JP2011224461A - Microbubble generator - Google Patents

Microbubble generator Download PDF

Info

Publication number
JP2011224461A
JP2011224461A JP2010096359A JP2010096359A JP2011224461A JP 2011224461 A JP2011224461 A JP 2011224461A JP 2010096359 A JP2010096359 A JP 2010096359A JP 2010096359 A JP2010096359 A JP 2010096359A JP 2011224461 A JP2011224461 A JP 2011224461A
Authority
JP
Japan
Prior art keywords
microbubble
microbubble generator
substrate
ejection
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010096359A
Other languages
Japanese (ja)
Other versions
JP5669173B2 (en
JP2011224461A5 (en
Inventor
Hitoshi Sakamoto
仁志 坂本
Michio Niwano
道夫 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANG-ICHI KK
Original Assignee
HANG-ICHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANG-ICHI KK filed Critical HANG-ICHI KK
Priority to JP2010096359A priority Critical patent/JP5669173B2/en
Publication of JP2011224461A publication Critical patent/JP2011224461A/en
Publication of JP2011224461A5 publication Critical patent/JP2011224461A5/ja
Application granted granted Critical
Publication of JP5669173B2 publication Critical patent/JP5669173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Devices For Medical Bathing And Washing (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microbubble generator for generating microbubbles with a comparatively simple structure.SOLUTION: The microbubble generator includes a microbubble jet base 10 and a casing 20 fixing the microbubble jet base 10. The jet direction outside surface of the microbubble jet base 10 is provided with an anodization porous layer 11 formed with micropores 12, and the jet direction inside surface is provided with a plurality of openings 13 with the bottom parts communicating with the micropores. The casing 20 is provided inside with a passage that communicates with the openings 13, and a pump part 30 supplying at least gas to the passage.

Description

本発明は、マイクロバブル発生装置に関する。   The present invention relates to a microbubble generator.

近年、マイクロバブル技術の有用性が注目され、そのための研究が各方面でなされはじめている。例えば、半導体産業ではマイクロバブルを用いた洗浄技術に注目しており、この他にもマイクロバブル発生装置を用いて除菌及び脱臭された水(オゾン水)の生成や、超微細気泡を上水殺菌消毒、上下水膜処理、健康・医療機器分野や、湖沼や養殖場の水質浄化、工場・畜産等の各種排水処理、及び、機能水製造などへの利用が検討されている。   In recent years, the usefulness of microbubble technology has attracted attention, and research for that purpose has begun in various fields. For example, the semiconductor industry is paying attention to cleaning technology using microbubbles. In addition to this, generation of water (ozone water) that has been sterilized and deodorized using a microbubble generator, and the production of ultrafine bubbles as water Use in the fields of sterilization and disinfection, water and sewage treatment, health and medical equipment, water purification of lakes and farms, various wastewater treatment in factories and livestock, and functional water production is under consideration.

このようなマイクロバブルを発生させる装置であるマイクロバブル発生装置として、種々の構造が提案されている(特許文献1〜3等参照)。   Various structures have been proposed as a microbubble generator which is a device for generating such microbubbles (see Patent Documents 1 to 3).

特開平08−229370号公報Japanese Patent Laid-Open No. 08-229370 特開2002−153741号公報JP 2002-153741 A 特開2003−117365号公報JP 2003-117365 A

しかしながら、従来のマイクロバブル発生装置は、構造的に複雑で且つ比較的大がかりな装置であるという問題があった。例えば、家庭の浴槽で気軽に使用できるようなコンパクトで単純な構造のマイクロバブル発生装置の要望があるものの、要望を満足できるものはなかなか出現していない。   However, the conventional microbubble generator has a problem that it is structurally complicated and relatively large. For example, although there is a demand for a microbubble generator having a compact and simple structure that can be easily used in a bathtub in a home, there are not many that can satisfy the demand.

本発明は、このような事情に鑑み、比較的単純な構造でマクロバブル発生を実現するマイクロバブル発生装置を提供することを課題とする。   In view of such circumstances, an object of the present invention is to provide a microbubble generator that realizes macrobubble generation with a relatively simple structure.

