2 is immersed in the obtained alkoxysilane-containing triazine dithiol derivative solution. The preferable temperature range of a solution and the more preferable temperature range are 0 degreeC-100 degreeC, and 20 degreeC-80 degreeC, respectively. On the other hand, the immersion time is preferably 1 minute to 200 minutes, more preferably 3 minutes to 120 minutes.

この浸漬により、アルコキシシラン含有トリアジンチオール誘導体のアルコキシシラン部分は、加水分解してシラノールになるので、浸漬後のアルコキシシラン含有トリアジンチオール誘導体は、シラノール含有トリアジンチオール誘導体となり、金属化合物皮膜2との間に水素結合的な緩い結合を生じ化学的結合力を得ることができる。   By this immersion, the alkoxysilane portion of the alkoxysilane-containing triazine thiol derivative is hydrolyzed to become silanol. Therefore, the alkoxysilane-containing triazine thiol derivative after the immersion becomes a silanol-containing triazine thiol derivative, and between the metal compound film 2 It is possible to obtain a chemical bond strength by forming a hydrogen bond and a loose bond.

従って、これにより、金属体1と金属化合物皮膜2およびシラノール含有トリアジンチオール誘導体被覆より成る、表面に樹脂を接合するのに用いる金属体を得ることができる。   Therefore, the metal body used for joining resin to the surface which consists of the metal body 1, the metal compound membrane | film | coat 2, and a silanol containing triazine thiol derivative coating can be obtained by this.

そして、この金属体を、乾燥および脱水反応促進熱処理を目的に100℃〜450℃まで加熱する。この加熱により、シラノール含有トリアジンチオール誘導体のシラノール部分に、上述した金属化合物皮膜2に含まれる水酸化物、カルボン酸塩、リン酸塩、ケイ酸およびフッ化物の少なくとも1つと脱水または脱ハロゲン結合反応が起こることから、シラノール含有トリアジンチオール誘導体は、脱水シラノール含有トリアジンチオール誘導体に変わり、金属化合物皮膜2との間で化学的に結合する。
また、後述するレーザーによる加熱をこの加熱に適用して金属体1の一部分だけを加熱してもよい。レーザーによる加熱は、必要な個所だけを、短時間で必要な温度に加熱できるので、好ましい。
Then, this metal body is heated to 100 ° C. to 450 ° C. for the purpose of drying and dehydration reaction promoting heat treatment. By this heating, the silanol portion of the silanol-containing triazine thiol derivative is dehydrated or dehalogenated with at least one of the hydroxide, carboxylate, phosphate, silicic acid and fluoride contained in the metal compound film 2 described above. Therefore, the silanol-containing triazine thiol derivative is changed to a dehydrated silanol-containing triazine thiol derivative and chemically bonded to the metal compound film 2.
Further, only a part of the metal body 1 may be heated by applying heating by a laser described later to this heating. Heating by laser is preferable because only necessary portions can be heated to necessary temperatures in a short time.

この加熱処理の結果、金属体1と金属化合物皮膜2および分子接着剤より成る、表面に樹脂を接合するのに用いる金属部材(以下、「分子接着剤処理済みの金属体」と呼ぶ場合がある)を得ることができる。   As a result of this heat treatment, a metal member (hereinafter referred to as a “metal body that has been treated with a molecular adhesive”), which is composed of the metal body 1, the metal compound film 2, and the molecular adhesive, and is used to join the resin to the surface. ) Can be obtained.

次に、この脱水シラノール含有トリアジンチオール誘導体と樹脂との接合力をより強くするために必要に応じ適宜、分子接着剤3の脱水シラノール含有トリアジンチオール誘導体を、接合補助剤として例えばジマレイミド類であるN,N’−m−フェニレンジマレイミドやN、N‘−ヘキサメエチレンジマレイミドのようなラジカル反応により結合性を有する化合物とジクルミルパーオキサイド、ベンゾイルパーオキサイドのような過酸化物またはその他のラジカル開始剤とを含む溶液に浸漬する。浸漬後、金属体1を、30℃〜270℃で、1分〜600分間、乾燥・熱処理する。   Next, the dehydrated silanol-containing triazine thiol derivative of the molecular adhesive 3 is used as a bonding aid, for example, N-maleimides, as necessary, in order to increase the bonding strength between the dehydrated silanol-containing triazine thiol derivative and the resin. , N′-m-phenylene dimaleimide, N, N′-hexameethylene dimaleimide and other radicals such as diclemyl peroxide, benzoyl peroxide, and other radicals that have bonding properties by radical reaction Immerse in a solution containing the initiator. After immersion, the metal body 1 is dried and heat-treated at 30 ° C. to 270 ° C. for 1 minute to 600 minutes.

これにより、脱水シラノール含有トリアジンチオール誘導体は、トリアジンチオール金属塩(トリアジンチオール誘導体)部分の金属イオンが除去され、硫黄がメルカプト基になって、このメルカプト基がN,N’−m−フェニレンジマレイミドのマレイン酸の2つの二重結合部の一方と反応してN,N’−m−フェニレンジマレイミドを結合した脱水シラノール含有トリアジンチオール誘導体となる。
ラジカル開始剤は、樹脂を成形する際に行う加熱等の熱による分解でラジカルを生じ、上記マレイン酸による2つの二重結合部の他方の結合を開き、樹脂と反応、結合させる作用を有する。
As a result, the dehydrated silanol-containing triazine thiol derivative removes the metal ion of the triazine thiol metal salt (triazine thiol derivative) portion, and the sulfur becomes a mercapto group, and this mercapto group becomes N, N′-m-phenylenedimaleimide. It reacts with one of the two double bonds of maleic acid to form a dehydrated silanol-containing triazine thiol derivative bonded with N, N′-m-phenylene dimaleimide.
The radical initiator has a function of generating a radical by decomposition by heat such as heating performed when molding a resin, opening the other bond of the two double bonds by the maleic acid, and reacting and bonding with the resin.

さらに、必要に応じ適宜、過酸化物、レドックス触媒などのラジカル開始剤をベンゼン、エタノールなどの有機溶媒に溶解させた溶液を、浸漬またはスプレーにより噴霧する等により金属体1の表面に付着させて、風乾する。   Furthermore, if necessary, a solution in which a radical initiator such as a peroxide or a redox catalyst is dissolved in an organic solvent such as benzene or ethanol is attached to the surface of the metal body 1 by dipping or spraying. Air dry.

ラジカル開始剤は、樹脂を成形する際に行う加熱等の熱による分解でラジカルを生じ、上記マレイン酸による2つの二重結合部の他方の結合を開き、または、トリアジンチオール誘導体の金属塩部分に働いて、樹脂と反応、結合させる作用を有する。   The radical initiator generates radicals by thermal decomposition such as heating performed when molding the resin, opens the other bond of the two double bonds by the maleic acid, or forms a metal salt part of the triazine thiol derivative. It works to react and bond with the resin.

なお、本願発明に係る金属体と樹脂体を一体化した部材の金属化合物皮膜2および高分子接着剤3が含む脱水シラノール含有トリアジンチオール誘導体は、例えばXPS分析(X線光電子分光分析)によりその成分を同定することができる。   The dehydrated silanol-containing triazine thiol derivative contained in the metal compound film 2 and the polymer adhesive 3 of the member in which the metal body and the resin body according to the present invention are integrated is, for example, its component by XPS analysis (X-ray photoelectron spectroscopy). Can be identified.

3.樹脂体との接合処理
次に樹脂体4を分子接着剤3と接触させた後、樹脂体4の一部分、すなわち分子接着剤3と接触している部分の樹脂を、レーザー光を用いて溶融し、樹脂体4と金属体1とを金属化合物被膜2および分子接着剤3を介して接合(接着)する。
この接合処理の詳細を以下に示す。
レーザーをどのように照射するかについては、用いる樹脂がレーザー光を透過するか否か、および樹脂体4と金属体3との相対位置により以下に示す実施形態1〜3の3つの形態に大別される。そこで、3つの実施形態を順に説明する。
3. Next, after the resin body 4 is brought into contact with the molecular adhesive 3, a portion of the resin body 4, that is, the resin in contact with the molecular adhesive 3 is melted using laser light. The resin body 4 and the metal body 1 are joined (adhered) via the metal compound coating 2 and the molecular adhesive 3.
The details of this joining process are shown below.
As for how to irradiate the laser, there are three main forms of Embodiments 1 to 3 shown below depending on whether or not the resin used transmits laser light and the relative position between the resin body 4 and the metal body 3. Separated. Therefore, three embodiments will be described in order.

3−1.実施形態1
実施形態1は、樹脂体4を構成する樹脂がレーザー光透過型樹脂であり、レーザー光を、このレーザー光透過型樹脂を通過させて金属体1表面に照射する場合である。
図2は、実施形態1に係る、レーザーを用いた樹脂体の接合処理により、金属体1と樹脂体4を接合した接合部材100を得る方法を説明する模式断面図である。
3-1. Embodiment 1
The first embodiment is a case where the resin constituting the resin body 4 is a laser light transmission resin, and the laser light is passed through the laser light transmission resin to irradiate the surface of the metal body 1.
FIG. 2 is a schematic cross-sectional view for explaining a method of obtaining the joining member 100 in which the metal body 1 and the resin body 4 are joined by the joining process of the resin body using the laser according to the first embodiment.

金属体1は、予め所定の金属を所定の形状に加工して得た。そして、金属体1の接合面(接合しようとする面)に、樹脂体4を接触させている。図2では図示していないが、接合面には、図2の金属体1に近い側から順に、金属化合物皮膜2と分子接着剤3とを有している。
そして、樹脂体4は、全体または少なくともレーザー光が通過する部分がレーザー透光性樹脂より成る。
The metal body 1 was obtained by processing a predetermined metal into a predetermined shape in advance. The resin body 4 is brought into contact with the joint surface (surface to be joined) of the metal body 1. Although not shown in FIG. 2, the joining surface has a metal compound film 2 and a molecular adhesive 3 in order from the side close to the metal body 1 in FIG.
And the resin body 4 consists of laser translucent resin in the whole or at least the part through which a laser beam passes.

