JP2011231842A - Planetary gear mechanism - Google Patents

Planetary gear mechanism Download PDF

Info

Publication number
JP2011231842A
JP2011231842A JP2010102192A JP2010102192A JP2011231842A JP 2011231842 A JP2011231842 A JP 2011231842A JP 2010102192 A JP2010102192 A JP 2010102192A JP 2010102192 A JP2010102192 A JP 2010102192A JP 2011231842 A JP2011231842 A JP 2011231842A
Authority
JP
Japan
Prior art keywords
planetary gear
driven
phase
gear
planetary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010102192A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ota
浩充 太田
Koji Nagumo
考司 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2010102192A priority Critical patent/JP2011231842A/en
Publication of JP2011231842A publication Critical patent/JP2011231842A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H2001/2872Toothed gearings for conveying rotary motion with gears having orbital motion comprising three central gears, i.e. ring or sun gear, engaged by at least one common orbital gear mounted on an idling carrier

Landscapes

  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planetary gear mechanism capable of reducing play of gears in normal and reverse rotations regardless of a backlash amount of an engagement portion of gears.SOLUTION: In a planetary gear reduction gear 1, a planetary gear set comprises a reference phase planetary gear set comprising spur gears and at least one planetary gear set with a different phases. The planetary gear set with an unmatched phase has a phase difference, which is a difference of gear positions in a rotation direction of the gears between planetary gears 6a to 6d and the driven planetary gears 7a to 7d, when the backlash of engaged portions of a fixed internal gear 8 and the planetary gears 6a to 6d, a driven internal gear 9 and driven planetary gears 7a to 7d is 0. In the planetary gear set with an unmatched phase, the phase difference between the planetary gears 6a to 6d and the driven planetary gears 7a to 7d is different from that of the reference phase planetary gear set. Accordingly, with the above configuration, play corresponding to the phase difference between the reference phase planetary gear set and the planetary gear set with a different phase can be decreased.

Description

本発明は、遊星歯車機構に関するものであり、詳しくは3K型の遊星歯車機構のバックラッシ起因の遊び除去に関するものである。   The present invention relates to a planetary gear mechanism, and more particularly, to removal of play caused by backlash in a 3K type planetary gear mechanism.

3K型の遊星歯車機構は小型で大きな速度比を実現できるため多くの装置に使用されている。しかし、精密な回転運動をえるためには歯車噛合部のバックラッシ起因の遊びの除去が重要である。これを改善するために固定内歯車噛合遊星歯車と従動内歯車噛合遊星歯車をねじり角の異なるハスバ歯車とし、一部の遊星歯車組を軸方向に移動させてバックラッシ起因の遊びを除去する従来技術(例えば、特許文献1参照)がある。   Since the 3K type planetary gear mechanism is small and can realize a large speed ratio, it is used in many devices. However, in order to obtain a precise rotational movement, it is important to eliminate play caused by backlash of the gear meshing portion. In order to improve this, the fixed internal gear meshing planetary gear and the driven internal gear meshing planetary gear are helical gears having different torsion angles, and some planetary gear sets are moved in the axial direction to eliminate play caused by backlash. (For example, see Patent Document 1).

特開平6−257646号公報JP-A-6-257646

従来技術では、ハスバ歯車を使用するため軸方向の反力が生じる。これを吸収するために機構が複雑となり高価である。
本発明は上記事情に鑑みてなされたものであり、小型でバックラッシ起因の遊びの少ない遊星歯機構を安価に提供することを目的とする。
In the prior art, since a helical gear is used, an axial reaction force is generated. In order to absorb this, the mechanism becomes complicated and expensive.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a planetary gear mechanism that is small and has little play due to backlash at low cost.

上記の課題を解決するため、請求項1に係る発明の特徴は、回転軸に固定されたサンギヤと、
前記サンギヤに噛合するプラネタリギヤと、前記プラネタリギヤの軸方向の一端に設けられ前記プラネタリギヤと一体に回転する従動プラネタリギヤとで構成された複数個のプラネタリギヤ組と、
前記プラネタリギヤ組を回転自在に支持するプラネタリギヤ支持手段と、
前記プラネタリギヤ支持手段を保持し、前記回転軸廻りを回転自在に支持されたキャリアと、
前記プラネタリギヤと噛合する固定内歯車と、
前記従動プラネタリギヤと噛合し、前記回転軸廻りを回転自在に支持された従動内歯車とからなる遊星歯車機構において、
前記固定内歯車と前記プラネタリギヤと前記従動内歯車と前記従動プラネタリギヤを平歯車とし、
複数の前記プラネタリギヤ組の構成を、基準位相プラネタリギヤ組と少なくも1組の異位相プラネタリギヤ組を含む構成とし、
前記基準位相プラネタリギヤ組の各内歯車の噛合部における前記プラネタリギヤと前記従動プラネタリギヤの歯車回転方向の歯車位置の差である位相差について、前記プラネタリギヤと前記固定内歯車の噛合部のバックラッシを0とすると共に前記従動プラネタリギヤと前記従動内歯車の噛合部のバックラッシを0としたときの位相差を第1の位相差とし、
所定の位置の前記異位相プラネタリギヤ組の各内歯車の噛合部における異位相プラネタリギヤと異位相従動プラネタリギヤの歯車回転方向の歯車位置の差である位相差を、前記所定の位置の基準位相プラネタリギヤ組の第1の位相差と異なる位相の第2の位相差としたたことである。
In order to solve the above-mentioned problem, the feature of the invention according to claim 1 is that a sun gear fixed to a rotating shaft,
A plurality of planetary gear sets composed of a planetary gear meshing with the sun gear and a driven planetary gear provided at one end in the axial direction of the planetary gear and rotating integrally with the planetary gear;
Planetary gear support means for rotatably supporting the planetary gear set;
A carrier that holds the planetary gear support means and is rotatably supported around the rotation shaft;
A fixed internal gear meshing with the planetary gear;
In a planetary gear mechanism that includes a driven internal gear that meshes with the driven planetary gear and is rotatably supported around the rotation shaft.
The fixed internal gear, the planetary gear, the driven internal gear, and the driven planetary gear are spur gears,
The configuration of the plurality of planetary gear sets, including a reference phase planetary gear set and at least one different phase planetary gear set,
The backlash of the meshing portion of the planetary gear and the fixed internal gear is set to 0 with respect to the phase difference that is the difference in gear position in the gear rotation direction of the planetary gear and the driven planetary gear at the meshing portion of each internal gear of the reference phase planetary gear set. In addition, the phase difference when the backlash of the meshing portion of the driven planetary gear and the driven internal gear is 0 is defined as a first phase difference,
A phase difference, which is a difference in gear position in the gear rotation direction between the different phase planetary gear and the different phase driven planetary gear, at the meshing portion of each internal gear of the different phase planetary gear set at a predetermined position is defined as a reference phase of the predetermined position. This is because the second phase difference has a phase different from the first phase difference of the planetary gear set.