前記課題を解決する本発明の第1の態様は、マイクロバブル噴出基板と、このマイクロバブル噴出基板を固定する筐体とを具備し、前記マイクロバブル噴出基板の噴出方向外側の面には、微細孔が形成された陽極酸化多孔層が設けられ、噴出方向内側の面には、底部が前記微細孔に連通する開口部が複数設けられ、前記筐体内には前記開口部に連通する流路が設けられており、前記流路に少なくとも気体を供給するポンプ部を備えたことを特徴とするマイクロバブル発生装置にある。   A first aspect of the present invention that solves the above problems includes a microbubble ejection substrate and a housing that fixes the microbubble ejection substrate, and a surface on the outer side in the ejection direction of the microbubble ejection substrate has a fine structure. An anodized porous layer in which holes are formed is provided, and a plurality of openings whose bottom part communicates with the fine holes are provided on the inner surface in the ejection direction, and a flow path communicating with the opening is provided in the housing. A microbubble generator provided with a pump unit that supplies at least gas to the flow path.

本発明の第2の態様は、前記マイクロバブル噴出基板が、アルミニウム又はチタンからなることを特徴とする第1の態様に記載のマイクロバブル発生装置にある。   According to a second aspect of the present invention, in the microbubble generator according to the first aspect, the microbubble ejection substrate is made of aluminum or titanium.

本発明の第3の態様は、前記ポンプ部が、気体と液体との混合物を供給するものであることを特徴とする第1又は2の態様に記載のマイクロバブル発生装置にある。   According to a third aspect of the present invention, in the microbubble generator according to the first or second aspect, the pump unit supplies a mixture of gas and liquid.

本発明の第4の態様は、前記開口部が、噴出方向内側ほど径が漸小する円錐台形状であることを特徴とする第1〜3の何れか一つの態様に記載のマイクロバブル発生装置にある。   According to a fourth aspect of the present invention, the microbubble generator according to any one of the first to third aspects is characterized in that the opening has a truncated cone shape whose diameter gradually decreases toward the inner side in the ejection direction. It is in.

本発明の第5の態様は、前記ポンプ部が前記筐体に内蔵されていることを特徴とする第1〜4の何れか一つの態様に記載のマイクロバブル発生装置にある。   According to a fifth aspect of the present invention, in the microbubble generator according to any one of the first to fourth aspects, the pump unit is built in the housing.

本発明の一実施形態に係るマイクロバブル発生装置の斜視図である。It is a perspective view of the microbubble generator concerning one embodiment of the present invention. 本発明の一実施形態に係るマイクロバブル発生装置の断面図及び要部断面図である。It is sectional drawing and principal part sectional drawing of the microbubble generator which concerns on one Embodiment of this invention. 本発明の一実施形態に係るマイクロバブル噴出基板の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the microbubble ejection substrate which concerns on one Embodiment of this invention.

以下、本発明を実施形態に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

図1に示すように、本実施形態のマイクロバブル発生装置1は、円盤状のマイクロバブル噴出基板10と、円筒状の筐体20と、筐体20内に内蔵されたポンプ30とを具備する。   As shown in FIG. 1, the microbubble generator 1 of this embodiment includes a disk-shaped microbubble ejection substrate 10, a cylindrical casing 20, and a pump 30 built in the casing 20. .

図2に示すように、マイクロバブル噴出基板10は、アルミニウム、チタンなどからなる円盤状部材であり、噴出側の面である表層部が陽極酸化により形成された微細孔層11となっている。微細孔層11は、陽極酸化により形成された酸化物層であり、厚さ方向に所定の深さまで所定のピッチで形成された多数の微細孔12を具備する。   As shown in FIG. 2, the microbubble ejection substrate 10 is a disk-shaped member made of aluminum, titanium, or the like, and has a microporous layer 11 in which a surface layer portion that is a surface on the ejection side is formed by anodization. The microporous layer 11 is an oxide layer formed by anodic oxidation, and includes a large number of micropores 12 formed at a predetermined pitch to a predetermined depth in the thickness direction.