レーザー透光性樹脂とは、当該樹脂体に相当する樹脂試験片の光透過率を、適用するレーザー光の波長で分光光度計により測定した時に、光透過率が80%以上の樹脂である。 但し、金属樹脂接合部材100の樹脂体4に用いられている樹脂がレーザー光透過型樹脂かどうかを簡便に識別する方法として、例えば波長300〜2,000nmのレーザー光を、想定する照射条件(例えば、出力50Wの半導体レーザーを使用し、スポット径を3mmに調整し、移動速度2mm/秒で照射)で樹脂に照射して、樹脂表面が溶融しなければレーザー光透過型樹脂であると判断してよい。
一方、光透過率が80%より小さい樹脂をレーザー光非透過型樹脂という。
レーザー透光性樹脂として、例えば熱可塑性樹脂で顔料、着色料、フィラーなどの光を散乱する材料を添加しないものを使用することが出来る。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン(PS)、ポリブチレン、アクリロニトリル/スチレン(AS)、アクリロニトリル/ブタジエン/スチレン(ABS)、ポリメタクリル酸メチル、塩化ビニル、ポリアミド(PA)、ポリアセタール、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、アイオノマー樹脂、変性ポリフェニレンエーテル、ポリフェニレンオキシド、ポリフェニレンスルファイド、ポリエーテルエーテルケトン、液晶ポリマー、ポリエーテルイミド、ポリアミドイミド、ポリアリレート、ポリサルフォン、ポリエーテルスルフォンなどの他、PC/ABS、PBT/ABS、PA/ABS、PC/PS等のポリマーアロイなどを使用できる。また、熱可塑性樹脂には、熱可塑性エラストマーも含む。熱可塑性エラストマーは、例えば、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、1,2−ポリブタジエン系、トランスイソプレンなどのエラストマーを使用できる。
The laser transmissive resin is a resin having a light transmittance of 80% or more when the light transmittance of a resin test piece corresponding to the resin body is measured with a spectrophotometer at the wavelength of the applied laser beam. However, as a method for easily identifying whether the resin used for the resin body 4 of the metal resin bonding member 100 is a laser light transmission resin, for example, a laser beam having a wavelength of 300 to 2,000 nm is assumed as an irradiation condition ( For example, using a semiconductor laser with an output of 50 W, adjusting the spot diameter to 3 mm and irradiating the resin at a moving speed of 2 mm / second), if the resin surface does not melt, it is determined that the resin is a laser light transmissive resin You can do it.
On the other hand, a resin having a light transmittance of less than 80% is referred to as a laser light non-transmissive resin.
As the laser light-transmitting resin, for example, a thermoplastic resin which does not add a light scattering material such as a pigment, a colorant, or a filler can be used. Thermoplastic resins include polyethylene, polypropylene, polystyrene (PS), polybutylene, acrylonitrile / styrene (AS), acrylonitrile / butadiene / styrene (ABS), polymethyl methacrylate, vinyl chloride, polyamide (PA), polyacetal, polybutylene. Terephthalate (PBT), polyethylene terephthalate (PET), polycarbonate (PC), ionomer resin, modified polyphenylene ether, polyphenylene oxide, polyphenylene sulfide, polyetheretherketone, liquid crystal polymer, polyetherimide, polyamideimide, polyarylate, polysulfone, In addition to polyether sulfone, polymer alloys such as PC / ABS, PBT / ABS, PA / ABS, PC / PS, etc. It can be used. The thermoplastic resin also includes a thermoplastic elastomer. Examples of the thermoplastic elastomer that can be used include elastomers such as styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, 1,2-polybutadiene, and transisoprene.

樹脂体4はこのような樹脂を用いて、既知の各種の形成方法を用いて得ることができる。また、樹脂体4は、上記のレーザー光透過型の熱可塑性樹脂のフィルムであってもよい。このようなフィルムとして複数の層が積層された積層フィルムを用いる場合、積層フィルムの外層の少なくとも一方が、熱可塑性フィルムから成るレーザー光透過型複合フィルムであればよい。   The resin body 4 can be obtained by using such a resin and using various known forming methods. The resin body 4 may be a film of the above-described laser light transmission type thermoplastic resin. In the case of using a laminated film in which a plurality of layers are laminated as such a film, at least one of the outer layers of the laminated film may be a laser light transmission type composite film made of a thermoplastic film.

そして、樹脂体4を、金属体1(すなわち分子接着剤)と接触するように配置する。より確実に接合できるように、例えばクランプ等を用いて樹脂体4を金属体1に押し当てるのが好ましい。   And the resin body 4 is arrange | positioned so that the metal body 1 (namely, molecular adhesive) may contact. It is preferable to press the resin body 4 against the metal body 1 using, for example, a clamp or the like so that bonding can be performed more reliably.

図2に示すように、レーザー光Lを樹脂体4および金属体1に向けて照射する。レーザー光Lは樹脂体4を通過して金属体1の接合しようとする表面を加熱する。そして、金属体1から樹脂体4への熱伝達により、樹脂体4の金属体1と対向する表面では樹脂が溶融(軟化)し、局部溶融部4aを形成する。金属体1と樹脂体4(すなわち局部溶融部4a)との界面において溶融した樹脂は、分子接着剤中の脱水シラノール含有トリアジンチオール誘導体と結合する。
この後、レーザーが照射されなくなると、金属体1の加熱された部分は、周囲の加熱されていない部分により急激に冷却され、これにより局部溶融部4aも冷却されて再び硬化(または凝固)し、局部再硬化部4aとなる。
As shown in FIG. 2, the laser beam L is irradiated toward the resin body 4 and the metal body 1. The laser beam L passes through the resin body 4 and heats the surface to which the metal body 1 is to be joined. Then, due to heat transfer from the metal body 1 to the resin body 4, the resin melts (softens) on the surface of the resin body 4 facing the metal body 1 to form a local melting portion 4 a. The resin melted at the interface between the metal body 1 and the resin body 4 (that is, the local melting portion 4a) is bonded to the dehydrated silanol-containing triazine thiol derivative in the molecular adhesive.
Thereafter, when the laser beam is not irradiated, the heated portion of the metal body 1 is rapidly cooled by the surrounding unheated portion, whereby the local melting portion 4a is also cooled and hardened (or solidified) again. The local re-curing unit 4a.

このように局部的に溶融して再硬化した局部再硬化部4aは、無理に(せん断応力等の強い力を付与して)金属体1と樹脂体4とを剥離した時には、レーザー光の照射パターンに沿って金属体1上に溶着した樹脂(すなわち局部再硬化部4a)が残存する場合がある。従って、この剥離部を観察することにより、比較的容易にレーザー溶着により生成した局部再硬化部を識別できる場合がある。
なお、図に示す局部溶融部(局部再硬化部)4aは、模式的に示したものであり、またその存在を強調して示したものであるから、図に示す大きさおよび割合で局部溶融部(局部再鋼株)4aが存在することを示すものではないことに留意されたい。
The local re-curing portion 4a that has been locally melted and re-cured in this way is irradiated with laser light when the metal body 1 and the resin body 4 are forcibly separated (by applying a strong force such as shear stress). In some cases, the resin (that is, the local re-hardened portion 4a) welded on the metal body 1 along the pattern remains. Therefore, by observing the peeled portion, the local recured portion generated by laser welding may be identified relatively easily.
It should be noted that the local melting part (local re-hardening part) 4a shown in the figure is schematically shown and emphasizes its existence, so that local melting is performed at the size and ratio shown in the figure. It should be noted that there is no indication that a part (local re-steel stock) 4a exists.

本実施形態では、レーザー光が樹脂体を透過して金属体1表面に達して、接合部分の金属体1の表面を局部的に加熱でき、すなわち界面の周辺のみを加熱するだけでよいことから、接合処理時に樹脂体4の変形ならびに金属体1の変色を極めて少なくすることができるという利点を有する。   In the present embodiment, the laser beam passes through the resin body and reaches the surface of the metal body 1, so that the surface of the metal body 1 at the joining portion can be locally heated, that is, only the periphery of the interface needs to be heated. There is an advantage that the deformation of the resin body 4 and the discoloration of the metal body 1 can be extremely reduced during the bonding process.

レーザー光Lを照射するのに用いるレーザーはルビーレーザー、YAGレーザー、Nd:YAGレーザー、ダイオードー励起固体レーザーのような固体レーザー、色素レーザーのような液体レーザー、COレーザーのようなガスレーザーおよび半導体レーザーを含む各種のレーザーを用いることができる。これらのなかでも半導体レーザーが好ましい。安価で、小型だからである。 Lasers used for irradiating the laser beam L are ruby laser, YAG laser, Nd: YAG laser, solid laser such as diode-excited solid laser, liquid laser such as dye laser, gas laser such as CO 2 laser, and semiconductor. Various lasers including a laser can be used. Among these, a semiconductor laser is preferable. It is cheap and small.

レーザーは各種の方法により照射してもよい。例えば出力を30W〜200Wとし、スポット面積0.1〜10mmとし、移動速度1mm/秒〜10mm/秒として照射してもよい。または、10〜10W/cmのパワー密度で、10−1〜10秒の照射時間だけ照射してもよい。 The laser may be irradiated by various methods. For example, irradiation may be performed with an output of 30 W to 200 W, a spot area of 0.1 to 10 mm 2 , and a moving speed of 1 mm / second to 10 mm / second. Or, 10 3 to 10 5 W / cm 2 power density may be irradiated only 10 -1 to 10 2 seconds irradiation time.

レーザーの発振方式としては、パルスレーザー、CWレーザーのいずれを用いてもよい。   As a laser oscillation method, either a pulse laser or a CW laser may be used.

