JP2011206727A - Method for producing catalyst carrier and catalyst carrier - Google Patents

Method for producing catalyst carrier and catalyst carrier Download PDF

Info

Publication number
JP2011206727A
JP2011206727A JP2010078686A JP2010078686A JP2011206727A JP 2011206727 A JP2011206727 A JP 2011206727A JP 2010078686 A JP2010078686 A JP 2010078686A JP 2010078686 A JP2010078686 A JP 2010078686A JP 2011206727 A JP2011206727 A JP 2011206727A
Authority
JP
Japan
Prior art keywords
molded body
catalyst carrier
alumina
silica
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078686A
Other languages
Japanese (ja)
Other versions
JP5667778B2 (en
Inventor
Kazuya Tsuchimoto
和也 土本
Osamu Yamanishi
修 山西
Toyohisa Hoshikawa
豊久 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010078686A priority Critical patent/JP5667778B2/en
Publication of JP2011206727A publication Critical patent/JP2011206727A/en
Application granted granted Critical
Publication of JP5667778B2 publication Critical patent/JP5667778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst carrier that is suitable as a catalyst carrier such a catalyst for catalytic partial oxidization reaction, has high heat resistance and that is stable over a long period.SOLUTION: This method for producing a catalyst carrier formed from a silica-carrying alumina molded body includes the following step (I), (II) and (III): (I) preparing the alumina molded body in the order of the following processes: (1) a process of mixing transition alumina powder having rehydration properties with water and molding them to obtain a molded body; (2) a process of retaining the obtained molded body in a wet atmosphere or steam at not lower than 110°C and not higher than 200°C to obtain a rehydrated molded body; and (3) a process of firing the rehydrated molded body at not lower than 900°C; (II) making the obtained alumina molded body carry silica to obtain a silica-carrying alumina molded body having silica concentration of 0.1-5 mass% in SiOconversion; and (III) calcining the obtained silica-carrying alumina molded body.

Description

本発明は、天然ガス等の低級炭化水素から一酸化炭素と水素とを含む合成ガスを製造するために用いる接触部分酸化に使用する触媒担体などとして好適な、触媒担体の製造方法および該製造方法によって得られる触媒担体に関する。   The present invention relates to a method for producing a catalyst carrier suitable as a catalyst carrier used for catalytic partial oxidation used for producing a synthesis gas containing carbon monoxide and hydrogen from lower hydrocarbons such as natural gas, and the method for producing the same. The catalyst support obtained by

天然ガス等の炭化水素を原料として製造される一酸化炭素と水素とを含む合成ガスは、水素、アンモニア、メタノールなどの基幹化学工業製品の製造に広く用いられている。特に近年では、GTL(Gas to Liquid;炭化水素液体燃料)やDME(ジメチルエーテル)等の次世代燃料の原料として、合成ガスの需要増加が見込まれている。   Syngas containing carbon monoxide and hydrogen produced using hydrocarbons such as natural gas as raw materials is widely used for production of basic chemical industrial products such as hydrogen, ammonia and methanol. In particular, in recent years, demand for synthesis gas is expected to increase as a raw material for next-generation fuels such as GTL (Gas to Liquid; hydrocarbon liquid fuel) and DME (dimethyl ether).

GTLなどの大規模ガス製造に適した合成ガスの製造方法として、接触部分酸化法が知られている。この方法は、天然ガスの一部を酸素または空気の添加により触媒燃焼させ、生成した高温の燃焼ガスをさらに触媒層中で改質するものであり、天然ガス成分としてメタンを例に挙げれば、主として以下の反応が含まれる。
(1)CH + 1/2O → 2H + CO +36kJ/mol
(2)CH + 2O → CO + 2HO +879kJ/mol
(3)CO + HO → CO + H +42kJ/mol
(4)CH + HO → CO + 3H −206kJ/mol
(5)CH + CO → 2CO + 2H −248kJ/mol
A catalytic partial oxidation method is known as a synthesis gas production method suitable for large-scale gas production such as GTL. In this method, a part of natural gas is catalytically combusted by adding oxygen or air, and the generated high-temperature combustion gas is further reformed in the catalyst layer. As an example, methane is used as a natural gas component. The following reactions are mainly included.
(1) CH 4 + 1 / 2O 2 → 2H 2 + CO +36 kJ / mol
(2) CH 4 + 2O 2 → CO 2 + 2H 2 O +879 kJ / mol
(3) CO + H 2 O → CO 2 + H 2 +42 kJ / mol
(4) CH 4 + H 2 O → CO + 3H 2 -206kJ / mol
(5) CH 4 + CO 2 → 2CO + 2H 2 -248kJ / mol

