JP2011227388A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2011227388A
JP2011227388A JP2010098895A JP2010098895A JP2011227388A JP 2011227388 A JP2011227388 A JP 2011227388A JP 2010098895 A JP2010098895 A JP 2010098895A JP 2010098895 A JP2010098895 A JP 2010098895A JP 2011227388 A JP2011227388 A JP 2011227388A
Authority
JP
Japan
Prior art keywords
focus detection
image
pixel
pixels
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2010098895A
Other languages
English (en)
Inventor
Makoto Takamiya
誠 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010098895A priority Critical patent/JP2011227388A/ja
Publication of JP2011227388A publication Critical patent/JP2011227388A/ja
Abandoned legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

【課題】簡易な演算で高精度なシェーディング補正が可能な撮像装置を提供する。
【解決手段】撮像装置は、絞りおよび結像光学系を有するレンズユニットを通過した光束のうち射出瞳を分割して形成された像を光電変換する複数の焦点検出用画素を有する撮像手段と、前記複数の焦点検出用画素から一対の像信号を取得して前記結像光学系の焦点状態を検出する焦点検出手段と、前記焦点検出手段による前記焦点状態の検出の際に、前記焦点検出用画素の位置での射出瞳の開口の形状が前記絞りの開口の形状に依存するように前記絞りを制御する制御手段とを有する。
【選択図】図16

Description

本発明は、複数の焦点検出用画素を有する撮像素子を備えた撮像装置に関する。
撮影レンズの焦点状態を検出する方式の一つとして、センサの各画素にマイクロレンズが形成された2次元のセンサを用いて瞳分割方式の焦点検出を行う装置が、特許文献1に開示されている。また本出願人は、デジタルスチルカメラに用いられるCMOS型イメージセンサ(固体撮像装置)を用いて瞳分割方式の焦点検出を行う固体撮像装置を特許文献2に開示している。瞳分割方式の焦点検出方法では、撮影レンズの瞳の異なる領域を透過して生成された2つの像に対して相関演算を行うことにより、撮影レンズの焦点状態を検出している。
瞳ケラレによって2つの像の相関方向の光量分布が異なってくると、2つの像の対応する被写体像の出力波形に非対称性が生じ、相関演算に誤差が生じる。このような現象を回避するため、2つの像の相関方向の光量分布を予め予測し、得られた像をシェーディング補正する方法が用いられる。また、基線長を予め計算してピントズレ量を算出する方法が用いられる。特許文献3では、瞳ケラレの形状をレンズの種類や像高などのパラメータから予測する方法が取られている。また、特許文献4では、カメラに格納された特定のフィルタを口径比(F値)、射出瞳位置、像ズレ量によって変形し、該変形フィルタ(像修正フィルタ)を被写体像に適応したのち結像状態を検出する技術が開示されている。
特許文献5では、レンズ内の絞り位置において、通常絞り開口以外に、2つの開口となる特殊開口を切り替え可能にし、瞳ケラレの形状をレンズの瞳開口形状に合わせる方法が開示されている。また特許文献6では、レンズの絞り羽根によって絞り開口を2つの開口に形状変更して、瞳ケラレの形状をレンズの瞳開口形状に合わせる方法が開示されている。
特開昭58−24105号公報(第2頁、図1) 特開2005−106994号公報(第7頁、図3) 特開2004−191629号公報(第8〜12頁、図7〜10) 特開平5−127074号公報(第15頁、図34) 特開2001−083407号公報(第10〜11頁、図27) 特開2002−350718号公報(第3頁、図1)
レンズ交換が可能なカメラでは、レンズの種類や像高に対して瞳ケラレの形状が多種多様であり、シェーディング補正を行うためのデータ量やパラメータ数が多く、多大な演算能力が必要となる。また、複雑なケラレ形状の場合には予測値と実際の光量値との間に誤差が生じやすく、所望のシェーディング補正の精度を確保することが困難となる。
この点、特許文献5、6には、レンズ毎に特殊なレンズ開口(2つの開口)となる絞り機構を設ける内容が開示されている。しかしながら、特許文献5、6では、特殊レンズに対してはケラレ形状が簡略化されるが、一般的に市販されている光軸中心の丸に近い絞り開口によって撮影画像を取得するレンズでは、特許文献5、6のような2つの開口を構成できない。このため、特許文献5、6では、一般的に市販されているレンズに対してケラレ形状を簡略化することができない。
本発明は、簡易な演算で高精度なシェーディング補正が可能な撮像装置を提供する。
本発明の一側面としての撮像装置は、絞りおよび結像光学系を有するレンズユニットを通過した光束のうち射出瞳を分割して形成された像を光電変換する複数の焦点検出用画素を有する撮像手段と、前記複数の焦点検出用画素から一対の像信号を取得して前記結像光学系の焦点状態を検出する焦点検出手段と、前記焦点検出手段による前記焦点状態の検出の際に、前記焦点検出用画素の位置での射出瞳の開口の形状が前記絞りの開口の形状に依存するように前記絞りを制御する制御手段とを有する。
本発明の他の側面としての撮像方法は、絞りおよび結像光学系を有するレンズユニットを通過した光束のうち射出瞳を分割して形成された像を複数の焦点検出用画素により光電変換する工程と、前記複数の焦点検出用画素から一対の像信号を取得して前記結像光学系の焦点状態を検出する工程と、前記焦点状態の検出の際に、前記焦点検出用画素の位置での射出瞳の開口の形状が前記絞りの開口の形状に依存するように前記絞りを制御する工程とを有する。