さらに、レーザーの照射を所定の間隔で断続的に行う(オンオフする)ことにより、あるいは金属体1の表面の同一平面内でレーザー光Lを照射する領域としない領域を設けることにより、金属体1の表面の同一平面内で樹脂体4と接合している部分と接合していない部分を設けてもよい。このように同一平面で接合部と非接合部を設けることにより、接合に用いるレーザーのエネルギーを減少させる、または接合強度を制御して、必要に応じて金属体1と樹脂体4と比較的容易に分離できるように金属樹脂接合部材100を設計出来る等の利点がある。   Furthermore, by performing laser irradiation intermittently (turning on and off) at predetermined intervals, or by providing a region not irradiated with the laser beam L in the same plane on the surface of the metal body 1, the metal body 1. A portion that is joined to the resin body 4 and a portion that is not joined may be provided within the same plane of the surface of the substrate. By providing the joint and non-joint on the same plane in this way, the energy of the laser used for joining is reduced or the joining strength is controlled, and the metal body 1 and the resin body 4 can be relatively easily connected as necessary. There is an advantage that the metal resin bonding member 100 can be designed so that it can be separated.

また、レーザー光Lをより確実に吸収して、樹脂体4の表面をより速く昇温させることを目的に、金属体1の表面(場合によっては、分子接着剤を介した金属体1の表面)うちレーザー光を照射する部分に光吸収剤を塗布してもよい。
光吸収剤とは、レーザー光(例えば波長域300〜2,000nmのレーザー光)の吸収率が金属体1に用いる金属よりも高く、効率的にレーザー光を吸収する材料(薬剤)である。
樹脂体4がレーザー透過型樹脂であり、レーザー光が樹脂体内を透過して分子接着剤を介して金属体1の表面を照射する場合は、光吸収剤は分子接着剤の上に塗布されることになることから分子接着剤の作用を阻害せず、すなわち接合強度に悪影響を及ぼさないものを選択する必要がある。このような好適な光吸収剤として、例えば、母体色素構造(クロモファー)が、キノン系色素、ポリメチン系色素、シアニン系色素、フタロシアニン系色素またはジイモニウム系色素を用いてよい。
Further, the surface of the metal body 1 (in some cases, the surface of the metal body 1 via a molecular adhesive may be used for the purpose of absorbing the laser beam L more reliably and heating the surface of the resin body 4 more quickly. ) Of these, a light absorber may be applied to the portion irradiated with laser light.
The light absorber is a material (drug) that absorbs laser light efficiently because the absorption rate of laser light (for example, laser light having a wavelength range of 300 to 2,000 nm) is higher than that of the metal used for the metal body 1.
When the resin body 4 is a laser transmission resin and the laser beam is transmitted through the resin body and irradiates the surface of the metal body 1 through the molecular adhesive, the light absorber is applied on the molecular adhesive. Therefore, it is necessary to select one that does not inhibit the action of the molecular adhesive, that is, does not adversely affect the bonding strength. As such a suitable light absorber, for example, a quinone dye, a polymethine dye, a cyanine dye, a phthalocyanine dye, or a diimonium dye may be used as the matrix dye structure (chromophor).

(2)実施形態2
実施形態2は、樹脂体4を構成する樹脂がレーザー光非透過型樹脂であり、レーザー光金属体1の接合しようとする表面と反対側の表面に照射する点が実施形態1と異なる。
なお、本実施形態については、実施形態1と異なる部分を中心に記載する。従って、特に断りのない部分については実施形態1で記載した内容をそのまま適用してもよい。
(2) Embodiment 2
The second embodiment is different from the first embodiment in that the resin constituting the resin body 4 is a laser light non-transmissive resin, and the laser light metal body 1 is irradiated on the surface opposite to the surface to be joined.
In addition, about this embodiment, it describes focusing on a different part from Embodiment 1. FIG. Accordingly, the contents described in the first embodiment may be applied as they are to the parts that are not particularly specified.

図3は、実施形態2に係る、レーザーを用いた樹脂体の接合処理により金属体と樹脂体を一体化した接合部材100Aを得る方法を説明する模式断面図である。図3でも図2と同様に、金属化合物皮膜2および分子接着剤3の記載を省略してある。
実施形態2の樹脂体4は、レーザー光非透過型の熱可塑性樹脂から成る。
レーザー光非透過型熱可塑性樹脂として、例えば実施形態1で示したレーザー光透過型の熱可塑性樹脂に、顔料、着色剤、フィラー、補強材等を添加した結果レーザー光を透過することが困難になった樹脂を用いてもよい。
FIG. 3 is a schematic cross-sectional view illustrating a method for obtaining a joining member 100A in which a metal body and a resin body are integrated by a joining process of a resin body using a laser according to the second embodiment. In FIG. 3, as in FIG. 2, the description of the metal compound film 2 and the molecular adhesive 3 is omitted.
The resin body 4 of Embodiment 2 is made of a laser light non-transmissive thermoplastic resin.
As a laser light non-transmissive thermoplastic resin, for example, a pigment, a colorant, a filler, a reinforcing material, or the like is added to the laser light transmissive thermoplastic resin described in the first embodiment, so that it is difficult to transmit the laser light. The resulting resin may be used.

本実施形態の樹脂体4は、レーザー光非透過型の熱可塑性樹脂から成るフィルムであってもよい。
また、樹脂体4は、金属体4と接合する側が熱可塑性フィルムであり、その上に異種のフィルムを積層した複合フィルムであってもよい。積層するフィルム材料は、樹脂材料に限定されるものではなく、例えばアルミニウム、ベリリウム銅、リン青銅、洋白、チタン、ステンレス、パーマロイ、42アロイ、モリブデン、真鍮、ニクロム、タンタル、亜鉛、錫、銀、コバール、鉄、ジルコニウム、鉛等の金属箔であってもよい。
The resin body 4 of the present embodiment may be a film made of a laser light non-transmissive thermoplastic resin.
Further, the resin body 4 may be a composite film in which the side to be joined to the metal body 4 is a thermoplastic film and a different kind of film is laminated thereon. The film material to be laminated is not limited to a resin material. For example, aluminum, beryllium copper, phosphor bronze, white, titanium, stainless steel, permalloy, 42 alloy, molybdenum, brass, nichrome, tantalum, zinc, tin, silver , Metal foil such as Kovar, iron, zirconium and lead may be used.

本実施形態では、樹脂体4がレーザー光非透過型であることから、樹脂体4の表面にレーザー光を照射しても実施形態1と異なり、レーザー光は樹脂体4内を通って金属体1の表面に到達することができない。   In this embodiment, since the resin body 4 is a laser light non-transmissive type, even if the surface of the resin body 4 is irradiated with laser light, unlike the first embodiment, the laser light passes through the resin body 4 to form a metal body. The surface of 1 cannot be reached.

そこで図3に示すように金属体1の表面のうち、樹脂体4と接合する面(接合面)と反対側の面にレーザーを照射し、この反対側の表面を昇温し、この熱が金属体1の内部を伝導して接合面に達して樹脂体4を溶融して、局部溶融部4aを形成するものである。金属体1のレーザー照射面に光吸収剤を塗布しておけば、加熱を効率的に行うことが出来る。   Therefore, as shown in FIG. 3, the surface of the metal body 1 is irradiated with a laser on the surface opposite to the surface (bonding surface) to be bonded to the resin body 4, the surface on the opposite side is heated, and this heat is The inside of the metal body 1 is conducted to reach the joint surface, and the resin body 4 is melted to form a local melting portion 4a. If a light absorber is applied to the laser irradiation surface of the metal body 1, heating can be performed efficiently.

本実施形態においても、金属体1の極めて限られた部分のみを加熱して樹脂体4の一部(局部溶融部(局部再硬化部)4a)を溶融することで、金属体1と樹脂体4を接合できることから、樹脂体4の変形および金属体1の変色を抑制することが可能となる。   Also in the present embodiment, only a very limited portion of the metal body 1 is heated to melt a part of the resin body 4 (local melting part (local re-curing part) 4a), whereby the metal body 1 and the resin body 4 can be joined, so that deformation of the resin body 4 and discoloration of the metal body 1 can be suppressed.

3−3.実施形態3
実施形態3は、金属体と樹脂体の配置により金属体の接合面および接合面と反対側の面にレーザー光を照射するのが適当でない場合に金属体の接合面と隣接した面でかつ容易にレーザーを照射できるように露出した面にレーザー光Lを照射する点が実施形態1および2と異なる。
3-3. Embodiment 3
In the third embodiment, when it is not appropriate to irradiate a laser beam to the joint surface of the metal body and the surface opposite to the joint surface due to the arrangement of the metal body and the resin body, the surface is adjacent to the joint surface of the metal body and is easy. The point which irradiates the laser beam L to the surface exposed so that a laser can be irradiated to is different from Embodiment 1 and 2.

すなわち、金属体1の接合しようとする面にレーザー光を照射できない場合に、金属体1の接合しようとする面(樹脂体4と接合する面)以外の表面にレーザー光を照射する点では実施形態2と実施形態3は共通するが、選択する金属体の表面が異なる。   In other words, when the laser beam cannot be irradiated on the surface to be joined of the metal body 1, the laser beam is irradiated on the surface other than the surface to be joined (the surface to be joined to the resin body 4) of the metal body 1. Although form 2 and embodiment 3 are common, the surfaces of the metal bodies to be selected are different.

なお、本実施形態については、実施形態1または2と異なる部分を中心に記載する。従って、特に断りのない部分については実施形態1または2で記載した内容をそのまま適用してもよい。   In addition, about this embodiment, it describes centering on a different part from Embodiment 1 or 2. FIG. Therefore, the contents described in the first or second embodiment may be applied as they are to the parts without particular notice.