この方法は機構が単純で高い熱効率と生産効率が期待できる反面、触媒層入口付近に発熱が集中して局所的に非常に高温になる現象、所謂、ホットスポットが生じやすい。そのため、触媒成分である貴金属類がシンタリングにより劣化して活性が低下したり、部分的な熱膨張による歪の発生で触媒が破壊され、触媒層の圧力損失が経時的に増加して、装置の運転の継続が困難になる場合がある。そこで、触媒に要求される高い耐熱性を実現するため、これまで種々の触媒および触媒担体の提案がなされてきた(例えば特許文献1〜5、非特許文献1)。
しかし、耐熱性および機械的強度には未だ改善の余地があり、また、製造方法が複雑であったり、製造コストが高価であるなど、工業的にも十分ではなかった。
Although this method has a simple mechanism and high heat efficiency and production efficiency can be expected, a phenomenon in which heat generation is concentrated near the catalyst layer entrance and the temperature becomes extremely high locally, so-called hot spots are likely to occur. As a result, the precious metals that are catalyst components deteriorate due to sintering and the activity is reduced, or the catalyst is destroyed due to distortion due to partial thermal expansion, and the pressure loss of the catalyst layer increases with time. It may be difficult to continue driving. Therefore, various catalysts and catalyst carriers have been proposed so far to achieve the high heat resistance required for the catalyst (for example, Patent Documents 1 to 5, Non-Patent Document 1).
However, there is still room for improvement in heat resistance and mechanical strength, and the manufacturing method is complicated and the manufacturing cost is expensive.

特開2008−12517号公報JP 2008-12517 A 特開平1−145301号公報JP-A-1-145301 特表平10−503462号公報Japanese National Patent Publication No. 10-503462 特開平2−55213号公報Japanese Patent Laid-Open No. 2-55213 特開昭61−181536号公報JP 61-181536 A

宇野和則他,「合成ガス」,PETROTECH,第29巻,第3号,p.220,2006Kazunori Uno et al., “Syngas”, PETROTECH, Vol. 29, No. 3, p. 220, 2006

本発明は、このような事情に鑑みてなされたものであり、接触部分酸化反応用の触媒などの触媒担体として好適な、高い耐熱性と機械的強度を有し、長期間に渡って安定で、簡便かつ安価な触媒担体の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has high heat resistance and mechanical strength suitable as a catalyst carrier such as a catalyst for catalytic partial oxidation reaction, and is stable over a long period of time. An object of the present invention is to provide a simple and inexpensive method for producing a catalyst carrier.

すなわち、本発明は、以下の好適な態様を包含する。
〔1〕 シリカ担持アルミナ成形体から構成される触媒担体の製造方法であって、
(I)1)再水和性を有する遷移アルミナ粉末を水と混合および成形して成形体を得る工程、
2)得られた成形体を110℃以上、200℃以下の湿潤雰囲気中または水蒸気中に保持して再水和された成形体を得る工程、および
3)前記再水和された成形体を900℃以上で焼成する工程
の各工程を順に経ることによってアルミナ成形体を調製し、
(II)得られたアルミナ成形体にシリカを担持して、シリカ濃度がSiO換算で0.1〜5質量%のシリカ担持アルミナ成形体を得、
(III)得られたシリカ担持アルミナ成形体を仮焼する
ことを含んでなる触媒担体の製造方法。
〔2〕 アルミナ成形体はθ型の結晶相を含むことを特徴とする、〔1〕に記載の触媒担体の製造方法。
〔3〕 〔1〕または〔2〕に記載の製造方法によって得られる触媒担体。
〔4〕 耐圧強度が5daN以上であり、下記式(1):
CS/CS≧1.0 (1)
(式中、CSは1300℃で5時間の加熱処理後における触媒担体の耐圧強度であり、CSは該加熱処理前における触媒担体の耐圧強度である。)
を満足することを特徴とする、〔3〕に記載の触媒担体。
〔5〕 窒素吸着1点法によるBET比表面積が30m/g以上であり、下記式(2):
/S≧0.10 (2)
(式中、Sは1300℃で5時間の加熱処理後における触媒担体の該BET比表面積であり、CSは該加熱処理前における触媒担体の該BET比表面積である。)
を満足することを特徴とする、〔3〕または〔4〕に記載の触媒担体。
〔6〕 アルミナ成形体と該アルミナ成形体上に担持されたシリカを含む触媒担体であって、該アルミナ成形体はθ型の結晶相を含み、担持されたシリカ濃度はSiO換算で0.1〜5質量%であることを特徴とする触媒担体。
〔7〕 〔6〕に記載の触媒担体の接触部分酸化への使用。
That is, the present invention includes the following preferred embodiments.
[1] A method for producing a catalyst carrier comprising a silica-supported alumina molded body,
(I) 1) A step of obtaining a molded body by mixing and molding transition alumina powder having rehydration property with water,
2) a step of obtaining a rehydrated molded body by holding the obtained molded body in a humid atmosphere of 110 ° C. or higher and 200 ° C. or lower in steam, and 3) the rehydrated molded body is 900 Prepare an alumina molded body by going through each step of the step of firing at ℃ or higher in order,
(II) Silica is supported on the obtained alumina molded body to obtain a silica-supported alumina molded body having a silica concentration of 0.1 to 5% by mass in terms of SiO 2 ;
(III) A method for producing a catalyst carrier, comprising calcining the obtained silica-supported alumina molded body.
[2] The method for producing a catalyst carrier according to [1], wherein the alumina molded body contains a θ-type crystal phase.
[3] A catalyst carrier obtained by the production method according to [1] or [2].
[4] Pressure resistance is 5 daN or more, and the following formula (1):
CS a / CS b ≧ 1.0 (1)
(In the formula, CS a is the pressure strength of the catalyst carrier after the heat treatment at 1300 ° C. for 5 hours, and CS b is the pressure strength of the catalyst carrier before the heat treatment.)
The catalyst carrier according to [3], wherein:
[5] The BET specific surface area by nitrogen adsorption one-point method is 30 m 2 / g or more, and the following formula (2):
S a / S b ≧ 0.10 (2)
(In the formula, S a is the BET specific surface area of the catalyst carrier after heat treatment at 1300 ° C. for 5 hours, and CS b is the BET specific surface area of the catalyst carrier before heat treatment.)
The catalyst carrier according to [3] or [4], wherein:
[6] A catalyst support comprising silica supported on alumina formed body and the alumina compact on, the alumina compact includes a θ-type crystal phase, 0 supported silica concentration in terms of SiO 2. 1 to 5% by mass of a catalyst carrier.
[7] Use of the catalyst support according to [6] for catalytic partial oxidation.