本発明の他の目的及び特徴は、以下の実施例において説明される。
本発明によれば、簡易な演算で高精度なシェーディング補正が可能な撮像装置を提供することができる。
本実施例における焦点検出装置を備えたカメラ(撮像装置)の構成図である。 本実施例における撮像素子の回路構成図である。 本実施例における撮像素子の画素部の断面図である。 本実施例における撮像素子のタイミングチャートである。 本実施例にいて、(1)撮像用画素の平面図と断面図、(2)撮影レンズのx方向に瞳分割を行うための焦点検出用画素の平面図と断面図、(3)撮影レンズのy方向に瞳分割を行うための焦点検出用画素の平面図と断面図である。 本実施例における撮像素子の瞳分割の説明図である。 本実施例において、焦点検出時に取得した画像と焦点検出領域の説明図である。 本実施例において、(1)撮像素子の中央の焦点検出用画素の入射角特性を示す模式図、(2)焦点検出用画素の瞳強度分布図、(3)レンズを装着した際の焦点検出用画素の瞳強度分布図である。 本実施例において、1次元で表された焦点検出用画素の入射角特性である。 本実施例における光束のケラレの説明図である。 本実施例における瞳面上での瞳領域を示す図である。 本実施例における撮像素子の像高を示す図である。 本実施例において、撮像素子の中央像高の焦点検出用画素の瞳面上での入射光束の瞳強度分布を1次元で表した図である。 本実施例において、中央像高での焦点検出範囲のケラレの状態である。 本実施例において、中央像高での画素の焦点検出範囲内での光量変化を示す図である。 本実施例において、(a)各像高の中央位置での通常画像撮影時の瞳ケラレ形状、(b)焦点検出を行う際の各像高での瞳ケラレ形状である。 本実施例において、焦点検出手段における瞳面位置Meでのレンズの絞り位置と焦点検出位置との関係図である。 本実施例において、(1)光量の補正を行うことにより得られたゲインマップ曲線の一例、(2)焦点検出位置における画素の瞳強度分布の重心ズレ量の逆数についてのグラフの一例である。 本実施例における焦点検出の際のフローチャートである。
以下、本発明の実施例について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
図1は、本実施例における焦点検出装置を備えたカメラ200(撮像装置)の構成図である。図1において、100は絞りおよび結像光学系(撮影光学系)を有するレンズユニットである。レンズユニット100は、カメラ本体に着脱可能なものであっても着脱可能でないものであってもよい。101は撮影光学系の先端に配置された第1レンズ群であり、光軸方向に進退可能に保持される。102は絞り兼用シャッタ(絞り)であり、その開口径を調節することで撮影時の光量調節を行い、また、静止画撮影時に露光秒時調節用シャッタとして機能する。103は第2レンズ群である。絞り兼用シャッタ102及び第2レンズ群103は一体となって光軸方向に進退し、第1レンズ群101の進退動作との連動により、変倍機能(ズーム機能)を有する。
105は第3レンズ群であり、光軸方向の進退により焦点調節を行う。106は光学的ローパスフィルタであり、撮影画像の偽色やモアレを軽減するための光学素子である。107はC−MOSセンサとその周辺回路で構成された撮像素子(撮像手段)である。撮像素子107は、横方向にm画素、縦方向にn画素の受光ピクセル上に、ベイヤー配列の原色カラーモザイクフィルタがオンチップで形成された、2次元単板カラーセンサが用いられる。撮像素子107は、後述のように、結像光学系からの光束により形成された像を光電変換する複数の撮像用画素および撮像光学系からの光束のうち分割された光束により形成された像を光電変換する複数の焦点検出用画素を有する。
111はズームアクチュエータであり、不図示のカム筒を回動することで、第1レンズ群101乃至第3レンズ群103を光軸方向に進退駆動し、変倍操作を行う。112は絞りアクチュエータ(制御手段)である。絞りアクチュエータ112は、焦点検出手段(CPU121)による焦点検出の際に、焦点検出用画素の位置での射出瞳の開口の形状が絞り(絞り兼用シャッタ102)の開口の形状に依存するように絞りを制御する。114はフォーカスアクチュエータであり、第3レンズ群105を光軸方向に進退駆動して焦点調節を行う。115は撮影時の被写体照明用電子フラッシュであり、キセノン管を用いた閃光照明装置が好適に用いられるが、連続発光するLEDを備えた照明装置を用いてもよい。
121はCPUであり、カメラ本体の種々の制御を行う。CPU121は、演算部、データ格納手段ROM、RAM、A/Dコンバータ、D/Aコンバータ、及び、通信インターフェイス回路等を有する。CPU121は、ROMに記憶された所定のプログラムに基づいて、カメラ200の各種回路を駆動し、AF、撮影、画像処理及び記録等の一連の動作を実行する。CPU121は、本発明の演算手段、焦点検出手段、データ格納手段に相当する。焦点検出手段としてのCPU121は、焦点検出用画素(画素SHA、SHB)から一対の像信号を取得して結像光学系の焦点状態を検出する。また焦点検出手段としてのCPU121は、複数の焦点検出用画素から得られた一対の像信号から焦点ズレ量を計算する焦点ズレ量演算手段を有する。
122は電子フラッシュ制御回路であり、撮影動作に同期して照明手段115を点灯制御する。124は撮像素子駆動回路であり、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してCPU121に送信する。125は画像処理回路であり、撮像素子107が取得した画像のγ変換、カラー補間、及び、JPEG圧縮等の各処理を行う。
126はフォーカス駆動回路であり、焦点検出結果に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に進退駆動して焦点調節を行う。128は絞りシャッタ駆動回路であり、絞りアクチュエータ112を駆動制御して絞り兼用シャッタ102の開口を制御する。129はズーム駆動回路であり、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。