図4は、実施形態3に係る、レーザーを用いた樹脂体の接合処理により金属体と樹脂体を一体化した接合部材100Bを得る方法を説明する模式断面図である。図4でも図2と同様に、金属化合物皮膜2および分子接着剤3の記載を省略してある。
実施形態3の樹脂体4を構成する樹脂は、レーザー光透過型であってもレーザー光非透過型であってもよい。更に実施形態1および2に示した熱可塑性樹脂であってもよく、また熱硬化性樹脂であってもよい。熱硬化性樹脂としては、例えば、エポキシ、不飽和ポリエステル、フェノール、ポリウレタン、シリコーン、ジアリルテレフタレートなどを使用してよい。また、熱硬化性樹脂は、補強材、フィラーを添加したものであってもよい。更に、SMC(シートモールディングコンパウンド、Sheet Molding Compound)、BMC(バルクモールディングコンパウンド、Bulk Molding Compound)のような、シート材やバルク状成形材であってもよい。
FIG. 4 is a schematic cross-sectional view illustrating a method of obtaining a joining member 100B in which a metal body and a resin body are integrated by a joining process of a resin body using a laser according to the third embodiment. In FIG. 4, as in FIG. 2, the description of the metal compound film 2 and the molecular adhesive 3 is omitted.
The resin constituting the resin body 4 of Embodiment 3 may be a laser light transmission type or a laser light non-transmission type. Furthermore, the thermoplastic resin shown in Embodiments 1 and 2 may be used, and a thermosetting resin may be used. As the thermosetting resin, for example, epoxy, unsaturated polyester, phenol, polyurethane, silicone, diallyl terephthalate, or the like may be used. Further, the thermosetting resin may be one to which a reinforcing material and a filler are added. Further, it may be a sheet material or a bulk molding material such as SMC (Sheet Molding Compound) or BMC (Bulk Molding Compound).

本実施形態の樹脂体4は、レーザー光透過型の上記熱可塑性樹脂のフィルムであってもよい。また、フィルムは、金属体1と接合する側が熱可塑性フィルムから成る積層した複合フィルムであってもよい。積層するフィルム材料は、レーザー光透過型樹脂に限定されるものではなく、アルミニウム、ベリリウム銅、リン青銅、洋白、チタン、ステンレス、パーマロイ、42アロイ、モリブデン、真鍮、ニクロム、タンタル、亜鉛、錫、銀、コバール、鉄、ジルコニウム、鉛等の金属箔であってもよい。   The resin body 4 of the present embodiment may be a laser light transmission type thermoplastic resin film. Further, the film may be a laminated composite film in which the side bonded to the metal body 1 is made of a thermoplastic film. The film material to be laminated is not limited to the laser light transmission type resin, but aluminum, beryllium copper, phosphor bronze, white, titanium, stainless steel, permalloy, 42 alloy, molybdenum, brass, nichrome, tantalum, zinc, tin Metal foil such as silver, kovar, iron, zirconium, lead may be used.

本実施形態では実施形態1で示した金属体1と同じ金属体1が2つ配置されており、2つの金属体1の対向する表面の間に樹脂体1が挟持されている。   In the present embodiment, two metal bodies 1 that are the same as the metal bodies 1 shown in the first embodiment are arranged, and the resin body 1 is sandwiched between the opposing surfaces of the two metal bodies 1.

すなわち、樹脂体4は、1つの面が金属体1と接合する面(金属体1と接触している面)であることに加えて、その接合する面の反対側の面も、別の金属体1と接合する面(金属体1と接触している面)となっている。このため樹脂体4の表面にレーザー光を照射して、このレーザー光を金属体1の接合面に到達させることは困難である。   That is, in addition to the surface on which one surface is bonded to the metal body 1 (the surface in contact with the metal body 1), the surface on the opposite side of the surface to be bonded is another metal It is a surface to be joined to the body 1 (a surface in contact with the metal body 1). For this reason, it is difficult to irradiate the surface of the resin body 4 with laser light so that the laser light reaches the joint surface of the metal body 1.

また図4から判るように、金属体1の接合面と反対側の面が、接合面から相当離れているため、樹脂体4の表面を溶融(軟化)させるためには、この金属体1の反対側の表面を相当程度の高温にしなければならず、この結果金属体1が変形、溶融または酸化等により変色する可能性ある。   As can be seen from FIG. 4, the surface opposite to the joint surface of the metal body 1 is considerably away from the joint surface. Therefore, in order to melt (soften) the surface of the resin body 4, The opposite surface must be heated to a fairly high temperature, and as a result, the metal body 1 may be discolored due to deformation, melting or oxidation.

そこで本実施形態では、金属体1の接合面と隣接する面(露出した表面)にレーザー光Lを照射し、この隣接面を加熱し、この熱が金属体1の内部を伝導して接合面に達して樹脂体4を溶融して、局部溶融部4aを形成するものである。   Therefore, in this embodiment, the surface adjacent to the bonding surface of the metal body 1 (exposed surface) is irradiated with the laser beam L, the adjacent surface is heated, and this heat is conducted through the inside of the metal body 1 to bond the bonding surface. And the resin body 4 is melted to form the local melted portion 4a.

本実施形態においても、金属体1の極めて限られた部分のみを加熱して樹脂体4の一部(局部溶融部(局部再硬化部)4a)を溶融することで、金属体1と樹脂体4を接合できることから、金属体1の変形、樹脂体4の変形および金属体1の変色を抑制することが可能となる。   Also in the present embodiment, only a very limited portion of the metal body 1 is heated to melt a part of the resin body 4 (local melting part (local re-curing part) 4a), whereby the metal body 1 and the resin body 4 can be joined, so that deformation of the metal body 1, deformation of the resin body 4, and discoloration of the metal body 1 can be suppressed.

なお、図4で、それぞれの金属体1の接合面に隣接する1つの面のみ(図4では接合面の左側の面)にレーザー光Lを照射しているが、1つの接合面について複数の隣接する面にレーザー光Lを照射してもよい。これにより均一にかつ迅速に樹脂体4の表面を加熱できる。   In FIG. 4, only one surface adjacent to the bonding surface of each metal body 1 (the surface on the left side of the bonding surface in FIG. 4) is irradiated with the laser beam L. You may irradiate the laser beam L to the adjacent surface. Thereby, the surface of the resin body 4 can be heated uniformly and rapidly.

なお、レーザーを用いた金属体1と樹脂体4との接合方法は、実施形態1〜3に限定されるものではない。例えば、実施形態1と2を組み合わせ、金属体1と接触する部分の樹脂体4をレーザー光非透過型樹脂で形成し、樹脂体4と金属体1の接合する面(接合面)の反対側の面にレーザーを照射し、この反対側の表面を昇温し、この熱が金属体1の内部を伝導して接合面に達して樹脂体4を溶融して、局部溶融部を形成し、一方、他の部分をレーザー光透過型樹脂形成し、レーザー光透過型樹脂で形成した部分を透過したレーザー光がレーザー光非透過型樹脂を昇温させることで、局部溶融部を形成して接合する等各種の方法を用いてよい。   In addition, the joining method of the metal body 1 and the resin body 4 using a laser is not limited to Embodiments 1-3. For example, the first and second embodiments are combined, the resin body 4 in contact with the metal body 1 is formed of a laser light non-transmissive resin, and the opposite side of the surface (joint surface) where the resin body 4 and the metal body 1 are joined This surface is irradiated with a laser, the surface on the opposite side is heated, and this heat is conducted through the inside of the metal body 1 to reach the joint surface and melt the resin body 4 to form a local melting part, On the other hand, the laser light transmitting resin is formed on the other part, and the laser light transmitted through the part formed with the laser light transmitting resin raises the temperature of the laser light non-transmitting resin, thereby forming a local melting portion and joining. Various methods may be used.