本発明によれば、耐熱性に優れ、さらには耐熱性および機械的強度の双方に優れ、簡便且つ安価な触媒担体の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in heat resistance, Furthermore, it is excellent in both heat resistance and mechanical strength, and can provide the manufacturing method of a catalyst carrier simple and cheap.

本発明において、触媒担体は、アルミナ成形体にシリカを担持して仮焼することにより製造される。   In the present invention, the catalyst carrier is manufactured by carrying silica and calcining it on an alumina molded body.

(アルミナ成形体)
本発明の触媒担体を構成するアルミナ成形体は、
1)再水和性を有する遷移アルミナ粉末を水と混合および成形して成形体を得る工程
2)前記1)で得られた成形体を110℃以上、200℃以下の湿潤雰囲気中または水蒸気中に保持して再水和させる工程
の各工程を順に経たのちに焼成することにより得られる。
(Alumina compact)
The alumina molded body constituting the catalyst carrier of the present invention,
1) Step of obtaining a molded body by mixing and molding transition alumina powder having rehydration properties with water 2) The molded body obtained in 1) above is in a humid atmosphere of 110 ° C. or higher and 200 ° C. or lower or in steam It is obtained by firing after passing through each step of holding and rehydrating in order.

上記1)の工程において、再水和性を有する遷移アルミナ粉末とは、水酸化アルミニウムを熱分解して得られる遷移アルミナ(Alとして表される多型を有するアルミナのうち、α型以外の全てのアルミナ)中、例えばχ、ρ−アルミナおよび無定形アルミナなどの再水和可能なアルミナ粉末をいう。そして、この工程で使用することのできる少なくとも部分的に再水和性を有するアルミナ粉末は、例えば、バイヤー工程から得られるギブサイト結晶水酸化アルミニウムを瞬間仮焼して得られる。 In the above step 1), the transition alumina powder having rehydration property is a transition alumina obtained by thermally decomposing aluminum hydroxide (alumina having a polymorph expressed as Al 2 O 3) All other aluminas) refers to rehydratable alumina powders such as χ, ρ-alumina and amorphous alumina. The alumina powder having at least partially rehydrating properties that can be used in this step can be obtained by, for example, instantaneous calcination of gibbsite crystal aluminum hydroxide obtained from the buyer step.

上記瞬間仮焼は、好ましくは、雰囲気温度500〜1200℃、線速度5〜50/秒の気流中に、ギブサイト結晶水酸化アルミニウムを同伴させて、接触時間0.1〜10秒の条件で加熱することにより行われる。気流中で加熱された粉末は、通常、サイクロン、バグフィルター、電機集塵機などの公知の方法で気流から分離、回収される。分離、回収と同時に、あるいはその後に、冷却して再水和性を有する遷移アルミナ粉末を得る。   The instant calcining is preferably performed under conditions of contact time of 0.1 to 10 seconds by entraining gibbsite crystal aluminum hydroxide in an air current at an atmospheric temperature of 500 to 1200 ° C. and a linear velocity of 5 to 50 / sec. Is done. The powder heated in the airflow is usually separated and collected from the airflow by a known method such as a cyclone, a bag filter, or an electric dust collector. Simultaneously with or after separation and recovery, or after cooling, a transition alumina powder having rehydration properties is obtained.