131はLCD等の表示器であり、カメラ200の撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、及び、焦点検出時の合焦状態表示画像等を表示する。132は操作スイッチ群であり、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、及び、撮影モード選択スイッチ等で構成される。133は着脱可能なフラッシュメモリであり、撮影済み画像を記録する。
図2は、本実施例における撮像素子の回路構成図である。図2は2次元C−MOSエリアセンサの2列×4行画素の範囲を示しているが、撮像素子として利用する場合には、図2に示される画素を多数配置することで高解像度画像の取得が可能となる。図2において、1はMOSトランジスタゲートとゲート下の空乏層からなる光電変換素子の光電変換部、2はフォトゲート、3は転送スイッチMOSトランジスタ、4はリセット用MOSトランジスタ、5はソースフォロワアンプMOSトランジスタである。また、6は水平選択スイッチMOSトランジスタ、7はソースフォロワの負荷MOSトランジスタ、8は暗出力転送MOSトランジスタ、9は明出力転送MOSトランジスタ、10は暗出力の蓄積容量CTN、11は明出力の蓄積容量CTSである。また、12は水平転送MOSトランジスタ、13は水平出力線リセットMOSトランジスタ、14は差動出力アンプ、15は水平走査回路、16は垂直走査回路である。
図3は、本実施例における撮像素子の画素部の断面図である。図3において、17はP型ウェル、18はゲート酸化膜、19は一層目ポリSi、20は二層目ポリSi、21はn+ フローティングディフュージョン部(FD部)である。FD部21は、別の転送MOSトランジスタを介して別の光電変換部と接続される。図3において、2つの転送スイッチMOSトランジスタ3のドレインとFD部21を共通化して微細化とFD部21の容量低減による感度向上を図っているが、Al配線でFD部21を接続してもよい。
次に、図4のタイミングチャートを用いて撮像素子の動作について説明する。図4は、本実施例における撮像素子のタイミングチャートであり、このタイミングチャートは全画素独立出力の場合を示す。まず、垂直走査回路16からのタイミング出力によって、制御パルスφLをハイとして垂直出力線をリセットする。また、制御パルスφR0,φPG00,φPGe0をハイとし、リセット用MOSトランジスタ4をオンとし、フォトゲート2の一層目ポリSi19をハイとする。時刻T0において、制御パルスφS0をハイとし、選択スイッチMOSトランジスタ6をオンさせ、第1,第2ラインの画素部を選択する。次に、制御パルスφR0をローとし、FD部21のリセットを止めてFD部21をフローティング状態とし、ソースフォロワアンプMOSトランジスタ5のゲート・ソース間をスルーとする。その後、時刻T1において、制御パルスφTNをハイとし、FD部21の暗電圧をソースフォロワ動作で蓄積容量CTN10に出力させる。
次に、第1ラインの画素の光電変換出力を行うため、第1ラインの制御パルスφTX00をハイとして転送スイッチMOSトランジスタ3を導通した後、時刻T2において制御パルスφPG00をローとして下げる。このとき、フォトゲート2の下に拡がっていたポテンシャル井戸を上げて、光発生キャリアをFD部21に完全転送させることが可能な電圧関係であることが好ましい。従って完全転送が可能であれば、制御パルスφTXは、パルスではなく所定の固定電位でもよい。
時刻T2において、フォトダイオードの光電変換部1からの電荷がFD部21に転送されることにより、FD部21の電位が光に応じて変化する。このとき、ソースフォロワアンプMOSトランジスタ5がフローティング状態であるため、FD部21の電位を時刻T3において制御パルスφTsをハイとして蓄積容量CTS11に出力する。この時点で、第1ラインの画素の暗出力と光出力はそれぞれ蓄積容量CTN10とCTS11に蓄積されている。時刻T4の制御パルスφHCを一時ハイとして水平出力線リセットMOSトランジスタ13を導通して水平出力線をリセットし、水平転送期間において水平走査回路15の走査タイミング信号により水平出力線に画素の暗出力と光出力を出力する。このとき、蓄積容量CTN10、CTS11の差動増幅器14によって、差動出力VOUTを取れば、画素のランダムノイズ及び固定パターンノイズを除去したS/Nの良好な信号を得ることができる。また、画素30−12、30−22の光電荷は、画素30−11、30−21と同時に夫々の蓄積容量CTN10、CTS11に蓄積される。そして、水平走査回路15からのタイミングパルスを1画素分遅らして水平出力線に読み出され、差動増幅器14から出力される。なお本実施例では、差動出力VOUTをチップ内で行う構成を示しているが、チップ内に含めず、外部で従来のCDS(Correlated Double Sampling:相関二重サンプリング)回路を用いても同様の効果が得られる。
蓄積容量CTS11に明出力を出力した後、制御パルスφR0をハイとしてリセット用MOSトランジスタ4を導通させ、FD部21を電源VDDにリセットする。第1ラインの水平転送が終了した後、第2ラインの読み出しを行う。第2ラインの読み出しは、制御パルスφTXe0、φPGe0を同様に駆動させ、制御パルスφTN、φTSに夫々ハイパルスを供給し、蓄積容量CTN10、CTS11に夫々光電荷を蓄積して暗出力及び明出力を取り出す。以上の駆動により、第1、第2ラインの読み出しを夫々独立に行うことができる。この後、垂直走査回路を走査させ、同様に第2n+1、第2n+2(n=1,2,…)の読み出しを行えば全画素独立出力を行うことができる。即ち、n=1の場合は、まず制御パルスφS1をハイとし、次にφR1をローとする。続いて、制御パルスφTN、φTX01をハイとし、制御パルスφPG01をロー、制御パルスφTSをハイ、制御パルスφHCを一時ハイとして画素30−31、30−32の画素信号を読み出す。続いて、制御パルスφTXe1,φPGe1及び上記と同様に制御パルスを印加して、画素30−41、30−42の画素信号を読み出す。
図5は、撮像用画素と焦点検出用画素の構造を説明する図である。本実施例においては、2行×2列の4画素のうち、対角2画素にG(緑色)の分光感度を有する画素を配置し、他の2画素にR(赤色)とB(青色)の分光感度を有する画素を各1個配置した、ベイヤー配列が採用される。ベイヤー配列の間には、後述する焦点検出用画素が所定の規則にて分散配置される。
図5(1)は、撮像用画素の平面図と断面図である。図5(1)(a)は撮像素子中央に位置する2行×2列の撮像用画素の平面図である。ベイヤー配列では、対角方向にG画素が、また、他の2画素にRとBの画素が配置される。そして、この2行×2列の構造が繰り返し配置される。図5(1)(b)は、図5(1)(a)中のA−A断面図である。MLは各画素の最前面に配置されたオンチップマイクロレンズ、CFRはR(Red)のカラーフィルタ、CFGはG(Green)のカラーフィルタである。PDは、図3で説明したC−MOSセンサの光電変換部を模式的に示したものであり、CLはC−MOSセンサ内の各種信号を伝達する信号線を形成するための配線層である。TLは撮影光学系を模式的に示したものである。
ここで、撮像用画素のオンチップマイクロレンズ(マイクロレンズML)と光電変換部PDは、撮影光学系(撮影レンズTL)を通過した光束を可能な限り有効に取り込むように構成されている。換言すると、撮影レンズTLの射出瞳EPと光電変換部PDは、マイクロレンズMLにより略共役関係にあり、かつ光電変換部PDの有効面積は大面積に設計される。また、図5(1)(b)では、R画素の入射光束について説明しているが、G画素及びB(Blue)画素も同一の構造となっている。従って、撮像用のRGB各画素に対応した射出瞳EPは大径となり、被写体からの光束を効率よく取り込んで画像信号のS/Nを向上させている。
図5(2)は、撮影レンズのx方向に瞳分割を行うための焦点検出用画素の平面図と断面図である。図5(2)(a)は、撮像素子の中央に位置する焦点検出用画素を含む2行×2列の画素の平面図である。撮像信号を得る場合、G画素は輝度情報の主成分をなす。人間の画像認識特性は輝度情報に敏感であるため、G画素が欠損すると画質劣化が認められやすい。一方、R画素又はB画素は、色情報を取得する画素であるが、人間は色情報には鈍感であるため、色情報を取得する画素は多少の欠損が生じても画質劣化に気づきにくい。そこで本実施例においては、2行×2列の画素のうち、G画素は撮像用画素として残し、RとBに相当する位置の画素にある割合で焦点検出用画素(画素SHA、SHB)を配列している。
図5(2)(b)は、図5(2)(a)中のB−B断面図である。マイクロレンズMLと光電変換部PDは、図5(1)(b)に示した撮像用画素のものと同一構造である。本実施例では、焦点検出用画素の信号は画像創生には用いないため、色分離用カラーフィルタの代わりに透明膜CFW(White)が配置される。また、撮像素子で瞳分割を行うため、配線層CLの開口部は、マイクロレンズMLの中心線に対してx方向に偏倚している。具体的には、画素SHAの開口部OPHAは−x方向に偏倚しているため、撮影レンズTLの左側の射出瞳EPHAを通過した光束を受光する。同様に、画素SHBの開口部OPHBは+x方向に偏倚しているため、撮影レンズTLの右側の射出瞳EPHBを通過した光束を受光する。本実施例では、画素SHAをx方向規則的に配列して、これらの画素群で取得した被写体像をA像とする。また、画素SHBもx方向規則的に配列して、これらの画素群で取得した被写体像をB像とする。このとき、A像とB像の相対位置を検出することで、被写体像のピントズレ量(デフォーカス量)を検出することができる。
なお、画素SHA及びSHBでは、撮影画面のx方向に輝度分布を有した被写体、例えばy方向の線に対しては焦点検出が可能である。しかし、y方向に輝度分布を有するx方向の線については焦点検出ができない。そこで本実施例では、後者についても焦点検出できるように、撮影レンズのy方向にも瞳分割を行う画素を備える。
図5(3)は、撮影レンズのy方向に瞳分割を行うための焦点検出用画素の平面図と断面図である。図5(3)(a)は、撮像素子の中央に位置する焦点検出用画素を含む2行×2列の画素の平面図である。図5(2)(a)と同様に、G画素は撮像用画素として残し、R、B画素に相当する位置の画素に一定の割合で焦点検出用画素(画素SVC、SVD)を配列している。
図5(3)(b)は、図5(3)(a)中のC−C断面図である。図5(2)(b)の画素がx方向に瞳分離する構造であるのに対して、図5(3)(b)の画素は瞳分離方向がy方向になっているが、画素の構造は同じである。すなわち、画素SVCの開口部OPVCは−y方向に偏倚しているため、撮影レンズTLの+y方向の射出瞳EPVCを通過した光束を受光する。同様に、画素SVDの開口部OPVDは+y方向に偏倚しているため、撮影レンズTLの−y方向の射出瞳EPVDを通過した光束を受光する。本実施例では、画素SVCをy方向規則的に配列して、これらの画素群で取得した被写体像をC像とする。また、画素SVDもy方向規則的に配列し、これらの画素群で取得した被写体像をD像とする。このとき、C像とD像の相対位置を検出することで、y方向に輝度分布を有する被写体像のピントズレ量(デフォーカス量)を検出することができる。
図6は、本実施例における撮像素子の瞳分割の説明図である。TLは撮影レンズ、107は撮像素子、OBJは被写体、IMGは被写体像である。撮像用画素は、図5(1)を参照して説明したように、撮影レンズTLの射出瞳全域EPを通過した光束を受光する。一方、焦点検出用画素は、図5(2)及び図5(3)を参照して説明したように、瞳分割機能を有する。具体的には、図5(2)の画素SHAは+X方向の側の瞳を通過した光束、すなわち図6の瞳EPHAを通過した光束LHAを受光する。同様に、画素SHB、SVC及びSVDは、それぞれ、瞳EPHB、EPVC及びEPVDを通過した光束LHB、LVC及びLVDを受光する。そして、焦点検出用画素を、撮像素子107の全領域に渡って分布させることで、撮像領域全域において焦点検出が可能となる。
図7は、焦点検出時に取得した画像と焦点検出領域の説明図である。図7において、撮像面に形成された被写体像には、中央に人物、左側に近景の樹木、右側に遠景の山並みが写っている。本実施例において、焦点検出用画素は、x方向ズレ検出用の画素ペア(画素SHA、SHB)と、y方向ズレ検出用の画素ペア(画素SVC、SVD)が、撮像領域全域に渡って均等な密度で配置されている。そして、x方向ズレ検出の際には、x方向ズレ検出用の画素SHA、SHBから得られる一対の画像信号を、位相差演算のためのAF画素信号として使用する。また、y方向ズレ検出の際には、y方向ズレ検出用の画素SVC、SVDから得られる一対の画像信号を、位相差演算のためのAF画素信号として使用する。このため、撮像領域の任意の位置において、x方向ズレ検出及びy方向ズレ検出のための焦点検出領域を設定することができる。
図7では、画面中央に人物の顔が存在している。公知の顔認識技術によって顔の存在が検出されると、顔領域を中心にx方向ズレ検知のための焦点検出領域AFARh(x1,y1)と、y方向ズレ検知のための焦点検出領域AFARv(x3,y3)が設定される。ここで、hはx方向を表し、(x1,y1)及び(x3,y3)は焦点検出領域の左上隅の座標を表す。そして、焦点検出領域AFARh(x1,y1)の各セクション内に含まれるx方向ズレ検出用の画素SHAを30セクションに渡って連結した位相差検出用のA像信号が、AFSIGh(A1)である。同様に、各セクションのx方向ズレ検出用の画素SHBを30セクションに渡って連結した位相差検出用のB像信号が、AFSIGh(B1)である。A像信号AFSIGh(A1)とB像信号AFSIGh(B1)の相対的なx方向ズレ量を公知の相関演算によって計算することで、撮影レンズの焦点ズレ量(デフォーカス量)を求めることができる。
焦点検出領域AFARv(x3,y3)についても、同様に、y方向ズレ検出用の画素SVCを連結した位相差検出用のC像信号が、AFSIGv(C3)である。また、y方向ズレ検出用の画素SVDを連結した位相差検出用のD像信号が、AFSIGv(D3)である。C像信号AFSIGv(C3)とD像信号AFSIGv(D3)の相対的なy方向ズレ量を相関演算によって計算することで、撮影レンズの焦点ズレ量(デフォーカス量)を求めることができる。そして、x方向ズレ及びy方向ズレの焦点検出領域で検出した2つの焦点ズレ量を比較し、信頼性の高い値を採用すればよい。
一方、画面左側の樹木の幹部は、y方向成分が主体、すなわちx方向に輝度分布を有しているため、x方向ズレ検知に適した被写体と判断され、x方向ズレ検知のための焦点検出領域AFARh(x2,y2)が設定される。また、画面右側の山並み稜線部は、x方向成分が主体、すなわちy方向に輝度分布を有しているため、y方向ズレ検知に適した被写体と判断され、y方向ズレ検知のための焦点検出領域AFARv(x4,y4)が設定される。
本実施例では、x方向ズレ及びy方向ズレ検出のための焦点検出領域を画面の任意の位置に設定可能なため、被写体の投影位置や輝度分布の方向性が様々であっても、常に焦点検出が可能となる。なお、原理はx方向ズレとy方向ズレとでは方向が異なること以外は同じである。このため、以下においてはx方向ズレの検出に関して説明し、y方向ズレ検出の説明は省略する。
図8(1)は、撮像素子の中央の焦点検出用画素の入射角特性を示す模式図である。図8(1)(a)は画素SHA、図8(1)(b)は画素SHBの入射角特性を示している。図8(1)中のx軸、y軸はそれぞれ画素のx方向、y方向の入射角度を表している。図8(1)では、色が濃くなるほど受光強度が高いことを示している。図5(2)では説明を容易にするため、画素SHAの射出瞳をEPHA、画素SHBの射出瞳をEPHBと、それぞれ分離して表した。しかし図8(1)に示されるように、実際には、開口部OPHA及び開口部OPHBの開口部による回折の影響や、SNを向上させるため、画素SHAと画素SHBの射出瞳は一部領域の重なる部分がある。
図9は、1次元で表された焦点検出用画素の入射角特性である。横軸は入射角を、縦軸は図8(1)のθy方向の受光感度を加算したものを表しており、原点が光軸である。画素SHAの特性を実線、画素SHBの特性を破線にて示している。図9に示されるように、撮像素子の中央の焦点検出用画素では、画素SHAと画素SHBの入射角特性は感度重心に対して略対称となっている。
図10は、光束のケラレの説明図である。図10(a)は撮像素子107の中央の画素に入射する光束を示し、図10(b)は撮像素子107の中央から像高を持った位置の画素に入射する光束を示す。撮像素子107には撮影レンズ(第1レンズ群101)のレンズ保持枠や絞り兼用シャッタ102等の幾つかの構成部材によって制限された光束が入射する。ここでは説明を簡単にするため、あらゆる像高において光束を制限する部材が2つあるとして説明する。Iw1、Iw2は光束を制限する部材を窓であり、光束はこの内側を通過する。MeはマイクロレンズMLの構成によって設定された瞳面(ML瞳)を表す。
図10(a)を参照して、撮像素子107の中央の画素に入射する光束のケラレについて説明する。L1rc、L1lcは窓Iw1の射出光束の外周を表し、L1rcは図10中右端、L1lcは図10中の左端を示す。L2rc、L2lcは窓Iw2の射出光束をマイクロレンズMLの瞳位置まで投影したものの外周を表し、L2rcは図10中右端、L2lcは図10中左端を示す。図10(a)に示されるように、撮像素子107の中央の画素に入射する光束の瞳面Meでの瞳領域は、L2lcとL2rcを外周とする光束、すなわち矢印Area1で示される。
次に、図10(b)を参照して、撮像素子107の中央から像高を持った位置の画素に入射する光束のケラレについて説明する。L1rh、L1lhは窓Iw1の射出光束の外周を表し、L1rhは図10中の右端、L1lhは図10中の左端を示す。L2rh、L2lhは窓Iw2の射出光束をマイクロレンズMLの瞳位置まで投影したものの外周を表し、L2rhは図10中の右端、L2lhは図10中の左端を示す。図10(b)に示されるように、撮像素子107の中央から像高を持った位置の画素に入射する光束の瞳面Me上での瞳領域は、L1lhとL2rhを外周とする光束、すなわち矢印Area2で示される。
図11は、瞳面Me上での瞳領域を示す図である。図11(a)は撮像素子の中央の画素の瞳領域を示し、図11(b)は撮像素子の中央から像高を持った位置の画素の瞳領域を示す。図10を参照して説明したように、撮像素子の中央の画素は同一窓Iw2のみによって制限された光束が入射するため、図11(a)に示されるように、瞳領域Area1は窓Iw2の形状がそのまま投影される。光束を制限する窓は円形状であるため、瞳領域Area1の形状も円形状となる。一方、撮像素子の中央から像高を持った位置の画素はIw1とIw2によって制限された光束が入射するため、瞳領域Area2は図11(b)に示されるような形状となる。
図8(2)は、焦点検出用画素の瞳強度分布図である。図8(2)(a)は画素SHA、図8(2)(b)は画素SHBの特性を示す。撮像素子の中央から像高を持った位置の画素のマイクロレンズMLは、光軸中心が所定の瞳(ML瞳)距離の光軸中心を通過するように偏心して作製されている。そのため、図8(1)に示される撮像素子の中央の焦点検出用画素の入射角特性をML瞳上に投影したものに等しく、図8(2)の縦軸及び横軸は瞳上の座標に展開したものである。この瞳強度分布は、撮像素子の中央から像高を持った位置の画素についても同じ特性を有する。なお、以上説明したレンズ保持枠や絞りの位置寸法は、レンズの種類によってそれぞれ異なるため、同じ像高の位置でもレンズの種類によって瞳領域の形状は異なる。
図12は、撮像素子内の焦点検出位置の説明図であり、撮像素子107の像高を示す。図12において、Img0は中央像高、Img1は水平4割像高、Img2は対角4割像高の位置を示す。図8(3)は、レンズを装着した際の焦点検出用画素の瞳強度分布図である。図8(3)(a)は画素SHA、図8(3)(b)は画素SHBの瞳強度分布特性を示す。図8(3)は、図11(a)で説明した瞳ケラレ形状と図8(2)の焦点検出用画素単体の瞳強度分布図を重ね合わせたものであり、画素SHA及び画素SHBには、Area1で示される形状の内側を透過した光束が図示した瞳強度分布で入射する。図13は、撮像素子の中央像高Img0の焦点検出用画素の瞳面Me上での入射光束の瞳強度分布を1次元で表した図である。横軸は瞳面Me上のx方向の座標を表し、縦軸は各座標の強度を表す。各座標の強度は、図8(3)のy方向の瞳強度を加算したものである。画素SHAの特性を実線、画素SHBの特性を破線にて示している。
図14は、中央像高Img0での焦点検出範囲のケラレの状態である。図14(a)、(b)、(c)は、それぞれ焦点検出領域の左端、中央、右端でのケラレの状態を示している。図14に示されるように、中央(図14(b))では、ケラレが丸形状であるのに対し、焦点検出領域の左端(図14(a))及び右端(図14(c))では、別のレンズ枠が出現し、ケラレの丸形状が崩れている。図15は、中央像高Img0での画素SHA、SHBの焦点検出範囲内の光量変化を示す図である。画素SHA、SHBのいずれにおいても、光量は測距領域に応じて変化する。このような光量ズレを補正しないと、ピントが合っている状態でも被写体の状態に応じて相関演算に誤差が生じる。
図16(a)は、図12に示される各像高Img0、Img1、Img2の中央位置での通常画像撮影時の瞳ケラレ形状である。図16(a)に示されるように、各像高での瞳ケラレは焦点検出位置により大きく変動し、特に像高が高いところでは瞳ケラレの影響でA像信号とB像信号との間で光量の相違が大きく、焦点検出誤差を引き起こす要因が増える。本実施例では、焦点検出動作を行う際に絞りを制御することにより、絞りの形状のみでケラレ形状が決定される。
図16(b)は、本実施例において焦点検出を行う際の各像高Img0、Img1、Img2での瞳ケラレ形状である。図16(b)に示されるように、像高Img0、Img1、Img2でのそれぞれの焦点検出領域内では、絞りで形成された丸の絞り形状で統一されており、他のレンズ枠によるケラレの影響を受けない。このため、レンズ枠の製造誤差やカメラ側の光軸の製造誤差によるレンズ枠の出現の誤差を無くすことができる。また、絞り枠のみで光量変化を引き起こしているため、焦点検出領域内での急激な光量変化は生じない。このため、補正曲線が比較的なだらかな特性となり、補正誤差が生じにくい。
図17は、焦点検出手段における瞳面位置Meでのレンズの絞り位置と焦点検出位置との関係図である。図17(a)は画素SHAでの瞳面上での瞳ケラレの形状を示す図であり、図17(b)は焦点検出位置により絞り形状の円の中心のズレ方を示す図である。撮像素子107とレンズの絞り位置との間の距離をP1、撮像素子107とML瞳面Meとの間の距離をPme、絞り値をFnoとすると、ML瞳面Meでの開口形状は円形で、その直径は式(1)で表される。
D1=Pme/Fno (1)
一方、円の中心のズレ位置(dx、dy)は、焦点検出位置の像高を(xs、ys)とすると、式(2)、(3)のように表すことができる。
dx=(P1−Pme)×xs/P1 (2)
dy=(P1−Pme)×ys/P1 (3)
図18(1)は、特定の絞り値Fnoにおける光量を元に光量の補正(シェーディング補正)を行ったゲインマップ曲線の一例である。図18(1)において、水平方向、垂直方向は、絞り形状の円の中心ズレを表す。前述の式(2)、(3)のdx、dyと水平、垂直がそれぞれ対応している。図18(1)のゲイン特性は、各像高での光量に対して逆数を取ったものに相当する。図18(1)のようなゲインマップデータ(ゲインマップ曲線)を予めカメラ内のメモリに格納することにより、どのようなレンズが装着されても、焦点検出の際に絞りを制御するだけで、ゲイン特性を統一することができる。この際、複数のレンズ枠ケラレによる急激な光量変化がなくなるため、光量補正誤差も少なくなる。
ここでは光量の補正について説明したが、ケラレ形状は、レンズによらず、図17に示される焦点検出手段の瞳面位置Meでのレンズの絞り値と焦点検出位置との関係により統一的に算出される。このため、ケラレ形状の決定により特定される焦点検出に関するパラメータ(補正値)を予めデータ化すれば、レンズ毎に焦点検出に関するパラメータ(補正値)を持つ必要はない。このような焦点検出に関する補正値は、結像光学系の射出瞳面上での絞り中心ズレに対応し、データ格納手段に格納されている。ここで焦点検出に関する補正値は、焦点検出画素の出力を補正するゲイン補正値に相当する値である。また、焦点検出に関する補正値は、焦点検出用画素から得られた一対の像信号の像ズレ変換係数に相当する値としてもよい。さらに焦点検出に係わる補正値は、焦点検出用画素から得られた一対の像信号の像修正フィルタに相当する値でもよい。
図18(2)は、焦点検出位置における画素SHA、SHBの瞳強度分布の重心ズレ量(基線長)の逆数(像ズレ換算係数)についてのグラフの一例である。焦点検出位置での相関演算より得られた像ズレ値に図18(2)の像ズレ換算係数を掛けたものが、焦点検出位置でのピントズレ量に相当する。図18(2)において、水平方向、垂直方向は、絞り形状の円の中心ズレを表し、前述の式(2)、(3)のdx、dyと水平、垂直が対応している。図18(2)に示されるデータを予めカメラ内のメモリに格納することにより、どのようなレンズが装着されても、焦点検出手段による焦点検出の際に、絞り値(Fナンバー)を制御して焦点検出位置と像ズレ換算係数のデータを統一することができる。具体的には、絞り値制御手段は、焦点検出手段による焦点状態の検出の際に、焦点検出用画素の位置での射出瞳の開口が丸形状になるように制御する。ここで、「丸形状」とは、厳密な丸に限定されるものではなく、実質的に丸の単一形状であると評価できる形状を含む。本実施例によれば、絞り形状のみでケラレ形状が決定されるため、レンズの射出瞳位置によらずにフィルタ形状を決定することができる。その結果、複数の条件のレンズに対してフィルタ形状のデータを統一的に使用することが可能となる。
図19は、オートフォーカスの一部である本実施例の焦点検出に関わるフローチャートを示す。メインフローは、一般的なカメラのフローと同一であるため、ここでの説明を省略する。なお、図19のフローにおける動作は、本実施例の演算手段及び焦点検出手段であるCPU121によって実行される。
まずステップS001では、レンズの種類やズーム位置、絞り値などのレンズ情報から各焦点検出位置での絞り値、及び、絞りの位置(撮像素子と絞りとの間の距離P1)が読み出され、ステップS002へと進む。ステップS002では、使用者により設定された焦点検出位置が読み出される。ここでは、使用者が焦点検出位置を選択するが、画像処理により顔を検出して自動的に焦点検出位置を選択する等の方法を採用してもよい。選択が完了した後、ステップS003へ進む。
ステップS003では、焦点検出位置に対応した各焦点検出用画素のML瞳上の丸絞り形状の中心ズレ(dx、dy)がCPU121により算出される。ステップS004では、ステップS003で算出した丸絞り形状の中心ズレ(dx、dy)と絞り値Fnoを元に、ゲイン補正係数を保管されているCPU121内のROMから読み出す。
ステップS005では、ステップS003で算出された丸絞り形状を元に、CPU121内のROMから適正な像修正フィルタを読み込む。像修正フィルタについては、例えば特許文献4に開示されている既知の方式を採用する。また、ステップS006では、ステップS003で算出した丸絞り形状の中心ズレ(dx、dy)と絞り値Fnoを元に、基線長データを保管されているCPU121内のROMから読み出す。また、ステップS007では、ステップS001、S002より得られた情報を元に絞り値を決定し、絞り駆動回路128により所定の絞り値に制御する。
ステップS008では、焦点検出位置での焦点検出用画素の画像信号を読み出す。ステップS009では、ステップS004で取り込まれたゲイン補正データにより、被写体A像、被写体B像がそれぞれ補正される。また、ステップS010では、ステップS005で取り込まれた像修正フィルタにより、被写体A像、被写体B像がそれぞれ補正される。
ステップS011では、ステップS006で得られた基線長データを元に、画像補正後の被写体像A像、被写体像B像を用いて公知の相関演算方法により像ズレ量を求め、デフォーカス量を算出する。デフォーカス量の算出が完了した後、ステップS012へ進む。ステップS012では、算出されたデフォーカス量から、合焦しているか否かの判定が行われる。合焦していないと判定された場合には、ステップS013へ進む。ステップS013では、算出されたデフォーカス量に応じて第3レンズ群105を進退させ、ステップS008へと戻る。一方、合焦していると判定された場合には、ステップS014へ進む。ステップS014では、一連の焦点検出フローが終了し、合焦表示を行ってメインフローへ戻る。
以上のような構成により、焦点検出位置Img1、2、3の光束のケラレ状態に対応した補正係数を読み出して、簡単な演算での像の修復を行い、合焦精度を向上させることができる。従って、簡易な演算処理回路による処理が可能となり、低コストや省スペースを確保することが可能となる。なお、本実施例では絞り形状を円形と見なして説明した。一般的に市販されている交換レンズは、実際には六枚羽根による六角絞りなど複数の形状があるが、予め円形と見なしても誤差が少ないことを確認できるため、本実施例をそのまま適用可能である。実際の絞り形状で誤差が大きいレンズについては、予め特殊レンズとしてデータを格納しておけばよい。
本実施例によれば、一般的に市販されている交換レンズに対しても、共通のシェーディング補正データより、個々のシェーディング補正係数を簡単な演算処理により算出することができる。このため、小規模な演算処理にも関わらず所望のシェーディング補正の精度を確保することが可能となる。また、簡易な演算処理回路による処理が可能となり、低コストで、焦点検出スピードを確保することが可能となる。
以上、本発明の実施例について具体的に説明した。ただし、本発明は上記実施例として記載された事項に限定されるものではなく、本発明の技術思想を逸脱しない範囲内で適宜変更が可能である。
101 第1レンズ群
102 絞り兼用シャッタ
103 第2レンズ群
105 第3レンズ群
107 撮像素子
121 CPU

Claims (6)

  1. 絞りおよび結像光学系を有するレンズユニットを通過した光束のうち射出瞳を分割して形成された像を光電変換する複数の焦点検出用画素を有する撮像手段と、
    前記複数の焦点検出用画素から一対の像信号を取得して前記結像光学系の焦点状態を検出する焦点検出手段と、
    前記焦点検出手段による前記焦点状態の検出の際に、前記焦点検出用画素の位置での射出瞳の開口の形状が前記絞りの開口の形状に依存するように前記絞りを制御する制御手段と、を有することを特徴とする撮像装置。
  2. 前記撮像装置はデータ格納手段を更に有し、
    前記データ格納手段は、前記結像光学系の射出瞳面上での絞り中心ズレに対応する焦点検出に関する補正値を格納していることを特徴とする請求項1に記載の撮像装置。
  3. 前記焦点検出に関する補正値は、焦点検出画素の出力を補正するゲイン補正値に相当する値であることを特徴とする請求項2に記載の撮像装置。
  4. 前記焦点検出に関する補正値は、前記焦点検出用画素から得られた前記一対の像信号の像ズレ変換係数に相当する値であることを特徴とする請求項2に記載の撮像装置。
  5. 前記焦点検出に係わる補正値は、前記焦点検出用画素から得られた前記一対の像信号の像修正フィルタに相当する値であることを特徴とする請求項2に記載の撮像装置。
  6. 絞りおよび結像光学系を有するレンズユニットを通過した光束のうち射出瞳を分割して形成された像を複数の焦点検出用画素により光電変換する工程と、
    前記複数の焦点検出用画素から一対の像信号を取得して前記結像光学系の焦点状態を検出する工程と、
    前記焦点状態の検出の際に、前記焦点検出用画素の位置での射出瞳の開口の形状が前記絞りの開口の形状に依存するように前記絞りを制御する工程と、を有することを特徴とする撮像方法。
JP2010098895A 2010-04-22 2010-04-22 撮像装置 Abandoned JP2011227388A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098895A JP2011227388A (ja) 2010-04-22 2010-04-22 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098895A JP2011227388A (ja) 2010-04-22 2010-04-22 撮像装置

Publications (1)

Publication Number Publication Date
JP2011227388A true JP2011227388A (ja) 2011-11-10

Family

ID=45042762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098895A Abandoned JP2011227388A (ja) 2010-04-22 2010-04-22 撮像装置

Country Status (1)

Country Link
JP (1) JP2011227388A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182332A (ja) * 2011-03-02 2012-09-20 Sony Corp 撮像素子および撮像装置
JP2017054052A (ja) * 2015-09-11 2017-03-16 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2017219782A (ja) * 2016-06-10 2017-12-14 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2019028142A (ja) * 2017-07-26 2019-02-21 キヤノン株式会社 撮像装置、及びその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182332A (ja) * 2011-03-02 2012-09-20 Sony Corp 撮像素子および撮像装置
JP2017054052A (ja) * 2015-09-11 2017-03-16 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2017219782A (ja) * 2016-06-10 2017-12-14 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP2019028142A (ja) * 2017-07-26 2019-02-21 キヤノン株式会社 撮像装置、及びその制御方法
JP7005209B2 (ja) 2017-07-26 2022-01-21 キヤノン株式会社 撮像装置、及びその制御方法

Similar Documents

Publication Publication Date Title
JP5675157B2 (ja) 焦点検出装置
JP5237059B2 (ja) 焦点検出装置及び方法、及び撮像装置
JP5276374B2 (ja) 焦点検出装置
JP5147645B2 (ja) 撮像装置
JP5322561B2 (ja) 撮像装置及びその制御方法
JP5028154B2 (ja) 撮像装置及びその制御方法
JP5606208B2 (ja) 焦点検出装置および撮像装置
JP5746496B2 (ja) 撮像装置
JP5455397B2 (ja) 光学機器
US8159599B2 (en) Focus detection apparatus, focus detection method, and image sensing apparatus
JP5319347B2 (ja) 撮像装置及びその制御方法
JP5276371B2 (ja) 撮像装置
JP5552214B2 (ja) 焦点検出装置
JP5503209B2 (ja) 撮像素子及び撮像装置
JP2008085738A (ja) 撮像装置
JP2012220925A (ja) 撮像装置およびカメラシステム
JP2009128892A (ja) 撮像素子および撮像装置
JP2012220790A (ja) 撮像装置
JP2011227388A (ja) 撮像装置
JP5735784B2 (ja) 撮像装置及びその制御方法、レンズ装置及びその制御方法
JP5864989B2 (ja) 撮像素子及び撮像装置
JP5748826B2 (ja) 撮像装置およびカメラシステム
JP6254780B2 (ja) 焦点検出装置及び方法、及び撮像装置
JP2014013392A (ja) 撮像装置及びその制御方法
JP2014142521A (ja) 撮像装置およびその制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130729