・実施例1
アルミニウム合金ADC12材をダイカスト成形して図2に示す縦50mm、横30mm、高さ20mm、肉厚5mmの箱型金属体1を得た後、金属体1を、温度40℃のアルカリ成分が30g/L(そのうち縮合リン酸塩の占める割合が50〜60%)のpH約9.5の水溶液にアルミニウム合金基体1を5分間浸漬させることにより洗浄処理を行った。洗浄処理後は、純水で1分間水洗した。濃度10g/L、温度40℃の水酸化ナトリウム水溶液に1分間浸漬して粗面化処理を行い、次いで、濃度1g/L、温度50℃のリン酸ジルコニウム水溶液中に3分間浸漬して金属化合物処理した。これにより金属体1の表面にリン酸アルミニウム、リン酸ジルコニウムより成る金属化合物皮膜2を形成した。
さらに、この金属体1をアルコキシシラン含有トリアジンチオール溶液中に浸漬した。用いたアルコキシシラン含有トリアジンチオール誘導体は、トリエトキシシリルプロピルアミノトリアジンチオールモノナトリウムであり、濃度が0.7g/Lとなるようにエタノール95:水5(体積比)の溶媒に溶解し、溶液を得た。このトリエトキシシリルプロピルアミノトリアジンチオールモノナトリウム溶液に室温で30分間浸漬した。
その後、これらサンプルをオーブン内にて160℃で10分間熱処理し、反応を完了させるとともに乾燥した。そして、濃度1.0g/LのN,N’−m−フェニレンジマレイミド(N,N’−1,3−フェニレンジマレイミド)と濃度2g/Lのジクミルパーオキシドを含有するアセトン溶液に室温で10分間浸漬し、オーブン内にて150℃で10分間熱処理した。その後、サンプルの表面全体に、濃度2g/Lのジクミルパーオキシドのエタノール溶液を室温で噴霧し、風乾した。
次に縦50mm、横30mm、厚さ2mmのPC/ABS板を用いて図2に示す樹脂体4を形成して、図2のように金属体1と樹脂体4を接触させてクランプで挟んで固定した。
次に樹脂体4の内部を通り金属体1の接合面に到達するようにレーザー光Lを照射した。レーザー光Lは、出力50Wの半導体レーザーを使用し、スポット径を金属体1の幅(図2の左右方向)と同じ3mmに調整し、移動速度2mm/秒で照射した。レーザー光Lは、樹脂体4を透過して金属体1を加熱し、樹脂体4の表面に局部溶融部4aを形成した。この結果、接合部材100を得た。
Example 1
The aluminum alloy ADC12 material is die-cast to obtain a box-shaped metal body 1 having a length of 50 mm, a width of 30 mm, a height of 20 mm, and a thickness of 5 mm as shown in FIG. Cleaning treatment was performed by immersing the aluminum alloy substrate 1 in an aqueous solution having a pH of about 9.5 at / L (of which the proportion of condensed phosphate is 50 to 60%). After the washing treatment, it was washed with pure water for 1 minute. Roughening is performed by immersing in a sodium hydroxide aqueous solution having a concentration of 10 g / L and a temperature of 40 ° C. for 1 minute, and then immersed in an aqueous solution of zirconium phosphate having a concentration of 1 g / L and a temperature of 50 ° C. for 3 minutes. Processed. As a result, a metal compound film 2 made of aluminum phosphate and zirconium phosphate was formed on the surface of the metal body 1.
Further, this metal body 1 was immersed in an alkoxysilane-containing triazine thiol solution. The alkoxysilane-containing triazine thiol derivative used was triethoxysilylpropylaminotriazine thiol monosodium, dissolved in a solvent of ethanol 95: water 5 (volume ratio) so that the concentration was 0.7 g / L, and the solution was dissolved. Obtained. This triethoxysilylpropylaminotriazine thiol monosodium solution was immersed for 30 minutes at room temperature.
Thereafter, these samples were heat-treated in an oven at 160 ° C. for 10 minutes to complete the reaction and dry. Then, an acetone solution containing N, N′-m-phenylene dimaleimide (N, N′-1,3-phenylene dimaleimide) having a concentration of 1.0 g / L and dicumyl peroxide having a concentration of 2 g / L was added to room temperature. And then heat-treated in an oven at 150 ° C. for 10 minutes. Thereafter, an ethanol solution of dicumyl peroxide having a concentration of 2 g / L was sprayed on the entire surface of the sample at room temperature and air-dried.
Next, the resin body 4 shown in FIG. 2 is formed using a PC / ABS plate having a length of 50 mm, a width of 30 mm, and a thickness of 2 mm, and the metal body 1 and the resin body 4 are brought into contact with each other and clamped as shown in FIG. Fixed with.
Next, the laser beam L was irradiated so as to pass through the inside of the resin body 4 and reach the joint surface of the metal body 1. The laser beam L was irradiated with a semiconductor laser having an output of 50 W, the spot diameter was adjusted to 3 mm which is the same as the width of the metal body 1 (left and right direction in FIG. 2), and the moving speed was 2 mm / second. The laser beam L was transmitted through the resin body 4 to heat the metal body 1, thereby forming a local melting part 4 a on the surface of the resin body 4. As a result, the joining member 100 was obtained.

・実施例2
実施例1で作製したのと同様の金属体の底部に直径25mmの丸穴5を機械加工して開けることで図3に示す金属体1を得た。この金属体1に実施例1と同じ金属被膜処理と分子接着剤処理を行った。
PC/ABS樹脂(三菱エンジニアリングプラスチック社製ユーピロンMB2215R)を使用し、あらかじめ射出成形で板状の成形品とし、金属体1の底部に設けた穴よりも直径が6mm大きな丸板を切り出し本実施例の樹脂体4とした。
そして、図3に示すように金属体1の底部の穴部を閉塞するように円形の樹脂体4を配置し、押さえ板を挿んでクランプで締め付けて固定した。
Example 2
A metal body 1 shown in FIG. 3 was obtained by machining and opening a round hole 5 having a diameter of 25 mm in the bottom of the same metal body as that produced in Example 1. This metal body 1 was subjected to the same metal film treatment and molecular adhesive treatment as in Example 1.
Using PC / ABS resin (Mitsubishi Engineering Plastics Iupilon MB2215R), a plate-like molded product was previously formed by injection molding, and a round plate having a diameter 6 mm larger than the hole provided in the bottom of the metal body 1 was cut out. Resin body 4 was obtained.
And as shown in FIG. 3, the circular resin body 4 was arrange | positioned so that the hole of the bottom part of the metal body 1 might be obstruct | occluded, the pressing board was inserted, it clamped with the clamp, and was fixed.

そして、図3に示すように、金属体1の接合面と反対側の表面にレーザー光Lを照射した。レーザー光Lは、出力50Wの半導体レーザーを使用し、スポット径を金属部材と樹脂円盤が重なる幅3mmに調整し、移動速度2mm/秒でこの重なる部分に沿って照射した。レーザー光は、金属体1を加熱し、伝導した熱で樹脂体4の界面3で樹脂が溶融して局部溶融部4aを形成した。この結果、接合部材100Aを得た。   And as shown in FIG. 3, the laser beam L was irradiated to the surface on the opposite side to the joint surface of the metal body 1. As shown in FIG. The laser beam L was irradiated with a semiconductor laser having an output of 50 W, the spot diameter was adjusted to a width of 3 mm where the metal member and the resin disk overlap, and the overlapping portion was irradiated at a moving speed of 2 mm / second. The laser beam heated the metal body 1, and the resin was melted at the interface 3 of the resin body 4 by the conducted heat to form a local melting portion 4 a. As a result, a joining member 100A was obtained.

・実施例3
実施例1で用いたのと同じ金属体1(実施例1と同様に金属被膜処理と分子接着剤処理も実施)を2つ準備した。図4に示すように2つの金属体1のそれぞれの両端部の間に樹脂体4を配置し、金属体1と樹脂体4と4つの接合面を形成するように接触させた後クランプで挟んで固定した。
樹脂体4は、PC/ABS(三菱エンジニアリングプラスチック社製ユーピロンMB2215R)を使用し、あらかじめ射出成形で板状の成形品とし、金属体1の外周形形状に合わせて幅3mmで切り出した。
Example 3
Two metal bodies 1 that were the same as those used in Example 1 (metal film treatment and molecular adhesive treatment were also carried out as in Example 1) were prepared. As shown in FIG. 4, the resin body 4 is arranged between both ends of the two metal bodies 1, and the metal body 1 and the resin body 4 are brought into contact with each other so as to form four joint surfaces, and then sandwiched by clamps. Fixed with.
The resin body 4 was PC / ABS (Mitsubishi Engineering Plastics Iupilon MB2215R), made into a plate-shaped product by injection molding in advance, and cut out with a width of 3 mm in accordance with the outer peripheral shape of the metal body 1.

図4に示すように、金属体1の接合面と隣接した面(側面)にレーザー光Lを照射した。レーザー光Lは、出力50Wの半導体レーザーを使用し、スポット径を5mmに調整し、移動速度2mm/秒で照射した。レーザー光は、金属体1を加熱し、伝導した熱で樹脂部材4を溶融して局部溶融部4aを形成した。この結果、接合部材100Bを得た。   As shown in FIG. 4, the laser beam L was applied to the surface (side surface) adjacent to the bonding surface of the metal body 1. The laser beam L was irradiated with a semiconductor laser having an output of 50 W, the spot diameter was adjusted to 5 mm, and the moving speed was 2 mm / second. The laser beam heated the metal body 1 and melted the resin member 4 with the conducted heat to form the local melting portion 4a. As a result, a joining member 100B was obtained.

・実施例4
図5に示す幅(紙面に垂直方向の長さ)20mmの引張り試験片100Cを作製し、引張り試験機でせん断引張り強さを測定した。なお、図5では、金属化合物皮膜2、分子接着剤3および局部溶融部4aの記載は省略した。
鋼(冷間圧延鋼板SPCC)とSUS304ステンレス鋼板、アルミニウム合金板(A5053板とADC12板)およびマグネシウム板(AZ91)の5つの金属板を用い、それぞれから図5に示す形状の実施例4の金属体1を切り出した。
Example 4
A tensile test piece 100C having a width (length in a direction perpendicular to the paper surface) of 20 mm shown in FIG. 5 was produced, and the shear tensile strength was measured with a tensile tester. In FIG. 5, the description of the metal compound film 2, the molecular adhesive 3, and the local melting part 4a is omitted.
The metal of Example 4 having the shape shown in FIG. 5 using five metal plates of steel (cold rolled steel plate SPCC), SUS304 stainless steel plate, aluminum alloy plate (A5053 plate and ADC12 plate) and magnesium plate (AZ91). Body 1 was cut out.

それぞれの金属体1に以下の金属化合物処理と分子接着剤処理を行った、
(1)洗浄処理
長さ80mm、幅20mm、厚さ1.5mmのSUS304(日本工業規格で規定されている18Cr−8Niステンレス鋼、表面仕上げNo.2B)の板、長さ80mm、幅20mm、厚さ1.2mmのSPCC(日本工業規格、JIS G 3141:2005で規定されている冷間圧延鋼板)の鋼板、長さ80mm、幅20mm、厚さ1.5mmのA5052、ADC12アルミニウム板及びAZ91マグネシウム板を前処理した。
前処理(脱脂処理)は、全てのサンプルについて、濃度15.0g/L、温度60℃の水酸化ナトリウム水溶液中で予備脱脂を行い、次いで濃度75.0g/L、温度70℃の水酸化ナトリウム水溶液中で60秒間脱脂を行なった後、水洗を60秒間行った。
Each metal body 1 was subjected to the following metal compound treatment and molecular adhesive treatment,
(1) Cleaning treatment 80 mm long, 20 mm wide, 1.5 mm thick SUS304 (18Cr-8Ni stainless steel defined by Japanese Industrial Standards, surface finish No. 2B) plate, length 80 mm, width 20 mm, Steel plate of SPCC (Cold rolled steel plate defined by Japanese Industrial Standards, JIS G 3141: 2005) having a thickness of 1.2 mm, A5052, 80 mm in length, 1.5 mm in thickness, ADC12 aluminum plate, and AZ91 The magnesium plate was pretreated.
The pretreatment (degreasing treatment) is pre-degreasing in an aqueous sodium hydroxide solution having a concentration of 15.0 g / L and a temperature of 60 ° C., followed by sodium hydroxide having a concentration of 75.0 g / L and a temperature of 70 ° C. After degreasing in an aqueous solution for 60 seconds, washing with water was performed for 60 seconds.