上記製造方法で得られた再水和性を有する遷移アルミナ粉末は、通常、灼熱減量が3〜10質量%、窒素吸着1点法によるBET比表面積が100m/g以上、レーザー回折法により測定される体積基準の累積百分率50%相当粒子径(D50)が0.1〜100μm、結晶形主成分がχおよびρ−アルミナである。なお、遷移アルミナ粉末は、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。微量成分としては、例えば、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)などが挙げられ、遷移アルミナ粉末中の含有量は、各微量成分の酸化物換算として、NaOが0.1〜1.0質量%、SiOが0.001〜0.1質量%、Feが0.001〜0.01質量%である。 The transition alumina powder having rehydration properties obtained by the above production method usually has a loss on ignition of 3 to 10% by mass, a BET specific surface area by a nitrogen adsorption one-point method of 100 m 2 / g or more, measured by a laser diffraction method. The volume-based cumulative percentage 50% equivalent particle diameter (D50) is 0.1 to 100 μm, and the main crystalline components are χ and ρ-alumina. The transition alumina powder may contain trace components derived from the raw materials or unavoidably contained in the production process. Examples of the trace component include sodium (Na), silicon (Si), iron (Fe), and the like, and the content in the transition alumina powder is such that Na 2 O is 0. 1 to 1.0 wt%, SiO 2 is 0.001 to 0.1 mass%, Fe 2 O 3 is 0.001 to 0.01 wt%.

再水和性を有する遷移アルミナ粉末を水と混合および成形して成形体を得る方法としては、造粒、押出し、打錠などの公知の方法が適用できる。水以外の溶媒、例えば有機溶媒を用いた湿式成形法では、本発明の効果を得ることはできない。成形される形状としては、球状、円柱状、リング状、三葉状、四葉状、塊状など種々の形状のものであり、その寸法は好ましくは1〜10mmの範囲である。なお、本発明の触媒担体の機械的強度の低下を招かない範囲で、細孔付与のために、上記3)の工程で消失しうる造孔剤を添加して成形してもよい。造孔剤としては、例えば、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類およびこれら樹脂類の中空粒子;アクリル酸重合体部分ナトリウム塩架橋物、変性ポリアルキレンオキサイド、イソブチレン−無水マレイン酸共重合体架橋物等の吸水性樹脂類;でんぷん、ナッツ殻、クルミ殻、コーン、コーンスターチなどの植物系材料;グラファイト等の炭素材など、公知のものが使用できる。   Known methods such as granulation, extrusion, tableting and the like can be applied as a method for obtaining a molded product by mixing and molding the transition alumina powder having rehydration properties with water. The effects of the present invention cannot be obtained by a wet molding method using a solvent other than water, for example, an organic solvent. Shapes to be molded include various shapes such as a spherical shape, a cylindrical shape, a ring shape, a trilobal shape, a tetralobal shape, and a lump shape, and the size thereof is preferably in the range of 1 to 10 mm. It should be noted that a pore-forming agent that can be lost in the above step 3) may be added and molded in order to provide pores within a range that does not cause a decrease in mechanical strength of the catalyst carrier of the present invention. Examples of pore-forming agents include resins such as polyethylene, polypropylene, polymethyl methacrylate, and hollow particles of these resins; cross-linked acrylic acid polymer sodium salt, modified polyalkylene oxide, isobutylene-maleic anhydride copolymer Water-absorbing resins such as coalesced crosslinked products; plant materials such as starch, nut shells, walnut shells, corn and corn starch; carbon materials such as graphite can be used.

次いで上記2)の工程で、成形体を再水和させる。再水和処理は、本発明の触媒担体の機械的強度を高める目的で行われ、成形体を湿潤雰囲気中または水蒸気中で一定時間保持して行う。なお、湿潤雰囲気とは、成形体を水和可能な程度に水分を有している雰囲気をいう。再水和処理の温度としては110〜200℃、好ましくは130〜180℃である。再水和温度が高い場合には耐圧設備が必要となり好ましくないため、200℃以下、好ましくは180℃以下の温度とする。また、再水和温度が低い場合には成形体の機械的強度が低くなり好ましくないため、110℃以上、好ましくは130℃以上の温度とする。再水和処理の時間としては、通常は10分〜1週間、好ましくは1〜10時間である。再水和時間が1週間より長いと生産能力が低下する場合があり、また、10分より短いと成形体の機械的強度が低くなる場合がある。この処理中に再水和性アルミナは実質的に完全に再水和し、ベーマイト結晶水酸化アルミニウムになる。   Next, in the step 2), the molded body is rehydrated. The rehydration treatment is performed for the purpose of increasing the mechanical strength of the catalyst support of the present invention, and is performed by holding the molded body in a humid atmosphere or in water vapor for a certain period of time. In addition, a humid atmosphere means the atmosphere which has a water | moisture content to the extent which can hydrate a molded object. The temperature of the rehydration treatment is 110 to 200 ° C, preferably 130 to 180 ° C. When the rehydration temperature is high, pressure resistant equipment is required, which is not preferable. Therefore, the temperature is set to 200 ° C. or lower, preferably 180 ° C. or lower. Further, when the rehydration temperature is low, the mechanical strength of the molded product is lowered, which is not preferable. Therefore, the temperature is 110 ° C. or higher, preferably 130 ° C. or higher. The time for the rehydration treatment is usually 10 minutes to 1 week, preferably 1 to 10 hours. If the rehydration time is longer than one week, the production capacity may be reduced, and if it is shorter than 10 minutes, the mechanical strength of the molded article may be lowered. During this process, the rehydratable alumina is substantially completely rehydrated to boehmite crystalline aluminum hydroxide.