請求項2に係る発明の特徴は、請求項1に係る発明において、前記所定の位置の基準位相プラネタリギヤ組の第1の位相差と、前記異位相プラネタリギヤ組の第2の位相差の、差の最大値を、前記固定内歯車と前記プラネタリギヤの噛合部のバックラッシと前記従動内歯車と前記従動プラネタリギヤの噛合部のバックラッシの合計より、少ない値としたことである。   A feature of the invention according to claim 2 is that, in the invention according to claim 1, the difference between the first phase difference of the reference phase planetary gear set at the predetermined position and the second phase difference of the different phase planetary gear set. Is set to a value smaller than the sum of the backlash of the meshing portion of the fixed internal gear and the planetary gear and the backlash of the meshing portion of the driven internal gear and the driven planetary gear.

請求項3に係る発明の特徴は、請求項1に係る発明において、前記異位相プラネタリギヤ組の前記異位相プラネタリギヤと前記異位相従動プラネタリギヤを前記異位相プラネタリギヤ組の回転方向にねじり弾性変形可能に連結し
ねじり弾性変形していないときの前記基準位相プラネタリギヤ組の第3の位相差と、前記異位相プラネタリギヤ組の第4の位相差の、差の最小値を、前記固定内歯車と前記プラネタリギヤの噛合部のバックラッシと前記従動内歯車と前記従動プラネタリギヤの噛合部のバックラッシの合計より、大きい値としたことである。
The invention according to claim 3 is characterized in that, in the invention according to claim 1, the different-phase planetary gear and the different-phase driven planetary gear of the different-phase planetary gear set are twisted elastically in the rotational direction of the different-phase planetary gear set. The minimum value of the difference between the third phase difference of the reference phase planetary gear set and the fourth phase difference of the different phase planetary gear set when not deformably coupled and torsionally elastically deformed is determined as the fixed internal gear. And the backlash of the meshing portion of the planetary gear and the backlash of the meshing portion of the driven internal gear and the driven planetary gear.

請求項4に係る発明の特徴は、請求項1〜請求項3のいずれか1項に係る発明において、前記プラネタリギヤ組を偶数個備え、前記プラネタリギヤ組の半数を前記基準位相プラネタリギヤ組とし残りの半数を前記異位相プラネタリギヤ組としたことである。   A feature of the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the planetary gear set is provided in an even number, and half of the planetary gear set is the reference phase planetary gear set and the remaining half. Is the above-mentioned different phase planetary gear set.

請求項5に係る発明の特徴は、請求項1〜請求項4のいずれか1項に係る発明において、前記プラネタリギヤ組のプラネタリギヤと従動プラネタリギヤの少なくも一方を前記プラネタリギヤ組の回転方向に位置調整可能に締結したことである。   A feature of the invention according to claim 5 is that, in the invention according to any one of claims 1 to 4, the position of at least one of the planetary gear and the driven planetary gear of the planetary gear set can be adjusted in the rotational direction of the planetary gear set. It is to have concluded.

請求項1に係る発明によれば、プラネタリギヤと固定内歯車、プラネタリギヤと従動内歯車の噛み合い部で発生するバックラッシによる遊びを、特別な部材を付加することなく小さくできる。このため、小型で応答性の高い遊星歯車機構を安価に実現できる。   According to the invention of claim 1, play due to backlash generated at the meshing portion of the planetary gear and the fixed internal gear, and the planetary gear and the driven internal gear can be reduced without adding a special member. For this reason, a small and highly responsive planetary gear mechanism can be realized at low cost.

請求項2に係る発明によれば、所望の遊びを設定することが可能でかつ、プラネタリギヤと固定内歯車、プラネタリギヤと従動内歯車の噛み合い部で適度な隙間があり、本遊星歯車機構の組み立てが容易である。   According to the invention of claim 2, it is possible to set a desired play, and there is an appropriate gap at the meshing portion of the planetary gear and the fixed internal gear, and the planetary gear and the driven internal gear, so that the planetary gear mechanism can be assembled. Easy.

請求項3に係る発明によれば、プラネタリギヤと固定内歯車、プラネタリギヤと従動内歯車の噛み合い部で発生するバックラッシによる遊びを、簡易な構造で完全に除去できる。このため、小型で応答性の高い遊星歯車機構を安価に実現できる。   According to the third aspect of the present invention, the play due to the backlash generated at the meshing portion of the planetary gear and the fixed internal gear and the planetary gear and the driven internal gear can be completely removed with a simple structure. For this reason, a small and highly responsive planetary gear mechanism can be realized at low cost.

請求項4に係る発明によれば、遊星歯車機構の正逆のどちらの回転においても同等のねじり剛性を有する遊星歯車機構を実現できる。   According to the invention which concerns on Claim 4, the planetary gear mechanism which has equivalent torsional rigidity is realizable in both the forward and reverse rotations of the planetary gear mechanism.

請求項5に係る発明によれば、所望の遊びの大きさに対応した、基準位相プラネタリギヤ組と異位相プラネタリギヤ組を同一部材を用いて組立位相のみの変更で実現できる。このため部品種類を削減でき遊星歯車機構を安価に実現できる。   According to the fifth aspect of the present invention, the reference phase planetary gear set and the different phase planetary gear set corresponding to the desired play size can be realized by changing only the assembly phase using the same member. Therefore, the number of parts can be reduced, and the planetary gear mechanism can be realized at low cost.

本実施形態の遊星歯車機構の断面を示す概略図である。It is the schematic which shows the cross section of the planetary gear mechanism of this embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 図2の歯車の噛合い部の詳細を示す図である。It is a figure which shows the detail of the meshing part of the gearwheel of FIG. 図3の歯車の噛合い部の詳細を示す図である。It is a figure which shows the detail of the meshing part of the gearwheel of FIG. 本実施形態の変形態様1のプラネタリギヤ組を示す概略図である。It is the schematic which shows the planetary gear set of the deformation | transformation aspect 1 of this embodiment. 図6のC−C断面図である。It is CC sectional drawing of FIG. 図7のD−D断面図である。It is DD sectional drawing of FIG. 本実施形態の変形態様2のプラネタリギヤ組を示す概略図である。It is the schematic which shows the planetary gear set of the deformation | transformation aspect 2 of this embodiment.