(2)粗面化処理
SUS304、SPCC板については、温度60℃、濃度40〜50g/Lの硫酸を主体とした強酸中で300秒間エッチングし、次いで湯洗(60℃)、水洗を各60秒間行った。
A5052、ADC12板については、実施例1と同じ粗面化処理を行った。
AZ91マグネシウム板については、温度60℃、濃度1〜3g/Lの硫酸を主体とした強酸中で60秒間エッチングし、60秒間水洗後、更に濃度60g/L、温度70℃の水酸化ナトリウム中で120秒間強アルカリ処理をし、60秒間水洗した。
(2) Roughening treatment SUS304 and SPCC plates were etched in strong acid mainly composed of sulfuric acid having a temperature of 60 ° C. and a concentration of 40 to 50 g / L for 300 seconds, followed by washing with hot water (60 ° C.) and washing with water for 60 seconds. For a second.
About A5052 and ADC12 board, the same roughening process as Example 1 was performed.
The AZ91 magnesium plate is etched for 60 seconds in strong acid mainly composed of sulfuric acid at a temperature of 60 ° C. and a concentration of 1 to 3 g / L, washed with water for 60 seconds, and further in sodium hydroxide at a concentration of 60 g / L and a temperature of 70 ° C. It was subjected to a strong alkali treatment for 120 seconds and washed with water for 60 seconds.

(3)金属化合物処理
前処理を行った各金属板材について、次のような金属化合物処理を行った。
SUS304、SPCC板については、温度40℃、濃度10〜30g/Lのリン酸水溶液に180秒間浸漬し、60秒間水洗した。これにより金属体1の表面にリン酸鉄、リン酸ニッケルまたはリン酸クロムより成る金属化合物皮膜2を形成した。
A5052、ADC12板については、実施例1と同じ金属化合物処理を行った。これにより金属体1の表面にリン酸アルミニウム、リン酸マグネシウム及び/またはリン酸ケイ素、リン酸銅などより成る金属化合物皮膜2を形成した。
AZ91マグネシウム板については、温度60℃、濃度7.5〜10g/Lのリン酸マンガン水溶液に30秒間浸漬し、60秒間水洗した。これにより金属体1の表面にリン酸マグネシウム、リン酸アルミニウムおよびリン酸マンガンより成る金属化合物皮膜2を形成した。
いずれの板材も、処理後、80℃のオーブンで30分間乾燥した。
(3) Metal Compound Treatment The following metal compound treatment was performed on each pretreated metal plate material.
The SUS304 and SPCC plates were immersed in a phosphoric acid aqueous solution having a temperature of 40 ° C. and a concentration of 10 to 30 g / L for 180 seconds and washed with water for 60 seconds. Thus, a metal compound film 2 made of iron phosphate, nickel phosphate or chromium phosphate was formed on the surface of the metal body 1.
About the A5052 and ADC12 board, the same metal compound process as Example 1 was performed. Thus, a metal compound film 2 made of aluminum phosphate, magnesium phosphate and / or silicon phosphate, copper phosphate or the like was formed on the surface of the metal body 1.
The AZ91 magnesium plate was immersed in an aqueous manganese phosphate solution at a temperature of 60 ° C. and a concentration of 7.5 to 10 g / L for 30 seconds and washed with water for 60 seconds. As a result, a metal compound film 2 made of magnesium phosphate, aluminum phosphate and manganese phosphate was formed on the surface of the metal body 1.
All the plate materials were dried in an oven at 80 ° C. for 30 minutes after the treatment.

(4)分子接着剤処理
いずれの金属板材についても、実施例1と同様に、濃度1g/L、温度50℃のリン酸ジルコニウム水溶液中に3分間浸漬して金属化合物処理した。さらに、アルコキシシラン含有トリアジンチオール溶液中に浸漬した。用いたアルコキシシラン含有トリアジンチオール誘導体は、トリエトキシシリルプロピルアミノトリアジンチオールモノナトリウムであり、濃度が0.7g/Lとなるようにエタノール95:水5(体積比)の溶媒に溶解し、溶液を得た。このトリエトキシシリルプロピルアミノトリアジンチオールモノナトリウム溶液に室温で30分間浸漬した。
その後、これらサンプルをオーブン内にて160℃で10分間熱処理し、反応を完了させるとともに乾燥した。そして、濃度1.0g/LのN,N’−m−フェニレンジマレイミド(N,N’−1,3−フェニレンジマレイミド)と濃度2g/Lのジクミルパーオキシドを含有するアセトン溶液に室温で10分間浸漬し、オーブン内にて150℃で10分間熱処理した。その後、サンプルの表面全体に、濃度2g/Lのジクミルパーオキシドのエタノール溶液を室温で噴霧し、風乾した。
(4) Molecular Adhesive Treatment As with Example 1, all metal plate materials were treated with a metal compound by immersing in an aqueous zirconium phosphate solution having a concentration of 1 g / L and a temperature of 50 ° C. for 3 minutes. Further, it was immersed in an alkoxysilane-containing triazine thiol solution. The alkoxysilane-containing triazine thiol derivative used was triethoxysilylpropylaminotriazine thiol monosodium, dissolved in a solvent of ethanol 95: water 5 (volume ratio) so that the concentration was 0.7 g / L, and the solution was dissolved. Obtained. This triethoxysilylpropylaminotriazine thiol monosodium solution was immersed for 30 minutes at room temperature.
Thereafter, these samples were heat-treated in an oven at 160 ° C. for 10 minutes to complete the reaction and dry. Then, an acetone solution containing N, N′-m-phenylene dimaleimide (N, N′-1,3-phenylene dimaleimide) having a concentration of 1.0 g / L and dicumyl peroxide having a concentration of 2 g / L was added to room temperature. And then heat-treated in an oven at 150 ° C. for 10 minutes. Thereafter, an ethanol solution of dicumyl peroxide having a concentration of 2 g / L was sprayed on the entire surface of the sample at room temperature and air-dried.

実施例4の樹脂体4として、レーザー光透過型のポリウレタンエラストマーとレーザー光非透過型のABS、PC−ABS、PA−66とPPSの5種の樹脂を、幅20mm、長さ80mm、厚さ3mmの板形状に射出成形し、それぞれを用いて、図5に示す形状の樹脂板を得た。   As the resin body 4 of Example 4, five kinds of resins of a laser light transmission type polyurethane elastomer and a laser light non-transmission type ABS, PC-ABS, PA-66 and PPS are 20 mm in width, 80 mm in length and thickness. A resin plate having the shape shown in FIG. 5 was obtained by injection molding into a 3 mm plate shape.

準備したこれら5種の金属体1と5種の樹脂体4を組み合わせ表1に示す23種の接合部材100Cを得た。
レーザー光透過型樹脂の場合は、各金属板材の接合しようとする面に光吸収剤(日本化薬製ポリメチン系色素IR820Bの濃度500ppmのエタノール溶液)を塗布し、風乾した。一方、レーザー光非透過型樹脂の場合は、樹脂体4と接する面(接合面)と反対側の面に同じ光吸収剤を塗布し、風乾した。
使用したレーザーは、ファイバーカップリング半導体レーザーモジュール(Apollo Instrument社製F100−808−6、100W、波長808nm)で、ファイバー先端を、集光レンズに接続した。スポット径5mm、出力40〜60W、ステージ移動速度3mm/秒で、金属体1と樹脂体4が重なる幅20mm、長さ12mmの範囲で光吸収剤を塗布した部分にレーザーを照射して樹脂体4の表面の一部を溶融させて接合した。すなわち、樹脂体4がレーザー光透過型樹脂の場合は、樹脂体4を透過し、金属体1の接合しようとする面側にレーザー光を照射し、樹脂体4がレーザー光非透過型樹脂の場合は金属体1の接合しよう等する面と反対側の面にレーザー光を照射した。
The prepared 5 kinds of metal bodies 1 and 5 kinds of resin bodies 4 were combined to obtain 23 kinds of joining members 100C shown in Table 1.
In the case of a laser light transmitting resin, a light absorber (an ethanol solution having a concentration of 500 ppm of polymethine dye IR820B manufactured by Nippon Kayaku Co., Ltd.) was applied to the surfaces of the metal plate members to be joined and air-dried. On the other hand, in the case of a laser beam non-transmissive resin, the same light absorbent was applied to the surface opposite to the surface (bonding surface) in contact with the resin body 4 and air-dried.
The laser used was a fiber coupling semiconductor laser module (Apollo Instrument F100-808-6, 100 W, wavelength 808 nm), and the fiber tip was connected to a condenser lens. Resin body by irradiating a laser to the part where the light absorber is applied in the range of width 20mm and length 12mm where metal body 1 and resin body 4 overlap with spot diameter 5mm, stage moving speed 3mm / sec. A part of the surface of 4 was melted and joined. That is, when the resin body 4 is a laser light transmission type resin, the resin body 4 is transmitted through the surface of the metal body 1 to be joined, and laser light is irradiated to the surface of the metal body 1 to be joined. In this case, the surface opposite to the surface to be joined of the metal body 1 was irradiated with laser light.

