JP2011216801A - Photoelectric converter and method for manufacturing the same - Google Patents

Photoelectric converter and method for manufacturing the same Download PDF

Info

Publication number
JP2011216801A
JP2011216801A JP2010085664A JP2010085664A JP2011216801A JP 2011216801 A JP2011216801 A JP 2011216801A JP 2010085664 A JP2010085664 A JP 2010085664A JP 2010085664 A JP2010085664 A JP 2010085664A JP 2011216801 A JP2011216801 A JP 2011216801A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode layer
layer
slit
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010085664A
Other languages
Japanese (ja)
Inventor
Tatsuya Kiriyama
竜也 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010085664A priority Critical patent/JP2011216801A/en
Priority to PCT/JP2011/058381 priority patent/WO2011125920A1/en
Publication of JP2011216801A publication Critical patent/JP2011216801A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing photoelectric converter capable of simplifying a manufacturing process and elevating conversion efficiency.SOLUTION: The photoelectric converter 200 comprises a transparent substrate 30, a transparent electrode layer 32 formed on a surface of the transparent substrate 30, a photoelectric conversion layer 34 covering the transparent electrode layer 32 and a slit S1 of the transparent substrate 30 where the transparent electrode layer 32 is removed, and a back-side electrode layer 38 covering the photoelectric conversion layer 34 and a part of slit S2 of the transparent electrode layer 32 where the photoelectric conversion layer 34 is removed. The back-side electrode layer 38 is not formed along the extending direction of the slit S2, and an electrodeless region S4 where the transparent electrode layer 32 is exposed, is formed within a region of the slit S2.

Description

本発明は、光電変換装置及び光電変換装置の製造方法に関する。   The present invention relates to a photoelectric conversion device and a method for manufacturing the photoelectric conversion device.

太陽光を利用した発電システムとして、アモルファスや微結晶等の半導体薄膜を積層した光電変換装置が用いられている。   As a power generation system using sunlight, a photoelectric conversion device in which semiconductor thin films such as amorphous and microcrystals are stacked is used.

図10は、本発明の実施の形態における光電変換装置100の構成を示す断面図である。光電変換装置100は、図10に示すように、基板10、透明電極層12、光電変換層14及び裏面電極16を含んで構成される。   FIG. 10 is a cross-sectional view showing a configuration of the photoelectric conversion apparatus 100 according to the embodiment of the present invention. As shown in FIG. 10, the photoelectric conversion device 100 includes a substrate 10, a transparent electrode layer 12, a photoelectric conversion layer 14, and a back electrode 16.

基板10は、光電変換装置100の光電変換パネルを機械的に支持する部材である。光電変換装置100では基板10側から光を入射させて発電を行う構成であるので、基板10は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用する。基板10上には透明電極層12が形成される。光電変換層14を複数直列に接続した構成とする場合、レーザを照射して透明電極層12に第1スリットS1を形成して短冊状にパターニングして分割する。   The substrate 10 is a member that mechanically supports the photoelectric conversion panel of the photoelectric conversion device 100. Since the photoelectric conversion apparatus 100 is configured to generate power by making light incident from the substrate 10 side, the substrate 10 is made of a material having transparency in at least a visible light wavelength region, such as a glass substrate or a plastic substrate. A transparent electrode layer 12 is formed on the substrate 10. When it is set as the structure which connected the several photoelectric converting layer 14 in series, it irradiates with a laser, forms the 1st slit S1 in the transparent electrode layer 12, and patterns and divides | segments in strip shape.

透明電極層12上に、p型層、i型層、n型層のシリコン系薄膜を順に積層して光電変換層14を形成する。光電変換層14は、アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換セル等の薄膜系光電変換層とすることができる。複数のセルを直列接続する場合、光電変換層14に第2スリットS2を形成して短冊状にパターニングして分割する。例えば、透明電極層12を分割する第1スリットS1から50μm横の位置にレーザを照射して第2スリットS2を形成して光電変換層14を短冊状にパターニングする。   On the transparent electrode layer 12, a p-type layer, an i-type layer, and an n-type layer of silicon thin film are sequentially laminated to form the photoelectric conversion layer 14. The photoelectric conversion layer 14 can be a thin film photoelectric conversion layer such as an amorphous silicon thin film photoelectric conversion layer or a microcrystalline silicon thin film photoelectric conversion cell. When a plurality of cells are connected in series, a second slit S2 is formed in the photoelectric conversion layer 14 and is divided into strips by patterning. For example, the second slit S2 is formed by irradiating a laser at a position 50 μm lateral from the first slit S1 that divides the transparent electrode layer 12, and the photoelectric conversion layer 14 is patterned into a strip shape.

光電変換層14上に、裏面電極16を形成する。複数の光電変換層14を直列接続する場合、裏面電極16に第3スリットS3を形成して短冊状にパターニングして分断する。例えば、光電変換層14をパターンニングする第2スリットS2の位置から50μm横の位置にレーザを照射して第3スリットS3を形成して裏面電極16を短冊状にパターニングする。このように基板10上に透明電極層12、光電変換層14及び裏面電極16を積層して光電変換セル102が形成される。   A back electrode 16 is formed on the photoelectric conversion layer 14. When a plurality of photoelectric conversion layers 14 are connected in series, a third slit S3 is formed in the back electrode 16 and is patterned into a strip shape and divided. For example, a laser beam is irradiated to a position 50 μm lateral from the position of the second slit S2 for patterning the photoelectric conversion layer 14 to form the third slit S3, and the back electrode 16 is patterned into a strip shape. Thus, the photoelectric conversion cell 102 is formed by laminating the transparent electrode layer 12, the photoelectric conversion layer 14, and the back electrode 16 on the substrate 10.