また、マイクロバブル噴出基板10の噴射方向とは反対側の面には、所定間隔で複数の開口部13が設けられている。開口部13は、例えば、機械加工により形成されたものであり、マイクロバブル噴出基板10の厚さ方向に完全には貫通しないが、その底部13a(図3参照)が微細孔12に届く程度の深さに形成されている。すなわち、開口部13の底部13aに対向する領域に形成された微細孔12は、開口部13と連通する貫通孔14となり、マイクロバブルが噴出する噴出口となる。   In addition, a plurality of openings 13 are provided at predetermined intervals on the surface of the microbubble ejection substrate 10 opposite to the ejection direction. The opening 13 is formed by, for example, machining, and does not completely penetrate in the thickness direction of the microbubble ejection substrate 10, but the bottom 13 a (see FIG. 3) reaches the fine hole 12. It is formed to a depth. That is, the fine hole 12 formed in the region facing the bottom 13a of the opening 13 becomes a through hole 14 communicating with the opening 13, and becomes a jet outlet from which microbubbles are jetted.

開口部13は、形状は特に限定されないが、機械加工で形成することを考慮すると、円柱状又は円錐台状がよく、本実施形態では、円錐台状となっている。すなわち、開口部13は、噴出方向逆側ほど開口径が漸大するテーパー形状となっている。このようなテーパー形状とすることにより、貫通孔14に向かって流体が流れ易くなり、また、貫通孔14からの噴出圧を向上させる効果がある。   The shape of the opening 13 is not particularly limited, but considering that it is formed by machining, a cylindrical shape or a truncated cone shape is preferable. In the present embodiment, the opening portion 13 has a truncated cone shape. That is, the opening 13 has a tapered shape with the opening diameter gradually increasing toward the opposite side in the ejection direction. By adopting such a tapered shape, the fluid can easily flow toward the through hole 14, and there is an effect of improving the ejection pressure from the through hole 14.

かかるマイクロバブル噴出基板10の製造方法の一例を図3を参照して説明する。   An example of a method for manufacturing the microbubble ejection substrate 10 will be described with reference to FIG.

まず、図3(a)に示すように、円盤状の基板41を用意する。基板41は、例えば、アルミニウム、チタンなどの材質とする。本実施形態では、アルミニウム製で5mm厚のものを基板41とした。   First, as shown in FIG. 3A, a disk-shaped substrate 41 is prepared. The substrate 41 is made of a material such as aluminum or titanium. In this embodiment, the substrate 41 is made of aluminum and has a thickness of 5 mm.

次に、図3(b)に示すように、基板41に所定の間隔で円錐台状のテーパー穴である開口部13を形成する。開口部13の形成は、機械加工により行った。開口部13は底部13aの直径が10mmとし、底部13aに対向して形成された薄板部42の厚さは100μm程度とした。なお、開口部13は、所定の間隔で形成し、基板41の機械的強度が保持できるようにした。   Next, as shown in FIG. 3B, openings 13 that are frustoconical tapered holes are formed in the substrate 41 at predetermined intervals. The opening 13 was formed by machining. In the opening 13, the diameter of the bottom 13a is 10 mm, and the thickness of the thin plate portion 42 formed to face the bottom 13a is about 100 μm. The openings 13 are formed at a predetermined interval so that the mechanical strength of the substrate 41 can be maintained.

次に、図3(c)に示すように、基板41の開口部13が形成された面とは反対側の面を陽極酸化し、微細孔層11を形成した。微細孔層11は、酸化アルミニウム(アルマイト)層であり、100nmφの厚さ方向にストレートな微細孔12を多数形成された層である。微細孔12の深さは100μm以上とし、薄板部42を完全に貫通するように形成した。   Next, as shown in FIG. 3C, the surface of the substrate 41 opposite to the surface on which the opening 13 was formed was anodized to form the microporous layer 11. The microporous layer 11 is an aluminum oxide (alumite) layer and is a layer in which a number of straight micropores 12 are formed in the thickness direction of 100 nmφ. The depth of the fine hole 12 was set to 100 μm or more, and it was formed so as to completely penetrate the thin plate portion 42.

なお、陽極酸化は、常法に従って行えばよいが、例えば、0.1〜1.0Mのシュウ酸を電解液として電解液中に基板41の開口部13とは反対側を浸けた状態で、基板41と対極との間に定電圧(10〜100V)を印加し、所定時間陽極酸化することにより行えばよい。本実施形態では、0.5Mのシュウ酸を電解液として40Vの定電圧を印加して陽極酸化を行い、100nmφ、深さ100μmの微細孔12を形成し、マイクロバブル噴出基板10を製造した。   The anodic oxidation may be performed according to a conventional method. For example, in a state where 0.1 to 1.0 M oxalic acid is used as the electrolytic solution and the side opposite to the opening 13 of the substrate 41 is immersed in the electrolytic solution, A constant voltage (10 to 100 V) may be applied between the substrate 41 and the counter electrode, and anodization may be performed for a predetermined time. In the present embodiment, anodization was performed by applying a constant voltage of 40 V using 0.5 M oxalic acid as an electrolytic solution to form micropores 12 having a diameter of 100 nmφ and a depth of 100 μm, and the microbubble ejection substrate 10 was manufactured.

ここで、陽極酸化は、処理する面以外を耐酸性のレジストで覆って、電解液中に浸漬して行ってもよい。また、開口部13に対向する薄板部42の領域以外の表面をレジストで覆って、薄板部42の領域のみを微細孔層11としてもよい。   Here, the anodic oxidation may be performed by covering the surface other than the surface to be treated with an acid-resistant resist and immersing in an electrolytic solution. Alternatively, the surface other than the region of the thin plate portion 42 facing the opening 13 may be covered with a resist, and only the region of the thin plate portion 42 may be the microporous layer 11.

なお、電解液の組成、温度、電圧などの条件を変化させることで、微細孔12の直径、深さ、ピッチを制御することができ、所望の噴出口を形成することができ、所望のマイクロバブルを得ることができる。   In addition, by changing conditions such as the composition, temperature, and voltage of the electrolytic solution, the diameter, depth, and pitch of the micropores 12 can be controlled, and a desired ejection port can be formed. You can get a bubble.

ここで、マイクロバブルとは、一般的には、数十μm以下の微小な気泡をいうが、数十〜数百nm程度のナノオーダーのバブル、いわゆるナノバブルも包含するものである。   Here, the microbubble generally refers to a minute bubble of several tens of μm or less, but also includes a nano-order bubble of about several tens to several hundreds of nanometers, so-called nanobubbles.

また、本発明のマイクロバルブ発生装置では、噴出口となる微細孔の径、ピッチを制御して自己組織的に一定範囲に揃った状態とするのが好ましく、これにより、所望の範囲に揃ったマイクロバブルを得ることができる。ここで、一定範囲に揃ったとは、例えば、±50%の範囲に分布して揃っている状態をいい、例えば、本実施形態では、噴出口の径は100nm付近を中心に50nm〜150nmの範囲に90%以上が分布している。   Moreover, in the microvalve generating device of the present invention, it is preferable that the diameter and pitch of the fine holes serving as the ejection ports are controlled to be in a self-organized state within a certain range, thereby achieving the desired range. Microbubbles can be obtained. Here, “equal to a certain range” means, for example, a state in which it is distributed and aligned in a range of ± 50%. For example, in this embodiment, the diameter of the ejection port is in the range of 50 nm to 150 nm centering around 100 nm. 90% or more are distributed.

このようなマイクロバブル噴出基板10は、開口部13の底部13aに対向する薄板部42に陽極酸化で形成した微細孔12である貫通孔14を具備する構造としたので、優れた機械的強度を有すると共に、微細な貫通孔14を具備するものとすることができる。また、薄板部42は、接着、接合などにより設けられたものではなく、マイクロバブル噴出基板10に一体的に形成されたものであり、噴出圧力に対する耐圧性、耐久性に優れたものとなる。   Such a microbubble ejection substrate 10 has a structure in which the through hole 14 which is the fine hole 12 formed by anodic oxidation is provided in the thin plate portion 42 facing the bottom portion 13a of the opening portion 13, and thus has excellent mechanical strength. In addition, the fine through hole 14 can be provided. In addition, the thin plate portion 42 is not provided by bonding, bonding, or the like, but is formed integrally with the microbubble ejection substrate 10 and has excellent pressure resistance and durability against the ejection pressure.

また、貫通孔14を陽極酸化により形成するので、ナノオーダーの貫通孔14が比較的容易に形成でき、ナノバブルを発生するマイクロバブル発生装置を容易に実現できる。   Moreover, since the through-hole 14 is formed by anodic oxidation, the nano-order through-hole 14 can be formed relatively easily, and a microbubble generator that generates nanobubbles can be easily realized.

このようなマイクロバブル噴出基板10を固定する筐体20は、上述したマイクロバブル噴出基板10を保持する有底円筒形状を具備し、内部にポンプ30を内蔵する。   The casing 20 for fixing the microbubble ejection substrate 10 has a bottomed cylindrical shape that holds the microbubble ejection substrate 10 described above, and includes a pump 30 therein.

ポンプ30は、電気駆動のポンプであり、電源コード31を具備すると共に、外部から空気を取り入れるための導入パイプ32が設けられており、導入パイプ32から導入した空気を貫通孔14から噴出するものである。   The pump 30 is an electrically driven pump and includes a power cord 31 and is provided with an introduction pipe 32 for taking in air from the outside, and jets air introduced from the introduction pipe 32 through the through hole 14. It is.

本実施形態では、筐体20内の空間全体がポンプ30の噴出口と貫通孔14とを連通する流路となっているが、ポンプ30の噴出口と貫通孔14との間に適宜形状の流路を設けて、貫通孔14から噴出する空気の圧力を高めるようにしてもよい。   In the present embodiment, the entire space in the housing 20 is a flow path that connects the jet outlet of the pump 30 and the through hole 14. However, an appropriate shape is provided between the jet outlet of the pump 30 and the through hole 14. You may make it raise the pressure of the air which ejects from the through-hole 14 by providing a flow path.

なお、ポンプ30は、空気と水との混合物を圧送するものでもよく、この場合、貫通孔14から所望の圧力で空気と水との混合物が噴出されることになる。   The pump 30 may pump a mixture of air and water. In this case, the mixture of air and water is ejected from the through hole 14 at a desired pressure.

この場合、空気と水を導入パイプ32を介して送るようにしてもよいし、導入パイプ32から空気を導入するようにすると共に、筐体20を水中に保持して筐体20の外部から水を取り入れ、両者を混合して噴出するようにしてもよく、ポンプ30の機能、構造は特に限定されるものではない。   In this case, air and water may be sent through the introduction pipe 32, or air may be introduced from the introduction pipe 32, and the casing 20 is held in water and water is supplied from the outside of the casing 20. The two may be mixed and ejected, and the function and structure of the pump 30 are not particularly limited.

また、ポンプ30は、筐体20に内蔵せずに筐体20とは別途設けてもよいことは言うまでもない。   Needless to say, the pump 30 may be provided separately from the housing 20 without being incorporated in the housing 20.

以上説明したマイクロバブル発生装置1は、コンパクトで、例えば、導入パイプ32の取り入れ口を水槽の外に出した状態で、筐体20を浴槽中や各種水槽中に載置するだけで、マイクロバブル発生装置として用いることができ、各種用途に使用することができる。   The microbubble generator 1 described above is compact, for example, by simply placing the housing 20 in a bathtub or various water tanks with the intake port of the introduction pipe 32 outside the water tank. It can be used as a generator and can be used for various purposes.

1 マイクロバブル発生装置
10 マイクロバブル噴出基板
11 微細孔層
12 微細孔
13 開口部
14 貫通孔
20 筐体
30 ポンプ
32 導入パイプ
DESCRIPTION OF SYMBOLS 1 Microbubble generator 10 Microbubble ejection board | substrate 11 Micropore layer 12 Micropore 13 Opening part 14 Through-hole 20 Housing | casing 30 Pump 32 Introducing pipe

Claims (5)

マイクロバブル噴出基板と、このマイクロバブル噴出基板を固定する筐体とを具備し、前記マイクロバブル噴出基板の噴出方向外側の面には、微細孔が形成された陽極酸化多孔層が設けられ、噴出方向内側の面には、底部が前記微細孔に連通する開口部が複数設けられ、前記筐体内には前記開口部に連通する流路が設けられており、前記流路に少なくとも気体を供給するポンプ部を備えたことを特徴とするマイクロバブル発生装置。   A microbubble jet substrate and a housing for fixing the microbubble jet substrate are provided. An outer surface of the microbubble jet substrate in the jet direction is provided with an anodized porous layer in which fine holes are formed. A plurality of openings whose bottoms communicate with the fine holes are provided on the inner surface in the direction, and a flow path communicating with the openings is provided in the housing, and at least gas is supplied to the flow path. A microbubble generator comprising a pump unit. 前記マイクロバブル噴出基板が、アルミニウム又はチタンからなることを特徴とする請求項1記載のマイクロバブル発生装置。   2. The microbubble generator according to claim 1, wherein the microbubble ejection substrate is made of aluminum or titanium. 前記ポンプ部が、気体と液体との混合物を供給するものであることを特徴とする請求項1又は2記載のマイクロバブル発生装置。   3. The microbubble generator according to claim 1, wherein the pump unit supplies a mixture of gas and liquid. 前記開口部が、噴出方向内側ほど径が漸小する円錐台形状であることを特徴とする請求項1〜3の何れか一項に記載のマイクロバブル発生装置。   The microbubble generator according to any one of claims 1 to 3, wherein the opening has a frustoconical shape whose diameter gradually decreases toward the inner side in the ejection direction. 前記ポンプ部が前記筐体に内蔵されていることを特徴とする請求項1〜4の何れか一項に記載のマイクロバブル発生装置。   The microbubble generator according to any one of claims 1 to 4, wherein the pump unit is built in the housing.
JP2010096359A 2010-04-19 2010-04-19 Micro bubble generator Active JP5669173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096359A JP5669173B2 (en) 2010-04-19 2010-04-19 Micro bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096359A JP5669173B2 (en) 2010-04-19 2010-04-19 Micro bubble generator

Publications (3)

Publication Number Publication Date
JP2011224461A true JP2011224461A (en) 2011-11-10
JP2011224461A5 JP2011224461A5 (en) 2013-01-24
JP5669173B2 JP5669173B2 (en) 2015-02-12

Family

ID=45040521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096359A Active JP5669173B2 (en) 2010-04-19 2010-04-19 Micro bubble generator

Country Status (1)

Country Link
JP (1) JP5669173B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279943A (en) * 2009-06-04 2010-12-16 Green Technology Co Ltd Air-diffusing pipe and method for manufacturing the same
JP2013106565A (en) * 2011-11-21 2013-06-06 Acurusu:Kk Ozone sterilizing apparatus
WO2013088667A1 (en) * 2011-12-16 2013-06-20 パナソニック株式会社 System and method for generating nanobubbles
JP2013236981A (en) * 2012-05-11 2013-11-28 Sumitomo Heavy Industries Environment Co Ltd Air diffuser
JP2014226616A (en) * 2013-05-23 2014-12-08 俊行 門脇 Nanobubble water/foam generator
JP2015166055A (en) * 2014-03-04 2015-09-24 公立大学法人首都大学東京 Fine bubble generation plate
JP2017042763A (en) * 2016-11-25 2017-03-02 住友重機械エンバイロメント株式会社 Aeration device, and aeration member
JP2018086632A (en) * 2016-11-29 2018-06-07 日本特殊陶業株式会社 Bubble generation member, device and method
KR20180103044A (en) 2016-01-25 2018-09-18 가부시키가이샤 노리타께 캄파니 리미티드 Apparatus for producing micro-bubble containing liquid
JP7169612B1 (en) 2022-02-25 2022-11-11 株式会社ナノバブル研究所 Micro bubble generation plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136630A (en) * 1980-03-25 1981-10-26 Sumitomo Electric Ind Ltd Air diffuser
JPH0637291B2 (en) * 1989-03-31 1994-05-18 京都大学長 Double-sided microporous alumina porous membrane and method for producing the same
JPH08318144A (en) * 1995-05-26 1996-12-03 Kubota Corp Diffuser
JP2006346654A (en) * 2005-06-20 2006-12-28 Tsukishima Kikai Co Ltd Emulsifying filter and emulsion preparation apparatus
JP2008517997A (en) * 2004-10-29 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Dispersion formulation of particles for use as a contrast agent in ultrasound imaging
JP2008279351A (en) * 2007-05-10 2008-11-20 Daiko:Kk Fine bubble generator and apparatus for generating finn bubble
JP2009101299A (en) * 2007-10-24 2009-05-14 Fuji Xerox Co Ltd Micro nano-bubble generation method, washing method for micro-flow passage, micro nano-bubble generation system, and micro-reactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136630A (en) * 1980-03-25 1981-10-26 Sumitomo Electric Ind Ltd Air diffuser
JPH0637291B2 (en) * 1989-03-31 1994-05-18 京都大学長 Double-sided microporous alumina porous membrane and method for producing the same
JPH08318144A (en) * 1995-05-26 1996-12-03 Kubota Corp Diffuser
JP2008517997A (en) * 2004-10-29 2008-05-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Dispersion formulation of particles for use as a contrast agent in ultrasound imaging
JP2006346654A (en) * 2005-06-20 2006-12-28 Tsukishima Kikai Co Ltd Emulsifying filter and emulsion preparation apparatus
JP2008279351A (en) * 2007-05-10 2008-11-20 Daiko:Kk Fine bubble generator and apparatus for generating finn bubble
JP2009101299A (en) * 2007-10-24 2009-05-14 Fuji Xerox Co Ltd Micro nano-bubble generation method, washing method for micro-flow passage, micro nano-bubble generation system, and micro-reactor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279943A (en) * 2009-06-04 2010-12-16 Green Technology Co Ltd Air-diffusing pipe and method for manufacturing the same
JP2013106565A (en) * 2011-11-21 2013-06-06 Acurusu:Kk Ozone sterilizing apparatus
JPWO2013088667A1 (en) * 2011-12-16 2015-04-27 パナソニックIpマネジメント株式会社 Nanobubble generation system and generation method
WO2013088667A1 (en) * 2011-12-16 2013-06-20 パナソニック株式会社 System and method for generating nanobubbles
CN103747859A (en) * 2011-12-16 2014-04-23 松下电器产业株式会社 System and method for generating nanobubbles
JP2013236981A (en) * 2012-05-11 2013-11-28 Sumitomo Heavy Industries Environment Co Ltd Air diffuser
JP2014226616A (en) * 2013-05-23 2014-12-08 俊行 門脇 Nanobubble water/foam generator
JP2015166055A (en) * 2014-03-04 2015-09-24 公立大学法人首都大学東京 Fine bubble generation plate
KR20180103044A (en) 2016-01-25 2018-09-18 가부시키가이샤 노리타께 캄파니 리미티드 Apparatus for producing micro-bubble containing liquid
JP2017042763A (en) * 2016-11-25 2017-03-02 住友重機械エンバイロメント株式会社 Aeration device, and aeration member
JP2018086632A (en) * 2016-11-29 2018-06-07 日本特殊陶業株式会社 Bubble generation member, device and method
JP7169612B1 (en) 2022-02-25 2022-11-11 株式会社ナノバブル研究所 Micro bubble generation plate
JP2023124752A (en) * 2022-02-25 2023-09-06 株式会社ナノバブル研究所 Microbubble generation plate

Also Published As

Publication number Publication date
JP5669173B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5669173B2 (en) Micro bubble generator
JP4144669B2 (en) Method for producing nanobubbles
JPH07194952A (en) Preparation of high concentration ozone water and apparatus for preparing high concentration ozone water
JP2006198557A (en) Apparatus for producing water having oxidation-reduction potential
JP2009101299A (en) Micro nano-bubble generation method, washing method for micro-flow passage, micro nano-bubble generation system, and micro-reactor
CN107708849B (en) Bubble generating apparatus and device
KR102616663B1 (en) Reduced water production device and reduced water production method
WO2010071124A1 (en) Microbubble generating device, hydrogen water producing device, and hydrogen water producing method
JPWO2020189271A1 (en) Bubble generator
WO2012108235A1 (en) Plasma generator, cleaning and purifying device using the plasma generator, and small-sized electrical apparatus
JP6741248B2 (en) Ultra-fine bubble generator containing ozone
KR100879960B1 (en) Manufacturing apparatus of oxygen water
JP2015072820A (en) Microbial fuel cell
JP5912603B2 (en) Method for producing saturated gas-containing nanobubble water
JP2012164560A (en) Plasma generating device, and cleaning/purifying device and small electric appliance using plasma generating device
JP2008063648A (en) Apparatus for producing rinse water containing hydrogen peroxide, and method for producing rinse water containing hydrogen peroxide
KR20170099038A (en) High-density micro-bubble generating device
JP2009234900A (en) Underwater ozonizer
JP2008114099A (en) Microbubble generation device and bubble fining implement
WO2013065355A1 (en) Ozone liquid generator and ozone liquid generation method
JP2013123701A (en) System and method for production of gas-dissolved solution
JP3150000U (en) Microbubble generator and hydrogen water production apparatus
KR20210089289A (en) Micro-Nano Bubble Generator using Porous membrane with gas supply fuction
JP2008168178A (en) Dental gargle water feed device
JP2013010068A (en) Ozone liquid generator and method for generating ozone liquid

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141211

R150 Certificate of patent or registration of utility model

Ref document number: 5669173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350