さらに、比較例として表2に示すサンプルを作製した。
本実施例と同じ、鋼(冷間圧延鋼板SPCC)、SUS304ステンレス鋼板およびアルミニウム合金板(A5053板とADC12板)の4つの金属板を用い、それぞれから図5に示す形状金属体(本実施例と)を切り出した。
そして、本実施例と同じ(1)洗浄処理、(2)粗面化処理、(3)金属化合物処理
および(4)分子接着剤処理を行った。
但し、表2に「金属化合物処理のみ」と記載したサンプルは、金属化合物処理は実施したが、分子接着剤処理を実施していない。一方、表2に「分子接着剤処理のみ」と記載したサンプルは、分子接着剤処理は実施したが、金属化合物処理を実施していない。
Further, samples shown in Table 2 were produced as comparative examples.
Using the same four metal plates as steel (cold rolled steel plate SPCC), SUS304 stainless steel plate and aluminum alloy plate (A5053 plate and ADC12 plate) as in this example, the shape metal bodies shown in FIG. 5 (this example) And).
Then, the same (1) cleaning treatment, (2) roughening treatment, (3) metal compound treatment, and (4) molecular adhesive treatment as in this example were performed.
However, the sample described as “only the metal compound treatment” in Table 2 was subjected to the metal compound treatment, but was not subjected to the molecular adhesive treatment. On the other hand, the sample described as “only molecular adhesive treatment” in Table 2 was subjected to molecular adhesive treatment but was not subjected to metal compound treatment.

そして、表2に示すように実施例サンプルにも用いたレーザー光非透過型のPC−ABSの樹脂体を用い、本実施例と同じように樹脂体と接する面(接合面)と反対側の面に同じ光吸収剤を塗布し、風乾した。
その後、本実施例と同条件でレーザーを照射し比較例に係る接合体を得た。
Then, as shown in Table 2, the laser beam non-transmission type PC-ABS resin body used also for the example samples was used, and the surface opposite to the surface (joint surface) in contact with the resin body as in this example was used. The same light absorber was applied to the surface and air-dried.
Thereafter, a laser was irradiated under the same conditions as in this example to obtain a joined body according to a comparative example.

得られた18種の実施例に係る接合部材と8種の比較例に係る接合部材の接合強度(引張せん断強度)を測定した。
引張り試験は、島津製作所製オートグラフAG−10TDにより、引張り速度5mm/分で行った。
The joining strength (tensile shear strength) of the obtained joining members according to 18 kinds of examples and the joining members according to 8 kinds of comparative examples was measured.
The tensile test was performed with an autograph AG-10TD manufactured by Shimadzu Corporation at a pulling speed of 5 mm / min.

Figure 2011235570
Figure 2011235570

Figure 2011235570
Figure 2011235570

樹脂体4がポリウレタンエラストマーである実施例サンプルは金属体1の金属の種類にかかわらず、試験機の伸び計の測定範囲で樹脂体4が伸び続け、破断しなかったので、引張りせん断強度を求めることができなかったが(表1に「破断せず」と記載)、破断をしないことから相当に接合強度が高いことが判った。   In the example sample in which the resin body 4 is a polyurethane elastomer, regardless of the type of metal of the metal body 1, the resin body 4 continued to grow within the measurement range of the extensometer of the testing machine and did not break. Although it was not possible (described as “no break” in Table 1), it was found that the joint strength was considerably high because it did not break.

実施例サンプルの接合強度は表1に、比較例サンプルの接合強度は表2に示す。
実施例サンプルはいずれの接合部材も6MPa以上(破断瀬図を含む)と良好な接合強度を示した。
一方、比較例サンプルは、「分子接着剤処理のみ」のサンプルは、引張り試験で応力を付与すると直ちに破断し、接合強度は0MPaであった。また「金属化合物処理のみ」のサンプルの接合強度も0.8〜4.4MPaと実施例サンプルより明らかに低い値であった。
The bonding strength of the example sample is shown in Table 1, and the bonding strength of the comparative example sample is shown in Table 2.
In each of the example samples, all of the joining members exhibited a favorable joining strength of 6 MPa or more (including a fracture map).
On the other hand, the sample of the comparative example “only the molecular adhesive treatment” broke immediately when stress was applied in the tensile test, and the bonding strength was 0 MPa. In addition, the bonding strength of the “metal compound treatment only” sample was 0.8 to 4.4 MPa, which was clearly lower than that of the example sample.

100,100A,100B,100C 金属樹脂接合部材
1 金属体
2 金属化合物皮膜
3 分子接着剤
4 樹脂体
4a 局部溶融部
100, 100A, 100B, 100C Metal resin bonding member 1 Metal body 2 Metal compound film 3 Molecular adhesive 4 Resin body 4a Local melting part

Claims (14)

金属より成る金属体と樹脂より成る樹脂体とが接合された接合部材であって、
前記金属体と前記樹脂体との接合部に、前記金属体側から順に
水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩およびフッ化物より成る群から選ばれる少なくとも1つを含む金属化合物皮膜と、
脱水シラノール含有トリアジンチオール誘導体を含んで成る分子接着剤と、
を有し、
前記樹脂体が前記分子接着剤と接する部分に前記樹脂体が局部的に溶融した後硬化して形成される局部再硬化部を有することを特徴とする部材。
A joining member in which a metal body made of metal and a resin body made of resin are joined,
At the joint between the metal body and the resin body, in order from the metal body side, hydroxide, hydrated oxide, ammonium salt, amine compound, carboxylate, phosphate, carbonate, sulfate, silicate And a metal compound film comprising at least one selected from the group consisting of fluorides,
A molecular adhesive comprising a dehydrated silanol-containing triazine thiol derivative;
Have
A member having a local recuring portion formed by curing after the resin body is locally melted at a portion where the resin body is in contact with the molecular adhesive.
前記樹脂が波長300〜2,000nmのレーザー光の光透過率が80%以上であるレーザー光透過型樹脂であることを特徴とする請求項1に記載の部材。   2. The member according to claim 1, wherein the resin is a laser light transmissive resin having a light transmittance of 80% or more for laser light having a wavelength of 300 to 2,000 nm. 前記樹脂が波長300〜2,000nmのレーザー光の光透過率が80%未満のレーザー光非透過型樹脂であることを特徴とする請求項1に記載の部材。   The member according to claim 1, wherein the resin is a laser light non-transmissive resin having a light transmittance of less than 80% for laser light having a wavelength of 300 to 2,000 nm. 前記金属化合物皮膜が、金属の水和酸化物および水酸化物の少なくとも一方を含むことを特徴とする請求項1〜3のいずれか1項に記載の部材。   The member according to any one of claims 1 to 3, wherein the metal compound film contains at least one of a metal hydrated oxide and a hydroxide. 前記金属化合物皮膜が、リン酸水素金属塩、リン酸二水素金属塩およびリン酸金属塩より成る群から選択される少なくとも1つのリン酸塩を含むことを特徴とする請求項1〜3のいずれか1項に記載の部材。   The metal compound film includes at least one phosphate selected from the group consisting of a metal hydrogen phosphate, a metal dihydrogen phosphate, and a metal phosphate. The member according to claim 1. 前記金属体の表面の一部に波長域300〜2,000nmのレーザー光の光吸収率が前記金属より高い光吸収剤が塗布されていることを特徴とする請求項1〜5のいずれか1項に記載の部材。   6. A light absorber having a higher light absorption rate of laser light in a wavelength region of 300 to 2,000 nm than that of the metal is applied to a part of the surface of the metal body. Item according to item. 前記樹脂体がシートモールディングコンパウンドまたはバルクモールディングコンパウンドであることを特徴とする請求項1〜6のいずれか1項に記載の部材。   The member according to claim 1, wherein the resin body is a sheet molding compound or a bulk molding compound. 金属より成る金属体と樹脂より成る樹脂体とが接合された接合部材の製造方法であって、
1)水蒸気、またはI族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩、アンモニア、アンモニウム塩、ヒドラジン、ヒドラジン誘導体、アミン類、リン酸、リン酸塩、炭酸塩、硫酸、硫酸塩、カルボン酸、カルボン酸塩、ケイ酸、ケイ酸塩およびフッ化物から選択される少なくとも1つの水溶液を用いて、前記金属体の表面の少なくとも一部分に、水酸化物、水和酸化物、アンモニウム塩、アミン化合物、カルボン酸塩、リン酸塩、炭酸塩、硫酸塩、ケイ酸塩およびフッ化物より成る群から選ばれる少なくとも1つを含む金属化合物皮膜を前記金属体表面に形成する工程と、
2)前記金属化合物皮膜の表面にアルコキシシラン含有トリアジンチオール誘導体を含んで成る分子接着剤を接触させる工程と、
3)前記分子接着剤と前記樹脂体の表面を接触させた後、レーザー光を照射して前記樹脂体の接合しようとする表面を溶融する工程と、
を含むことを特徴とする製造方法。
A method of manufacturing a joining member in which a metal body made of metal and a resin body made of resin are joined,
1) Water vapor or Group I element hydroxide, Group I element salt, Group II element hydroxide, Group II element salt, ammonia, ammonium salt, hydrazine, hydrazine derivative, amines, phosphoric acid, phosphorus Using at least one aqueous solution selected from acid salts, carbonates, sulfuric acids, sulfates, carboxylic acids, carboxylates, silicic acids, silicates and fluorides, A metal compound film comprising at least one selected from the group consisting of oxide, hydrated oxide, ammonium salt, amine compound, carboxylate, phosphate, carbonate, sulfate, silicate, and fluoride. Forming on the surface of the metal body;
2) contacting the surface of the metal compound film with a molecular adhesive comprising an alkoxysilane-containing triazine thiol derivative;
3) After bringing the surface of the resin body into contact with the molecular adhesive, melting the surface to be joined of the resin body by irradiating a laser beam;
The manufacturing method characterized by including.
前記レーザー光を前記金属体に照射して、前記金属体の接合しようとする表面からの熱伝達により前記樹脂体の接合しようとする表面を溶融することを特徴とする請求項8に記載の製造方法。   The manufacturing method according to claim 8, wherein the metal body is irradiated with the laser light to melt the surface of the resin body to be joined by heat transfer from the surface of the metal body to be joined. Method. 前記樹脂が、前記レーザー光の透過率が80%以上であるレーザー光透光性樹脂であり、前記レーザー光が前記透光性樹脂を透過して前記金属体の前記接合しようとする面を加熱することを特徴とする請求項9に記載の製造方法。   The resin is a laser light transmitting resin having a laser light transmittance of 80% or more, and the laser light passes through the light transmitting resin and heats the surfaces to be joined of the metal body. The manufacturing method according to claim 9. 前記樹脂が、前記レーザー光の透過率が80%未満であるレーザー光非透光型樹脂であり、前記レーザー光を前記金属体の接合しようとする面と反対側の面に照射することを特徴とする請求項9に記載の製造方法。   The resin is a laser light non-transparent resin having a laser light transmittance of less than 80%, and the laser light is irradiated to a surface opposite to a surface to be joined of the metal body. The manufacturing method according to claim 9. 前記樹脂が、前記レーザー光の透過率が80%未満であるレーザー非透光型樹脂であり、前記レーザー光を前記金属体の接合しようとする面に隣接し露出した面に照射することを特徴とする請求項9に記載の製造方法。   The resin is a laser non-transmissible resin having a laser beam transmittance of less than 80%, and the laser beam is irradiated to an exposed surface adjacent to a surface to be joined of the metal body. The manufacturing method according to claim 9. 前記金属体の前記レーザー光を照射する部分に前記レーザー光の光吸収率が前記金属より高い光吸収剤を塗布することを特徴とする請求項9〜12のいずれか1項に記載の製造方法。   The manufacturing method according to claim 9, wherein a light absorber having a higher light absorption rate of the laser light than that of the metal is applied to a portion of the metal body that is irradiated with the laser light. . 前記樹脂体がシートモールディングコンパウンドまたはバルクモールディングコンパウンドであることを特徴とする請求項8〜13のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 8 to 13, wherein the resin body is a sheet molding compound or a bulk molding compound.
JP2010110016A 2010-05-12 2010-05-12 Member in which metal body and resin body are joined and method for producing the same Expired - Fee Related JP5569932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010110016A JP5569932B2 (en) 2010-05-12 2010-05-12 Member in which metal body and resin body are joined and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010110016A JP5569932B2 (en) 2010-05-12 2010-05-12 Member in which metal body and resin body are joined and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011235570A true JP2011235570A (en) 2011-11-24
JP5569932B2 JP5569932B2 (en) 2014-08-13