以下、本発明を回転運動の減速用に使用される遊星歯車減速機に応用した実施の形態を図1〜図5に基づき説明する。
図1〜図3に示すように、ハウジング2は軸受12を介して従動リング14を回転自在に支持している。ハウジング2は軸受11を介してキャリア4の一端を回転自在に支持し、従動リング14は軸受13を介してキャリア4の他端を回転自在に支持している。キャリア4は軸受17、18を介して入力軸3を回転自在に支持している。キャリア4は入力軸3の回転中心に対して回転対称に配置された4本の軸10a、10b、10c、10dの両端を保持している。軸10a、10b、10c、10dの中央部に軸受16a、16b、16c、16dを介してスリーブ15a、15b、15c、15dが回転自在に支持され、スリーブ15a、15b、15c、15dにはプラネタリギヤ6a、6b、6c、6dが結合され一体的に回転する。スリーブ15a、15b、15c、15dの従動プラネタリギヤ7a、7b、7c、7d側の外周と従動プラネタリギヤ7a、7b、7c、7dの内周面はテーパ形状をなし、締め付けナット19a、19b、19c、19dにより軸方向へ押し付けられることにより所望の位相で従動プラネタリギヤ7a、7b、7c、7dを固定できる。このため、プラネタリギヤ6a、6b、6c、6dと従動プラネタリギヤ7a、7b、7c、7dの位相差を所望の値にできる。入力軸3の中央部にはサンギヤ5を備えており、プラネタリギヤ6a、6b、6c、6dと噛合している。プラネタリギヤ6a、6b、6c、6dはハウジング2の内周に設けられた固定内歯車8とも噛合している。従動プラネタリギヤ7a、7b、7c、7dは従動リング14の内周に設けられた従動内歯車9と噛合している。固定内歯車8の歯数は84枚、プラネタリギヤ6a、6b、6c、6dの歯数は28枚、従動内歯車9の歯数が82枚、従動プラネタリギヤ7a、7b、7c、7dの歯数は26枚ですべての歯車はインボリュート平歯車である。プラネタリギヤ組50a、50b、50c、50dは円周方向に4等分の位置に配置されている。
Hereinafter, an embodiment in which the present invention is applied to a planetary gear speed reducer used for reduction of rotational motion will be described with reference to FIGS.
As shown in FIGS. 1 to 3, the housing 2 rotatably supports a driven ring 14 via a bearing 12. The housing 2 rotatably supports one end of the carrier 4 via a bearing 11, and the driven ring 14 supports the other end of the carrier 4 rotatably via a bearing 13. The carrier 4 rotatably supports the input shaft 3 via bearings 17 and 18. The carrier 4 holds both ends of four shafts 10 a, 10 b, 10 c, and 10 d that are rotationally symmetrical with respect to the rotation center of the input shaft 3. Sleeves 15a, 15b, 15c, and 15d are rotatably supported at the central portions of the shafts 10a, 10b, 10c, and 10d via bearings 16a, 16b, 16c, and 16d, and the planetary gear 6a is supported on the sleeves 15a, 15b, 15c, and 15d. , 6b, 6c, 6d are coupled and rotate integrally. The outer peripheral surfaces of the driven planetary gears 7a, 7b, 7c, 7d of the sleeves 15a, 15b, 15c, 15d and the inner peripheral surfaces of the driven planetary gears 7a, 7b, 7c, 7d are tapered, and tightening nuts 19a, 19b, 19c, 19d The driven planetary gears 7a, 7b, 7c, and 7d can be fixed at a desired phase by being pressed in the axial direction. For this reason, the phase difference between the planetary gears 6a, 6b, 6c, 6d and the driven planetary gears 7a, 7b, 7c, 7d can be set to a desired value. A sun gear 5 is provided at the center of the input shaft 3, and meshes with the planetary gears 6a, 6b, 6c, 6d. The planetary gears 6 a, 6 b, 6 c, 6 d are also meshed with a fixed internal gear 8 provided on the inner periphery of the housing 2. The driven planetary gears 7 a, 7 b, 7 c and 7 d mesh with a driven internal gear 9 provided on the inner periphery of the driven ring 14. The number of teeth of the fixed internal gear 8 is 84, the number of teeth of the planetary gears 6a, 6b, 6c, 6d is 28, the number of teeth of the driven internal gear 9 is 82, and the number of teeth of the driven planetary gears 7a, 7b, 7c, 7d is All 26 gears are involute spur gears. The planetary gear sets 50a, 50b, 50c, and 50d are arranged at four equal positions in the circumferential direction.

上記例では、従動プラネタリギヤの内径をテーパとしスリーブと結合したが、スリーブ外周と従動プラネタリギヤの内周面を円筒とし、内周をテーパ面とする薄肉大円環と外周をテーパ面とする薄肉小円環をテーパ面で接触させるように重ねて摺動させることで構成した締結リングを使用して従動プラネタリギヤを固定してもよい。   In the above example, the inner diameter of the driven planetary gear is tapered and coupled to the sleeve. However, the outer periphery of the sleeve and the inner peripheral surface of the driven planetary gear are cylindrical, and the thin large ring with the inner periphery as the tapered surface and the thin small ring with the outer periphery as the tapered surface. You may fix a driven planetary gear using the fastening ring comprised by overlapping and sliding so that an annular ring may contact on a taper surface.

以下に歯車の位相について説明する。
図2に示すように、入力軸3の回転中心点とプラネタリギヤ6aの回転中心点を結ぶ線と固定内歯車8のピッチ円の交点をプラネタリギヤ6aの噛合の位置の位相基準点Paとする。同様にプラネタリギヤ6b〜6dに対応して位相基準点Pb〜Pdを定義する。
位相基準点Paにおける固定内歯車8の位相に対する他の位相基準点における位相差をφとし、位相を歯車1歯の円周ピッチを一周期の単位として表す。固定内歯車8の歯数をT1とし、対象プラネタリギヤとプラネタリギヤ6aの配置の角度差をθ°とすると、φ=T1・θ/360となる。歯形は繰り返すので実質的な位相差をφ’とすると、φの小数部をαとすると、φ’=αと表される。位相基準点Pbではφ=84・90/360=21となりα=0なのでφ’=0となる。本実施例では、全ての位相基準点で位相差は0となり、固定内歯車8のすべての位相基準点での位相は同じである。これは、プラネタリギヤ6a、6b、6c、6dと固定内歯車8の噛合い位相が全て同じであることを意味する。
同様にして図3で示すように、従動内歯車9と従動プラネタリギヤ7a〜7dについても従動内歯車9の位相基準点Pja〜Pjdを定義する。従動プラネタリギヤ7aの位相基準点Pjaに対する他の位相基準点の位相差φは、従動内歯車9の歯数をT2とすると以下となる。従動プラネタリギヤ7bの位相基準点Pjbではφ=T2・θ/360=82・90/360=20.5となりα=0.5、φ’=0.5となり1/2歯だけ位相がずれている。同様にして、7cではφ’=0、7dではφ’=0.5となる。これは、従動内歯車9と従動プラネタリギヤ7aの噛合部の位相に対して従動プラネタリギヤ7cの噛合部の位相は同じで、従動プラネタリギヤ7b、7dの噛合部では1/2歯だけ位相がずれていることを意味する。
The gear phase will be described below.
As shown in FIG. 2, the intersection of the line connecting the rotation center point of the input shaft 3 and the rotation center point of the planetary gear 6a and the pitch circle of the fixed internal gear 8 is the phase reference point Pa of the meshing position of the planetary gear 6a. Similarly, phase reference points Pb to Pd are defined corresponding to the planetary gears 6b to 6d.
The phase difference at another phase reference point with respect to the phase of the fixed internal gear 8 at the phase reference point Pa is denoted by φ, and the phase is represented by the circumferential pitch of one gear tooth as a unit of one cycle. When the number of teeth of the fixed internal gear 8 is T1, and the angle difference between the target planetary gear and the planetary gear 6a is θ °, φ = T1 · θ / 360. Since the tooth profile repeats, if the substantial phase difference is φ ′, the decimal part of φ is α, and φ ′ = α. At the phase reference point Pb, φ = 84 · 90/360 = 21 and α = 0, so φ ′ = 0. In this embodiment, the phase difference is 0 at all the phase reference points, and the phases at all the phase reference points of the fixed internal gear 8 are the same. This means that the meshing phases of the planetary gears 6a, 6b, 6c, 6d and the fixed internal gear 8 are all the same.
Similarly, as shown in FIG. 3, phase reference points Pja to Pjd of the driven internal gear 9 are defined for the driven internal gear 9 and the driven planetary gears 7a to 7d. The phase difference φ of the other phase reference point with respect to the phase reference point Pja of the driven planetary gear 7a is as follows when the number of teeth of the driven internal gear 9 is T2. At the phase reference point Pjb of the driven planetary gear 7b, φ = T2 · θ / 360 = 82 · 90/360 = 20.5, α = 0.5, φ ′ = 0.5, and the phase is shifted by 1/2 tooth. . Similarly, φ ′ = 0 in 7c, and φ ′ = 0.5 in 7d. This is because the phase of the meshing portion of the driven planetary gear 7c is the same as the phase of the meshing portion of the driven internal gear 9 and the driven planetary gear 7a, and the phase of the meshing portions of the driven planetary gears 7b and 7d is shifted by ½ tooth. Means that.

ここで基準位相プラネタリギヤ組について説明する。
バックラッシが0のプラネタリギヤ組が各内歯車と噛合うとすると、図2においてプラネタリギヤ6a〜6dは,固定内歯車8の位相基準点Pa〜Pdにプラネタリギヤ6a〜6dの歯の中央が位置する。同様に図3において、従動プラネタリギヤ7aと7cは,従動内歯車9の位相基準Pja、Pjcに従動プラネタリギヤの歯溝の中央が位置し、位相基準点Pjb、Pjdには従動プラネタリギヤ7bと7dの歯の中央が位置する。ゆえに、プラネタリギヤ組50a、50cでは位相基準点においてプラネタリギヤ6a、6cの歯の中央と従動プラネタリギヤ7a、7cの歯溝の中央が重なる。つまり、プラネタリギヤと従動プラネタリギヤの位相差が1/2歯異なる組み合せである。プラネタリギヤ組50b,50dは位相基準点においてプラネタリギヤ6b、6dと従動プラネタリギヤ7b、7dの歯の中央が重なる、つまりプラネタリギヤと従動プラネタリギヤの位相差が0である。
このようなバックラッシが0の状態で噛合うときのプラネタリギヤと従動プラネタリギヤの位相差を基準位相差とし、この位相差の組み合せを備えたプラネタリギヤ組を基準位相プラネタリギヤ組と呼ぶ。本実施例では、基準位相プラネタリギヤ組50a、50cの基準位相差は0.5、基準位相プラネタリギヤ組50b,50dの基準位相差は0である。
基準位相差は、上記のように内歯車の歯数とプラネタリギヤ組の配置角度により決定される、各プラネタリギヤ組に固有の位相差である。
基準位相差以外のプラネタリギヤと従動プラネタリギヤの位相差を備えたプラネタリギヤ組を異位相プラネタリギヤ組と呼ぶ。
Here, the reference phase planetary gear set will be described.
Assuming that the planetary gear set with zero backlash meshes with each internal gear, the planetary gears 6a to 6d are positioned at the phase reference points Pa to Pd of the fixed internal gear 8 at the center of the teeth of the planetary gears 6a to 6d in FIG. Similarly, in FIG. 3, the driven planetary gears 7a and 7c are located at the center of the tooth groove of the driven planetary gear of the phase reference Pja, Pjc of the driven internal gear 9, and the teeth of the driven planetary gears 7b and 7d are at the phase reference points Pjb, Pjd. The center of is located. Therefore, in the planetary gear sets 50a and 50c, the center of the teeth of the planetary gears 6a and 6c and the center of the tooth groove of the driven planetary gears 7a and 7c overlap at the phase reference point. That is, this is a combination in which the phase difference between the planetary gear and the driven planetary gear is ½ different. In the planetary gear sets 50b and 50d, the center of the teeth of the planetary gears 6b and 6d and the driven planetary gears 7b and 7d overlap at the phase reference point, that is, the phase difference between the planetary gear and the driven planetary gear is zero.
The phase difference between the planetary gear and the driven planetary gear when meshing in such a state where the backlash is zero is defined as a reference phase difference, and the planetary gear set provided with this combination of phase differences is referred to as a reference phase planetary gear set. In this embodiment, the reference phase difference between the reference phase planetary gear sets 50a and 50c is 0.5, and the reference phase difference between the reference phase planetary gear sets 50b and 50d is zero.
The reference phase difference is a phase difference specific to each planetary gear set, which is determined by the number of teeth of the internal gear and the arrangement angle of the planetary gear set as described above.
A planetary gear set having a phase difference between the planetary gear and the driven planetary gear other than the reference phase difference is referred to as a different phase planetary gear set.

本実施例ではプラネタリギヤ組50a、50cは基準位相プラネタリギヤ組とし、プラネタリギヤ組50b、50dは異位相プラネタリギヤ組とする。つまり、プラネタリギヤ組50a、50cは位相基準点でのプラネタリギヤ6a、6cの位相に対して従動プラネタリギヤ7a、7cの位相が1/2歯異なる組み合せとする。プラネタリギヤ組50b、50dは位相基準点でのプラネタリギヤ6b、6dの位相に対して従動プラネタリギヤ7b、7dの位相が所定の量Δだけ異なる組み合せとする。Δは固定内歯車8とプラネタリギヤ6a〜6dの噛合部の円周方向バックラッシをBk、従動内歯車9と従動プラネタリギヤ7a〜7dの噛合部の円周方向バックラッシをBj、プラネタリギヤのピッチ円半径をRp、従動プラネタリギヤのピッチ円半径をRjとすると、Δ=K・(Bk/Rp+Bj/Rj)ラジアンとする。Kは除去したい遊びの量により設定する1≧Kの定数で、K=1で遊びが0となり、K=0(全てのプラネタリギヤ組を基準位相プラネタリギヤ組で構成)で遊び量がバックラッシの和と等しくなる。   In the present embodiment, the planetary gear sets 50a and 50c are reference phase planetary gear sets, and the planetary gear sets 50b and 50d are different phase planetary gear sets. That is, the planetary gear sets 50a and 50c are a combination in which the phase of the driven planetary gears 7a and 7c is ½ teeth different from the phase of the planetary gears 6a and 6c at the phase reference point. The planetary gear sets 50b and 50d are combinations in which the phase of the driven planetary gears 7b and 7d differs from the phase of the planetary gears 6b and 6d at the phase reference point by a predetermined amount Δ. Δ is Bk, the circumferential backlash of the meshing portion of the fixed internal gear 8 and the planetary gears 6a to 6d, Bj is the circumferential backlash of the meshing portion of the driven internal gear 9 and the driven planetary gears 7a to 7d, and Rp is the pitch circle radius of the planetary gear. If the pitch circle radius of the driven planetary gear is Rj, Δ = K · (Bk / Rp + Bj / Rj) radians. K is a constant of 1 ≧ K that is set according to the amount of play to be removed. When K = 1, the play is 0, and when K = 0 (all planetary gear sets are composed of the reference phase planetary gear set), the play amount is the sum of the backlash. Will be equal.

本遊星歯車減速機1は以下に説明する原理で内歯車とプラネタリギヤの噛合部の遊びを除去する。K=1とした場合で説明する。
図4に示す固定内歯車8とプラネタリギヤ6a、6b、6c、6dの噛合部の詳細において、固定内歯車8はプラネタリギヤ6a、6cの左歯面(ギヤ中心からギヤ外周方向を見て)と接触し、プラネタリギヤ6b、6dの右歯面と接触している。
図5に示す従動内歯車9と従動プラネタリギヤ7a、7b、7c、7dの噛合部の詳細において、従動内歯車9は従動プラネタリギヤ7a、7cの右歯面と接触し、従動プラネタリギヤ7b、7dの左歯面と接触している。
The planetary gear speed reducer 1 eliminates the play of the meshing portion between the internal gear and the planetary gear according to the principle described below. A case where K = 1 is described.
In the details of the meshing part of the fixed internal gear 8 and the planetary gears 6a, 6b, 6c, 6d shown in FIG. 4, the fixed internal gear 8 is in contact with the left tooth surface of the planetary gears 6a, 6c (when viewed from the gear center in the gear outer peripheral direction). The planetary gears 6b and 6d are in contact with the right tooth surface.
In the details of the meshing portion of the driven internal gear 9 and the driven planetary gears 7a, 7b, 7c, 7d shown in FIG. 5, the driven internal gear 9 contacts the right tooth surface of the driven planetary gears 7a, 7c, and the left of the driven planetary gears 7b, 7d. In contact with the tooth surface.

図2において、入力軸3が右回りに回転するとプラネタリギヤ6a〜6dは左回りに自転する。図4に示すように、プラネタリギヤ6a、6cが左回りに自転するとプラネタリギヤ6a、6cの左歯面が固定内歯車8を押し付けて反力を受けるためプラネタリギヤ6a、6cはキャリア4と共に右回りに公転する。このとき、プラネタリギヤ6b、6dの左歯面は固定内歯車8と接触せず、右歯面が接触しているので公転運動には寄与しない。図3において、従動プラネタリギヤ7a〜7dはプラネタリギヤ6a〜6dと一体的に回転するように結合されているので左回りに自転しながら右回りに公転する。このとき公転による回転速度が自転による回転速度より大きい。このため図5に示すように、従動プラネタリギヤ7a、7cの右歯面が従動内歯車9に力を伝達し従動内歯車9を右回りに回転させる。このとき、従動プラネタリギヤ7b、7dの右歯面は従動内歯車9と接触せず左歯面が接触しているので、従動内歯車9の回転運動には寄与しない。   In FIG. 2, when the input shaft 3 rotates clockwise, the planetary gears 6a to 6d rotate counterclockwise. As shown in FIG. 4, when the planetary gears 6 a, 6 c rotate counterclockwise, the left tooth surfaces of the planetary gears 6 a, 6 c press the fixed internal gear 8 and receive a reaction force, so that the planetary gears 6 a, 6 c revolve clockwise with the carrier 4. To do. At this time, the left tooth surfaces of the planetary gears 6b and 6d are not in contact with the fixed internal gear 8, and the right tooth surface is in contact, so that it does not contribute to the revolving motion. In FIG. 3, the driven planetary gears 7a to 7d are coupled so as to rotate integrally with the planetary gears 6a to 6d, and thus revolve clockwise while rotating counterclockwise. At this time, the rotational speed due to revolution is greater than the rotational speed due to rotation. Therefore, as shown in FIG. 5, the right tooth surfaces of the driven planetary gears 7a and 7c transmit a force to the driven internal gear 9 to rotate the driven internal gear 9 clockwise. At this time, the right tooth surfaces of the driven planetary gears 7b and 7d are not in contact with the driven internal gear 9 and are in contact with the left tooth surface, so that they do not contribute to the rotational movement of the driven internal gear 9.

次に、入力軸3を逆の左回りに回転させるとプラネタリギヤ6a〜6dは右回りに自転する。図4に示すように、プラネタリギヤ6b、6dが右回りに自転するとプラネタリギヤ6b、6dの右歯面が固定内歯車8を押し付けて反力を受けるためプラネタリギヤ6b、6dはキャリア4と共に左回りに公転する。この回転が右から左へ逆転するときに力の伝達に寄与するプラネタリギヤが6a、6cから6b、6dへ交替するが、力伝達歯面は常に接触しているため、反転時に遊びが無く瞬時に回転の切替が可能となる。従動内歯車と従動プラネタリギヤの噛合いについても同様で、力の伝達に寄与する従動プラネタリギヤが7a、7cから7b、7dへ交替するが、力伝達歯面は常に接触しているため、反転時に遊びが無く瞬時に回転の切替が可能となる。
以上はK=1で遊びが0の場合について述べたが、K=0.9に設定すると逆転時にバックラッシ合計の10%の遊びを備えた内歯車とプラネタリギヤの噛合いを実現できる。
Next, when the input shaft 3 is rotated counterclockwise, the planetary gears 6a to 6d rotate in the clockwise direction. As shown in FIG. 4, when the planetary gears 6 b and 6 d rotate clockwise, the right tooth surfaces of the planetary gears 6 b and 6 d press the fixed internal gear 8 to receive a reaction force, so that the planetary gears 6 b and 6 d revolve counterclockwise together with the carrier 4. To do. When this rotation reverses from right to left, the planetary gear that contributes to force transmission changes from 6a, 6c to 6b, 6d. The rotation can be switched. The same applies to the meshing between the driven internal gear and the driven planetary gear. The driven planetary gear that contributes to the transmission of force is changed from 7a, 7c to 7b, 7d. It is possible to switch the rotation instantly.
In the above, the case where K = 1 and the play is 0 has been described. However, when K = 0.9 is set, it is possible to realize the meshing of the internal gear and the planetary gear having a play of 10% of the total backlash at the time of reverse rotation.

本実施例では基準位相プラネタリギヤ組と異位相プラネタリギヤ組を同数備え、正逆回転ともに伝達能力を等しくしたが、一方の回転方向に大きな伝達能力が必要な場合は、その方向の伝達に寄与するプラネタリギヤ組の数を多くすることで伝達能力を大きくしてもよい。   In this embodiment, the same number of reference phase planetary gear groups and different phase planetary gear groups are provided, and the transmission capability is the same for both forward and reverse rotations. However, if a large transmission capability is required in one rotation direction, it contributes to transmission in that direction. The transmission capability may be increased by increasing the number of planetary gear groups.

以上のように、力を伝達するプラネタリギヤ組を回転方向により基準位相プラネタリギヤ組と異位相プラネタリギヤ組に分離し、力伝達歯面を歯の片面のみとすることで、バックラッシ量に関係なく内歯車とプラネタリギヤの噛合部での回転の遊び量を設定できる。遊び量を小さくすることで応答性の高い遊星歯車減速機を実現できる。   As described above, the planetary gear set for transmitting the force is separated into the reference phase planetary gear set and the different phase planetary gear set according to the rotation direction, and the force transmission tooth surface is only one side of the tooth, so that the internal gear is independent of the backlash amount. And the play amount of rotation at the meshing part of the planetary gear can be set. By reducing the amount of play, a highly responsive planetary gear reducer can be realized.

<本実施形態の変形態様>
以上の実施例では、基準位相プラネタリギヤ組の位相差と、異位相プラネタリギヤ組の位相差の、差の最大値を、固定内歯車とプラネタリギヤの噛合部のバックラッシと従動内歯車と従動プラネタリギヤの噛合部のバックラッシの合計以下の値とし、プラネタリギヤと従動プラネタリギヤを剛体的に連結した構造について述べた。
本変形態様では、基準位相プラネタリギヤ組の位相差と、異位相プラネタリギヤ組の位相差の、差の最小値を、固定内歯車とプラネタリギヤの噛合部のバックラッシと従動内歯車と従動プラネタリギヤの噛合部のバックラッシの合計より大きい値とし、プラネタリギヤと従動プラネタリギヤをプラネタリギヤ組の回転方向に弾性的に回転できるように連結した構造について以下に説明する。
<Deformation of this embodiment>
In the above embodiment, the maximum difference between the phase difference of the reference phase planetary gear set and the phase difference of the different phase planetary gear set is determined by the backlash of the meshing portion of the fixed internal gear and the planetary gear, and the meshing of the driven internal gear and the driven planetary gear. The structure in which the planetary gear and the driven planetary gear are rigidly connected with a value equal to or less than the total backlash of the part has been described.
In this modification, the minimum difference between the phase difference of the reference phase planetary gear set and the phase difference of the different phase planetary gear set is determined by the backlash of the meshing portion of the fixed internal gear and the planetary gear, and the meshing portion of the driven internal gear and the driven planetary gear. A structure in which the planetary gear and the driven planetary gear are connected so that they can be elastically rotated in the rotation direction of the planetary gear set will be described below.

変形態様1について図6、図7、図8に基づき説明する。プラネタリギヤ26はギヤ部と端部にテーパ形状を備えた軸部からなり、従動プラネタリギヤ7がテーパ部に所定の位相で挿入され、ねじを備えたナット19により軸方向に押し込まれることによりテーパ部と固着する。プラネタリギヤ26の歯車部とテーパ部を連結する円環部には穴261を複数備えており、捻り剛性を所定の値Gに設定している。   Modification 1 will be described with reference to FIGS. 6, 7, and 8. FIG. The planetary gear 26 includes a gear portion and a shaft portion having a tapered shape at the end portion, and the driven planetary gear 7 is inserted into the taper portion at a predetermined phase and is pushed in the axial direction by a nut 19 having a screw to thereby form a taper portion. Stick. A plurality of holes 261 are provided in the annular portion connecting the gear portion and the tapered portion of the planetary gear 26, and the torsional rigidity is set to a predetermined value G.

上記のような、プラネタリギヤ26と従動プラネタリギヤ7を弾性的に連結したプラネタリギヤ組を異位相プラネタリギヤ組として使用する。プラネタリギヤ26と従動プラネタリギヤ7の位相差が基準位相プラネタリギヤ組との位相差より、固定内歯車とプラネタリギヤの噛合部のバックラッシと従動内歯車と従動プラネタリギヤの噛合部のバックラッシの合計よりBoだけ大きい値になる位置で、従動プラネタリギヤ7をテーパ部に固着する。本プラネタリギヤ組を組み付ける際に従動プラネタリギヤ7を位相差が小さくなる方向に捻りながら従動内歯車と噛合させる。こうすると、捻り剛性GとBoで決まるトルクT=G・Boが従動プラネタリギヤと従動内歯車の噛合部に作用し、この反力がプラネタリギヤと固定内歯車の噛合部に作用する。このトルクにより従動内歯車が回転することで基準位相プラネタリギヤ組における、固定内歯車とプラネタリギヤ、従動プラネタリギヤと従動内歯車の噛合部にトルクTが作用する。基準位相プラネタリギヤ組と異位相プラネタリギヤ組に作用するトルクは反対方向であるため、プラネタリギヤと内歯車の動力伝達噛合部が正逆回転ともに常に接触した状態で回転する。ゆえに、歯車、キャリア等の形状誤差による噛合部の円周方向誤差がBo以内であれば遊びが発生しない。   The planetary gear set in which the planetary gear 26 and the driven planetary gear 7 are elastically connected as described above is used as the different phase planetary gear set. The phase difference between the planetary gear 26 and the driven planetary gear 7 is larger than the phase difference between the reference phase planetary gear set by Bo and the sum of the backlash of the meshing portion of the fixed internal gear and the planetary gear and the backlash of the meshing portion of the driven internal gear and the driven planetary gear. At this position, the driven planetary gear 7 is fixed to the tapered portion. When the planetary gear set is assembled, the driven planetary gear 7 is meshed with the driven internal gear while being twisted in the direction of decreasing the phase difference. As a result, torque T = G · Bo determined by the torsional rigidity G and Bo acts on the meshing portion of the driven planetary gear and the driven internal gear, and this reaction force acts on the meshing portion of the planetary gear and the fixed internal gear. As the driven internal gear rotates by this torque, torque T acts on the meshing portion of the fixed internal gear and the planetary gear, and the driven planetary gear and the driven internal gear in the reference phase planetary gear set. Since the torque acting on the reference phase planetary gear set and the different phase planetary gear set are in opposite directions, the planetary gear and the power transmission meshing portion of the internal gear rotate in a state where they are always in contact with each other in both forward and reverse rotations. Therefore, play does not occur if the circumferential error of the meshing portion due to the shape error of the gear, carrier, etc. is within Bo.

また変形態様2を図9に示す。プラネタリギヤ27と固着したスリーブ30と、スリーブ30に回転自在に勘合したテーパリング29と、テーパリング29のテーパ部に所定の位相で挿入されねじを備えたナット19により軸方向に押し込まれることによりテーパ部と固着した従動プラネタリギヤ31を備える。スリーブ30の外周に配置され、プラネタリギヤ27とテーパリング29の対向する側面に各々の端面が固着したゴムリング28によりプラネタリギヤ27とテーパリング29を弾性的に連結した構造としてもよい。この場合も、変形態様1と同様な効果を発揮できる。   Moreover, the deformation | transformation aspect 2 is shown in FIG. The sleeve 30 fixed to the planetary gear 27, the taper ring 29 fitted to the sleeve 30 so as to be rotatable, and the taper portion of the taper ring 29 inserted into the taper portion with a predetermined phase and pushed in the axial direction by the nut 19 provided with a screw. A driven planetary gear 31 fixed to the portion is provided. The planetary gear 27 and the taper ring 29 may be elastically connected to each other by a rubber ring 28 disposed on the outer periphery of the sleeve 30 and having end faces fixed to the opposing side surfaces of the planetary gear 27 and the taper ring 29. Also in this case, the same effect as that of the deformation mode 1 can be exhibited.

上記の説明では、プラネタリギヤが4個の例について述べたが4個に限定されるものではなく、複数のプラネタリギヤ組の内少なくとも1つを異位相プラネタリギヤ組として構成すればよい。   In the above description, an example in which there are four planetary gears has been described. However, the number of planetary gears is not limited to four, and at least one of a plurality of planetary gear sets may be configured as a different phase planetary gear set.

1:遊星歯車減速機 2:ハウジング 3:入力軸 4:キャリア 5:サンギヤ 6a〜6d:プラネタリギヤ 7a〜7d:従動プラネタリギヤ 8:固定内歯車 9:従動内歯車 10a〜10d:軸 14:従動リング 15a〜15d:スリーブ 50a〜50d:プラネタリギヤ組 1: planetary gear reducer 2: housing 3: input shaft 4: carrier 5: sun gear 6a-6d: planetary gear 7a-7d: driven planetary gear 8: fixed internal gear 9: driven internal gear 10a-10d: shaft 14: driven ring 15a -15d: Sleeve 50a-50d: Planetary gear set

Claims (5)

回転軸に固定されたサンギヤと、
前記サンギヤに噛合するプラネタリギヤと、前記プラネタリギヤの軸方向の一端に設けられ前記プラネタリギヤと一体に回転する従動プラネタリギヤとで構成された複数個のプラネタリギヤ組と、
前記プラネタリギヤ組を回転自在に支持するプラネタリギヤ支持手段と、
前記プラネタリギヤ支持手段を保持し、前記回転軸廻りを回転自在に支持されたキャリアと、
前記プラネタリギヤと噛合する固定内歯車と、
前記従動プラネタリギヤと噛合し、前記回転軸廻りを回転自在に支持された従動内歯車とからなる遊星歯車機構において、
前記固定内歯車と前記プラネタリギヤと前記従動内歯車と前記従動プラネタリギヤを平歯車とし、
複数の前記プラネタリギヤ組の構成を、基準位相プラネタリギヤ組と少なくも1組の異位相プラネタリギヤ組を含む構成とし、
前記基準位相プラネタリギヤ組の各内歯車の噛合部における前記プラネタリギヤと前記従動プラネタリギヤの歯車回転方向の歯車位置の差である位相差について、前記プラネタリギヤと前記固定内歯車の噛合部のバックラッシを0とすると共に前記従動プラネタリギヤと前記従動内歯車の噛合部のバックラッシを0としたときの位相差を第1の位相差とし、
所定の位置の前記異位相プラネタリギヤ組の各内歯車の噛合部における異位相プラネタリギヤと異位相従動プラネタリギヤの歯車回転方向の歯車位置の差である位相差を、前記所定の位置の基準位相プラネタリギヤ組の第1の位相差と異なる位相の第2の位相差とした、
遊星歯車機構。
A sun gear fixed to the rotating shaft;
A plurality of planetary gear sets composed of a planetary gear meshing with the sun gear and a driven planetary gear provided at one end in the axial direction of the planetary gear and rotating integrally with the planetary gear;
Planetary gear support means for rotatably supporting the planetary gear set;
A carrier that holds the planetary gear support means and is rotatably supported around the rotation shaft;
A fixed internal gear meshing with the planetary gear;
In a planetary gear mechanism that includes a driven internal gear that meshes with the driven planetary gear and is rotatably supported around the rotation shaft.
The fixed internal gear, the planetary gear, the driven internal gear, and the driven planetary gear are spur gears,
The configuration of the plurality of planetary gear sets, including a reference phase planetary gear set and at least one different phase planetary gear set,
The backlash of the meshing portion of the planetary gear and the fixed internal gear is set to 0 with respect to the phase difference that is the difference in gear position in the gear rotation direction of the planetary gear and the driven planetary gear at the meshing portion of each internal gear of the reference phase planetary gear set. In addition, the phase difference when the backlash of the meshing portion of the driven planetary gear and the driven internal gear is 0 is defined as a first phase difference,
A phase difference, which is a difference in gear position in the gear rotation direction between the different phase planetary gear and the different phase driven planetary gear, at the meshing portion of each internal gear of the different phase planetary gear set at a predetermined position is defined as a reference phase of the predetermined position. The second phase difference is different from the first phase difference of the planetary gear set.
Planetary gear mechanism.
前記所定の位置の基準位相プラネタリギヤ組の第1の位相差と、前記異位相プラネタリギヤ組の第2の位相差の、差の最大値を、前記固定内歯車と前記プラネタリギヤの噛合部のバックラッシと前記従動内歯車と前記従動プラネタリギヤの噛合部のバックラッシの合計より、少ない値とした請求項1記載の遊星歯車機構。   The maximum value of the difference between the first phase difference of the reference phase planetary gear set at the predetermined position and the second phase difference of the different phase planetary gear set is determined as the backlash of the meshing portion of the fixed internal gear and the planetary gear. The planetary gear mechanism according to claim 1, wherein the planetary gear mechanism has a smaller value than the total backlash of the meshing portion of the driven internal gear and the driven planetary gear. 前記異位相プラネタリギヤ組の前記異位相プラネタリギヤと前記異位相従動プラネタリギヤを前記異位相プラネタリギヤ組の回転方向にねじり弾性変形可能に連結し
ねじり弾性変形していないときの前記基準位相プラネタリギヤ組の第3の位相差と、前記異位相プラネタリギヤ組の第4の位相差の、差の最小値を、前記固定内歯車と前記プラネタリギヤの噛合部のバックラッシと前記従動内歯車と前記従動プラネタリギヤの噛合部のバックラッシの合計より、大きい値とした請求項1記載の遊星歯車機構。
The reference phase planetary gear set when the different phase planetary gear of the different phase planetary gear set and the different phase driven planetary gear are connected in a torsionally elastically deformable direction in the rotational direction of the different phase planetary gear set and are not torsionally elastically deformed. The minimum difference between the third phase difference of the third phase difference and the fourth phase difference of the different phase planetary gear set is determined by the backlash of the meshing portion of the fixed internal gear and the planetary gear, the driven internal gear, and the driven planetary gear. The planetary gear mechanism according to claim 1, wherein the planetary gear mechanism has a value larger than a total backlash of the meshing portion.
前記プラネタリギヤ組を偶数個備え、前記プラネタリギヤ組の半数を前記基準位相プラネタリギヤ組とし残りの半数を前記異位相プラネタリギヤ組とした請求項1〜請求項3のいずれか1項に記載の遊星歯車機構。   4. The planetary gear mechanism according to claim 1, further comprising an even number of the planetary gear groups, wherein half of the planetary gear groups are the reference phase planetary gear group and the other half are the different phase planetary gear group. . 前記プラネタリギヤ組のプラネタリギヤと従動プラネタリギヤの少なくも一方を前記プラネタリギヤ組の回転方向に位置調整可能に締結した請求項1〜請求項4のいずれか1項に記載の遊星歯車機構。   The planetary gear mechanism according to any one of claims 1 to 4, wherein at least one of the planetary gear and the driven planetary gear of the planetary gear set is fastened so that the position of the planetary gear set can be adjusted in the rotation direction of the planetary gear set.
JP2010102192A 2010-04-27 2010-04-27 Planetary gear mechanism Pending JP2011231842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102192A JP2011231842A (en) 2010-04-27 2010-04-27 Planetary gear mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102192A JP2011231842A (en) 2010-04-27 2010-04-27 Planetary gear mechanism

Publications (1)

Publication Number Publication Date
JP2011231842A true JP2011231842A (en) 2011-11-17

Family

ID=45321374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102192A Pending JP2011231842A (en) 2010-04-27 2010-04-27 Planetary gear mechanism

Country Status (1)

Country Link
JP (1) JP2011231842A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322131A (en) * 2012-03-20 2013-09-25 昆山金星传动科技有限公司 X type standard planetary reducer with automatic axial clearance compensation function
JP2017053375A (en) * 2015-09-07 2017-03-16 トヨタ自動車株式会社 Manufacturing method of gear
JP2017082825A (en) * 2015-10-23 2017-05-18 アズビル株式会社 Operation unit
CN111948829A (en) * 2020-08-12 2020-11-17 武汉优光科技有限责任公司 Adjustable optical fiber collimation system
WO2023190424A1 (en) * 2022-03-31 2023-10-05 株式会社アイシン Vehicle drive device and production method for planetary gear mechanism
JP7441414B2 (en) 2020-03-06 2024-03-01 株式会社リコー Drive devices, robots and image forming devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073537A1 (en) * 2001-10-15 2003-04-17 Eastman Kodak Company Precision differential planetary gear drive
JP2004019900A (en) * 2002-06-20 2004-01-22 Honda Motor Co Ltd Planetary gear transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030073537A1 (en) * 2001-10-15 2003-04-17 Eastman Kodak Company Precision differential planetary gear drive
JP2004019900A (en) * 2002-06-20 2004-01-22 Honda Motor Co Ltd Planetary gear transmission

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322131A (en) * 2012-03-20 2013-09-25 昆山金星传动科技有限公司 X type standard planetary reducer with automatic axial clearance compensation function
JP2017053375A (en) * 2015-09-07 2017-03-16 トヨタ自動車株式会社 Manufacturing method of gear
JP2017082825A (en) * 2015-10-23 2017-05-18 アズビル株式会社 Operation unit
CN106838441A (en) * 2015-10-23 2017-06-13 阿自倍尔株式会社 Operator
US10006562B2 (en) 2015-10-23 2018-06-26 Azbil Corporation Regulating valve with elastic modulus planetary gear transmission
JP7441414B2 (en) 2020-03-06 2024-03-01 株式会社リコー Drive devices, robots and image forming devices
CN111948829A (en) * 2020-08-12 2020-11-17 武汉优光科技有限责任公司 Adjustable optical fiber collimation system
CN111948829B (en) * 2020-08-12 2022-02-15 武汉优光科技有限责任公司 Adjustable optical fiber collimation system
WO2023190424A1 (en) * 2022-03-31 2023-10-05 株式会社アイシン Vehicle drive device and production method for planetary gear mechanism

Similar Documents

Publication Publication Date Title
JP2011231842A (en) Planetary gear mechanism
JPS6334343A (en) Differential planetary gear device
WO2010047189A1 (en) Gear transmitting device
JP4759607B2 (en) Rotary reducer
JP2004019900A (en) Planetary gear transmission
JP2015075139A (en) Gear mechanism
JP2010014177A (en) Eccentric rocking type gear transmission device
US10753427B2 (en) Rotary actuator provided with strain wave reduction gears
US10253848B2 (en) Thrust balanced planetary gear assemblies
US9644728B2 (en) Strain wave device
JP2008256219A5 (en)
JP2012067899A (en) Step-up/reduction gear
JP2017110682A (en) Power transmission device
JP2015124791A (en) Gear device
JP2015132359A (en) Speed reducer
JP5891054B2 (en) Differential equipment
JP2019078343A (en) Rotation transmission device by combination of inscribed planetary gear mechanisms
CN212985943U (en) Transmission mechanism
JP2013199999A (en) Reduction gear
CN110735887B (en) Planetary gear mechanism without reverse clearance and planetary reducer
JP4947770B2 (en) Decelerator
JP2016211643A (en) Speed reducer and manufacturing method of speed reducer
JPH0460237A (en) Flexible meshing type gear engagement structure
JP6240330B2 (en) Gear box
JP2006057679A (en) Gear shift mechanism using non-circular gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401