再水和処理した成形体は、必要に応じ、洗浄によりナトリウムなどを除去してもよい。洗浄は、通常、成形体を100℃以下の雰囲気下、20〜90℃の水に接触させればよい。この場合、水量は、成形体との体積比で1〜25倍とするのがよい。水量がこの範囲より少ないと十分洗浄ができない場合があり、この範囲より多く洗浄水を用いても量の割に洗浄効果は高まらず経済的でない。洗浄方法は特に限定されず、バッチ方式で行ってもよいし、カラム通水式で行ってもよい。洗浄液としては、本発明の触媒担体の機械的強度を低下させない範囲で、水に酸性溶液を添加して水洗を行うことも可能である。この場合、酸として、塩酸、硝酸などの鉱酸、酢酸などの有機酸が好適に使用される。また、硝酸アンモニウムや硫酸アンモニウム、塩化アンモニウム、酢酸アンモニウムなどの電解質溶解塩で洗浄してもよい。   If necessary, sodium or the like may be removed from the rehydrated molded article by washing. In general, the washing may be performed by bringing the compact into contact with water at 20 to 90 ° C. in an atmosphere of 100 ° C. or less. In this case, the amount of water is preferably 1 to 25 times in volume ratio with the molded body. If the amount of water is less than this range, sufficient washing may not be possible, and even if the amount of washing water is more than this range, the cleaning effect is not enhanced for the amount and it is not economical. The washing method is not particularly limited, and the washing method may be performed in a batch system or a column water flow method. The washing liquid can be washed with water by adding an acidic solution to the water as long as the mechanical strength of the catalyst carrier of the present invention is not lowered. In this case, mineral acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid are preferably used as the acid. Moreover, you may wash | clean with electrolyte solution salts, such as ammonium nitrate, ammonium sulfate, ammonium chloride, and ammonium acetate.

次いで上記3)の工程で、再水和処理した、あるいは再水和処理したのちに洗浄を行った成形体を焼成する。焼成温度は、通常900℃以上、好ましくは1000℃以上、より好ましくは1050℃以上が適当であり、好ましくは1300℃以下、より好ましくは1250℃以下が適当である。この温度までの昇温速度は、1時間あたり250℃以上、さらには300℃以上であることが好ましい。焼成は、燃焼ガス、電気ヒーターによる間接加熱、赤外線加熱など種々の加熱方式で実施できる。焼成雰囲気は特に限定されず、例えば空気中、窒素中および水素中などのいずれでもよい。焼成に先立って、自然乾燥、熱風乾燥および真空乾燥などの方法により、成形体の付着水分を予め除去しておいてもよい。   Next, in the step 3), the molded body that has been rehydrated or washed after being rehydrated is fired. The firing temperature is usually 900 ° C. or higher, preferably 1000 ° C. or higher, more preferably 1050 ° C. or higher, preferably 1300 ° C. or lower, more preferably 1250 ° C. or lower. The heating rate up to this temperature is preferably 250 ° C. or more per hour, and more preferably 300 ° C. or more. Firing can be performed by various heating methods such as combustion gas, indirect heating with an electric heater, and infrared heating. The firing atmosphere is not particularly limited, and may be any of, for example, air, nitrogen, and hydrogen. Prior to firing, the moisture adhering to the molded body may be removed in advance by methods such as natural drying, hot air drying, and vacuum drying.