Family

ID=45324074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010110016A Expired - Fee Related JP5569932B2 (en) 2010-05-12 2010-05-12 Member in which metal body and resin body are joined and method for producing the same

Country Status (1)

Country Link
JP (1) JP5569932B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125664A1 (en) * 2012-02-24 2013-08-29 株式会社日立製作所 Laser joining method
WO2013146900A1 (en) 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member
JP2013208899A (en) * 2012-02-27 2013-10-10 Gunma Prefecture Joining process of resin
WO2014007342A1 (en) 2012-07-06 2014-01-09 帝人株式会社 Method for producing fiber-reinforced composite material-metal member bonded body, and fiber-reinforced composite material used in same
EP2828067A1 (en) * 2012-03-21 2015-01-28 Aarhus Universitet Joining of polymer and surface-modified metal by laser welding
WO2016076264A1 (en) * 2014-11-14 2016-05-19 富士通株式会社 Junction and method for manufacturing same, cooling device, and electronic device using cooling device
WO2017071682A1 (en) * 2015-10-30 2017-05-04 Salzgitter Flachstahl Gmbh Metal-plastic-composite component and method for producing said type of composite component
JPWO2016103385A1 (en) * 2014-12-25 2017-07-06 地方独立行政法人大阪府立産業技術総合研究所 Method for producing surface modified substrate
US9889638B2 (en) 2012-02-16 2018-02-13 Eco-A Co., Ltd. Electrical heating-joining device and method
WO2019189666A1 (en) * 2018-03-29 2019-10-03 リンテック株式会社 Method for bonding two adherends together and method for manufacturing bonded structure
WO2022230566A1 (en) 2021-04-27 2022-11-03 国立大学法人 東京大学 Bonded body, substrate, method for producing bonded body, and method for producing substrate
JP7372679B2 (en) * 2017-05-08 2023-11-01 和弘 遠藤 Manufacturing method for bonded products
CN117107236A (en) * 2023-10-20 2023-11-24 山西海诚智能制造有限公司 Middle groove alloy coating and laser cladding process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050513A (en) * 2002-07-17 2004-02-19 Fine Device:Kk Method for joining resin films
JP2008207547A (en) * 2007-01-30 2008-09-11 Toray Ind Inc Manufacturing method of composite body of thermoplastic resin molded article and metal
JP2009114504A (en) * 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050513A (en) * 2002-07-17 2004-02-19 Fine Device:Kk Method for joining resin films
JP2008207547A (en) * 2007-01-30 2008-09-11 Toray Ind Inc Manufacturing method of composite body of thermoplastic resin molded article and metal
JP2009114504A (en) * 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9889638B2 (en) 2012-02-16 2018-02-13 Eco-A Co., Ltd. Electrical heating-joining device and method
WO2013125664A1 (en) * 2012-02-24 2013-08-29 株式会社日立製作所 Laser joining method
JP2013173248A (en) * 2012-02-24 2013-09-05 Hitachi Ltd Laser joining method
JP2013208899A (en) * 2012-02-27 2013-10-10 Gunma Prefecture Joining process of resin
EP2828067A1 (en) * 2012-03-21 2015-01-28 Aarhus Universitet Joining of polymer and surface-modified metal by laser welding
US9527230B2 (en) 2012-03-29 2016-12-27 Teijin Limited Method for manufacturing joint member and joint member
WO2013146900A1 (en) 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member
WO2014007342A1 (en) 2012-07-06 2014-01-09 帝人株式会社 Method for producing fiber-reinforced composite material-metal member bonded body, and fiber-reinforced composite material used in same
WO2016076264A1 (en) * 2014-11-14 2016-05-19 富士通株式会社 Junction and method for manufacturing same, cooling device, and electronic device using cooling device
JPWO2016103385A1 (en) * 2014-12-25 2017-07-06 地方独立行政法人大阪府立産業技術総合研究所 Method for producing surface modified substrate
WO2017071682A1 (en) * 2015-10-30 2017-05-04 Salzgitter Flachstahl Gmbh Metal-plastic-composite component and method for producing said type of composite component
JP7372679B2 (en) * 2017-05-08 2023-11-01 和弘 遠藤 Manufacturing method for bonded products
WO2019189666A1 (en) * 2018-03-29 2019-10-03 リンテック株式会社 Method for bonding two adherends together and method for manufacturing bonded structure
KR20200136896A (en) * 2018-03-29 2020-12-08 린텍 가부시키가이샤 Method of bonding two adherends, and manufacturing method of bonded structure
JP6661847B1 (en) * 2018-03-29 2020-03-11 リンテック株式会社 Method for joining two adherends and method for manufacturing joined structure
KR102600729B1 (en) 2018-03-29 2023-11-09 린텍 가부시키가이샤 Method for joining two adherends and manufacturing method for bonded structure
WO2022230566A1 (en) 2021-04-27 2022-11-03 国立大学法人 東京大学 Bonded body, substrate, method for producing bonded body, and method for producing substrate
KR20230162669A (en) 2021-04-27 2023-11-28 도꾜 다이가꾸 Bonding body, substrate, method of manufacturing the bonding body, and method of manufacturing the substrate
CN117107236A (en) * 2023-10-20 2023-11-24 山西海诚智能制造有限公司 Middle groove alloy coating and laser cladding process thereof
CN117107236B (en) * 2023-10-20 2023-12-22 山西海诚智能制造有限公司 Middle groove alloy coating and laser cladding process thereof

Also Published As

Publication number Publication date
JP5569932B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5569932B2 (en) Member in which metal body and resin body are joined and method for producing the same
WO2011027854A1 (en) Aluminum alloy article, aluminum alloy member, and production method therefor
JP5648212B2 (en) Iron alloy article, iron alloy member and manufacturing method thereof
JP6004046B2 (en) Manufacturing method of aluminum resin joined body
KR101512888B1 (en) Method of laser joining of aluminum alloy member and resin member
US9193138B2 (en) Laser bonding method
JP6079791B2 (en) Method for producing metal-resin bonded body
JP4750096B2 (en) Magnesium alloy article, magnesium alloy member and manufacturing method thereof
JP6387301B2 (en) Aluminum resin bonded body and manufacturing method thereof
JP2008162115A (en) Method of manufacturing metal/resin composite material
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
JP5205109B2 (en) Magnesium alloy article and magnesium alloy member
JP5673814B2 (en) Aluminum shape body for manufacturing aluminum / resin injection integrated molded article, aluminum / resin injection integrated molded article using the same, and manufacturing method thereof
WO2014034340A1 (en) Metal member for producing metal/resin composite body and method for producing same
JP2011124142A (en) Aluminum/resin/copper composite article, its manufacturing method, and lid member for sealed battery
JP5834345B2 (en) Aluminum alloy article, aluminum alloy member and manufacturing method thereof
JP5544587B2 (en) Mold for molding resin composite material and method for producing resin composite material
CN111050983B (en) Method for producing joined body of dissimilar materials
Amne Elahi PROCESS INNOVATION FOR SENSORS IN MOBILE APPLICATIONS BASED ON LASER ASSISTED METAL-POLYMER JOINING
JP2006219354A (en) PHOTOCHEMICAL WELDING METHOD AND DECOMPOSING METHOD USING COMPOUND CONTAINING Si-O-Si BOND
Tolias et al. Laser Welding of Glass to Pla Joints Using Low-Cost Industrial Nanosecond IR Fiber Lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140618

R150 Certificate of patent or registration of utility model

Ref document number: 5569932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees