JP2011232247A - Light-shielding device and measuring device - Google Patents

Light-shielding device and measuring device Download PDF

Info

Publication number
JP2011232247A
JP2011232247A JP2010104299A JP2010104299A JP2011232247A JP 2011232247 A JP2011232247 A JP 2011232247A JP 2010104299 A JP2010104299 A JP 2010104299A JP 2010104299 A JP2010104299 A JP 2010104299A JP 2011232247 A JP2011232247 A JP 2011232247A
Authority
JP
Japan
Prior art keywords
light
optical system
shielding
bearing
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010104299A
Other languages
Japanese (ja)
Inventor
Yutaka Nishihara
裕 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010104299A priority Critical patent/JP2011232247A/en
Publication of JP2011232247A publication Critical patent/JP2011232247A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-shielding device having no variation of load during contraction and elongation and capable of shielding a region against light where a laser beam is guided.SOLUTION: The light-shielding device comprises: a plurality of light-shielding cylinders disposed to block an optical path between a first optical system which is configured to be movable on an object and to guide a laser beam to the object, and a second optical system for guiding a laser beam to the first optical system; a supporting member supporting the light-shielding cylinders; and a bearing disposed on the supporting member. Each of the plurality of light-shielding cylinders has an inner diameter and an outer diameter different from those of other cylinders so as to overlap one another to form a nest. A bearing provided in the first optical system and the bearing provided in the supporting member are slidably fitted to the same guide shaft.

Description

本発明は、遮光装置及び測定装置に関する。特に、高出力のレーザー光の光路を遮光する遮光装置及び、レーザー光を用いた測定装置に関する。   The present invention relates to a light shielding device and a measuring device. In particular, the present invention relates to a light-shielding device that shields an optical path of high-power laser light and a measurement device using laser light.

レーザー光を用いた装置としては、レーザー測定器、レーザー加工機、レーザー治療器などがある。このようなレーザー光を用いた装置においては、レーザーが高出力な場合、レーザー光の漏れをなくすため光路に遮光装置を設けている。このような遮光装置において、光路長の変化に対応して伸縮するレーザー加工機用の遮光装置が特許文献1に開示されている。図7は特許文献1で開示された伸縮可能な遮光装置600である。走査駆動する加工ヘッド部に繋がるベース部材605に伸縮可能なジャバラ形状の伸縮部材640が取り付けられている。伸縮部材640は支持部材630を介してガイド部材610に支持されている。また、ガイド部材610にはスライドベアリング622を介して摺動部材620が支持されている。さらに、摺動部材620は導光管550の端部555に取り付けられている。このような装置構成により、加工ヘッドを走査駆動することによって生じるベース部材605と導光管550の端部555との間の光路長の変化に対応するものである。   Examples of the apparatus using laser light include a laser measuring device, a laser processing machine, and a laser treatment device. In such an apparatus using laser light, when the laser output is high, a light-shielding device is provided in the optical path to eliminate leakage of the laser light. In such a light-shielding device, Patent Document 1 discloses a light-shielding device for a laser processing machine that expands and contracts in response to a change in optical path length. FIG. 7 shows an extendable light shielding device 600 disclosed in Patent Document 1. A bellows-shaped expansion / contraction member 640 that can be expanded and contracted is attached to a base member 605 that is connected to a processing head unit that is driven to scan. The elastic member 640 is supported by the guide member 610 via the support member 630. In addition, a sliding member 620 is supported on the guide member 610 via a slide bearing 622. Further, the sliding member 620 is attached to the end 555 of the light guide tube 550. With such an apparatus configuration, it corresponds to a change in the optical path length between the base member 605 and the end portion 555 of the light guide tube 550 that is generated by scanning the processing head.

特開平05−337674号公報Japanese Patent Laid-Open No. 05-337664

特許文献1に記載されている遮光装置600では、ジャバラ形状の伸縮部材を用いている。このようなジャバラ形状の部材が伸縮するとバネのように作用する。伸縮部材の伸縮によって発生した荷重は伸縮部材640に取り付けられたベース部材605を介して加工ヘッド部に伝播する。このような荷重は加工ヘッド部を走査駆動する駆動機構に対して負荷となる。また、ジャバラ形状の伸縮部材は、部材の収縮時と伸張時で発生する荷重が大きく異なる。このため加工ヘッド部の走査機構に対する負荷も大きく変動するので、加工ヘッドの走査速度などを安定して駆動できないという課題がある。また、駆動機構は伸縮部材で発生する最大の荷重が加わった場合においても駆動させなければならないので、駆動機構に強力なモーターを必要とするとともに、駆動機構に係わる構成部品の強度を十分なものにしなければならない。よって、このような部品から構成されるレーザー機器は、大型で高コストになるという課題がある。   In the light shielding device 600 described in Patent Document 1, a bellows-shaped elastic member is used. When such a bellows-shaped member expands and contracts, it acts like a spring. The load generated by the expansion / contraction of the expansion / contraction member propagates to the processing head portion via the base member 605 attached to the expansion / contraction member 640. Such a load becomes a load with respect to the drive mechanism which scan-drives a process head part. Moreover, the bellows-shaped expansion and contraction member is greatly different in load generated when the member contracts and expands. For this reason, since the load on the scanning mechanism of the machining head unit also varies greatly, there is a problem that the scanning speed of the machining head cannot be driven stably. In addition, since the drive mechanism must be driven even when the maximum load generated by the expansion / contraction member is applied, the drive mechanism requires a powerful motor and the components related to the drive mechanism have sufficient strength. Must be. Therefore, the laser apparatus comprised from such components has a problem that it is large and expensive.

本発明は上記課題に鑑みてなされたものであって、その目的とするところは、レーザー光を対象物に導く光学系を安定して走査駆動でき、かつ小型なレーザー機器用遮光装置を提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a compact light shielding device for laser equipment that can stably scan and drive an optical system that guides laser light to an object. That is.

本発明の遮光装置は、対象物に対し移動可能に構成された前記対象物にレーザー光を導くための第一光学系と前記第一光学系にレーザー光を導く第二光学系との間の光路を遮光するよう設けられた複数の遮光筒と、前記遮光筒を支持する支持部材と、前記支持部材に設けられた軸受と、を有する遮光装置であって、前記複数の遮光筒は入れ子状に重なり合うよう夫々の内径及び外径が異なっており、前記第一光学系に設けられた軸受と前記支持部に設けられた軸受とは、同じ案内軸に摺動可能に嵌合していることを特徴とする。   The light shielding device of the present invention is provided between a first optical system for guiding laser light to the object configured to be movable with respect to the object and a second optical system for guiding laser light to the first optical system. A light-shielding device having a plurality of light-shielding tubes provided to shield an optical path, a support member that supports the light-shielding tube, and a bearing provided on the support member, wherein the plurality of light-shielding tubes are nested. The bearings provided in the first optical system and the bearing provided in the support portion are slidably fitted to the same guide shaft so that they overlap each other. It is characterized by.

本発明の測定装置は、レーザー光を発生する光源と、対象物を保持する保持板と、前記対象物に対し移動可能に構成された前記対象物にレーザー光を導くための第一光学系と、前記第一光学系に設けられた軸受と、前記第一光学系にレーザー光を導く第二光学系と、前記第一光学系と前記第二光学系との間の光路を遮光するよう設けられた複数の遮光筒と、前記遮光筒を支持する支持部材と、前記支持部材に設けられた軸受と、を有する測定装置であって、前記複数の遮光筒は入れ子状に重なり合うよう夫々の内径及び外径が異なっており、前記第一光学系に設けられた軸受と前記支持部に設けられた軸受とは、同じ案内軸に摺動可能に嵌合していることを特徴とする。   The measuring apparatus of the present invention includes a light source that generates laser light, a holding plate that holds the object, and a first optical system that guides the laser light to the object configured to be movable with respect to the object. A bearing provided in the first optical system, a second optical system for guiding laser light to the first optical system, and a light path between the first optical system and the second optical system. A plurality of light shielding cylinders, a support member for supporting the light shielding cylinders, and a bearing provided on the support member, wherein the plurality of light shielding cylinders have inner diameters so as to be nested. And the outer diameter is different, and the bearing provided in the first optical system and the bearing provided in the support portion are slidably fitted to the same guide shaft.

本発明によれば、レーザー光の光路に沿って配置される遮光筒を省スペースに設置することができる。また、遮光筒を伸縮と伸張させる時の駆動力を等しくすることができる。これによりレーザー光を対象物に導く光学系を安定して走査駆動でき、かつ小型なレーザー機器用遮光装置を提供することができる。   According to the present invention, the light-shielding cylinder arranged along the optical path of the laser beam can be installed in a space-saving manner. Further, the driving force when the light shielding cylinder is extended and contracted can be made equal. As a result, an optical system that guides laser light to the object can be stably scanned and driven, and a small-sized light shielding device for laser equipment can be provided.

本発明の適用できる測定装置の上面図である。It is a top view of the measuring apparatus which can apply this invention. 本発明の適用できる測定装置の側面図である。It is a side view of the measuring apparatus which can apply this invention. 遮光装置400の断面図である。4 is a cross-sectional view of a light shielding device 400. FIG. 円筒部材の傾き角度の説明図である。It is explanatory drawing of the inclination angle of a cylindrical member. レーザー光軸の傾き角度の説明図である。It is explanatory drawing of the inclination angle of a laser optical axis. 本発明の適用できる測定装置の他の実施形態の上面図である。It is a top view of other embodiments of a measuring device to which the present invention is applicable. 特許文献1で開示された遮光装置の概略図である。It is the schematic of the light-shielding apparatus disclosed by patent document 1.

本発明の適用できる遮光装置について、図面を用いて説明する。以降の説明においては、レーザー光を用いた測定装置に適用される遮光装置の形態について説明するが、本発明の遮光装置はこのような測定装置に限られず、レーザー加工機用やレーザー治療器用等、レーザー光を用いる装置であればどのような装置にも適用できる。   A light shielding device to which the present invention can be applied will be described with reference to the drawings. In the following description, the form of a light shielding device applied to a measuring device using laser light will be described. However, the light shielding device of the present invention is not limited to such a measuring device, but for a laser processing machine, a laser treatment device, etc. Any device that uses laser light can be applied.

以降の説明では、光イメージング技術を用いた測定装置に適用される遮光装置の構成例について説明する。レーザーなどの光源から被検体に光を照射し、入射した光に基づいて得られる被検体内の情報を画像化する光イメージング装置の研究が医療分野で積極的に進められている。この光イメージング技術の一つとして、Photo Acoustic Tomography(PAT:PAT)がある。PATでは、光源から発生したパルス光を被検体である生体に照射し、生体内で伝播・拡散したパルス光のエネルギーを吸収した生体組織から発生した音響波を検出する。この光音響波発生機序を、光音響効果と呼び、光音響効果により発生した弾性波を音響波と呼ぶこととする。腫瘍などの被検部位は、その周辺組織に対して光エネルギーの吸収率が高いことが多いため、周辺組織よりも多くの光を吸収して瞬間的に膨張する。この膨張の際に発生する音響波を音響波検出器で検出し、受信信号(電気信号)を得る。この受信信号を数学的に解析処理することにより、被検体内の、光音響効果により発生した音響波の音圧分布を画像データとして取得することができる。このようにして得られる画像データを基にして、生体内の光学特性分布、特に、吸収係数分布を得ることができる。   In the following description, a configuration example of a light shielding device applied to a measurement device using optical imaging technology will be described. Research on an optical imaging apparatus that irradiates a subject with light from a light source such as a laser and images information in the subject obtained based on incident light is being actively promoted in the medical field. As one of the optical imaging techniques, there is Photo Acoustic Tomography (PAT: PAT). In PAT, pulsed light generated from a light source is irradiated onto a living body that is a subject, and acoustic waves generated from living tissue that absorbs the energy of pulsed light that has propagated and diffused in the living body are detected. This photoacoustic wave generation mechanism is called a photoacoustic effect, and an elastic wave generated by the photoacoustic effect is called an acoustic wave. A test site such as a tumor often absorbs more light than the surrounding tissue and expands instantaneously because the absorption rate of light energy is often higher than that of the surrounding tissue. An acoustic wave generated during the expansion is detected by an acoustic wave detector to obtain a reception signal (electric signal). By mathematically analyzing this received signal, the sound pressure distribution of the acoustic wave generated by the photoacoustic effect in the subject can be acquired as image data. Based on the image data obtained in this way, an optical characteristic distribution in the living body, in particular, an absorption coefficient distribution can be obtained.

PATを用いた測定装置について、図1〜3を用いて説明する。図1は測定装置の上面図、図2は図1の測定装置をY方向から見た側面図、図3は図2の測定装置をX方向から見た部分断面図である。図1及び図2において、100は基台、200はレーザー光源、300は導光光学系、400は伸縮遮光装置、500は光学系、600は音響波検出器、700は走査駆動機構、800は被検体保持装置、900は信号処理装置、Eは被検体(対象物)である。被検体Eは、例えば、***などの生体組織である。以下、各構成要素の詳細を説明する。   A measuring apparatus using PAT will be described with reference to FIGS. 1 is a top view of the measuring apparatus, FIG. 2 is a side view of the measuring apparatus of FIG. 1 viewed from the Y direction, and FIG. 3 is a partial cross-sectional view of the measuring apparatus of FIG. 1 and 2, 100 is a base, 200 is a laser light source, 300 is a light guide optical system, 400 is a telescopic light shielding device, 500 is an optical system, 600 is an acoustic wave detector, 700 is a scanning drive mechanism, and 800 is An object holding apparatus, 900 is a signal processing apparatus, and E is an object (object). The subject E is a living tissue such as a breast, for example. Details of each component will be described below.

基台100は、レーザー光源200、導光光学系300、伸縮遮光装置400の端部、走査駆動機構700、被検体保持装置800を取り付けるためのベースになる部材である。   The base 100 is a member that serves as a base for mounting the laser light source 200, the light guide optical system 300, the end of the telescopic light-shielding device 400, the scanning drive mechanism 700, and the subject holding device 800.

レーザー光源200は、被検体Eに照射する特定波長のナノ秒オーダーのパルス光を発生するレーザー光源である。レーザー光源200が発する光の波長は、生体組織を構成する水、脂肪、タンパク質、酸化ヘモグロビン、還元ヘモグロビン、などの吸収スペクトルに応じた波長を選定する。一例としては、生体内部組織の主成分である水の吸収が小さいため光が良く透過し、脂肪、酸化ヘモグロビン、還元ヘモグロビンのスペクトルに特徴がある600−1500nm範囲が適当である。具体的なレーザー光源200の例としては、異なる波長を発生する半導体レーザー、波長可変レーザーなどで構成すると良い。   The laser light source 200 is a laser light source that generates pulsed light in a nanosecond order with a specific wavelength irradiated onto the subject E. The wavelength of the light emitted from the laser light source 200 is selected according to the absorption spectrum of water, fat, protein, oxidized hemoglobin, reduced hemoglobin, etc. constituting the living tissue. As an example, the range of 600 to 1500 nm is suitable because it absorbs water, which is the main component of the internal tissue of the living body, and transmits light well, and is characterized by the spectra of fat, oxyhemoglobin, and reduced hemoglobin. As a specific example of the laser light source 200, a semiconductor laser that generates different wavelengths, a wavelength tunable laser, or the like may be used.

導光光学系300(第二光学系)は、レーザー光源200から射出されたレーザー光を光学系500(第一光学系)に導くために設けられている光学部品である。レーザー光源200から射出されたレーザー光は、平板ガラスや直角プリズムに金属蒸着膜や誘電体多層膜を形成した部材で構成されているミラー301及び302で反射されて光学系500へと導かれる。また、レーザー光源200とミラー301及び302の間の光路には、アルミニウムなどの金属材料から成る円筒の内径部に黒色塗装などの反射防止処理をした部材で構成されている遮光筒311及び312が設けられている。   The light guide optical system 300 (second optical system) is an optical component provided to guide the laser light emitted from the laser light source 200 to the optical system 500 (first optical system). The laser light emitted from the laser light source 200 is reflected by the mirrors 301 and 302 formed of a member in which a metal vapor deposition film or a dielectric multilayer film is formed on a flat glass or a right-angle prism, and is guided to the optical system 500. Further, in the optical path between the laser light source 200 and the mirrors 301 and 302, there are light shielding cylinders 311 and 312 which are made of a member in which an inner diameter portion of a cylinder made of a metal material such as aluminum is subjected to an antireflection treatment such as black coating. Is provided.

伸縮遮光装置400は、内径及び外径の異なる複数の遮光筒である円筒部材401〜405と、円筒部材401〜404を支持する支持部材432〜434と、案内軸701及び702と、を備える。円筒部材401〜405は、光学系500と導光光学系300との間の光路を遮光し、前段の円筒部材が後段の円筒部材に嵌合してレーザーの光軸方向に入れ子状に重なり合う。本発明において、複数段に設けられた円筒部材は、伸張する向きである光学系500(第一光学系)側が前段とし、収縮する向きである導光光学系300(第二光学系)側が後段とする。光学系500の移動に伴って各円筒部材の重なり量を変化させることにより、全体として伸縮可能な構造となっている。図1に示すように、伸縮遮光装置400に導かれたレーザー光束は、光学系500に設けられたミラー501によってY方向に反射され、レンズ502及び503を通って被検体Eに到達する。図2は図1のY方向から見た側面図である。図2(a)は伸張時の状態、図2(b)は収縮時の状態を示している。円筒部材401〜405は前述の遮光筒311と同様の部材で構成することができる。内径及び外径の最も大きな最後段の円筒部材401の端部は基台100に取り付けられ、内径及び外径の最も小さな一段目の円筒部材405の端部は第一光学系である光学系500に連結されている。   The telescopic light shielding device 400 includes cylindrical members 401 to 405 that are a plurality of light shielding cylinders having different inner diameters and outer diameters, support members 432 to 434 that support the cylindrical members 401 to 404, and guide shafts 701 and 702. The cylindrical members 401 to 405 shield the optical path between the optical system 500 and the light guide optical system 300, and the front cylindrical member is fitted to the rear cylindrical member and overlapped in the optical axis direction of the laser. In the present invention, the cylindrical members provided in a plurality of stages have the optical system 500 (first optical system) side in the extending direction as the front stage and the light guide optical system 300 (second optical system) side in the contracting direction as the rear stage. And By changing the overlap amount of each cylindrical member with the movement of the optical system 500, the entire structure can be expanded and contracted. As shown in FIG. 1, the laser light beam guided to the telescopic light-shielding device 400 is reflected in the Y direction by a mirror 501 provided in the optical system 500, and reaches the subject E through lenses 502 and 503. FIG. 2 is a side view seen from the Y direction of FIG. FIG. 2A shows a state during expansion, and FIG. 2B shows a state during contraction. The cylindrical members 401 to 405 can be composed of members similar to the light shielding cylinder 311 described above. The end of the last-stage cylindrical member 401 having the largest inner diameter and outer diameter is attached to the base 100, and the end of the first-stage cylindrical member 405 having the smallest inner diameter and outer diameter is the first optical system 500. It is connected to.

また、円筒部材401〜404の端部の内径部には夫々、第一軸受部材411〜414が取り付けられている。円筒部材401に設けられた第一軸受部材411は、前段の円筒部材402の外径部に嵌合している。同様に、第一軸受部材412は円筒部材403の外径部に、第一軸受部材413は円筒部材404の外径部に、第一軸受部材414は円筒部材405の外径部に、夫々嵌合している。第一軸受部材は、一例としてポリアセタール、フッ素樹脂、などから成る固体軸受から構成される。さらに、円筒部材402〜405には、抜け止め部材422〜425が設けられている。抜け止め部材422の外径は第一軸受部材411の内径よりも大きくなっている。同様に、抜け止め部材423の外径は第一軸受部材412の内径よりも大きく、抜け止め部材424の外径は第一軸受部材413の内径よりも大きく、抜け止め部材425の外径は第一軸受部材414の内径よりも大きく、なっている。抜け止め部材は、円筒部材と第一軸受部材を嵌め合わせた後に取り付けされる。このような構成により、円筒部材401〜405はレーザー光軸方向に摺動可能に保持され、伸張時には抜け止め部材422〜425と第一軸受部材411〜414により、円筒部材401〜405の重なり部分を保持することができる。   Moreover, the 1st bearing members 411-414 are attached to the internal diameter part of the edge part of the cylindrical members 401-404, respectively. The first bearing member 411 provided on the cylindrical member 401 is fitted to the outer diameter portion of the preceding cylindrical member 402. Similarly, the first bearing member 412 is fitted to the outer diameter portion of the cylindrical member 403, the first bearing member 413 is fitted to the outer diameter portion of the cylindrical member 404, and the first bearing member 414 is fitted to the outer diameter portion of the cylindrical member 405. Match. The first bearing member is constituted by a solid bearing made of polyacetal, fluorine resin, or the like as an example. Further, the cylindrical members 402 to 405 are provided with retaining members 422 to 425. The outer diameter of the retaining member 422 is larger than the inner diameter of the first bearing member 411. Similarly, the outer diameter of the retaining member 423 is larger than the inner diameter of the first bearing member 412, the outer diameter of the retaining member 424 is larger than the inner diameter of the first bearing member 413, and the outer diameter of the retaining member 425 is the first. It is larger than the inner diameter of one bearing member 414. The retaining member is attached after the cylindrical member and the first bearing member are fitted together. With such a configuration, the cylindrical members 401 to 405 are slidably held in the laser optical axis direction, and when extended, the overlapping members of the cylindrical members 401 to 405 are retained by the retaining members 422 to 425 and the first bearing members 411 to 414. Can be held.

円筒部材402〜404には、支持部材432〜434が取り付けられている。支持部材には円柱形状の案内軸701及び702に嵌合する第二軸受部材442〜444及び第三軸受部材452〜454が取り付けられ、円筒部材を光軸方向に摺動可能に保持する。支持部材432〜434に設けられた第二軸受部材442〜444及び第三軸受部材452〜454により、円筒部材が重力方向(図の−Z方向)へ倒れることが抑制される。図3(a)は図2(a)のA−A断面図である。図3(a)に示されるように、第二軸受部材442〜444には案内軸701に嵌合する丸穴が設けられ、また第三軸受部材452〜454には案内軸702に嵌合する長穴が設けられている。第三軸受部材452〜454により、案内軸701を中心とした回転方向の移動が拘束されるので、第二軸受部材と第三軸受部材を取り付けた支持部材は、案内軸701及び702の軸方向にのみ摺動可能に保持されている。このような軸受部材は前述の第一軸受部材と同様の部材で構成することができる。また、第一軸受部材411〜414、支持部材432〜434、第二軸受部材442〜444、第三軸受部材452〜454は、円筒部材401〜405の収縮時の全長を短くするために各部材の伸縮方向の幅を薄くすることが好ましい。   Support members 432 to 434 are attached to the cylindrical members 402 to 404. Second bearing members 442 to 444 and third bearing members 452 to 454 fitted to columnar guide shafts 701 and 702 are attached to the support member, and hold the cylindrical member slidably in the optical axis direction. The second bearing members 442 to 444 and the third bearing members 452 to 454 provided on the support members 432 to 434 prevent the cylindrical member from falling in the direction of gravity (the −Z direction in the figure). Fig.3 (a) is AA sectional drawing of Fig.2 (a). As shown in FIG. 3A, the second bearing members 442 to 444 are provided with round holes that fit into the guide shaft 701, and the third bearing members 452 to 454 are fitted to the guide shaft 702. A long hole is provided. Since the third bearing members 452 to 454 restrain the movement in the rotational direction around the guide shaft 701, the support member to which the second bearing member and the third bearing member are attached is the axial direction of the guide shafts 701 and 702. It is held slidably only in the case. Such a bearing member can be comprised by the member similar to the above-mentioned 1st bearing member. In addition, the first bearing members 411 to 414, the support members 432 to 434, the second bearing members 442 to 444, and the third bearing members 452 to 454 are formed to reduce the total length of the cylindrical members 401 to 405 when contracted. It is preferable to reduce the width in the expansion / contraction direction.

このような構成において、後段の円筒部材の内径部に設けられた第一軸受部材は前段の円筒部材の外径部にガイドされ、抜け止め部材は円筒部材の内径にガイドされる。また、第二軸受部材は案内軸701にガイドされ、第三軸受部材は案内軸702にガイドされる。そして、光学系500が後述する走査駆動機構700により被検体上(対象物上)を移動すると、円筒部材は、光軸方向に摺動する。伸張時は図2(a)に示すように、全ての抜け止め部材が第一軸受部材に突き当てられた状態となり、収縮時は図2(b)に示すように全ての第一軸受部材に支持部材と円筒部材405のフランジ部が突き当てられた状態となっている。さらに、円筒部材が伸縮する時には、各軸受部材の摺動による摩擦力が生じるが、前述の特許文献1で示したような伸縮状態と伸張状態での荷重変動は生じない。このため後述する走査駆動機構700により、安定した駆動によりレーザー光を被検体Eに導くことができる。案内軸701及び702は円柱形状の鋼材の表面を硬化処理した部材で構成され、双方の軸は平行に配置されて基台100に取り付けられている。   In such a configuration, the first bearing member provided in the inner diameter portion of the subsequent cylindrical member is guided by the outer diameter portion of the previous cylindrical member, and the retaining member is guided by the inner diameter of the cylindrical member. The second bearing member is guided by the guide shaft 701, and the third bearing member is guided by the guide shaft 702. When the optical system 500 moves on the subject (on the object) by the scanning drive mechanism 700 described later, the cylindrical member slides in the optical axis direction. When extended, as shown in FIG. 2A, all retaining members are in contact with the first bearing member, and when contracted, as shown in FIG. The support member and the flange portion of the cylindrical member 405 are in contact with each other. Furthermore, when the cylindrical member expands and contracts, a frictional force is generated by sliding of each bearing member, but no load fluctuation occurs in the expanded and contracted state as shown in Patent Document 1 described above. For this reason, the laser beam can be guided to the subject E with stable driving by the scanning driving mechanism 700 described later. The guide shafts 701 and 702 are made of a member obtained by hardening the surface of a columnar steel material, and both shafts are arranged in parallel and attached to the base 100.

光学系500(第一光学系)は、レーザー光を被検体Eに導くために設けられている光学部品である。ミラー302から光学系500に導かれたレーザー光を被検体E方向に反射するミラー501とレーザー光のビーム径を拡大するレンズ502及び503で構成されている。光学系500から射出されたレーザー光は後述する被検体保持装置800に取り付けられた保持板801を透過して被検体Eに導かれる。また、光学系500は、走査駆動機構700により被検体に対し移動可能に構成される。後述の保持板801が設けられる場合は、保持板を介して被検体上を移動する。光学系500は、基板703上に設けられて支持され、基板703には第四軸受部材704、第五軸受部材705が設けられている。   The optical system 500 (first optical system) is an optical component that is provided to guide laser light to the subject E. It is composed of a mirror 501 that reflects laser light guided from the mirror 302 to the optical system 500 in the direction of the subject E, and lenses 502 and 503 that expand the beam diameter of the laser light. Laser light emitted from the optical system 500 passes through a holding plate 801 attached to a subject holding apparatus 800 described later and is guided to the subject E. The optical system 500 is configured to be movable with respect to the subject by the scanning drive mechanism 700. When a later-described holding plate 801 is provided, it moves on the subject via the holding plate. The optical system 500 is provided and supported on a substrate 703, and a fourth bearing member 704 and a fifth bearing member 705 are provided on the substrate 703.

図3(b)は図2(b)のB−B断面図である。図3(b)のように第四軸受部材704には案内軸701に嵌合する丸穴が設けられ、第五軸受部材705には案内軸702に嵌合する長穴が設けられている。第四軸受部材704及び第五軸受部材705は、案内軸701および702の軸方向に低摩擦で動作することができるものであり、リニアブッシュや固体軸受などで構成されている。基板703の上面には、光学系500が設けられており、下面には第四軸受部材704及び第五軸受部材705が取り付けられている。第五軸受部材705により、案内軸701を中心とした回転方向の移動が拘束されるので、基板703は案内軸701及び702の軸方向にのみ摺動可能に保持されている。本発明においては、円筒部材を支持する支持部材に設けられた第二及び第三軸受部材が嵌合する案内軸701及び702に、光学系500の走査駆動用の第四及び第五軸受部材も夫々嵌合する。つまり、支持部材に設けられた第二軸受部材と、光学系500を支持する基板に設けられた第四軸受部材とが、同じ案内軸701に摺動可能に嵌合する。同様に、支持部材に設けられた第三軸受部材と、光学系500を支持する基板に設けられた第五軸受部材とが、同じ案内軸702に摺動可能に嵌合する。これは、被検体を保持する保持板と案内軸とが略平行、つまり、光学系500が被検体に対してレーザー光を照射する照射方向と光学系500の移動方向とが交差(略直交)する構成を取ることにより可能となる。このように、第二軸受部材と第四軸受部材とが同じ案内軸701に嵌合し、第三軸受部材と第五軸受部材とが同じ案内軸702に摺動可能に嵌合することで、伸縮遮光装置を省スペースに実現することが可能となる。   FIG. 3B is a cross-sectional view taken along the line BB in FIG. As shown in FIG. 3B, the fourth bearing member 704 is provided with a round hole that fits into the guide shaft 701, and the fifth bearing member 705 is provided with a long hole that fits into the guide shaft 702. The fourth bearing member 704 and the fifth bearing member 705 can operate with low friction in the axial direction of the guide shafts 701 and 702, and are configured by a linear bush, a solid bearing, or the like. An optical system 500 is provided on the upper surface of the substrate 703, and a fourth bearing member 704 and a fifth bearing member 705 are attached to the lower surface. Since the fifth bearing member 705 restrains the movement in the rotational direction around the guide shaft 701, the substrate 703 is slidably held only in the axial direction of the guide shafts 701 and 702. In the present invention, the fourth and fifth bearing members for scanning drive of the optical system 500 are also provided on the guide shafts 701 and 702 to which the second and third bearing members provided on the support member supporting the cylindrical member are fitted. Each fits. That is, the second bearing member provided on the support member and the fourth bearing member provided on the substrate that supports the optical system 500 are slidably fitted to the same guide shaft 701. Similarly, the third bearing member provided on the support member and the fifth bearing member provided on the substrate supporting the optical system 500 are slidably fitted to the same guide shaft 702. This is because the holding plate for holding the subject and the guide axis are substantially parallel, that is, the irradiation direction in which the optical system 500 irradiates the subject with laser light and the moving direction of the optical system 500 intersect (substantially orthogonal). It becomes possible by taking the configuration to do. Thus, the second bearing member and the fourth bearing member are fitted to the same guide shaft 701, and the third bearing member and the fifth bearing member are slidably fitted to the same guide shaft 702, It is possible to realize a telescopic light-shielding device in a space-saving manner.

音響波検出器600は、受信した音響波による機械的な変化を受信信号(電気信号)に変換する電気機械変換素子である圧電素子等から構成される。癌などの腫瘍の成長に伴う新生血管の形成は、腫瘍のサイズが2−3mm以上になる場合に増大することが知られている。このため電気機械変換素子としては、光音響効果により数mm以下の光吸収体から発生した0.5MHz−数10MHzの音響波の検出に適した、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミック材料やPVDF(ポリフッ化ビニリデン)に代表される高分子圧電膜材料などを用いることができる。また、静電容量型の電気機械変換素子を用いても良い。音響波検出器600は、光学系500が設けられた基板703上に一体的に設けられることが好ましい。被検体上を光学系500と同期して移動可能に構成されると、複数の位置で音響波を受信でき、SN比の高い受信信号を得ることができる。   The acoustic wave detector 600 includes a piezoelectric element that is an electromechanical transducer that converts a mechanical change caused by a received acoustic wave into a received signal (electric signal). It is known that the formation of new blood vessels accompanying the growth of a tumor such as cancer increases when the size of the tumor becomes 2-3 mm or more. For this reason, as an electromechanical conversion element, it is represented by PZT (lead zirconate titanate) suitable for detection of an acoustic wave of 0.5 MHz to several tens of MHz generated from a light absorber of several mm or less due to a photoacoustic effect. A piezoelectric ceramic material, a polymer piezoelectric film material typified by PVDF (polyvinylidene fluoride), or the like can be used. Further, a capacitance type electromechanical transducer may be used. The acoustic wave detector 600 is preferably provided integrally on the substrate 703 on which the optical system 500 is provided. When configured to be movable on the subject in synchronization with the optical system 500, acoustic waves can be received at a plurality of positions, and a reception signal with a high S / N ratio can be obtained.

走査駆動機構700は、前述した光学系500や音響波検出器600を、被検体Eに対して案内軸の方向に走査駆動するためのものである。走査駆動機構700は、滑車であるプーリー706及び707、モーター708、ベルト709から構成されている。基台100にプーリー706とモーター708が取り付けられ、モーター708の回転軸にプーリー707が取り付けられている。プーリー706及び707にはベルト709が取り付けられ、さらにベルト709の一部が第四軸受部材704のハウジングに固定されている。このような構成により、不図示のコントローラーによりモーター708を回転させると、プーリー706及び707とベルト709により回転運動が直線運動に変換される。ベルト709に固定された第四軸受部材704に駆動力が伝達され、光学系500と音響波検出器600が案内軸701及び702に沿って走査駆動される。   The scanning drive mechanism 700 is for scanning the optical system 500 and the acoustic wave detector 600 described above in the direction of the guide axis with respect to the subject E. The scanning drive mechanism 700 includes pulleys 706 and 707 that are pulleys, a motor 708, and a belt 709. A pulley 706 and a motor 708 are attached to the base 100, and a pulley 707 is attached to the rotating shaft of the motor 708. A belt 709 is attached to the pulleys 706 and 707, and a part of the belt 709 is fixed to the housing of the fourth bearing member 704. With such a configuration, when the motor 708 is rotated by a controller (not shown), the rotational motion is converted into linear motion by the pulleys 706 and 707 and the belt 709. A driving force is transmitted to the fourth bearing member 704 fixed to the belt 709, and the optical system 500 and the acoustic wave detector 600 are scanned and driven along the guide shafts 701 and 702.

被検体保持装置800は、被検体Eを測定装置に固定するために設けられている。この装置を備える目的は、測定中に被検体Eが動き、測定位置が変化することを防ぐことや、被検体Eを圧迫挟持して薄くし被検体Eの深部に光を到達しやすくすることである。被検体保持装置800は、保持板801と、可動保持板802と、スライダー803と、リードスクリュー804と、ベアリング805と、ハンドル806と、から構成されている。   The subject holding device 800 is provided to fix the subject E to the measuring device. The purpose of providing this apparatus is to prevent the subject E from moving during measurement and to change the measurement position, or to compress and clamp the subject E to make it easier to reach the deep part of the subject E. It is. The subject holding apparatus 800 includes a holding plate 801, a movable holding plate 802, a slider 803, a lead screw 804, a bearing 805, and a handle 806.

保持板801は平板形状の部材で構成され基台100に取り付けられている。保持板801の一方の面側は被検体Eに接触して被検体Eを保持し、反対側の面側には前述の光学系500や音響波検出器600が不図示の音響マッチング剤を介して設けられている。保持板801は、光音響効果により発生した音響波に対して高透過特性と低減衰特性を有するとともに、レーザー光源200が発する光に対しても高い透過特性と低い減衰特性を有することが好ましい。このような保持板801を構成する材料の例としては、石英ガラス、ポリメチルペンテンポリマー、ポリカーボネート、アクリル、などがある。また、マッチング剤の一例としては、水、ひまし油、音響波検査用ジェル、などがある。   The holding plate 801 is composed of a flat plate-shaped member and is attached to the base 100. One surface side of the holding plate 801 is in contact with the subject E to hold the subject E, and the optical system 500 and the acoustic wave detector 600 are placed on the opposite surface side through an acoustic matching agent (not shown). Is provided. The holding plate 801 preferably has high transmission characteristics and low attenuation characteristics for acoustic waves generated by the photoacoustic effect, and also has high transmission characteristics and low attenuation characteristics for light emitted from the laser light source 200. Examples of the material constituting the holding plate 801 include quartz glass, polymethylpentene polymer, polycarbonate, and acrylic. Examples of the matching agent include water, castor oil, and an acoustic wave inspection gel.

可動保持板802は、保持板801と同様に平板形状の部材で構成される。可動保持板802には、基台100に取り付けられたスライダー803及びリードスクリュー804が取り付けられている。スライダー803は、光学系500の照射方向に低摩擦で動作することができるものであり、リニアベアリングや固体軸受などで構成されている。リードスクリュー804は、基台100にベアリング805を介して回転可能に取り付けられている。また、リードスクリュー804にはハンドル806が取り付けられており、ハンドル806の回転操作により可動保持板802を光学系500の照射方向(光学系500によりレーザー光を被検体に照射する方向)に移動させることができる。   The movable holding plate 802 is configured by a flat plate-like member like the holding plate 801. A slider 803 and a lead screw 804 attached to the base 100 are attached to the movable holding plate 802. The slider 803 can operate with low friction in the irradiation direction of the optical system 500, and is composed of a linear bearing, a solid bearing, or the like. The lead screw 804 is rotatably attached to the base 100 via a bearing 805. A handle 806 is attached to the lead screw 804, and the movable holding plate 802 is moved in the irradiation direction of the optical system 500 (the direction in which the optical system 500 irradiates the subject with laser light) by rotating the handle 806. be able to.

信号処理装置900は、音響波検出器600が出力する受信信号を用いて、光音響効果により発生した音響波の音圧分布等を画像データとして生成するものである。また、このようにして得られた画像データを基にして、HbとHbOの吸収係数分布を画像データ化しても良い。 The signal processing device 900 generates a sound pressure distribution or the like of an acoustic wave generated by the photoacoustic effect as image data, using a reception signal output from the acoustic wave detector 600. Further, based on the image data obtained in this way, the absorption coefficient distribution of Hb and HbO 2 may be converted into image data.

(伸縮遮光装置400の各設定条件)
次に伸縮遮光装置400を構成する各部材の最適な構成に関して説明する。第一軸受部材と円筒部材の外径部との嵌合部、第二軸受部材と案内軸701との嵌合部、第三軸受部材と案内軸702との嵌合部には、夫々嵌合隙間がある。このため円筒部材402、403、404には、嵌合隙間に対応した量だけ傾きが生じる。この傾き量が大きくなるとレーザー光束と円筒部材が干渉し、所望の光強度が得られなくなる。このため上述した夫々の嵌合部の嵌合隙間をレーザー光束と円筒部材の干渉が生じず、且つスムーズな伸縮駆動が可能になるように設定することが必要である。図4(a)、4(b)、4(c)は、このための設定条件を説明するための模式図である。
(Each setting condition of the expansion / contraction light shielding device 400)
Next, the optimum configuration of each member constituting the stretchable light shielding device 400 will be described. A fitting portion between the first bearing member and the outer diameter portion of the cylindrical member, a fitting portion between the second bearing member and the guide shaft 701, and a fitting portion between the third bearing member and the guide shaft 702 are respectively fitted. There is a gap. For this reason, the cylindrical members 402, 403, and 404 are inclined by an amount corresponding to the fitting gap. When this amount of inclination increases, the laser beam and the cylindrical member interfere with each other, and a desired light intensity cannot be obtained. For this reason, it is necessary to set the fitting gap of each fitting part mentioned above so that a laser beam and a cylindrical member may not interfere, and smooth expansion-contraction drive is possible. 4 (a), 4 (b), and 4 (c) are schematic diagrams for explaining setting conditions for this purpose.

円筒部材402、403、404のうち最初にレーザー光束と干渉する可能性があるものは、支持部材434が設けられた二段目の円筒部材404である。第一段目の円筒部材405は光学系500に連結されているため、ほとんど傾かない。   Of the cylindrical members 402, 403, and 404, the first member that may interfere with the laser beam is the second-stage cylindrical member 404 provided with the support member 434. Since the first-stage cylindrical member 405 is connected to the optical system 500, it hardly tilts.

図4(a)は、三段目の円筒部材に設けられた第一軸受部材413と二段目の円筒部材404の外径部との関係を示している。円筒部材404の外径をd、第一軸受部材413の幅をt、第一軸受部材413の内径をd+Δd、円筒部材404が第一軸受部材413に対して最も倒れた時の傾き角度をθとする。この時θは、 FIG. 4A shows the relationship between the first bearing member 413 provided on the third-stage cylindrical member and the outer diameter portion of the second-stage cylindrical member 404. The outer diameter d a of the cylindrical member 404, width t a of the first bearing member 413, when the inner diameter d a + [Delta] d a of the first bearing member 413, cylindrical member 404 is most fallen relative to the first bearing member 413 the inclination angle of the θ a. At this time, θ a is

Figure 2011232247
Figure 2011232247

で表される。θが微小な場合、概ね It is represented by When θ a is very small,

Figure 2011232247
Figure 2011232247

となる。 It becomes.

図4(b)は、第二軸受部材444と案内軸701及び第三軸受部材454と案内軸702との関係を示している。案内軸701及び案内軸702の外径をd、第二軸受部材444及び第三軸受部材454の幅をt、第二軸受部材444の内径及び第三軸受部材454の嵌め合い寸法をd+Δdとする。また、第二軸受部材444が案内軸701に対して最も倒れた時の傾き角度及び第三軸受部材454が案内軸702に対して最も倒れた時の傾き角度をθとする。この時θは、 FIG. 4B shows the relationship between the second bearing member 444 and the guide shaft 701, and the third bearing member 454 and the guide shaft 702. The outer diameter d b of the guide shaft 701 and the guide shaft 702, width t b of the second bearing member 444 and the third bearing member 454, the inner diameter and mating dimensions of the third bearing member 454 of the second bearing member 444 d and b + Δd b. The second bearing member 444 and the inclination angle theta b when the inclination angle and the third bearing member 454 when the most fallen relative to the guide shaft 701 most fallen to the guide shaft 702. At this time, θ b is

Figure 2011232247
Figure 2011232247

で表される。θが微小な場合、概ね It is represented by When θ b is very small,

Figure 2011232247
Figure 2011232247

となる。 It becomes.

図4(c)は、円筒部材403に円筒部材404の一部が重なった場合を示している。第一軸受部材413の内径と案内軸701の外径との距離をp、円筒部材404の外径と第二軸受部材444の内径との距離をqとする。また、円筒部材404の第一軸受部材413との接触部から支持部材434までの長さ(外径部の長さ)をL、円筒部材404が第一軸受部材413に対して最も倒れた時の傾き角度をθとする。この時θは、 FIG. 4C shows a case where a part of the cylindrical member 404 overlaps the cylindrical member 403. The distance between the inner diameter of the first bearing member 413 and the outer diameter of the guide shaft 701 is p, and the distance between the outer diameter of the cylindrical member 404 and the inner diameter of the second bearing member 444 is q. In addition, the length from the contact portion of the cylindrical member 404 with the first bearing member 413 to the support member 434 (length of the outer diameter portion) is L x , and the cylindrical member 404 is most tilted with respect to the first bearing member 413. the inclination angle when the theta c. At this time, θ c is

Figure 2011232247
Figure 2011232247

で表される。θが微小な場合、概ね It is represented by When θ c is very small,

Figure 2011232247
Figure 2011232247

となる。円筒部材404の外筒部の長さをLとするとLは、 It becomes. When the length of the outer cylindrical portion of the cylindrical member 404 is L, L x is

Figure 2011232247
Figure 2011232247

の範囲で変化する。θが最大になるのは、 It varies in the range. θ c is maximized

Figure 2011232247
Figure 2011232247

の時である。θが微小な場合、概ねL=tとなり、maxθ=θとなる。また、θが最小になるのは、L=Lの時である。 Is the time. If theta c is small, consisting substantially L x = t a, and the a maxθ c = θ a. Also, θ c is minimized when L x = L.

円筒部材404は、図4(a)、4(b)、4(c)で示したθ、θ、θのうち一番小さな角度だけ傾くことになる。ここで、レーザー光束径をd、円筒部材404の内径をdとする。この時、θ>θならば、 The cylindrical member 404 is inclined by the smallest angle among θ a , θ b , and θ c shown in FIGS. 4 (a), 4 (b), and 4 (c). Here, the laser beam diameter to d L, the inner diameter of the cylindrical member 404 and d m. At this time, if θ a > θ b ,

Figure 2011232247
Figure 2011232247

θ>θならば、 If θ b > θ a ,

Figure 2011232247
Figure 2011232247

の条件を満たすとレーザー光束と円筒部材の干渉を回避することができる。 If this condition is satisfied, interference between the laser beam and the cylindrical member can be avoided.

本実施形態の伸縮遮光装置400においては、第一軸受部材、第二軸受部材、第三軸受部材の3種類の軸受部材を設けている。この軸受部材の全ての嵌合隙間を小さくする必要は無く、円形断面部材の嵌め合いの場合は一つの軸径と回転方向を拘束する2種類の嵌合隙間を小さくすれば良い。このような部材を実際に設計する場合、第一軸受部材の嵌合隙間を小さくすると、第一軸受部材と嵌合する複数個の円筒部材の外径部を高精度に製作する必要がある。円筒部材は全長が長いので外径部の全てを高精度に製作すると部品のコストが高くなる。また、組立も高精度に行わなければ成らない。このため円筒部材或いは組立に微小なずれが生じた時に伸縮駆動の動きが悪くなる可能性がある。一方、第二及び第三軸受部材の嵌合隙間を小さくすると、これらの軸受部材と嵌合するのは案内軸701及び701の2つである。これらの案内軸は、形状が単純で高精度に製作することが容易である。   In the telescopic light-shielding device 400 of the present embodiment, three types of bearing members are provided: a first bearing member, a second bearing member, and a third bearing member. It is not necessary to reduce all the fitting gaps of the bearing member, and in the case of fitting the circular cross-section members, the two kinds of fitting gaps that restrict one shaft diameter and the rotation direction may be reduced. When such a member is actually designed, if the fitting gap of the first bearing member is made small, it is necessary to manufacture the outer diameter portions of a plurality of cylindrical members fitted to the first bearing member with high accuracy. Since the entire length of the cylindrical member is long, the cost of parts increases when all the outer diameter portions are manufactured with high accuracy. Also, assembly must be performed with high accuracy. For this reason, there is a possibility that the movement of the expansion / contraction drive is deteriorated when a minute deviation occurs in the cylindrical member or the assembly. On the other hand, when the fitting clearance between the second and third bearing members is reduced, the guide shafts 701 and 701 are fitted with these bearing members. These guide shafts are simple in shape and easy to manufacture with high accuracy.

第一軸受部材の嵌合隙間を小さくするとθを小さくすることができるが、前述したように円筒部材404は、θ、θ、θ、のうち一番小さな角度だけ傾くことになるので、θ及びmaxθを小さくせずθを小さくするように各部材を設計することが好ましい。円筒部材の全長は軸受部材の光軸方向の幅に比べて十分に長いのでminθを小さくすることは容易である。θ>θの時、 If the fitting clearance of the first bearing member is reduced, θ a can be reduced. However, as described above, the cylindrical member 404 is inclined by the smallest angle among θ a , θ b , and θ c . because, it is preferable to design the members so as to reduce the theta b without reducing the theta a and maxθ c. The total length of the cylindrical member it is easy to reduce the Minshita c is sufficiently longer than the optical axis direction of the width of the bearing member. When θ a > θ b ,

Figure 2011232247
Figure 2011232247

の条件を満たすとレーザー光束と円筒部材の干渉を回避することができる。
設計の一例として、
If this condition is satisfied, interference between the laser beam and the cylindrical member can be avoided.
As an example of design,

Figure 2011232247
Figure 2011232247

とすると、概ね Then almost

Figure 2011232247
Figure 2011232247

となる。長さの単位はmmである。 It becomes. The unit of length is mm.

次に、導光光学系300のミラー302と光学系500の位置ずれが生じた場合について説明する。測定装置を構成する部材を組立した場合、各部材に設けた寸法精度の公差の範囲内でずれが生じる。図5はこの時の設定条件を説明するためのものである。図5に示した装置では、導光光学系300のミラー302と光学系500の位置ずれが生じた場合を示している。ミラー302には、このような位置ずれの影響を補正するために、レーザー光の反射位置を基準としてミラーの角度を調節するための不図示の調節機構が設けられている。この調節機構により位置ずれを補正し、レーザー光を光学系500の光軸に導くことができる。   Next, a case where the misalignment between the mirror 302 of the light guide optical system 300 and the optical system 500 occurs will be described. When the members constituting the measuring apparatus are assembled, the deviation occurs within the tolerance of the dimensional accuracy provided for each member. FIG. 5 is for explaining the setting conditions at this time. In the apparatus shown in FIG. 5, a case where a positional deviation between the mirror 302 of the light guide optical system 300 and the optical system 500 occurs is shown. The mirror 302 is provided with an adjustment mechanism (not shown) for adjusting the angle of the mirror on the basis of the reflection position of the laser beam in order to correct the influence of such positional deviation. This adjustment mechanism can correct the misalignment and guide the laser beam to the optical axis of the optical system 500.

この時、設計基準のレーザー光軸に対して調整したレーザー光軸が角度θだけ傾いているとする。ミラー302におけるレーザー光の反射位置から円筒部材404までの長さをLとすると、円筒部材404におけるレーザー光軸のZ方向のずれは At this time, it is assumed that the adjusted laser optical axis is inclined by the angle θ d with respect to the design-standard laser optical axis. When the length from the laser beam reflection position at the mirror 302 to the cylindrical member 404 is L d , the deviation of the laser optical axis in the cylindrical member 404 in the Z direction is

Figure 2011232247
Figure 2011232247

となる。前述した嵌合隙間による円筒部材404の設計基準のレーザー光軸に対する傾き角度をθとする。レーザー光束と円筒部材の干渉を回避するとともに円筒部材をできるだけ小さくするための条件は、嵌合隙間による円筒部材404の傾き角度θと設計基準の光軸に対するレーザー光軸の角度θを合わせた角度傾いても干渉が生じない場合である。すなわち、 It becomes. The inclination angle with respect to the laser light axis design criteria of the cylindrical member 404 by fitting gap described above and theta x. Conditions for minimizing the cylindrical member while avoiding interference of the laser beam and the cylindrical member, move the angle theta d of the laser beam axis with respect to the optical axis of the tilt angle theta x and design criteria of the cylindrical member 404 by fitting gap This is a case where no interference occurs even if the angle is inclined. That is,

Figure 2011232247
Figure 2011232247

の条件を満たすように各部材を設計することが好ましい。設計の一例として、 It is preferable to design each member so as to satisfy the above condition. As an example of design,

Figure 2011232247
Figure 2011232247

とすると、9.15mm<d−dとなる。 When, a 9.15mm <d m -d L.

また、円筒部材の径を大きくすることは、レーザー光束と円筒部材の干渉を回避することに有効である。しかしながら、円筒部材が大きくすると伸縮遮光装置400も大きくなるという不具合が生じる。このためレーザー光束と円筒部材の干渉を回避するとともに円筒部材をできるだけ小さくすることが好ましい。このためθとθに余裕をもつ且つ必要以上に遮光部材を大きくしないための上限値を2θと2θにすると良い。この時、 Also, increasing the diameter of the cylindrical member is effective in avoiding interference between the laser beam and the cylindrical member. However, when the cylindrical member is enlarged, there arises a problem that the expansion / contraction light shielding device 400 is also enlarged. For this reason, it is preferable to avoid interference between the laser beam and the cylindrical member and to make the cylindrical member as small as possible. The upper limit for not increasing the and unnecessarily shielding member having a margin in the order theta x and theta d may be the 2 [Theta] x and 2 [Theta] d. At this time,

Figure 2011232247
Figure 2011232247

の条件を満たすように各部材を設計することが好ましい。 It is preferable to design each member so as to satisfy the above condition.

以上説明したように、本発明を適用できる遮光装置及び該遮光装置を用いた測定装置では、伸縮時と伸張時の荷重変動が無く、レーザー光が導光される領域のみを遮光することが可能となる。これによりレーザー光を物体に導く光学系を安定して走査駆動でき、かつ小型で低価格なレーザー機器用遮光装置を提供することができる。また、第二及び第四軸受部材と案内軸は円形断面の部材を用いているが、四角形断面の部材を用いることもできる。この場合、案内軸を中心とした回転が生じないので、第三及び第五軸受部材を用いる必要がなくなる。   As described above, the light-shielding device to which the present invention can be applied and the measuring device using the light-shielding device can shield only the region where the laser beam is guided without any load fluctuation during expansion and contraction. It becomes. As a result, it is possible to provide a light-shielding device for laser equipment that can stably scan and drive an optical system that guides laser light to an object, and that is small and inexpensive. The second and fourth bearing members and the guide shaft use circular cross-section members, but quadrilateral cross-section members can also be used. In this case, since rotation about the guide shaft does not occur, it is not necessary to use the third and fifth bearing members.

また、本発明においては、図6に示すように、内径及び外径の最も小さな最後段の円筒部材405の端部が基台100(つまり第二光学系側)に取り付けられ、内径及び外径の最も大きな一段目の円筒部材401の端部が第一光学系である光学系500に連結されるようにしても良い。この場合においても、図4等で説明したように、円筒部材402、403、404のうち最初にレーザー光束と干渉する可能性があるものは、最後段の前段の円筒部材404である。また、前述したように円筒部材404は、θ、θ、θ、のうち一番小さな角度だけ傾くことになるので、θ及びmaxθを小さくせずθを小さくするように各部材を設計することが好ましい。 In the present invention, as shown in FIG. 6, the end of the cylindrical member 405 at the last stage having the smallest inner diameter and outer diameter is attached to the base 100 (that is, the second optical system side), and the inner diameter and the outer diameter. The end of the largest first-stage cylindrical member 401 may be connected to the optical system 500 that is the first optical system. Also in this case, as described with reference to FIG. 4 and the like, the cylindrical member 404 which is likely to interfere with the laser beam first among the cylindrical members 402, 403 and 404 is the last-stage cylindrical member 404. Further, the cylindrical member 404 as described above, θ a, θ b, θ c, it means that inclined by the smallest angle of each so as to reduce the theta b without reducing the theta a and Maxshita c It is preferable to design the member.

100 基台
200 レーザー光源
300 導光光学系
400 伸縮遮光装置
500 光学系
600 音響波検出器
700 走査駆動機構
800 被検体保持装置
900 信号処理装置
DESCRIPTION OF SYMBOLS 100 Base 200 Laser light source 300 Light guide optical system 400 Telescopic light-shielding device 500 Optical system 600 Acoustic wave detector 700 Scanning drive mechanism 800 Object holding device 900 Signal processing device

Claims (7)

対象物に対し移動可能に構成された前記対象物にレーザー光を導くための第一光学系と前記第一光学系にレーザー光を導く第二光学系との間の光路を遮光するよう設けられた複数の遮光筒と、前記遮光筒を支持する支持部材と、前記支持部材に設けられた軸受と、を有する遮光装置であって、
前記複数の遮光筒は入れ子状に重なり合うよう夫々の内径及び外径が異なっており、
前記第一光学系に設けられた軸受と前記支持部に設けられた軸受とは、同じ案内軸に摺動可能に嵌合していることを特徴とする遮光装置。
Provided to shield an optical path between a first optical system for guiding laser light to the object configured to be movable relative to the object and a second optical system for guiding laser light to the first optical system. A light-shielding device having a plurality of light-shielding tubes, a support member that supports the light-shielding tube, and a bearing provided on the support member,
The plurality of light shielding cylinders have different inner and outer diameters so as to be nested,
A light-shielding device, wherein a bearing provided in the first optical system and a bearing provided in the support portion are slidably fitted to the same guide shaft.
前記複数の遮光筒のうち内径が最小の一段目の遮光筒は前記第一光学系に連結されており、前記一段目の遮光筒の後段の二段目の遮光筒の内径部には、前記一段目の遮光筒の外径部に嵌合するための軸受が設けられており、
前記一段目の遮光筒の外径部と前記二段目の遮光筒の内径部に設けられた軸受との嵌合隙間によって生じる前記二段目の遮光筒の傾きよりも、前記案内軸と前記支持部に設けられた軸受との嵌合隙間によって生じる前記二段目の遮光筒の傾きのほうが小さいことを特徴とする請求項1に記載の遮光装置。
The first stage light shielding cylinder having the smallest inner diameter among the plurality of light shielding cylinders is connected to the first optical system, and the inner diameter portion of the second stage light shielding cylinder after the first stage light shielding cylinder A bearing for fitting to the outer diameter part of the first stage light shielding cylinder is provided,
More than the inclination of the second stage light shielding cylinder caused by the fitting gap between the outer diameter part of the first stage light shielding cylinder and the bearing provided in the inner diameter part of the second stage light shielding cylinder, the guide shaft and the The light-shielding device according to claim 1, wherein an inclination of the second-stage light-shielding cylinder caused by a fitting gap with a bearing provided in the support portion is smaller.
前記複数の遮光筒のうち内径が最小の最後段の遮光筒は前記第二光学系に連結されており、前記最後段の遮光筒の前段の遮光筒の内径部には、前記最後段の遮光筒の外径部に嵌合するための軸受が設けられており、
前記最後段の遮光筒の外径部と前記前段の遮光筒の内径部に設けられた軸受との嵌合隙間によって生じる前記前段の遮光筒の傾きよりも、前記案内軸と前記支持部に設けられた軸受との嵌合隙間によって生じる前記前段の遮光筒の傾きのほうが小さいことを特徴とする請求項1に記載の遮光装置。
The last-stage light-shielding cylinder having the smallest inner diameter among the plurality of light-shielding cylinders is connected to the second optical system. A bearing for fitting to the outer diameter part of the cylinder is provided,
Provided in the guide shaft and the support portion rather than the inclination of the front light-shielding tube caused by the fitting gap between the outer diameter portion of the last light-shielding tube and the bearing provided in the inner diameter portion of the front light-shielding tube. The light-shielding device according to claim 1, wherein an inclination of the light-shielding cylinder in the previous stage generated by a fitting gap with the bearing is smaller.
レーザー光を発生する光源と、対象物を保持する保持板と、前記対象物に対し移動可能に構成された前記対象物にレーザー光を導くための第一光学系と、前記第一光学系に設けられた軸受と、前記第一光学系にレーザー光を導く第二光学系と、前記第一光学系と前記第二光学系との間の光路を遮光するよう設けられた複数の遮光筒と、前記遮光筒を支持する支持部材と、前記支持部材に設けられた軸受と、を有する測定装置であって、
前記複数の遮光筒は入れ子状に重なり合うよう夫々の内径及び外径が異なっており、
前記第一光学系に設けられた軸受と前記支持部に設けられた軸受とは、同じ案内軸に摺動可能に嵌合していることを特徴とする測定装置。
A light source for generating laser light, a holding plate for holding the object, a first optical system for guiding laser light to the object configured to be movable with respect to the object, and the first optical system. A bearing provided, a second optical system for guiding laser light to the first optical system, and a plurality of light shielding cylinders provided to shield an optical path between the first optical system and the second optical system; A measuring device having a supporting member for supporting the light shielding cylinder, and a bearing provided on the supporting member,
The plurality of light shielding cylinders have different inner and outer diameters so as to be nested,
The measuring apparatus, wherein a bearing provided in the first optical system and a bearing provided in the support portion are slidably fitted to the same guide shaft.
前記第一光学系は前記保持板を介して対象物上を移動し、前記保持板と前記案内軸とが平行に設けられていることを特徴とする請求項3に記載の測定装置。   The measuring apparatus according to claim 3, wherein the first optical system moves on an object via the holding plate, and the holding plate and the guide shaft are provided in parallel. 前記複数の遮光筒のうち内径が最小の一段目の遮光筒は前記第一光学系に連結されており、前記一段目の遮光筒の後段の二段目の遮光筒の内径部には、前記一段目の遮光筒の外径部に嵌合する軸受が設けられており、
前記一段目の遮光筒の外径部と前記二段目の遮光筒に設けられた軸受との嵌合隙間によって生じる前記二段目の遮光筒の傾きよりも、前記案内軸と前記支持部に設けられた軸受との嵌合隙間によって生じる前記二段目の遮光筒の傾きのほうが小さいことを特徴とする請求項4又は5に記載の測定装置。
The first stage light shielding cylinder having the smallest inner diameter among the plurality of light shielding cylinders is connected to the first optical system, and the inner diameter portion of the second stage light shielding cylinder after the first stage light shielding cylinder A bearing that fits to the outer diameter part of the first stage light shielding cylinder is provided,
Rather than the inclination of the second stage light shielding cylinder caused by the fitting gap between the outer diameter part of the first stage light shielding cylinder and the bearing provided in the second stage light shielding cylinder, the guide shaft and the support part The measuring apparatus according to claim 4, wherein an inclination of the second-stage light shielding cylinder caused by a fitting gap with a provided bearing is smaller.
前記複数の遮光筒のうち内径が最小の最後段の遮光筒は前記第二光学系に連結されており、前記最後段の遮光筒の前段の遮光筒の内径部には、前記最後段の遮光筒の外径部に嵌合するための軸受が設けられており、
前記最後段の遮光筒の外径部と前記前段の遮光筒の内径部に設けられた軸受との嵌合隙間によって生じる前記前段の遮光筒の傾きよりも、前記案内軸と前記支持部に設けられた軸受との嵌合隙間によって生じる前記前段の遮光筒の傾きのほうが小さいことを特徴とする請求項4又は5に記載の測定装置。
The last-stage light-shielding cylinder having the smallest inner diameter among the plurality of light-shielding cylinders is connected to the second optical system. A bearing for fitting to the outer diameter part of the cylinder is provided,
Provided in the guide shaft and the support portion rather than the inclination of the front light-shielding tube caused by the fitting gap between the outer diameter portion of the last light-shielding tube and the bearing provided in the inner diameter portion of the front light-shielding tube. The measuring apparatus according to claim 4 or 5, wherein an inclination of the light-shielding cylinder in the previous stage generated by a fitting gap with the bearing is smaller.
JP2010104299A 2010-04-28 2010-04-28 Light-shielding device and measuring device Pending JP2011232247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104299A JP2011232247A (en) 2010-04-28 2010-04-28 Light-shielding device and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104299A JP2011232247A (en) 2010-04-28 2010-04-28 Light-shielding device and measuring device

Publications (1)

Publication Number Publication Date
JP2011232247A true JP2011232247A (en) 2011-11-17

Family

ID=45321692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104299A Pending JP2011232247A (en) 2010-04-28 2010-04-28 Light-shielding device and measuring device

Country Status (1)

Country Link
JP (1) JP2011232247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015177823A1 (en) * 2014-05-19 2017-04-20 システム・インスツルメンツ株式会社 Analysis equipment
WO2017154179A1 (en) * 2016-03-10 2017-09-14 ギガフォトン株式会社 Structure for connecting optical unit to optical path pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015177823A1 (en) * 2014-05-19 2017-04-20 システム・インスツルメンツ株式会社 Analysis equipment
US10302638B2 (en) 2014-05-19 2019-05-28 System Instruments Co., Ltd. Analyzing apparatus
WO2017154179A1 (en) * 2016-03-10 2017-09-14 ギガフォトン株式会社 Structure for connecting optical unit to optical path pipe
US20180341077A1 (en) * 2016-03-10 2018-11-29 Gigaphoton Inc. Structure of connection between optical unit and optical path tube
US10481354B2 (en) 2016-03-10 2019-11-19 Gigaphoton Inc. Structure of connection between optical unit and optical path tube

Similar Documents

Publication Publication Date Title
RU2439539C1 (en) Optical tomographic imaging apparatus
EP1994361B1 (en) A fourier-domain optical coherence tomography imager
EP3031381A1 (en) Probe for optical imaging
WO2014121193A1 (en) Apparatus for utilizing flexible forward scanning catheter
CN1639539A (en) Apparatus for OCT imaging with axial line focus for improved resolution and depth of field
EP1970743A1 (en) Optical scanning observation apparatus
US9880381B2 (en) Varifocal lens, optical scanning probe including the varifocal lens, and medical apparatus including the optical scanning probe
EP2615966A1 (en) Full-field optical coherence tomography system for imaging an object
US20100220369A1 (en) Scanning System for Scanning an Object Surface, in Particular for a Coordinates Measurement Machine
JP2011232247A (en) Light-shielding device and measuring device
JP2015008995A (en) Optical imaging probe
KR20140108759A (en) Optical coherence tomography and method using the same
US8411366B2 (en) Optical probe and optical system therefor
JP6520629B2 (en) Scanning probe microscope
WO2007091991A2 (en) Simultaneous beam-focus and coherence-gate tracking for real-time optical coherence tomography
US9456789B2 (en) Object information acquisition apparatus
JP2004258312A (en) Digital camera
KR102328368B1 (en) Module for detecting electromagnetic wave and, apparatus for detecting transmission of electromagnetic wave including adjacent detector
CN115414001B (en) Projection device based on cornea reflection, cornea photo-projector, cornea topography instrument and detection method thereof
JP6043623B2 (en) Inner diameter measuring device
US10976151B2 (en) Optical interferometer with reference arm longer than sample arm
Piyawattanametha et al. MEMS based dual-axes confocal reflectance handheld microscope for in vivo imaging
JP2012147831A (en) Scanning position correction device
KR20180131524A (en) Optical zoom probe
US20220163789A1 (en) Condensing objective optical system and photoacoustic device