上記製造方法で得られたアルミナ成形体は、その寸法が1〜10mm、窒素吸着1点法によるBET比表面積が10〜50m/g、耐圧強度が5daN以上、水銀圧入法による累積細孔容積が0.1mL/g以上、結晶形の主成分がθおよびα−アルミナであり、その原料由来あるいは製造工程において不可避的に含まれる微量成分を含有し得る。微量成分としては、例えば、ナトリウム(Na)、ケイ素(Si)、鉄(Fe)などが挙げられ、微量成分のアルミナ成形体中の含有量は各微量成分の酸化物換算として、通常、NaOが0.1〜1.0質量%、SiOが0.001〜0.1質量%、Feが0.001〜0.01質量%である。なお、上記2)の工程で成形体を再水和したのちに洗浄し、焼成して得られたアルミナ成形体中のナトリウム(Na)、ケイ素(Si)、鉄(Fe)の含有量は、各々酸化物換算として、通常、NaOが0.01〜0.1質量%、SiOが0.001〜0.1質量%、Feが0.001〜0.01質量%である。 The alumina molded body obtained by the above production method has a size of 1 to 10 mm, a BET specific surface area of 10 to 50 m 2 / g by a nitrogen adsorption one-point method, a pressure strength of 5 daN or more, and a cumulative pore volume by a mercury intrusion method. Is 0.1 mL / g or more, and the main components of the crystal form are θ and α-alumina, and may contain trace components inevitably contained in the raw material or in the production process. Examples of the trace component include sodium (Na), silicon (Si), iron (Fe) and the like, and the content of the trace component in the alumina molded body is usually Na 2 in terms of oxide of each trace component. O is 0.1 to 1.0 mass%, SiO 2 is 0.001 to 0.1 mass%, Fe 2 O 3 is 0.001 to 0.01 wt%. In addition, the content of sodium (Na), silicon (Si), and iron (Fe) in the alumina molded body obtained by washing and firing after rehydrating the molded body in the step 2) is as follows. As each oxide conversion, usually, Na 2 O is 0.01 to 0.1% by mass, SiO 2 is 0.001 to 0.1% by mass, and Fe 2 O 3 is 0.001 to 0.01% by mass. is there.

本発明において、触媒担体は、アルミナ成形体にシリカを担持してシリカ担持アルミナ成形体を得た後、これを仮焼することにより製造される。シリカ担持アルミナ成形体の形状は特に制限されず、前記のとおり、例えば、球状、円柱状、リング状、三葉状、四葉状、塊状等を挙げることができる。   In the present invention, the catalyst carrier is manufactured by carrying silica after supporting silica on an alumina molded body to obtain a silica-supported alumina molded body. The shape of the silica-supported alumina molded body is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, a ring shape, a trilobal shape, a tetralobal shape, and a massive shape as described above.

アルミナ成形体に担持するシリカの量は、触媒担体中、SiO換算で0.1〜5質量%であり、好ましくは0.2〜4質量%である。シリカの担持量が低いと良好な耐熱性および機械的強度が得られない場合があるため、担持量は0.1質量%以上であり、好ましくは0.2質量%以上である。また、シリカの担持量を高くしても量の割に耐熱性および機械的強度が向上せず経済的でないため、担持量は5質量%以下であり、好ましくは4質量%である。 The amount of silica supported on the alumina molded body is 0.1 to 5% by mass, preferably 0.2 to 4% by mass in terms of SiO 2 in the catalyst support. If the supported amount of silica is low, good heat resistance and mechanical strength may not be obtained, so the supported amount is 0.1% by mass or more, preferably 0.2% by mass or more. Further, even if the loading amount of silica is increased, the heat resistance and mechanical strength are not improved for the amount and it is not economical, so the loading amount is 5% by mass or less, preferably 4% by mass.

シリカを担持する際のシリカ源としては特に制限は無く、例えば、コロイダルシリカ、シリカゲル、水ガラス等の公知の物質が使用でき、経済性および取り扱いの容易さからコロイダルシリカの使用が好ましい。なお、上記以外のシリカ源として、例えば、テトラメチルアンモニウムシリケート、テトラエチルシランなどの有機ケイ素化合物なども使用することができるが、有機ケイ素化合物自体が高価であり、かつ、特殊な製造設備が必要となるため、本発明ではコロイダルシリカ、シリカゲル、水ガラス等を使用する方が有利である。   There is no restriction | limiting in particular as a silica source at the time of carrying | supporting a silica, For example, well-known substances, such as colloidal silica, a silica gel, and water glass, can be used, and use of colloidal silica is preferable from economical efficiency and ease of handling. In addition, as a silica source other than the above, for example, an organosilicon compound such as tetramethylammonium silicate and tetraethylsilane can be used, but the organosilicon compound itself is expensive and requires special production equipment. Therefore, in the present invention, it is advantageous to use colloidal silica, silica gel, water glass or the like.