上記のように、複数の光電変換セル102を直列に接続した光電変換装置100を構成しようとする場合、第1スリットS1〜第3スリットS3を形成するためにレーザ加工の工程を少なくとも3回行っており、光電変換装置100の製造工程が多く、光電変換装置100の製造時間が長くなり、製造コストも増大する原因となっている。   As mentioned above, when it is going to comprise the photoelectric conversion apparatus 100 which connected the some photoelectric conversion cell 102 in series, in order to form 1st slit S1-3rd slit S3, the process of a laser processing was performed at least 3 times. Therefore, the manufacturing process of the photoelectric conversion device 100 is many, and the manufacturing time of the photoelectric conversion device 100 becomes longer, which causes the manufacturing cost to increase.

また、第1スリットS1〜第3スリットS3が形成された領域は発電に寄与しないので、光電変換装置100の発電効率を低下させる原因にもなっている。   Moreover, since the area | region in which 1st slit S1-3rd slit S3 were formed does not contribute to electric power generation, it is also a cause to reduce the electric power generation efficiency of the photoelectric conversion apparatus 100. FIG.

本発明の1つの態様は、透明基板と、透明基板の表面上に形成された透明電極層と、透明電極層上と、透明電極層を除去した第1スリット領域の透明基板上とを覆うように形成された光電変換層と、光電変換層上と、光電変換層を除去した第2スリット領域の透明電極層上の一部とを覆う電極層と、を備え、第2スリット領域の延設方向に沿って電極層が形成されておらず透明電極層が露出している無電極領域を第2スリット領域内に有する、光電変換装置である。   One aspect of the present invention covers the transparent substrate, the transparent electrode layer formed on the surface of the transparent substrate, the transparent electrode layer, and the transparent substrate in the first slit region from which the transparent electrode layer has been removed. And an electrode layer covering the photoelectric conversion layer, a portion of the second slit region on the transparent electrode layer from which the photoelectric conversion layer has been removed, and an extension of the second slit region. In the photoelectric conversion device, the second slit region includes an electrodeless region in which the electrode layer is not formed along the direction and the transparent electrode layer is exposed.

本発明の別の態様は、透明基板上に透明電極層を形成する第1の工程と、透明電極層の一部を除去して第1スリット領域を形成する第2の工程と、透明電極層上と、第1スリット領域の透明基板上とを覆うように光電変換層を形成する第3の工程と、第1スリット領域に重ならない光電変換層の一部を除去して第2スリット領域を形成する第4の工程と、第2スリット領域の延設方向に沿って電極層が形成されておらず透明電極層が露出している無電極領域が第2スリット領域内に形成されるように、光電変換層上と第2スリット領域の透明電極上の一部とを覆うように電極層を形成する第5の工程と、を備える、光電変換装置の製造方法である。   Another aspect of the present invention includes a first step of forming a transparent electrode layer on a transparent substrate, a second step of removing a part of the transparent electrode layer to form a first slit region, and a transparent electrode layer A third step of forming a photoelectric conversion layer so as to cover the top and the transparent substrate of the first slit region; and removing a part of the photoelectric conversion layer not overlapping the first slit region to A fourth step to be formed, and an electrodeless region in which the electrode layer is not formed along the extending direction of the second slit region and the transparent electrode layer is exposed is formed in the second slit region And a fifth step of forming an electrode layer so as to cover the photoelectric conversion layer and a part of the second slit region on the transparent electrode.

本発明によれば、光電変換装置の製造工程を簡素化できる。また、光電変換装置の変換効率を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing process of a photoelectric conversion apparatus can be simplified. In addition, the conversion efficiency of the photoelectric conversion device can be improved.

第1の実施の形態における光電変換装置の構造を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of the photoelectric conversion apparatus in 1st Embodiment. 本発明の実施の形態における第1基本構成の構造を示す断面斜視図である。It is a section perspective view showing the structure of the 1st basic composition in an embodiment of the invention. 第1の実施の形態における光電変換装置の製造工程を示す断面斜視図である。It is a cross-sectional perspective view which shows the manufacturing process of the photoelectric conversion apparatus in 1st Embodiment. 本発明の実施の形態における第2基本構成の構造を示す断面斜視図である。It is a section perspective view showing the structure of the 2nd basic composition in an embodiment of the invention. 第1の実施の形態における光電変換装置の別例の製造工程を示す断面斜視図である。It is a cross-sectional perspective view which shows the manufacturing process of the other example of the photoelectric conversion apparatus in 1st Embodiment. 第1の実施の形態における光電変換装置の別例の構成を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of another example of the photoelectric conversion apparatus in 1st Embodiment. 第2の実施の形態における光電変換装置の構造を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of the photoelectric conversion apparatus in 2nd Embodiment. 第3の実施の形態における光電変換装置の製造工程を示す断面斜視図である。It is a cross-sectional perspective view which shows the manufacturing process of the photoelectric conversion apparatus in 3rd Embodiment. 第3の実施の形態における光電変換装置の構造を示す断面斜視図である。It is a cross-sectional perspective view which shows the structure of the photoelectric conversion apparatus in 3rd Embodiment. 従来の光電変換装置の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional photoelectric conversion apparatus.

