JP2011220123A - Exhaust purification catalyst - Google Patents

Exhaust purification catalyst Download PDF

Info

Publication number
JP2011220123A
JP2011220123A JP2010087029A JP2010087029A JP2011220123A JP 2011220123 A JP2011220123 A JP 2011220123A JP 2010087029 A JP2010087029 A JP 2010087029A JP 2010087029 A JP2010087029 A JP 2010087029A JP 2011220123 A JP2011220123 A JP 2011220123A
Authority
JP
Japan
Prior art keywords
layer
catalyst
exhaust purification
purification catalyst
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010087029A
Other languages
Japanese (ja)
Inventor
Masamichi Kuwashima
正倫 桑島
Yusuke Niina
祐介 新名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010087029A priority Critical patent/JP2011220123A/en
Publication of JP2011220123A publication Critical patent/JP2011220123A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust purification catalyst that exhibits high CO oxidation activity in a temperature range including a low temperature range of <100°C.SOLUTION: A catalyst layer of the exhaust purification catalyst includes: a noble metal coat layer 3 that carries a noble metal on a carrier base material 21 as a lower layer; and a HC (hydrocarbon) adsorbent layer 4 that carries a noble metal on a carrier base material 31 as an upper layer. The thickness of the HC adsorbent layer of the upper layer is 30-80 μm.

Description

本発明は、排気浄化触媒に関し、さらに詳しくは特定の2層構造を有することにより低温でのCO酸化活性を向上させた排気浄化触媒に関する。   The present invention relates to an exhaust purification catalyst, and more particularly to an exhaust purification catalyst that has a specific two-layer structure to improve CO oxidation activity at a low temperature.

近年、大気中に排出される排気の浄化は環境上の重要課題であり、大気汚染防止の観点から規制が強化されている。自動車等の内燃機関その他の燃焼機関から生じる排気中の有害成分を除去するために、排気浄化触媒を用いた処理が行われている。
例えば、エンジンから排出される排気は排気浄化触媒により浄化されて大気中に放出される。しかし、エンジン始動直後は低温のため、排気浄化触媒内の触媒が不活性状態であり、排気が十分浄化されない。
一方、一般に排気浄化に用いられる触媒には担体上にPtやPdなどの貴金属を担持したものが用いられており、これらの貴金属が高価であって資源的にも問題があることからその使用量を低減することが必要である。
このため、触媒の活性を向上させるために種々の検討がされている。
In recent years, purification of exhaust gas discharged into the atmosphere is an important environmental issue, and regulations have been strengthened from the viewpoint of preventing air pollution. In order to remove harmful components in exhaust gas generated from internal combustion engines such as automobiles and other combustion engines, treatment using an exhaust purification catalyst is performed.
For example, exhaust discharged from the engine is purified by an exhaust purification catalyst and released into the atmosphere. However, since the temperature is low immediately after the engine is started, the catalyst in the exhaust purification catalyst is in an inactive state, and the exhaust is not sufficiently purified.
On the other hand, catalysts that are generally used for exhaust purification are those in which noble metals such as Pt and Pd are supported on a carrier, and these noble metals are expensive and have a problem in terms of resources. Need to be reduced.
For this reason, various studies have been made to improve the activity of the catalyst.

例えば、特許文献1には、触媒層を少なくとも2層設け、白金、パラジウム、ロジウム又はイリジウムである貴金属を貴金属毎に担持したアルミナ又はゼオライトとペロブスカイト型酸化物とを含有し、且つ白金がゼオライトに担持されていて、下層にペロブスカイト型酸化物を含み、上層に白金担持ゼオライトを含有する排気ガス浄化用触媒が記載されている。しかし、特許文献1では触媒活性を700℃で評価した例が示されており、触媒層の上層の厚みが触媒活性にどのような影響を及ぼすか、特に低温でのCO酸化活性にどのような影響を及ぼすかについては示されていない。   For example, Patent Document 1 includes at least two catalyst layers, and contains alumina or zeolite and a perovskite oxide in which a noble metal such as platinum, palladium, rhodium or iridium is supported for each noble metal, and platinum is added to the zeolite. An exhaust gas purifying catalyst which is supported, contains a perovskite oxide in the lower layer, and contains platinum-supported zeolite in the upper layer is described. However, Patent Document 1 shows an example in which the catalyst activity is evaluated at 700 ° C., and how the thickness of the upper layer of the catalyst layer affects the catalyst activity, in particular, the CO oxidation activity at a low temperature. It is not shown how it will affect it.

また、特許文献2には、ハニカム状担体上に、下層、中間層および表層を順次積層して成り、下層が白金、パラジウム又はロジウムとアルカリ金属、アルカリ土類金属又は希土類元素を含有し、中間層がβゼオライトを含有し、表層が銅及び/又はコバルトを含むゼオライトを含有する排気ガス浄化触媒が記載されている。そして、具体例として、3層構造の排気ガス浄化触媒が、中間層を設けない2層構造の排気ガス浄化触媒に比べて100℃〜500℃の範囲で高いNO浄化率を示すことが示されている。しかし、特許文献2には3層構造および2層構造の排気ガス浄化触媒が100℃未満の低温域でどのようなCO酸化活性を示すかについては示されていない。 Further, Patent Document 2 is formed by sequentially laminating a lower layer, an intermediate layer, and a surface layer on a honeycomb-shaped carrier, and the lower layer contains platinum, palladium, or rhodium and an alkali metal, an alkaline earth metal, or a rare earth element. An exhaust gas purification catalyst is described in which the layer contains beta zeolite and the surface layer contains zeolite containing copper and / or cobalt. As a specific example, it is shown that the exhaust gas purification catalyst having a three-layer structure exhibits a higher NO x purification rate in the range of 100 ° C. to 500 ° C. than the exhaust gas purification catalyst having a two-layer structure without an intermediate layer. Has been. However, Patent Document 2 does not indicate what CO oxidation activity the exhaust gas purification catalyst having a three-layer structure and a two-layer structure exhibits in a low temperature region below 100 ° C.

また、特許文献3には、担体上に浄化触媒金属およびアルカリ又はアルカリ土類金属を含むNO吸蔵型触媒層を有し、その上にSOのNO吸蔵材への拡散を抑制するバリヤ層を備え、場合によりさらにバリヤ層の上層に貴金属が担持されたゼオライト層であるSO吸放出材層を備えた排気ガス浄化用触媒が記載されている。そして、具体例として、400℃でのS被毒低減効果が示されている。しかし、特許文献3には3層構造および2層構造の排気ガス浄化触媒が100℃未満の低温域でどのような排気ガス浄化特性、特にCO酸化活性を示すかについては示されていない。 Patent Document 3 discloses a barrier that has a NO X storage-type catalyst layer containing a purification catalyst metal and an alkali or alkaline earth metal on a carrier, and further suppresses the diffusion of SO X into the NO X storage material. a layer, are further described exhaust gas purifying catalyst having a SO X absorption and release material layer is a zeolite layer in which the noble metal is supported on an upper layer of the barrier layer in some cases. As a specific example, the S poison reduction effect at 400 ° C. is shown. However, Patent Document 3 does not indicate what exhaust gas purification characteristics, particularly CO oxidation activity, the exhaust gas purification catalyst having a three-layer structure or a two-layer structure exhibits in a low temperature region below 100 ° C.