コロイダルシリカは、通常、シリカの濃度がSiO換算値で1〜50質量%、粒径が1〜1000nm、粘度が1〜1000mPa・s、pHが1〜14であり、ナトリウム(Na)、アンモニア(NH)、塩酸(HCL)、硝酸(HNO)、酢酸(CHCOOH)等の安定剤を微量に含む。本発明では、コロイダルシリカとして、一般に市販されているもの、例えば、日産化学工業株式会社製のスノーテックスなどが利用できる。本発明では、シリカの担持量が触媒担体中、SiO換算で0.1〜5質量%になるように、コロイダルシリカを適宜純水などで希釈して使用することができる。 Colloidal silica usually has a silica concentration of 1 to 50% by mass in terms of SiO 2 , a particle size of 1 to 1000 nm, a viscosity of 1 to 1000 mPa · s, a pH of 1 to 14, sodium (Na), ammonia A trace amount of stabilizers such as (NH 3 ), hydrochloric acid (HCL), nitric acid (HNO 3 ), and acetic acid (CH 3 COOH) are contained. In the present invention, commercially available colloidal silica such as Snowtex manufactured by Nissan Chemical Industries, Ltd. can be used. In the present invention, colloidal silica can be appropriately diluted with pure water or the like so that the supported amount of silica is 0.1 to 5% by mass in terms of SiO 2 in the catalyst support.

担持の方法としては特に制限は無く、例えば、吸着法、平衡吸着(Equilibrium Adsorption)法、ポアフィリング(Pore−filling)法、インシピアント・ウェットネス(Incipient Wetness)法、蒸発乾固(Evaporation to Dryness)法および噴霧(Spray)法などの公知の方法が利用できる。なお、担持に先立ちアルミナ成形体を予め乾燥または真空脱気しておいてもよい。   There are no particular limitations on the loading method. For example, an adsorption method, an equilibration adsorption method, a pore-filling method, an incipient wetness method, an evaporation to dryness method. Known methods such as the spray method and the spray method can be used. Prior to carrying, the alumina molded body may be dried or vacuum deaerated beforehand.

仮焼の方法としては特に制限は無く、例えば、燃焼ガス、電気ヒーターによる間接加熱、赤外線加熱などの公知の方法が利用できる。仮焼温度は、通常100℃以上、好ましくは200〜1000℃の範囲である。前記温度までの昇温速度は、1時間あたり250℃以上、さらには300℃以上であることが好ましい。仮焼雰囲気は特に限定されず、空気中、酸素中および窒素中のいずれでもよい。なお、仮焼に先立って、シリカ成分を担持した後のアルミナ成形体中に残存する水分を、自然乾燥、熱風乾燥および真空乾燥などの方法により、予め除去しておいてもよい。   There is no restriction | limiting in particular as the method of calcination, For example, well-known methods, such as combustion gas, indirect heating with an electric heater, and infrared heating, can be utilized. The calcining temperature is usually 100 ° C. or higher, preferably 200 to 1000 ° C. The rate of temperature increase up to the above temperature is preferably 250 ° C. or more per hour, and more preferably 300 ° C. or more. The calcining atmosphere is not particularly limited, and may be any of air, oxygen, and nitrogen. Prior to calcination, water remaining in the alumina molded body after supporting the silica component may be removed in advance by a method such as natural drying, hot air drying, or vacuum drying.

本発明による触媒担体におけるアルミナ成形体は通常θ型の結晶相を含み、好ましくはさらにα型の結晶相を含む。アルミナ成形体がθ型の結晶相を含まず、θ型およびα型以外の結晶相しか含まないと、良好な耐熱性および機械的強度が得られない場合がある。   The alumina compact in the catalyst carrier according to the present invention usually contains a θ-type crystal phase, and preferably further contains an α-type crystal phase. If the alumina molded body does not contain a θ-type crystal phase and contains only a crystal phase other than the θ-type and α-type, good heat resistance and mechanical strength may not be obtained.

本発明は、上記方法によって得られる触媒担体にも関する。
本発明の触媒担体は高い機械的強度を有しており、その耐圧強度が5daN以上であることが好ましく、6daN以上であることがより好ましい。触媒担体の機械的強度が小さいと、触媒充填の際や移送などのハンドリングの過程で崩壊する恐れがある。また、本発明の触媒担体は、耐圧強度が通常20daN以下である。
The present invention also relates to a catalyst support obtained by the above method.
The catalyst carrier of the present invention has high mechanical strength, and the pressure strength is preferably 5 daN or more, and more preferably 6 daN or more. If the mechanical strength of the catalyst carrier is low, the catalyst carrier may collapse during handling such as catalyst filling or transfer. The catalyst carrier of the present invention usually has a pressure strength of 20 daN or less.

さらに、本発明の触媒担体は高い耐熱性を有しており、1300℃で5時間加熱処理した後に、下記式(1):
CS/CS≧1.0 (1)
を満足することが好ましい。ここで、式(1)中、CSは前記加熱処理後における触媒担体の耐圧強度であり、CSは前記加熱処理前における触媒担体の耐圧強度である。前記加熱処理前における触媒担体の耐圧強度CSは、5daN以上であることが好ましい。
上記本発明の製造方法に従えば、上記の機械的強度と耐熱性を満足する触媒担体を得ることができる。
Furthermore, the catalyst carrier of the present invention has high heat resistance, and after heat treatment at 1300 ° C. for 5 hours, the following formula (1):
CS a / CS b ≧ 1.0 (1)
Is preferably satisfied. Here, in the formula (1), CS a is the pressure strength of the catalyst carrier after the heat treatment, and CS b is the pressure strength of the catalyst carrier before the heat treatment. Compression strength CS b of the catalyst support before said heat treatment is preferably at least 5 daN.
According to the production method of the present invention, a catalyst carrier that satisfies the mechanical strength and heat resistance can be obtained.