<第1の実施の形態>
図1は、本発明の実施の形態における光電変換装置200の構成を示す。図1は、光電変換装置200を光電変換セル202の直列接続方向に沿って切断した断面斜視図である。図1では、構成を明確に示すために各部の寸法を実際のものとは変えて示している。
<First Embodiment>
FIG. 1 shows a configuration of a photoelectric conversion apparatus 200 according to an embodiment of the present invention. FIG. 1 is a cross-sectional perspective view of the photoelectric conversion device 200 cut along the serial connection direction of the photoelectric conversion cells 202. In FIG. 1, the dimensions of each part are shown different from actual ones in order to clearly show the configuration.

光電変換装置200は、図1に示すように、基板30、透明電極層32、光電変換層34、下地電極層36及び裏面電極層38を含んで構成される。   As shown in FIG. 1, the photoelectric conversion device 200 includes a substrate 30, a transparent electrode layer 32, a photoelectric conversion layer 34, a base electrode layer 36, and a back electrode layer 38.

基板30は、光電変換装置200の光電変換パネルを機械的に支持する部材である。光電変換装置200では基板30側から光を入射させて発電を行う構成であるので、基板30は、例えば、ガラス基板、プラスチック基板等の少なくとも可視光波長領域において透過性を有する材料を適用する。基板30上には透明電極層32が形成される。透明電極層32は、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等に錫(Sn)、アンチモン(Sb)、フッ素(F)、アルミニウム(Al)等をドープした透明導電性酸化物(TCO)のうち少なくとも一種類又は複数種を組み合わせて用いることが好適である。特に、酸化亜鉛(ZnO)は、透光性が高く、抵抗率が低く、耐プラズマ特性にも優れているので好適である。透明電極層32はスパッタリング法又はCVD法で形成することができる。 The substrate 30 is a member that mechanically supports the photoelectric conversion panel of the photoelectric conversion device 200. Since the photoelectric conversion device 200 is configured to generate power by making light incident from the substrate 30 side, the substrate 30 is made of a material having transparency in at least a visible light wavelength region, such as a glass substrate or a plastic substrate. A transparent electrode layer 32 is formed on the substrate 30. The transparent electrode layer 32 is doped with tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), etc. with tin (Sn), antimony (Sb), fluorine (F), aluminum (Al), etc. It is preferable to use at least one or a combination of a plurality of transparent conductive oxides (TCO). In particular, zinc oxide (ZnO) is preferable because it has high translucency, low resistivity, and excellent plasma resistance. The transparent electrode layer 32 can be formed by a sputtering method or a CVD method.

光電変換セル202を複数直列に接続した構成とする場合、透明電極層32を短冊状にパターニングして分割する。本実施の形態では、図1の紙面に対して手前から奥側に向かって透明電極層32に幅20μm〜200μm程度の第1スリットS1を形成して分割する。例えば、波長1064nm、エネルギー密度13J/cm2、パルス周波数3kHzのYAGレーザを用いて透明電極層32をパターニングすることができる。 In the case where a plurality of photoelectric conversion cells 202 are connected in series, the transparent electrode layer 32 is divided into strips by patterning. In the present embodiment, the first slit S1 having a width of about 20 μm to 200 μm is formed and divided in the transparent electrode layer 32 from the near side to the far side with respect to the plane of FIG. For example, the transparent electrode layer 32 can be patterned using a YAG laser having a wavelength of 1064 nm, an energy density of 13 J / cm 2 , and a pulse frequency of 3 kHz.

透明電極層32上に、p型層、i型層、n型層のシリコン系薄膜を順に積層して光電変換層34を形成する。光電変換層34は、アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換セル等の薄膜系光電変換層とすることができる。また、これらの光電変換層を積層したタンデム型やトリプル型の光電変換層としてもよい。   On the transparent electrode layer 32, a p-type layer, an i-type layer, and an n-type layer of silicon-based thin film are sequentially laminated to form a photoelectric conversion layer. The photoelectric conversion layer 34 can be a thin film photoelectric conversion layer such as an amorphous silicon thin film photoelectric conversion layer or a microcrystalline silicon thin film photoelectric conversion cell. Alternatively, a tandem or triple photoelectric conversion layer in which these photoelectric conversion layers are stacked may be used.