さらに、特許文献4には、担体上に、触媒金属とNO吸着材と高表面積耐熱性酸化物粒子とを含有する第一触媒層と、その上に形成されているゼオライトであるNH吸着材を含有する第二触媒層とからなり、いずれかの触媒層中に酸化鉄微細粒子が分散して含まれるNO浄化用の排気ガス浄化用触媒が記載されている。そして、具体例として、排気ガス浄化触媒が、170℃又は240℃で高いNO浄化率を示すことが示されている。しかし、特許文献4には排気ガス浄化触媒が100℃未満の低温域でどのようなCO酸化活性を示すかについては示されていない。 Furthermore, Patent Document 4, on the carrier, the first catalyst layer containing a catalyst metal and NO X adsorbent and a high surface area refractory oxide particles, NH 3 adsorbing a zeolite formed thereon consists of a second catalyst layer containing wood, either the exhaust gas purifying catalyst for NO X purifying iron oxide fine particles in the catalyst layer are included dispersed is described. As a specific example, it is shown that the exhaust gas purification catalyst exhibits a high NO x purification rate at 170 ° C. or 240 ° C. However, Patent Document 4 does not indicate what CO oxidation activity the exhaust gas purification catalyst exhibits in a low temperature region below 100 ° C.

特開2007−289844号公報JP 2007-289844 A 特開2007−327460号公報JP 2007-327460 A 特開2007−289844号公報JP 2007-289844 A 特開2007−289844号公報JP 2007-289844 A

しかし、これら公知の排気浄化触媒によっても、100℃未満の低温域で高いCO酸化活性を示す排気浄化触媒を得ることは困難である。
しかるに、近年のCO排出量低減化の要求により排気温度が大幅に低温化し、この排気温度の低温化に伴って従来は大きな問題となっていなかった、排気浄化触媒の低温でのCO酸化活性が大幅に悪化するという問題が生じている。この排気浄化触媒のCO酸化活性の大幅な悪化はCO排出量の増大をもたらす。
従って、本発明の目的は、100℃未満の低温域を含む温度範囲で高いCO酸化活性を示す排気浄化触媒を提供することである。
However, even with these known exhaust purification catalysts, it is difficult to obtain an exhaust purification catalyst that exhibits high CO oxidation activity in a low temperature range of less than 100 ° C.
However, the exhaust temperature has been drastically lowered due to the recent demand for reducing CO 2 emissions, and the exhaust purification catalyst has not been a major problem with the lowering of the exhaust temperature. There is a problem that is getting worse. The significant deterioration in the CO oxidation activity of the exhaust purification catalyst results in an increase in CO emissions.
Accordingly, an object of the present invention is to provide an exhaust purification catalyst that exhibits high CO oxidation activity in a temperature range including a low temperature range of less than 100 ° C.

本発明者等は、前記目的を達成することを目的として鋭意検討を行った結果、前記目的を達成するためには低温からCOを酸化し得て、共存ガスであるHC被毒の影響を抑制する必要があることを見出しさらに検討を行った結果、本発明を完成した。
本発明は、触媒層が、下層としての担体基材に貴金属を担持した貴金属コート層と、上層としての担体基材に貴金属を担持したHC(炭化水素)吸着材層とからなり、上層のHC吸着材層の厚みが30〜80μmであることを特徴とする排気浄化触媒に関する。
As a result of intensive studies aimed at achieving the above object, the present inventors can oxidize CO from a low temperature in order to achieve the above object, and suppress the influence of HC poisoning, which is a coexisting gas. As a result of further finding out that it is necessary to carry out the present invention, the present invention has been completed.
In the present invention, the catalyst layer is composed of a noble metal coat layer in which a noble metal is supported on a carrier substrate as a lower layer, and an HC (hydrocarbon) adsorbent layer in which a noble metal is supported on a carrier substrate as an upper layer. The present invention relates to an exhaust purification catalyst characterized in that the adsorbent layer has a thickness of 30 to 80 μm.

本発明の排気浄化触媒によれば、100℃未満の低温域を含む温度範囲で高いCO酸化活性を示す排気浄化触媒を得ることができる。   According to the exhaust purification catalyst of the present invention, it is possible to obtain an exhaust purification catalyst that exhibits high CO oxidation activity in a temperature range including a low temperature range of less than 100 ° C.

図1は、本発明の1実施態様を示す模式図である。FIG. 1 is a schematic diagram showing one embodiment of the present invention. 図2は、従来の1層構造の排気浄化触媒によるCO酸化活性を示すグラフである。FIG. 2 is a graph showing the CO oxidation activity of a conventional single-layer exhaust purification catalyst. 図3は、従来の1層構造の排気浄化触媒の担体基材を変えた場合のCO酸化活性を示すグラフである。FIG. 3 is a graph showing the CO oxidation activity when the carrier substrate of the conventional exhaust purification catalyst having a single-layer structure is changed. 図4は、従来の1層構造の排気浄化触媒によるCO酸化活性を説明するための推定メカニズム示す模式図である。FIG. 4 is a schematic diagram showing an estimation mechanism for explaining the CO oxidation activity by the conventional exhaust purification catalyst having a single-layer structure. 図5は、従来の1層構造の排気浄化触媒と2層構造の排気浄化触媒とのCO酸化活性を比較して示すグラフである。FIG. 5 is a graph showing a comparison of CO oxidation activity between a conventional exhaust purification catalyst having a single-layer structure and an exhaust purification catalyst having a two-layer structure. 図6は、2層構造の排気浄化触媒の上層の厚さとCO浄化率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the thickness of the upper layer of the exhaust purification catalyst having a two-layer structure and the CO purification rate. 図7は、本発明の実施態様の2層構造の排気浄化触媒の上層と下層との貴金属担持量の割合とCO浄化率との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the ratio of the amount of noble metal supported between the upper layer and the lower layer of the exhaust purification catalyst having a two-layer structure according to the embodiment of the present invention and the CO purification rate. 図8は、本発明の実施態様の2層構造の排気浄化触媒の上層と下層との貴金属担持量の割合とHCすり抜け量との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the ratio of the amount of the noble metal supported between the upper layer and the lower layer of the exhaust purification catalyst having a two-layer structure according to the embodiment of the present invention and the HC slipping amount. 図9は、本発明の実施態様の2層構造の排気浄化触媒の上層と下層との貴金属担持量の割合とCO浄化率およびHCすり抜け量との関係をまとめて示すグラフである。FIG. 9 is a graph collectively showing the relationship between the ratio of the amount of the noble metal supported between the upper layer and the lower layer of the exhaust purification catalyst having the two-layer structure according to the embodiment of the present invention, the CO purification rate, and the HC slipping amount. 図10は、本発明の実施態様の2層構造の排気浄化触媒と従来の1層構造の排気浄化触媒とのCO浄化率への効果を比較したグラフである。FIG. 10 is a graph comparing the effects on the CO purification rate of the exhaust purification catalyst having the two-layer structure according to the embodiment of the present invention and the conventional exhaust purification catalyst having the one-layer structure. 図11は、本発明の実施態様の2層構造の排気浄化触媒の上層におけるPt/Pd比に対する下層におけるPt/Pd比との割合とPtのシンタリング抑制への影響とを比較したグラフである。FIG. 11 is a graph comparing the ratio of the Pt / Pd ratio in the lower layer to the Pt / Pd ratio in the lower layer with respect to the sintering suppression of Pt with respect to the Pt / Pd ratio in the upper layer of the two-layered exhaust purification catalyst of the embodiment of the present invention. . 図12は、本発明の実施態様のPd有効活用を示すグラフである。FIG. 12 is a graph showing the effective utilization of Pd in the embodiment of the present invention. 図13は、本発明の他の実施態様のPd/OSC材系の効果を説明する模式図である。FIG. 13 is a schematic diagram for explaining the effect of the Pd / OSC material system of another embodiment of the present invention. 図14は、本発明の排気浄化触媒からなるHC酸化触媒を自動車のエンジン排気浄化に適用した1例の模式図である。FIG. 14 is a schematic diagram of an example in which the HC oxidation catalyst comprising the exhaust purification catalyst of the present invention is applied to automobile engine exhaust purification. 図15は、本発明の排気浄化触媒からなるHC酸化触媒を自動車のエンジン排気浄化に適用した他の1例の模式図である。FIG. 15 is a schematic view of another example in which the HC oxidation catalyst comprising the exhaust purification catalyst of the present invention is applied to the engine exhaust purification of an automobile. 図16は、本発明の排気浄化触媒からなるHC酸化触媒を自動車のエンジン排気浄化に適用した他の1例の模式図である。FIG. 16 is a schematic view of another example in which the HC oxidation catalyst comprising the exhaust purification catalyst of the present invention is applied to the engine exhaust purification of an automobile. 図17は、本発明の排気浄化触媒からなるHC酸化触媒を自動車のエンジン排気浄化に適用した他の1例の模式図である。FIG. 17 is a schematic view of another example in which the HC oxidation catalyst comprising the exhaust purification catalyst of the present invention is applied to the engine exhaust purification of an automobile.

本発明の実施態様において、排気浄化触媒は、触媒層が、下層としての担体基材に貴金属、好適にはPtおよび/又はPdを担持した貴金属コート層と、上層としての担体基材、好適にはゼオライトに貴金属、好適にはPtおよび/又はPdを担持したHC吸着材層とからなり、上層のHC吸着材層の厚みが30〜80μmである。   In an embodiment of the present invention, the exhaust purification catalyst has a catalyst layer having a noble metal, preferably a Pt and / or Pd supported on a carrier substrate as a lower layer, and a carrier substrate as an upper layer, preferably Consists of an HC adsorbent layer carrying a noble metal, preferably Pt and / or Pd, on the zeolite, and the upper HC adsorbent layer has a thickness of 30 to 80 μm.

本発明の好適な実施態様において、排気浄化触媒は、前記の要件に加えさらに、前記の上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が0.1以上1.5未満である。
さらに本発明の好適な実施態様において、排気浄化触媒は、前記の要件に加えさらに、前記下層がCeを含み、上層のHC)吸着材層および下層の貴金属コート層がいずれも貴金属としてPtおよびPdが担当され、上層におけるPtとPdとの比率(Pt/Pd、質量比)が下層におけるPtとPdとの比率(Pt/Pd、質量比)よりも大である。
In a preferred embodiment of the present invention, in addition to the above-described requirements, the exhaust purification catalyst further includes a ratio (M U ) between the amount of the noble metal supported on the upper layer (M U ) and the amount of the noble metal supported on the lower layer (M D ). / M D , mass ratio) is 0.1 or more and less than 1.5.
Furthermore, in a preferred embodiment of the present invention, in addition to the above-mentioned requirements, the exhaust purification catalyst further includes Ce as the lower layer, and the upper HC) adsorbent layer and the lower noble metal coat layer are both precious metals such as Pt and Pd. The ratio of Pt and Pd in the upper layer (Pt / Pd, mass ratio) is larger than the ratio of Pt and Pd in the lower layer (Pt / Pd, mass ratio).

以下、図面を用いて本発明を説明する。
本発明の実施態様において排気浄化触媒1は、図1に示すように、基材2に設けられた触媒層10が、下層としての担体基材21に貴金属22を担持した貴金属コート層3と、上層としての担体基材31に貴金属32を担持したHC(炭化水素)吸着材層4とからなり、上層のHC吸着材層4の厚みが30〜80μmである。
Hereinafter, the present invention will be described with reference to the drawings.
In the embodiment of the present invention, as shown in FIG. 1, the exhaust purification catalyst 1 includes a noble metal coat layer 3 in which a catalyst layer 10 provided on a base material 2 carries a noble metal 22 on a carrier base material 21 as a lower layer, It consists of an HC (hydrocarbon) adsorbent layer 4 carrying a noble metal 32 on a carrier base 31 as an upper layer, and the thickness of the upper HC adsorbent layer 4 is 30 to 80 μm.

前記の基材としては、セラミックス材料、例えばコージェライトなどやメタル基材、例えばステンレス鋼などが挙げられる。
前記基材の形状はストレートフロー型、フィルター型、その他の形状が挙げられ、形状に限定されることなく本発明の効果を発揮し得る。
Examples of the substrate include ceramic materials such as cordierite and metal substrates such as stainless steel.
Examples of the shape of the substrate include a straight flow type, a filter type, and other shapes, and the effects of the present invention can be exhibited without being limited to the shape.

前記の担体基材としては、Al、SiO、TiO、ZrO、CeOのうち少なくとも1種が挙げられる。また、さらに2つ以上からなる複合酸化物を形成することが好適である。また、W、Pr、La、Y、Nd、Mg、Fe等の添加元素を加えることでさらなる活性向上を図り得る。
そして、上層の担体基材として、ゼオライトをHC吸着材として含有することが好適である。
また、下層の担体基材として、前記の担体基材に加えて、Pd担体基材としてCeを含む酸化物を追加するとが好適である。前記のCeを含む酸化物として、セリア(CeO)やセリア複合酸化物、すなわちセリア−ジルコニア(CeO−ZrO)複合酸化物(CZ)などのOSC材が挙げられる。
前記の貴金属としては、Pt、Pd、Rh、Au、Agからなる群から選ばれる少なくとも1種の元素、好適にはPtおよび/又はPdが挙げられる。特に、Ptを0.1g/L-触媒以上、その中でも0.1〜2g/L-触媒の量を担持したものが好適である。
Examples of the carrier substrate include at least one of Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , and CeO 2 . Further, it is preferable to form a composite oxide composed of two or more. Further, the activity can be further improved by adding additional elements such as W, Pr, La, Y, Nd, Mg, and Fe.
Further, it is preferable to contain zeolite as an HC adsorbent as the upper carrier substrate.
Moreover, it is preferable to add an oxide containing Ce as a Pd carrier substrate in addition to the carrier substrate as a lower carrier substrate. Examples of the oxide containing Ce include OSC materials such as ceria (CeO 2 ) and ceria composite oxide, that is, ceria-zirconia (CeO 2 —ZrO 2 ) composite oxide (CZ).
Examples of the noble metal include at least one element selected from the group consisting of Pt, Pd, Rh, Au, and Ag, preferably Pt and / or Pd. In particular, Pt of 0.1 g / L-catalyst or more, preferably 0.1 to 2 g / L-catalyst is supported.

従来の1層構造の排気浄化触媒では、図2に示すように、HCが共存する通常の条件では低温CO酸化活性が低い。
また、従来の1層構造の排気浄化触媒では、図3に示すように、担体基材としてゼオライトの使用の有無に関らずCO酸化活性が低い。
この従来の1層構造の排気浄化触媒による低いCO酸化活性に関して、図4に示すように、1層のみでは担体基材(ゼオライト)に吸着したHCにより触媒貴金属が被毒されていることによると推定される。
In the conventional exhaust purification catalyst having a single layer structure, as shown in FIG. 2, the low temperature CO oxidation activity is low under normal conditions where HC coexists.
Further, in the conventional exhaust purification catalyst having a single layer structure, as shown in FIG. 3, the CO oxidation activity is low regardless of whether or not zeolite is used as the carrier substrate.
Regarding the low CO oxidation activity of the conventional exhaust purification catalyst having a single layer structure, as shown in FIG. 4, the catalyst noble metal is poisoned by HC adsorbed on the support substrate (zeolite) in only one layer. Presumed.

本発明の実施態様の排気浄化触媒によれば、図5に示すように、後述の実施例の欄に詳述する試験条件での試験の結果、従来の1層構造の浄化触媒に比べてT50(℃)/COが低下することが確認される。
また、2層構造の排気浄化触媒は、図6に示すように、上層担体基材の厚みが30〜80μmであると、後述の実施例の欄に詳述する試験条件での試験の結果、良好な低温CO酸化活性を示すことが確認される。
According to the exhaust purification catalyst of the embodiment of the present invention, as shown in FIG. 5, as a result of the test under the test conditions detailed in the column of the example described later, the T50 as compared with the conventional purification catalyst having a single layer structure is obtained. It is confirmed that (° C.) / CO decreases.
In addition, as shown in FIG. 6, the exhaust purification catalyst having a two-layer structure has a thickness of the upper carrier substrate of 30 to 80 μm, as a result of the test under the test conditions described in detail in the Examples section below. It is confirmed that it exhibits good low-temperature CO oxidation activity.

2層構造の排気浄化触媒において、前記の上層であるHC吸着材層の厚みが前記下限より薄いとHC吸着能が低下し厚すぎるとガス拡散性が悪化しCO酸化活性が低下するが、前記の上層であるHC吸着材層の厚みが前記の範囲内であることによってHC吸着とCO酸化を両立し得て、低温でのCO酸化が可能となり得ると考えられる。   In the exhaust purification catalyst having a two-layer structure, if the thickness of the HC adsorbent layer as the upper layer is thinner than the lower limit, the HC adsorbing ability is lowered, and if it is too thick, the gas diffusibility is deteriorated and the CO oxidation activity is lowered. It is considered that when the thickness of the HC adsorbent layer, which is the upper layer, is within the above range, HC adsorption and CO oxidation can both be achieved, and CO oxidation at a low temperature can be achieved.

また、本発明の実施態様の排気浄化触媒は、図7に示すように、上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が1.5未満であると、後述の実施例の欄に詳述する試験条件での試験の結果、良好な低温CO酸化活性を示すことが確認される。
また、本発明の実施態様の排気浄化触媒は、図8に示すように、上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が0.1以上であると、後述の実施例の欄に詳述する試験条件での高SV時の未燃焼ガス(HC)のすり抜け量が少ないことが確認される。
In addition, as shown in FIG. 7, the exhaust purification catalyst of the embodiment of the present invention has a ratio (M U / M D ) between the amount of the upper layer noble metal supported (M U ) and the amount of the lower layer noble metal supported (M D ). When the mass ratio is less than 1.5, it is confirmed as a result of the test under the test conditions described in detail in the Examples section below that good low-temperature CO oxidation activity is exhibited.
In addition, as shown in FIG. 8, the exhaust purification catalyst according to the embodiment of the present invention has a ratio (M U / M D ) between the amount of supported noble metal (M U ) in the upper layer and the amount of supported noble metal (M D ) in the lower layer. When the mass ratio is 0.1 or more, it is confirmed that the amount of unburned gas (HC) slipping through at high SV under the test conditions described in detail in Examples below will be small.

以上の低温CO酸化活性とPM再生時のHCすり抜け量とを総合的に考慮すると、図9に示すように、上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が0.1以上1.5以下であることが特に好適であることが理解される。 Considering the above-mentioned low-temperature CO oxidation activity and the amount of HC slipping during PM regeneration comprehensively, as shown in FIG. 9, the upper layer noble metal loading (M U ) and the lower layer noble metal loading (M D ) It is understood that it is particularly preferable that the ratio (M U / M D , mass ratio) is 0.1 or more and 1.5 or less.

本発明の実施態様の2層構造の排気浄化触媒と従来の1層構造の排気浄化触媒とのCO浄化率について比較すると、図10に示すように、本発明の実施態様の排気浄化触媒のCO浄化率が従来の1層構造の排気浄化触媒のCO浄化率に比べて向上していることが理解される。   When comparing the CO purification rate of the exhaust purification catalyst having the two-layer structure according to the embodiment of the present invention and the exhaust purification catalyst having the conventional one-layer structure, as shown in FIG. 10, the CO of the exhaust purification catalyst according to the embodiment of the present invention is shown. It is understood that the purification rate is improved as compared with the CO purification rate of the conventional exhaust purification catalyst having a single-layer structure.

本発明の実施態様の2層構造の排気浄化触媒において、図11に示すように、Ptのシンタリング抑制に必要なPd量は、上下層に配置する総Pd/Ptが1/9以上(貴金属に対してPdが10%以上)で1/2未満、特にPd/Ptが1/5以上(貴金属に対してPdが17%以上)で1/2未満であることが好適であることが理解される。
また、Pdの有効活用の点から、図12に示すように、本発明の実施態様の下層としての担体基材に貴金属を担持した貴金属コート層と、上層としての担体基材に貴金属を担持したHC(炭化水素)吸着材層との2層構造の排気浄化触媒において、担体基材上の総Pd/Ptが1/9以上、特に1/5以上で1/2未満にして、排気浄化触媒における担体基材上の触媒層中のPd/Pt=1/2との差分のPdをOSC材上に担持して下層に配置することが特に好適であることが理解される。
このPd/OSC材系の効果は、図13に示すように、OSC材で被毒したHCを酸化除去することによると考えられる。
In the exhaust purification catalyst having a two-layer structure according to the embodiment of the present invention, as shown in FIG. 11, the total amount of Pd / Pt disposed in the upper and lower layers is 1/9 or more (precious metal) It is understood that it is preferable that Pd is 10% or more) and less than 1/2, particularly Pd / Pt is 1/5 or more (Pd is 17% or more with respect to a noble metal) and less than 1/2. Is done.
From the viewpoint of effective use of Pd, as shown in FIG. 12, a noble metal coat layer in which a noble metal is supported on a carrier substrate as a lower layer of an embodiment of the present invention, and a noble metal is supported on a carrier substrate as an upper layer. In an exhaust purification catalyst having a two-layer structure with an HC (hydrocarbon) adsorbent layer, the total Pd / Pt on the carrier substrate is 1/9 or more, particularly 1/5 or more and less than 1/2, and the exhaust purification catalyst It is understood that it is particularly preferable to support Pd of the difference from Pd / Pt = 1/2 in the catalyst layer on the support base material on the OSC material and arrange it in the lower layer.
The effect of this Pd / OSC material system is considered to be due to oxidation removal of HC poisoned by the OSC material, as shown in FIG.

本発明の排気浄化触媒は、図14に示すように、自動車のエンジン排気浄化にHC酸化触媒として適用し得る。
また、本発明の排気浄化触媒は、図15に示すように、自動車のエンジン排気浄化にHC酸化触媒としてDPFと組み合わせて適用し得る。
また、本発明の排気浄化触媒は、図16に示すように、自動車のエンジン排気浄化にHC酸化触媒としてDPFおよびNO触媒と組み合わせて適用し得る。
また、本発明の排気浄化触媒は、図17に示すように、自動車のエンジン排気浄化にHC酸化触媒としてDPFおよびNO触媒と配列を変えた組み合わせで適用し得る。
As shown in FIG. 14, the exhaust purification catalyst of the present invention can be applied as an HC oxidation catalyst for automobile engine exhaust purification.
Further, as shown in FIG. 15, the exhaust purification catalyst of the present invention can be applied in combination with DPF as an HC oxidation catalyst for purification of automobile engine exhaust.
The exhaust gas purifying catalyst of the present invention, as shown in FIG. 16 may be applied in combination with DPF and NO X catalyst as HC oxidation catalyst in the engine exhaust gas purification of an automobile.
The exhaust gas purifying catalyst of the present invention, as shown in FIG. 17 may be applied in combination with different sequences and DPF and NO X catalyst as HC oxidation catalyst in the engine exhaust gas purification of an automobile.

前記のDPF(粒子フィルタ)としては、特に制限はなく例えば多孔質セラミックからなるハニカム構造体を備えたいわゆるウォールフロー型であり得て、ハニカム構造体は、コージェライト、シリカ、アルミナ等のセラミックス材料で形成される。ハニカム構造体にはセルとも称される通路、上流側に詰栓が施された通路と、下流側に詰栓が施された他の通路とが交互に区画形成され、ハニカム状をなしている。排気が上流から下流に向かって流れると、排気は多孔質セラミックの流路壁面を通過して通路に流入し、下流側に流れる。このとき、排気中のPMは多孔質のセラミックスによって捕集され、PMの大気への放出が防止される。このように排気が流路壁面を通過し、その際にPMを濾過捕集するフィルタ形式がウォールフロー型と称される。   The DPF (particle filter) is not particularly limited, and may be a so-called wall flow type having a honeycomb structure made of, for example, a porous ceramic. The honeycomb structure is made of a ceramic material such as cordierite, silica, and alumina. Formed with. In the honeycomb structure, a passage called a cell, a passage provided with a plug on the upstream side, and another passage provided with a plug on the downstream side are alternately partitioned to form a honeycomb shape. . When the exhaust gas flows from the upstream to the downstream, the exhaust gas passes through the porous ceramic channel wall surface and flows into the channel, and then flows downstream. At this time, the PM in the exhaust gas is collected by the porous ceramics, and the release of the PM into the atmosphere is prevented. A filter type in which exhaust gas passes through the wall surface of the flow path and collects PM at that time is called a wall flow type.

前記のNO触媒としては、特に制限はなく例えば吸蔵還元型NOx触媒(NSR:NOx Storage Reduction)又は選択還元型NOx触媒(SCR:Selective Catalytic Reduction)が挙げられる。
前記吸蔵還元型NO触媒としては、アルミナAl等の酸化物からなる基材表面に、触媒成分としての白金Ptのような貴金属と、NOx吸収成分とが担持されて構成されている。NOx吸収成分は、例えばカリウムK、ナトリウムNa,リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類が挙げられる。
The NO X catalyst is not particularly limited, and examples thereof include an occlusion reduction type NOx catalyst (NSR: NOx Storage Reduction) or a selective reduction type NOx catalyst (SCR: Selective Catalytic Reduction).
As the storage reduction NO X catalyst, on a substrate surface made of oxide such as alumina Al 2 O 3, and a noble metal such as platinum Pt as a catalyst component, and a NOx absorbing component is composed is carried . Examples of the NOx absorption component include alkali metals such as potassium K, sodium Na, lithium Li and cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y.

そしてNO触媒が吸蔵還元型NOx触媒の場合、これに流入される排気ガスの空燃比が所定値(典型的には理論空燃比)よりリーンのときにはNOxを吸収し、これに流入される排気ガス中の酸素濃度が低下すると吸収したNOxを放出するという、NOxの吸放出作用を行う。ディーゼルエンジンが使用される場合、通常時の排気空燃比はリーンであり、NOx触媒は排気中のNOxの吸収を行う。また、NOx触媒の上流側にて還元剤が供給され、流入排気ガスの空燃比がリッチになると、NOx触媒は吸収したNOxの放出を行う。そしてこの放出されたNOxは還元剤と反応して還元浄化される。 And if NO X catalyst of the NOx storage reduction catalyst, the exhaust gas air-fuel ratio of the exhaust gas flowing thereto absorbs predetermined value NOx when the lean side (typically the stoichiometric air-fuel ratio), which is introduced thereto When the oxygen concentration in the gas decreases, the absorbed and released NOx is released by releasing the absorbed NOx. When a diesel engine is used, the exhaust air-fuel ratio at normal times is lean, and the NOx catalyst absorbs NOx in the exhaust. Further, when the reducing agent is supplied on the upstream side of the NOx catalyst and the air-fuel ratio of the inflowing exhaust gas becomes rich, the NOx catalyst releases the absorbed NOx. The released NOx reacts with the reducing agent and is reduced and purified.

また、前記選択還元型NOx触媒としては、ゼオライトまたはアルミナ等の基材表面にPtなどの貴金属を担持したものや、その基材表面にCu等の遷移金属をイオン交換して担持させたもの、その基材表面にチタニア/バナジウム触媒(V/WO/TiO)を担持させたもの等が例示できる。
この選択還元型NOx触媒においては、流入排気ガスの空燃比がリーンという条件下で、排気ガス中のHC、NOが定常的に且つ同時に反応されてN,CO,HOといったように浄化される。ただしNOxの浄化にはHCの存在が必須である。空燃比がリーンであっても、排気ガス中には未燃HCが必ず含まれているので、これを利用してNOxの還元浄化が可能である。また、前記吸蔵還元型NOx触媒のようにリッチスパイクを実施して還元剤を供給してもよい。この場合、還元剤としては前記に例示したもののほか、アンモニアや尿素を使用することもできる。
In addition, as the selective reduction type NOx catalyst, those in which a noble metal such as Pt is supported on the surface of a substrate such as zeolite or alumina, or those in which a transition metal such as Cu is ion-exchanged and supported on the surface of the substrate, Examples thereof include those in which a titania / vanadium catalyst (V 2 O 5 / WO 3 / TiO 2 ) is supported on the surface of the base material.
In this selective reduction type NOx catalyst, under the condition that the air-fuel ratio of the inflowing exhaust gas is lean, HC and NO in the exhaust gas are reacted steadily and simultaneously so that N 2 , CO 2 , H 2 O, etc. Purified. However, the presence of HC is essential for NOx purification. Even if the air-fuel ratio is lean, unburned HC is always contained in the exhaust gas, and this can be used to reduce and purify NOx. Further, the reducing agent may be supplied by performing rich spike like the NOx storage reduction catalyst. In this case, ammonia or urea can be used as the reducing agent in addition to those exemplified above.

本発明の排気浄化装置は、上記の構成を有することによって100℃未満の低温域を含む温度範囲で高いCO酸化活性を達成することができる。しかし、前記効果を低減しない限り、内燃機関の排気浄化装置に適用し得る任意の他の手段を加えることも可能である。
本発明の排気浄化装置によれば、ディーゼルエンジンだけでなく100℃未満の低温でCOを発生し得る全ての内燃機関、例えば、直噴の火点火式内燃機関であるリーンバーンガソリンエンジンにも適用し得る。
The exhaust emission control device of the present invention can achieve high CO oxidation activity in a temperature range including a low temperature region of less than 100 ° C. by having the above configuration. However, any other means that can be applied to the exhaust gas purification apparatus for an internal combustion engine can be added as long as the effect is not reduced.
The exhaust emission control device according to the present invention is applicable not only to a diesel engine but also to all internal combustion engines that can generate CO at a low temperature of less than 100 ° C., for example, a lean burn gasoline engine that is a direct injection fire ignition internal combustion engine. Can do.

以下に、実施例に基づいて本発明を説明する。本発明は以下の実施例に限定されない。
以下の実験は、本発明の構成による作用・効果を確認するためのものである。
Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples.
The following experiment is for confirming the action and effect of the configuration of the present invention.

以下の各例において、排気浄化触媒の活性を以下の試験条件で評価した。
試験条件1:CO酸化活性(T50=50%浄化温度)
モデルガスを用いて、下記の測定法により測定した。
モデルガス:CO=1500ppm、C=1000ppm、NO=200ppm、O=10%、HO=3%、N=バランス、流量=20L/min
T50算出:CO浄化率が50%となる温度として求めた。
試験条件2:CO酸化活性(T50)
実機の2.2Lディーゼルエンジンを用いて、80℃からの昇温試験を行った。
試験条件3:CO酸化活性(CO浄化率)
実機のNEDCモード中のUDC領域を模擬して、2.2Lディーゼルエンジンを用い行った。
CO浄化率算出法:(触媒出CO量/トータル触媒入りCO量)×100(%)
In each of the following examples, the activity of the exhaust purification catalyst was evaluated under the following test conditions.
Test condition 1: CO oxidation activity (T50 = 50% purification temperature)
Measurement was performed by the following measurement method using a model gas.
Model gas: CO = 1500 ppm, C 3 H 6 = 1000 ppm, NO = 200 ppm, O 2 = 10%, H 2 O = 3%, N 2 = balance, flow rate = 20 L / min
T50 calculation: It was determined as the temperature at which the CO purification rate was 50%.
Test condition 2: CO oxidation activity (T50)
Using a real 2.2L diesel engine, a temperature rise test from 80 ° C. was performed.
Test condition 3: CO oxidation activity (CO purification rate)
A 2.2 L diesel engine was used to simulate the UDC region in the NEDC mode of the actual machine.
CO purification rate calculation method: (catalyst output CO amount / total catalyst-containing CO amount) × 100 (%)

HCすり抜け量の測定
HCすり抜け量算出法:触媒入りHC量を固定(燃料噴射量を固定)し、2000rpm/100Nmで昇温。温度が安定したところの触媒出のHC濃度を測定し、算出。
HC slipping amount measurement HC slipping amount calculation method: HC amount with catalyst is fixed (fuel injection amount is fixed), and the temperature is increased at 2000 rpm / 100 Nm. Measure and calculate the HC concentration from the catalyst when the temperature is stable.

比較例1
φ30mmxL50mmのテストピースサイズのコージェライト基材に、β−ゼオライト90g/LとPt/Pd/Al75g/Lおよびバインダを塗布し、Al担体上の貴金属のPt/Pd=2/1(g/L)である排気浄化触媒を調製した。
この排気浄化触媒を用いて、前記の条件でCO酸化活性を評価した。
Comparative Example 1
β-zeolite 90 g / L, Pt / Pd / Al 2 O 3 75 g / L and a binder were applied to a cordierite base material having a test piece size of 30 mm × L 50 mm, and Pt / Pd = 2 of noble metal on an Al 2 O 3 support An exhaust purification catalyst of 1/1 (g / L) was prepared.
Using this exhaust purification catalyst, CO oxidation activity was evaluated under the above conditions.

比較例2
触媒調製2
触媒担体としてゼオライトをAlに変えた他は比較例1と同様にして、排気浄化触媒を調製した。
この排気浄化触媒を用いて、前記の条件でCO酸化活性を評価した。
これらの結果をまとめて図2および図3、参考例1の結果とまとめて図5に示す。
Comparative Example 2
Catalyst preparation 2
An exhaust purification catalyst was prepared in the same manner as in Comparative Example 1 except that the zeolite was changed to Al 2 O 3 as the catalyst carrier.
Using this exhaust purification catalyst, CO oxidation activity was evaluated under the above conditions.
These results are collectively shown in FIGS. 2 and 3, and the results of Reference Example 1 are shown in FIG.

参考例1
担体基材として触媒調製1と同様のものを用い、上層としてβ−ゼオライト60g/LとPt0.67g/Pd0.33g/Al25g/Lおよびバインダを、下層としてβ−ゼオライト30g/LとPt1.33g/Pd0.33g/Lおよびバインダに塗布した他は触媒調製1と同様にして、2層構造の排気浄化触媒を調製した。
この排気浄化触媒を用いて、前記の条件でCO酸化活性を評価した。
結果を他の結果とまとめて図5に示す。
Reference example 1
The same carrier as catalyst preparation 1 was used as the carrier substrate, β-zeolite 60 g / L, Pt 0.67 g / Pd 0.33 g / Al 2 O 3 25 g / L and binder as the upper layer, and β-zeolite 30 g / L as the lower layer. And Pt 1.33 g / Pd 0.33 g / L and an exhaust purification catalyst having a two-layer structure was prepared in the same manner as in Catalyst Preparation 1, except that it was applied to the binder.
Using this exhaust purification catalyst, CO oxidation activity was evaluated under the above conditions.
The results are shown together with other results in FIG.

実施例1および比較例3〜4
上層厚さを10〜100μmの間で変えた他は参考例1と同様にして、2層構造の排気浄化触媒を調製した。
この排気浄化触媒を用いて、前記の条件でCO酸化活性を評価した。
得られた結果を、他の結果とまとめて図6に示す。
Example 1 and Comparative Examples 3-4
An exhaust purification catalyst having a two-layer structure was prepared in the same manner as in Reference Example 1 except that the upper layer thickness was changed between 10 and 100 μm.
Using this exhaust purification catalyst, CO oxidation activity was evaluated under the above conditions.
The obtained results are shown together with other results in FIG.

実施例2〜4
上層と下層との貴金属担持量の割合を0.1〜3の間で変え、但し担持密度は変えないで調製した他は実施例1と同様にして、2層構造の排気浄化触媒を調製した。
この排気浄化触媒を用いて、前記の条件でCO酸化活性およびHCすり抜け量を評価した。
得られた結果を、他の結果とまとめて図7、図8および図9に示す。
Examples 2-4
Exhaust purification catalyst having a two-layer structure was prepared in the same manner as in Example 1 except that the ratio of the amount of the noble metal supported between the upper layer and the lower layer was changed between 0.1 and 3 except that the supported density was not changed. .
Using this exhaust purification catalyst, CO oxidation activity and HC slipping amount were evaluated under the above-mentioned conditions.
The obtained results are shown together with other results in FIG. 7, FIG. 8, and FIG.

以上の図2〜図9の結果から、従来の1層構造の排気浄化触媒では低温でのCO酸化活性が低く、2層構造の排気浄化触媒によりCO酸化活性が高くなり、特に上層担体基材の厚みが30〜80μmであると良好な低温CO酸化活性が達成され、上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が1.5未満であると良好な低温CO酸化活性を示し、上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が0.1以上であると、高SV時の未燃焼ガス(HC)のすり抜け量が少ないこと、
そして、上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が0.1以上1.5未満であることが特に好適であるという結果が得られた。
From the results shown in FIGS. 2 to 9, the conventional one-layer exhaust purification catalyst has low CO oxidation activity at a low temperature, and the two-layer exhaust purification catalyst has high CO oxidation activity. When the thickness of the material is 30 to 80 μm, good low-temperature CO oxidation activity is achieved, and the ratio (M U / M D ) between the amount of the upper layer noble metal supported (M U ) and the amount of the lower layer noble metal supported (M D ), When the mass ratio is less than 1.5, good low-temperature CO oxidation activity is exhibited, and the ratio (M U / M D ) between the amount of the noble metal supported on the upper layer (M U ) and the amount of the noble metal supported on the lower layer (M D ) The mass ratio) is 0.1 or more, the amount of unburned gas (HC) slipping through at high SV is small;
The ratio (M U / M D , mass ratio) between the loading amount (M U ) of the upper layer noble metal and the loading amount (M D ) of the lower layer noble metal is particularly preferably 0.1 or more and less than 1.5. The result was preferred.

実施例5および比較例5
試験条件4
1)Freshサンプル
Al上にPtに対してPdを0〜33%と変えた比で含浸法で含浸後、120℃で一晩乾燥し、500℃で2時間焼成した。
2)Agedサンプル
Freshサンプルを750℃で5時間、電気炉にて耐久を行った。
算出法:CO吸着量からPt粒径を算出
Example 5 and Comparative Example 5
Test condition 4
1) Fresh sample After impregnating the Al 2 O 3 with Pd in a ratio of 0 to 33% with respect to Pt by an impregnation method, it was dried at 120 ° C. overnight and calcined at 500 ° C. for 2 hours.
2) Aged Sample A Fresh sample was subjected to durability in an electric furnace at 750 ° C. for 5 hours.
Calculation method: Calculate Pt particle size from CO adsorption amount

触媒1
Pt/Pd=2/1g/Lの割合で同一担体基材に担持した。基材として壁厚3mil、600cpsiの1.1Lコージェライト基材を使用した。上層にβ−ゼオライト60g/LとPt/Pd/Alが0.67/0.33g/25g/Lとバインダ、下層にβ−ゼオライト30g/LとPt/Pd/Alが1.33/0.33g/50g/Lとバインダを塗布し、担体上の貴金属のPt/Pd=2/1(g/L)である排気浄化触媒を調製した。
Catalyst 1
It was supported on the same carrier substrate at a ratio of Pt / Pd = 2/1 g / L. A 1.1 L cordierite substrate with a wall thickness of 3 mil and 600 cpsi was used as the substrate. Β-zeolite 60 g / L and Pt / Pd / Al 2 O 3 are 0.67 / 0.33 g / 25 g / L and binder in the upper layer, and β-zeolite 30 g / L and Pt / Pd / Al 2 O 3 are in the lower layer. 1.33 / 0.33 g / 50 g / L and a binder were applied to prepare an exhaust purification catalyst having Pt / Pd = 2/1 (g / L) of the noble metal on the support.

触媒2
基材として壁厚3mil、600cpsiの1.1Lコージェライト基材を使用した。上層にβ−ゼオライト60g/LとPt/Pd/Alが0.67/0.134g/25g/Lとバインダ、下層にβ−ゼオライト30g/LとPt/Pd/Alが1.33/0.266g/35g/LとPd/Alが0.6/15g/Lとバインダを塗布し、排気浄化触媒を調製した。
Catalyst 2
A 1.1 L cordierite substrate with a wall thickness of 3 mil and 600 cpsi was used as the substrate. Β-zeolite 60 g / L and Pt / Pd / Al 2 O 3 are 0.67 / 0.134 g / 25 g / L and binder in the upper layer, and β-zeolite 30 g / L and Pt / Pd / Al 2 O 3 are in the lower layer. An exhaust purification catalyst was prepared by applying 1.33 / 0.266 g / 35 g / L, Pd / Al 2 O 3 0.6 / 15 g / L, and a binder.

触媒3
下層のPd/AlIOをPd/CZ(CeO−ZrO複合酸化物)に変えた他は触媒2と同様にして、排気浄化触媒を調製した。
Catalyst 3
An exhaust purification catalyst was prepared in the same manner as in Catalyst 2 except that the lower layer Pd / Al 2 IO 3 was changed to Pd / CZ (CeO 2 —ZrO 2 composite oxide).

上記の各排気浄化触媒を用いて、下記の条件で触媒性能を評価した。
Pt粒径測定
CO吸着量より、Pdへの吸着分を引き、Ptのみの粒径に換算して求めた。
CO酸化活性(CO浄化率)測定
NEDCモード中のUDC領域を模擬して、2.2Lディーゼルエンジンを使用して測定した。
Using each of the above exhaust purification catalysts, the catalyst performance was evaluated under the following conditions.
Pt particle size measurement The amount adsorbed on Pd was subtracted from the amount of CO adsorption, and converted to the particle size of only Pt.
CO oxidation activity (CO purification rate) measurement A 2.2 L diesel engine was used to simulate the UDC region during NEDC mode.

上記の排気浄化触媒および従来の触媒を用いて評価を行った。
得られた結果を他の触媒を用いて得られた結果とまとめて図10および図12にまとめて示す。
図10および図12から、本発明の実施態様の下層としての担体基材に貴金属を担持した貴金属コート層と、上層としての担体基材に貴金属を担持したHC(炭化水素)吸着材層との2層構造の排気浄化触媒において、担体基材上の総Pd/Pt=1/5として、従来の排気浄化触媒におけるPd/Pt=1/2との差分のPd(合計貴金属量は同量とする)をOSC材に担持した排気浄化触媒は、従来の排気浄化触媒に比べて排気浄化触媒のCO浄化率の向上に効果が得られる。
Evaluation was performed using the exhaust purification catalyst and the conventional catalyst.
The obtained results are shown together with the results obtained using other catalysts in FIGS. 10 and 12.
From FIG. 10 and FIG. 12, a noble metal coat layer in which a noble metal is supported on a carrier substrate as a lower layer of an embodiment of the present invention, and an HC (hydrocarbon) adsorbent layer in which a noble metal is supported on a carrier substrate as an upper layer. In the exhaust purification catalyst having a two-layer structure, the total Pd / Pt = 1/5 on the carrier base material is set to be different from Pd / Pt = 1/2 in the conventional exhaust purification catalyst (the total amount of precious metals is the same amount). The exhaust purification catalyst in which the OSC material is carried is effective in improving the CO purification rate of the exhaust purification catalyst as compared with the conventional exhaust purification catalyst.

本発明の排気浄化触媒は、100℃未満の低温域を含む温度範囲で高いCO酸化活性を示すので、自動車などの内燃機関の低CO化時の排気浄化触媒として、高い触媒性能を実現し得る。 Since the exhaust purification catalyst of the present invention exhibits high CO oxidation activity in a temperature range including a low temperature range of less than 100 ° C., it achieves high catalytic performance as an exhaust purification catalyst when reducing internal combustion engines such as automobiles with low CO 2 . obtain.

1 排気浄化触媒
2 基材
3 貴金属コート層
4 HC吸着層
10 触媒層
21 下層の担体基材
22 貴金属
31 上層の担体基材
32 貴金属
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst 2 Base material 3 Noble metal coating layer 4 HC adsorption layer 10 Catalyst layer 21 Lower layer carrier base material 22 Noble metal 31 Upper layer carrier base material 32 Noble metal

Claims (7)

触媒層が、下層としての担体基材に貴金属を担持した貴金属コート層と、上層としての担体基材に貴金属を担持したHC(炭化水素)吸着材層とからなり、上層のHC吸着材層の厚みが30〜80μmであることを特徴とする排気浄化触媒。   The catalyst layer includes a noble metal coating layer in which a noble metal is supported on a carrier substrate as a lower layer, and an HC (hydrocarbon) adsorbent layer in which a noble metal is supported on an upper carrier substrate. An exhaust purification catalyst having a thickness of 30 to 80 μm. 前記HC吸着材層の担体基材が、ゼオライトであることを特徴とする請求項1に記載の排気浄化触媒。   The exhaust purification catalyst according to claim 1, wherein the carrier substrate of the HC adsorbent layer is zeolite. 前記の上層の貴金属の担持量(M)と下層の貴金属の担持量(M)との割合(M/M、質量比)が0.1以上1.5以下であることを特徴とする請求項1又は2に記載の排気浄化触媒。 The ratio (M U / M D , mass ratio) between the amount of the upper layer noble metal supported (M U ) and the amount of the lower layer noble metal supported (M D ) is 0.1 to 1.5. The exhaust purification catalyst according to claim 1 or 2. 前記貴金属が、Ptおよび/又はPdであることを特徴とする請求項1〜3のいずれか1項に記載の排気浄化触媒。   The exhaust purification catalyst according to any one of claims 1 to 3, wherein the noble metal is Pt and / or Pd. Pd/Pdが1/9以上1/2未満である請求項1〜4のいずれか1項に記載の排気浄化触媒。   The exhaust purification catalyst according to any one of claims 1 to 4, wherein Pd / Pd is 1/9 or more and less than 1/2. Pd/Pdが1/5以上1/2未満である請求項1〜5のいずれか1項に記載の排気浄化触媒。   The exhaust purification catalyst according to any one of claims 1 to 5, wherein Pd / Pd is 1/5 or more and less than 1/2. 触媒層が、下層としての担体基材に貴金属を担持した貴金属コート層と、上層としての担体基材に貴金属を担持したHC(炭化水素)吸着材層とからなり、担体基材上の総Pd/Ptが1/9以上で1/2未満として、担体基材上の触媒層中の総Pd/Pt=1/2とした場合との差分のPdをOSC材上に担持して下層に配置してなる排気浄化触媒。   The catalyst layer includes a noble metal coating layer in which a noble metal is supported on a carrier substrate as a lower layer, and an HC (hydrocarbon) adsorbent layer in which a noble metal is supported on an upper carrier substrate, and the total Pd on the carrier substrate / Pt is 1/9 or more and less than 1/2, and Pd of the difference from the case where the total Pd / Pt = 1/2 in the catalyst layer on the carrier substrate is supported on the OSC material and arranged in the lower layer An exhaust purification catalyst.
JP2010087029A 2010-04-05 2010-04-05 Exhaust purification catalyst Pending JP2011220123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087029A JP2011220123A (en) 2010-04-05 2010-04-05 Exhaust purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087029A JP2011220123A (en) 2010-04-05 2010-04-05 Exhaust purification catalyst

Publications (1)

Publication Number Publication Date
JP2011220123A true JP2011220123A (en) 2011-11-04

Family

ID=45037426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087029A Pending JP2011220123A (en) 2010-04-05 2010-04-05 Exhaust purification catalyst

Country Status (1)

Country Link
JP (1) JP2011220123A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081878A (en) * 2011-10-06 2013-05-09 Johnson Matthey Japan Kk Oxidation catalyst for internal combustion engine exhaust gas treatment
JP2015500134A (en) * 2011-12-12 2015-01-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Oxidation catalyst for exhaust gas treatment of internal combustion engines
WO2015029853A1 (en) * 2013-08-30 2015-03-05 大塚化学株式会社 Exhaust gas purification filter and exhaust gas purification apparatus
JP2016504182A (en) * 2012-11-29 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Diesel oxidation catalyst containing palladium, gold and ceria
EP2992955A4 (en) * 2013-04-19 2017-01-18 Cataler Corporation Exhaust-gas purification catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155205A (en) * 1995-12-08 1997-06-17 Toyota Motor Corp Oxidation catalyst for diesel exhaust gas
JPH11104462A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Catalyst-adsorber for purification of exhaust gas and purification of exhaust gas
JP2000157870A (en) * 1998-11-27 2000-06-13 Degussa Huels Ag Catalyst for purifying exhaust gas from diesel engine
JP2001286732A (en) * 1999-04-27 2001-10-16 Toyota Motor Corp Exhaust gas cleaning method and exhaust gas cleaning device
JP2002273174A (en) * 2001-03-15 2002-09-24 Toyota Motor Corp Exhaust gas cleaning device
JP2003047850A (en) * 2001-08-03 2003-02-18 Mazda Motor Corp Catalyst, catalyst for cleaning exhaust gas and method of producing catalyst
JP2004504130A (en) * 2000-07-21 2004-02-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Hydrocarbon trap / catalyst composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09155205A (en) * 1995-12-08 1997-06-17 Toyota Motor Corp Oxidation catalyst for diesel exhaust gas
JPH11104462A (en) * 1997-09-30 1999-04-20 Ngk Insulators Ltd Catalyst-adsorber for purification of exhaust gas and purification of exhaust gas
JP2000157870A (en) * 1998-11-27 2000-06-13 Degussa Huels Ag Catalyst for purifying exhaust gas from diesel engine
JP2001286732A (en) * 1999-04-27 2001-10-16 Toyota Motor Corp Exhaust gas cleaning method and exhaust gas cleaning device
JP2004504130A (en) * 2000-07-21 2004-02-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Hydrocarbon trap / catalyst composition
JP2002273174A (en) * 2001-03-15 2002-09-24 Toyota Motor Corp Exhaust gas cleaning device
JP2003047850A (en) * 2001-08-03 2003-02-18 Mazda Motor Corp Catalyst, catalyst for cleaning exhaust gas and method of producing catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081878A (en) * 2011-10-06 2013-05-09 Johnson Matthey Japan Kk Oxidation catalyst for internal combustion engine exhaust gas treatment
US10376867B2 (en) 2011-10-06 2019-08-13 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
JP2015500134A (en) * 2011-12-12 2015-01-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Oxidation catalyst for exhaust gas treatment of internal combustion engines
JP2016104485A (en) * 2011-12-12 2016-06-09 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
JP2018114496A (en) * 2011-12-12 2018-07-26 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Oxidation catalyst for exhaust gas treatment in internal combustion engine
JP2016504182A (en) * 2012-11-29 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Diesel oxidation catalyst containing palladium, gold and ceria
EP2992955A4 (en) * 2013-04-19 2017-01-18 Cataler Corporation Exhaust-gas purification catalyst
WO2015029853A1 (en) * 2013-08-30 2015-03-05 大塚化学株式会社 Exhaust gas purification filter and exhaust gas purification apparatus
JPWO2015029853A1 (en) * 2013-08-30 2017-03-02 大塚化学株式会社 Exhaust gas purification filter and exhaust gas purification device

Similar Documents

Publication Publication Date Title
KR101841905B1 (en) Catalytic converter for removing nitrogen oxides from the exhaust gas of diesel engines
KR101652537B1 (en) Nox adsorber catalyst with superior low temperature performance
JP6206327B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4294041B2 (en) NOx purification catalyst
JP4651039B2 (en) Catalytic device and method for purifying exhaust gas of an internal combustion engine operated under lean conditions
EP3277406B1 (en) Lean nox trap with enhanced high and low temperature performance
US20010035006A1 (en) Sulfur trap in NOx adsorber systems for enhanced sulfur resistance
WO2010041741A1 (en) Exhaust gas purifying device
EP3097977B1 (en) Exhaust-gas purifying catalyst for lean-burn engine
JP5218092B2 (en) Exhaust gas purification catalyst
US20020056270A1 (en) Exhaust gas purifying system
JP2011220123A (en) Exhaust purification catalyst
JP5391664B2 (en) Exhaust gas purification catalyst
JP4573993B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2008296090A (en) Exhaust cleaning catalyst, exhaust cleaning system, and exhaust cleaning method
JP4978781B2 (en) S storage catalyst and exhaust gas purification device
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP5094199B2 (en) Exhaust gas purification device
JP2004275814A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus
JP2006233774A (en) Exhaust emission control device and exhaust emission control method
JP6569637B2 (en) Exhaust gas purification device for internal combustion engine
JP2004016850A (en) Exhaust gas cleaning catalyst, production method and exhaust gas cleaning system
JP2005205302A (en) Exhaust gas cleaning catalyst and apparatus for combustion engine
JP5628487B2 (en) Nitrogen oxide purification method
JP2004322022A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106