アモルファスシリコン薄膜光電変換層や微結晶シリコン薄膜光電変換層は、シラン(SiH4)、ジシラン(Si26)、ジクロルシラン(SiH2Cl2)等のシリコン含有ガス、メタン(CH4)等の炭素含有ガス、ジボラン(B26)等のp型ドーパント含有ガス、フォスフィン(PH3)等のn型ドーパント含有ガス及び水素(H2)等の希釈ガスを混合した混合ガスをプラズマ化して成膜を行うプラズマ化学気相成長法(CVD法)により形成することができる。プラズマCVD法は、例えば、13.56MHzの平行平板型RFプラズマCVD法を適用することが好適である。 Amorphous silicon thin film photoelectric conversion layer and microcrystalline silicon thin film photoelectric conversion layer are made of silicon-containing gas such as silane (SiH 4 ), disilane (Si 2 H 6 ), dichlorosilane (SiH 2 Cl 2 ), methane (CH 4 ), etc. A mixed gas obtained by mixing a carbon-containing gas, a p-type dopant-containing gas such as diborane (B 2 H 6 ), an n-type dopant-containing gas such as phosphine (PH 3 ), and a diluent gas such as hydrogen (H 2 ) is converted into plasma. It can be formed by a plasma chemical vapor deposition method (CVD method) in which a film is formed. As the plasma CVD method, for example, a 13.56 MHz parallel plate RF plasma CVD method is preferably applied.

さらに、光電変換層34上に下地電極層36を形成する。下地電極層36は、透明導電性酸化物(TCO)と反射性金属とをこの順に積層した構造とすることが好適である。透明導電性酸化物(TCO)としては、酸化錫(SnO2)、酸化亜鉛(ZnO)、インジウム錫酸化物(ITO)等の透明導電性酸化物(TCO)、又は、これらの透明導電性酸化物(TCO)に不純物をドープしたものが用いられる。例えば、酸化亜鉛(ZnO)にアルミニウム(Al)を不純物としてドープしたものでもよい。また、反射性金属としては、銀(Ag)、アルミニウム(Al)等の金属が用いられる。透明導電性酸化物(TCO)及び反射性金属は、例えば、スパッタリング法又はCVD法等により形成することができる。透明導電性酸化物(TCO)と反射性金属の少なくとも一方には、光閉じ込め効果を高めるための凹凸が設けることが好適である。 Further, a base electrode layer 36 is formed on the photoelectric conversion layer 34. The base electrode layer 36 preferably has a structure in which a transparent conductive oxide (TCO) and a reflective metal are laminated in this order. As the transparent conductive oxide (TCO), transparent conductive oxide (TCO) such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (ITO), or these transparent conductive oxides A material (TCO) doped with impurities is used. For example, zinc oxide (ZnO) doped with aluminum (Al) as an impurity may be used. Moreover, as a reflective metal, metals, such as silver (Ag) and aluminum (Al), are used. The transparent conductive oxide (TCO) and the reflective metal can be formed by, for example, a sputtering method or a CVD method. It is preferable that at least one of the transparent conductive oxide (TCO) and the reflective metal is provided with unevenness for enhancing the light confinement effect.

複数の光電変換セル202を直列接続する場合、光電変換層34及び下地電極層36を短冊状にパターニングして分割する。例えば、透明電極層32を分割する第1スリットS1から50μm横の位置にYAGレーザを照射して幅20μm〜200μm程度の第2スリットS2を形成して光電変換層34及び下地電極層36を短冊状にパターニングする。YAGレーザは、例えば、エネルギー密度0.7J/cm2、パルス周波数3kHzのものを用いることが好適である。 When a plurality of photoelectric conversion cells 202 are connected in series, the photoelectric conversion layer 34 and the base electrode layer 36 are divided into strips by patterning. For example, a YAG laser is irradiated to a position 50 μm laterally from the first slit S 1 dividing the transparent electrode layer 32 to form a second slit S 2 having a width of about 20 μm to 200 μm, and the photoelectric conversion layer 34 and the base electrode layer 36 are strips. Pattern. For example, a YAG laser having an energy density of 0.7 J / cm 2 and a pulse frequency of 3 kHz is preferably used.

図2に、ここまでの工程で得られる第1基本構成204の断面斜視図を示す。以下の処理はこの第1基本構成204を元に行われる。   FIG. 2 shows a cross-sectional perspective view of the first basic configuration 204 obtained through the steps up to here. The following processing is performed based on the first basic configuration 204.

本実施の形態では、第1基本構成204の表面に対して導電性材料を供給することにより裏面電極層38を形成する。   In the present embodiment, the back electrode layer 38 is formed by supplying a conductive material to the surface of the first basic structure 204.

導電性材料の供給方法は、例えば、蒸着法、スパッタリング法等を適用することができる。すなわち、第1基本構成204及び導電性材料を真空槽内に配置し、真空槽内を真空排気した後、真空下において導電性材料を第1基本構成204に対して供給することにより裏面電極層38を形成する。導電性材料は、例えば、銀(Ag)、銅(Cu)、アルミニウム(Al)等とすることが好適である。   As a method for supplying the conductive material, for example, an evaporation method, a sputtering method, or the like can be applied. That is, the first basic structure 204 and the conductive material are arranged in a vacuum chamber, the inside of the vacuum chamber is evacuated, and then the back electrode layer is supplied by supplying the conductive material to the first basic structure 204 under vacuum. 38 is formed. For example, the conductive material is preferably silver (Ag), copper (Cu), aluminum (Al), or the like.

このとき、図1に示すように、第2スリットS2の領域の延設方向に沿って裏面電極層38が形成されず、透明電極層32が露出している無電極領域S4が第2スリットS2の領域内に形成されるように導電性材料を供給する。具体的には、図3に示すように、第1基本構成204の基板30の表面に対して垂直方向でない方向から導電性材料を供給する。特に、光電変換セル202の第1スリットS1が近くに形成されていない側の側面202aが光電変換層34及び下地電極層36によって導電性材料の供給方向に対して陰となるような角度θで導電性材料を供給することによって、光電変換層34及び下地電極層36上と、光電変換層34及び下地電極層36を除去した第2スリットS2の領域内の透明電極層32上の少なくとも一部に裏面電極層38が形成され、光電変換セル202の第1スリットS1が近くに形成されていない側の側面202a及びその近傍の第2スリットS2の領域内に無電極領域S4が形成される。   At this time, as shown in FIG. 1, the back electrode layer 38 is not formed along the extending direction of the region of the second slit S2, and the non-electrode region S4 where the transparent electrode layer 32 is exposed is the second slit S2. The conductive material is supplied so as to be formed in the region. Specifically, as shown in FIG. 3, the conductive material is supplied from a direction that is not perpendicular to the surface of the substrate 30 of the first basic configuration 204. In particular, the angle 202 is such that the side surface 202a on the side where the first slit S1 of the photoelectric conversion cell 202 is not formed nearby is shaded by the photoelectric conversion layer 34 and the base electrode layer 36 with respect to the conductive material supply direction. By supplying a conductive material, at least a part on the photoelectric conversion layer 34 and the base electrode layer 36 and on the transparent electrode layer 32 in the region of the second slit S2 from which the photoelectric conversion layer 34 and the base electrode layer 36 are removed. The back electrode layer 38 is formed on the side surface, and the electrodeless region S4 is formed in the region of the side surface 202a on the side where the first slit S1 of the photoelectric conversion cell 202 is not formed nearby and the second slit S2 in the vicinity thereof.

このようにして、裏面電極層38によって隣り合う光電変換セル202が直列に接続された光電変換装置200が形成される。   In this way, the photoelectric conversion device 200 in which the adjacent photoelectric conversion cells 202 are connected in series by the back electrode layer 38 is formed.

また、上記光電変換装置の製造方法において下地電極層36を形成せず、図4に示すような第2基本構成206としてもよい。この場合も、第1基本構成204と同様に、裏面電極層38が形成されず、透明電極層32が露出している無電極領域S4が第2スリットS2の領域内に形成されるように導電性材料を供給する。具体的には、図5に示すように、第2基本構成206の基板30の表面に対して垂直方向でない方向から導電性材料を供給する。特に、光電変換セル202の第1スリットS1が近くに形成されていない側の側面202aが光電変換層34によって導電性材料の供給方向に対して陰となるような角度θで導電性材料を供給することによって、光電変換層34上と、光電変換層34を除去した第2スリットS2の領域内の透明電極層32上の少なくとも一部に裏面電極層38が形成され、光電変換セル202の第1スリットS1が近くに形成されていない側の側面202a及びその近傍の第2スリットS2の領域内に無電極領域S4が形成される。角度θは、60°以上80°以下とすることが好適である。   Alternatively, the base electrode layer 36 may not be formed in the method for manufacturing a photoelectric conversion device, and a second basic configuration 206 as shown in FIG. 4 may be used. Also in this case, as in the first basic configuration 204, the back electrode layer 38 is not formed, and the non-electrode region S4 where the transparent electrode layer 32 is exposed is formed in the region of the second slit S2. Supplying sex materials. Specifically, as shown in FIG. 5, the conductive material is supplied from a direction that is not perpendicular to the surface of the substrate 30 of the second basic configuration 206. In particular, the conductive material is supplied at an angle θ such that the side surface 202a on the side where the first slit S1 of the photoelectric conversion cell 202 is not formed nearby is shaded by the photoelectric conversion layer 34 with respect to the supply direction of the conductive material. As a result, the back electrode layer 38 is formed on at least a part of the photoelectric conversion layer 34 and on the transparent electrode layer 32 in the region of the second slit S2 from which the photoelectric conversion layer 34 has been removed. An electrodeless region S4 is formed in the region of the side surface 202a on the side where the first slit S1 is not formed nearby and the second slit S2 in the vicinity thereof. The angle θ is preferably 60 ° or more and 80 ° or less.

このようにして、図6に示すように、下地電極層36が設けられず、裏面電極層38によって隣り合う光電変換セル202が直列に接続された光電変換装置208が形成される。   In this manner, as shown in FIG. 6, the photoelectric conversion device 208 is formed in which the base electrode layer 36 is not provided and the adjacent photoelectric conversion cells 202 are connected in series by the back electrode layer 38.

<第2の実施の形態>
第2の実施の形態では、裏面電極層38を形成する際に蒸着法やスパッタリング法により導電性材料を供給するのではなく、導電性材料のペーストを塗布することによって裏面電極層38を形成する。
<Second Embodiment>
In the second embodiment, when the back electrode layer 38 is formed, the back electrode layer 38 is formed by applying a conductive material paste instead of supplying the conductive material by vapor deposition or sputtering. .

具体的には、図7に示すように、第1基本構成204に対して裏面電極層38が形成されず、透明電極層32が露出している無電極領域S4が第2スリットS2の領域内に形成されるように導電性材料のペースト40を塗布する。すなわち、図7に示すように、光電変換層34上と、光電変換層34を除去した第2スリットS2の領域内の透明電極層32上の少なくとも一部に裏面電極層38が形成され、光電変換セル202の第1スリットS1が近くに形成されていない側の側面202a及びその近傍の第2スリットS2の領域内に無電極領域S4が形成されるように導電性のペースト40を塗布する。このペースト40が裏面電極層38となる。   Specifically, as shown in FIG. 7, the back electrode layer 38 is not formed with respect to the first basic configuration 204, and the electrodeless region S4 where the transparent electrode layer 32 is exposed is within the region of the second slit S2. A conductive material paste 40 is applied so as to be formed. That is, as shown in FIG. 7, a back electrode layer 38 is formed on at least a part of the transparent electrode layer 32 on the photoelectric conversion layer 34 and in the region of the second slit S2 from which the photoelectric conversion layer 34 has been removed. The conductive paste 40 is applied so that the electrodeless region S4 is formed in the side surface 202a on the side where the first slit S1 of the conversion cell 202 is not formed nearby and the region of the second slit S2 in the vicinity thereof. This paste 40 becomes the back electrode layer 38.

この場合も、図7に示すように、裏面電極層38によって隣り合う光電変換セル202が直列に接続された光電変換装置300が形成される。   Also in this case, as shown in FIG. 7, the photoelectric conversion device 300 in which the adjacent photoelectric conversion cells 202 are connected in series by the back electrode layer 38 is formed.

<第3の実施の形態>
第3の実施の形態では、裏面電極層38を形成する際に蒸着法やスパッタリング法により導電性材料を供給するのではなく、はんだ粒子を溶融させて裏面電極層38を形成する。
<Third Embodiment>
In the third embodiment, when the back electrode layer 38 is formed, the back electrode layer 38 is formed by melting solder particles instead of supplying a conductive material by vapor deposition or sputtering.

具体的には、図8に示すように、第1基本構成204の基板30を傾け、基板30の透明電極層32、光電変換セル202及び下地電極層36が形成された側にはんだ粒子50を供給する。はんだ粒子50は、基板30の傾斜に沿って図中の破線矢印方向に転がり、光電変換セル202及び下地電極層36の側面と第2スリットS2内に露出している透明電極層32の露出面とで形成される隅52に溜まる。この状態においてはんだ粒子50を加熱して溶融させる。これによって、図9に示すように、はんだ粒子50が溶融して形成された裏面電極層38によって隣り合う光電変換セル202の透明電極層32と下地電極層36とが電気的に接続される。さらに、第2スリットS2内には裏面電極層38が形成されず、光電変換セル202の第1スリットS1が近くに形成されていない側の側面202a及び透明電極層32が露出している無電極領域S4が形成される。   Specifically, as shown in FIG. 8, the substrate 30 of the first basic configuration 204 is tilted, and the solder particles 50 are placed on the side of the substrate 30 on which the transparent electrode layer 32, the photoelectric conversion cell 202, and the base electrode layer 36 are formed. Supply. The solder particles 50 roll in the direction of the broken line arrow in the drawing along the inclination of the substrate 30, and the exposed surfaces of the transparent electrode layer 32 exposed in the side surfaces of the photoelectric conversion cell 202 and the base electrode layer 36 and in the second slit S2. And accumulated in the corner 52 formed. In this state, the solder particles 50 are heated and melted. As a result, as shown in FIG. 9, the transparent electrode layer 32 and the base electrode layer 36 of the adjacent photoelectric conversion cell 202 are electrically connected by the back electrode layer 38 formed by melting the solder particles 50. Further, the back electrode layer 38 is not formed in the second slit S2, and the side surface 202a on the side where the first slit S1 of the photoelectric conversion cell 202 is not formed nearby and the transparent electrode layer 32 are exposed. Region S4 is formed.

このようにして、図9に示すように、裏面電極層38によって隣り合う光電変換セル202が直列に接続された光電変換装置302が形成される。   In this way, as shown in FIG. 9, the photoelectric conversion device 302 in which the adjacent photoelectric conversion cells 202 are connected in series by the back electrode layer 38 is formed.

ここで、はんだ粒子50としては、光電変換セル202の厚さの1/40倍以上20倍以下の直径のものを用いることが好適である。例えば、アモルファスシリコン薄膜光電変換層及び微結晶シリコン薄膜光電変換セルを積層したタンデム型薄膜光電変換セルの場合、光電変換セル202の厚さは4μm〜5μm程度であるので、はんだ粒子50の直径は1μm以上100μm以下とすることが好適である。   Here, as the solder particle 50, it is preferable to use a solder particle having a diameter of 1/40 times to 20 times the thickness of the photoelectric conversion cell 202. For example, in the case of a tandem-type thin film photoelectric conversion cell in which an amorphous silicon thin film photoelectric conversion layer and a microcrystalline silicon thin film photoelectric conversion cell are stacked, the thickness of the photoelectric conversion cell 202 is about 4 μm to 5 μm. The thickness is preferably 1 μm or more and 100 μm or less.

なお、はんだ粒子50を供給したあと加熱することによって、裏面電極層38と接触する光電変換セル202の側壁202bを、シリコンとはんだとの合金にしてもよい。側壁202bを合金化することによって電気的抵抗が低くなり、合金化された側壁202bによって隣り合う光電変換セル202が直列に接続された光電変換装置302が形成される。このとき、はんだ粒子50の代わりに金または銀の金属粒子を用いてもよい。側壁202bを合金化する場合、裏面電極層38を残す形態でもよいし、裏面電極層38を除去する形態でもよい。   Note that the sidewall 202b of the photoelectric conversion cell 202 in contact with the back electrode layer 38 may be made of an alloy of silicon and solder by heating after supplying the solder particles 50. By alloying the side wall 202b, the electrical resistance is lowered, and the photoelectric conversion device 302 in which the adjacent photoelectric conversion cells 202 are connected in series by the alloyed side wall 202b is formed. At this time, gold or silver metal particles may be used instead of the solder particles 50. When the side wall 202b is alloyed, the back electrode layer 38 may be left or the back electrode layer 38 may be removed.

上記実施の形態によれば、光電変換層及び裏面電極を切断する第3スリットを形成する工程を省くことができ、光電変換装置の製造工程を簡略化することができる。これにより、光電変換装置の製造時間を短縮でき、製造コストも低減することができる。また、スリットの数を低減でき、発電に寄与しない領域の面積を低減することができる。   According to the said embodiment, the process of forming the 3rd slit which cut | disconnects a photoelectric converting layer and a back surface electrode can be skipped, and the manufacturing process of a photoelectric conversion apparatus can be simplified. Thereby, the manufacturing time of a photoelectric conversion apparatus can be shortened and manufacturing cost can also be reduced. In addition, the number of slits can be reduced, and the area of a region that does not contribute to power generation can be reduced.

10 基板、12 透明電極層、14 光電変換層、16 裏面電極、30 基板、32 透明電極層、34 光電変換層、36 下地電極層、38 裏面電極層、40 ペースト、50 はんだ粒子、52 隅、100,200,208,300,302 光電変換装置、102,202 光電変換セル、202a 側面、202b 側壁、204 第1基本構成、206 第2基本構成。   DESCRIPTION OF SYMBOLS 10 Substrate, 12 Transparent electrode layer, 14 Photoelectric conversion layer, 16 Back electrode, 30 Substrate, 32 Transparent electrode layer, 34 Photoelectric conversion layer, 36 Base electrode layer, 38 Back electrode layer, 40 Paste, 50 Solder particle, 52 corner, 100, 200, 208, 300, 302 Photoelectric conversion device, 102, 202 Photoelectric conversion cell, 202a side surface, 202b side wall, 204 first basic configuration, 206 second basic configuration.

Claims (7)

透明基板と、
前記透明基板の表面上に形成された透明電極層と、
前記透明電極層上と、前記透明電極層を除去した第1スリット領域の前記透明基板上とを覆うように形成された光電変換層と、
前記光電変換層上と、前記光電変換層を除去した第2スリット領域の前記透明電極層上の一部とを覆う電極層と、
を備え、
前記第2スリット領域の延設方向に沿って前記電極層が形成されておらず前記透明電極層が露出している無電極領域を前記第2スリット領域内に有することを特徴とする光電変換装置。
A transparent substrate;
A transparent electrode layer formed on the surface of the transparent substrate;
A photoelectric conversion layer formed so as to cover the transparent electrode layer and the transparent substrate of the first slit region from which the transparent electrode layer has been removed;
An electrode layer covering the photoelectric conversion layer and a part of the second slit region from which the photoelectric conversion layer is removed on the transparent electrode layer;
With
A photoelectric conversion device comprising an electrodeless region in the second slit region where the electrode layer is not formed along the extending direction of the second slit region and the transparent electrode layer is exposed. .
請求項1に記載の光電変換装置であって、
前記光電変換層は、前記透明基板から入射する光により光電変換を行うことを特徴とする光電変換装置。
The photoelectric conversion device according to claim 1,
The photoelectric conversion layer performs photoelectric conversion by light incident from the transparent substrate.
透明基板上に透明電極層を形成する第1の工程と、
前記透明電極層の一部を除去して第1スリット領域を形成する第2の工程と、
前記透明電極層上と、前記第1スリット領域の前記透明基板上とを覆うように光電変換層を形成する第3の工程と、
前記第1スリット領域に重ならない前記光電変換層の一部を除去して第2スリット領域を形成する第4の工程と、
前記第2スリット領域の延設方向に沿って前記電極層が形成されておらず前記透明電極層が露出している無電極領域が前記第2スリット領域内に形成されるように、前記光電変換層上と前記第2スリット領域の前記透明電極上の一部とを覆うように電極層を形成する第5の工程と、
を備えることを特徴とする光電変換装置の製造方法。
A first step of forming a transparent electrode layer on the transparent substrate;
A second step of removing a part of the transparent electrode layer to form a first slit region;
A third step of forming a photoelectric conversion layer so as to cover the transparent electrode layer and the transparent substrate in the first slit region;
A fourth step of forming a second slit region by removing a part of the photoelectric conversion layer that does not overlap the first slit region;
The photoelectric conversion so that the electrode layer is not formed along the extending direction of the second slit region, and an electrodeless region where the transparent electrode layer is exposed is formed in the second slit region. A fifth step of forming an electrode layer so as to cover the layer and a part of the second slit region on the transparent electrode;
A process for producing a photoelectric conversion device comprising:
請求項3に記載の光電変換装置の製造方法であって、
前記第5の工程では、前記透明基板の表面に対して垂直方向でない方向から導電性材料を供給することにより前記電極層を形成することを特徴とする光電変換装置の製造方法。
It is a manufacturing method of the photoelectric conversion device according to claim 3,
In the fifth step, the electrode layer is formed by supplying a conductive material from a direction that is not perpendicular to the surface of the transparent substrate.
請求項3に記載の光電変換装置の製造方法であって、
前記第5の工程では、導電性材料のペーストを塗布することにより前記電極層を形成することを特徴とする光電変換装置の製造方法。
It is a manufacturing method of the photoelectric conversion device according to claim 3,
In the fifth step, the electrode layer is formed by applying a paste of a conductive material.
請求項3に記載の光電変換装置の製造方法であって、
前記第5の工程では、前記透明基板の表面を水平方向に対して傾けた状態ではんだ粒子を前記第2スリット領域内に供給し、前記はんだ粒子を溶融させた後に固化させることによって前記電極層を形成することを特徴とする光電変換装置の製造方法。
It is a manufacturing method of the photoelectric conversion device according to claim 3,
In the fifth step, the electrode layer is formed by supplying solder particles into the second slit region in a state where the surface of the transparent substrate is inclined with respect to the horizontal direction, and melting and solidifying the solder particles. Forming a photoelectric conversion device.
請求項3〜6のいずれか1つに記載の光電変換装置の製造方法であって、
前記第3の工程と前記第4の工程との間に、前記光電変換層上に導電性材料を供給することにより下地電極層を形成する第6の工程をさらに備え、
前記第4の工程では、除去される前記光電変換層上に形成された前記下地電極層も除去して前記第2スリット領域を形成し、
前記第5の工程では、前記光電変換層上の代わりに前記下地電極層に接続されるように前記電極層を形成することを特徴とする光電変換装置の製造方法。
It is a manufacturing method of the photoelectric conversion device according to any one of claims 3 to 6,
A sixth step of forming a base electrode layer by supplying a conductive material on the photoelectric conversion layer between the third step and the fourth step;
In the fourth step, the base electrode layer formed on the photoelectric conversion layer to be removed is also removed to form the second slit region,
In the fifth step, the electrode layer is formed so as to be connected to the base electrode layer instead of on the photoelectric conversion layer.
JP2010085664A 2010-04-02 2010-04-02 Photoelectric converter and method for manufacturing the same Pending JP2011216801A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010085664A JP2011216801A (en) 2010-04-02 2010-04-02 Photoelectric converter and method for manufacturing the same
PCT/JP2011/058381 WO2011125920A1 (en) 2010-04-02 2011-04-01 Photoelectric conversion device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085664A JP2011216801A (en) 2010-04-02 2010-04-02 Photoelectric converter and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011216801A true JP2011216801A (en) 2011-10-27

Family

ID=44762858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085664A Pending JP2011216801A (en) 2010-04-02 2010-04-02 Photoelectric converter and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2011216801A (en)
WO (1) WO2011125920A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045454A4 (en) * 1998-07-27 2001-10-24 Citizen Watch Co Ltd Solar cell and method of producing the same, and mask for photolithography for producing solar cell
JP2010062186A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Photoelectric converter and method of manufacturing the same

Also Published As

Publication number Publication date
WO2011125920A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP6360340B2 (en) Manufacturing method of solar cell module
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4902779B2 (en) Photoelectric conversion device and manufacturing method thereof
JP4767365B2 (en) Thin film solar cell and manufacturing method thereof
WO2013002102A1 (en) Photoelectric conversion device
JP3243232B2 (en) Thin film solar cell module
WO2010050035A1 (en) Process for producing photoelectric conversion apparatus
WO2012035780A1 (en) Photoelectric converter
JP6013200B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
KR101369920B1 (en) A solar cell and a manufacturing method thereof
JP2011014619A (en) Solar cell and method of manufacturing the same
KR20120036900A (en) Production method and production device for solar battery
JP2011096880A (en) Photoelectric conversion module
JP2011060811A (en) Solar cell module and method of manufacturing the same
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
WO2011125920A1 (en) Photoelectric conversion device and method for manufacturing the same
JP4875566B2 (en) Method for manufacturing photoelectric conversion device
JP2013030627A (en) Photoelectric conversion device
JP5373045B2 (en) Photoelectric conversion device
JP2010283162A (en) Solar cell and method for manufacturing the same
JP2011176084A (en) Photoelectric conversion module, and method for manufacturing same
WO2012029282A1 (en) Method for producing photoelectric conversion device
WO2012081656A1 (en) Photoelectric conversion device and method for manufacturing same
WO2012029668A1 (en) Photoelectric conversion device