本願発明において、上記式(1)は、触媒担体の耐熱性を表す指標である。すなわち、式(1)は、1300℃で5時間加熱処理するという熱応力を加えた後であっても、加熱処理前の1.0倍以上の高い耐圧強度を保持し、加熱処理の前後で耐圧強度が低下しないことを意味している。   In the present invention, the above formula (1) is an index representing the heat resistance of the catalyst carrier. That is, the formula (1) maintains a high pressure strength of 1.0 times or more before the heat treatment even after the heat stress of heat treatment at 1300 ° C. for 5 hours, before and after the heat treatment. This means that the pressure strength does not decrease.

本願発明において、「耐圧強度」は次の方法により測定される。すなわち、先端にゲージアタッチメント(型番:012B)を取り付けた、アイコーエンジニアリング株式会社製デジタルプッシュプルゲージ(Model.RX−50)を、同社製電動スタンド(Model.1307)に固定する。次いで、該電動スタンドの昇降台中央に1個の触媒担体を静置した後、60mm/minの一定速度で昇降台ごと上昇させ、上記プッシュプルゲージ先端に取り付けられたゲージアタッチメントに押し当てて、触媒担体が崩壊した時の荷重を上記プッシュプルゲージのピークホールド機能により読み取る。この測定を10個の触媒担体について実施し、10個の測定値の平均値を「耐圧強度」とする。ここで、球状以外の形状を有する触媒担体については、該成形体の軸方向と垂直な方向にプッシュプルゲージ先端のゲージアタッチメントを押し当てて測定する。   In the present invention, the “pressure strength” is measured by the following method. That is, a digital push-pull gauge (Model. RX-50) manufactured by Aiko Engineering Co., Ltd. having a gauge attachment (model number: 012B) attached to the tip is fixed to a motorized stand (Model. 1307) manufactured by the same company. Next, after standing one catalyst carrier in the center of the elevator stand of the motorized stand, the entire elevator is raised at a constant speed of 60 mm / min, and pressed against the gauge attachment attached to the push-pull gauge tip, The load when the catalyst carrier collapses is read by the peak hold function of the push-pull gauge. This measurement is performed on 10 catalyst supports, and the average value of the 10 measured values is defined as “pressure strength”. Here, for a catalyst carrier having a shape other than a spherical shape, measurement is performed by pressing the gauge attachment at the tip of the push-pull gauge in a direction perpendicular to the axial direction of the molded body.

本発明の触媒担体は、窒素吸着1点法によるBET比表面積が30m/g以上であることが好ましく、35m/g以上であることがより好ましい。触媒担体のBET比表面積が小さいと、触媒成分を十分に担持できない恐れがある。また、本発明の触媒担体は、BET比表面積が通常100m/g以下である。 The catalyst carrier of the present invention preferably has a BET specific surface area of 30 m 2 / g or more, more preferably 35 m 2 / g or more, according to a nitrogen adsorption one-point method. If the catalyst carrier has a small BET specific surface area, the catalyst component may not be sufficiently supported. Further, the catalyst carrier of the present invention has a BET specific surface area of usually 100 m 2 / g or less.

本発明の触媒担体は、また、1300℃で5時間加熱処理した後に、下記式(2):
/S≧0.10 (2)
を満足する耐熱性を有することが好ましい。ここで、式(2)中、Sは前記加熱処理後における触媒担体の窒素吸着1点法によるBET比表面積であり、Sは前記加熱処理前における触媒担体の窒素吸着1点法によるBET比表面積である。
上記本発明の製造方法に従えば、上記の物理的特性と耐熱性を満足する触媒担体を得ることができる。
The catalyst carrier of the present invention is also heat treated at 1300 ° C. for 5 hours, and then the following formula (2):
S a / S b ≧ 0.10 (2)
It is preferable to have heat resistance satisfying the above. Here, in the formula (2), S a is a BET specific surface area by the nitrogen adsorption one-point method of the catalyst carrier after the heat treatment, and S b is a BET by the nitrogen adsorption one-point method of the catalyst carrier before the heat treatment. Specific surface area.
According to the production method of the present invention, a catalyst carrier satisfying the above physical characteristics and heat resistance can be obtained.

本願発明において、上記式(2)もまた、前記式(1)と同様に、触媒担体の耐熱性を表す指標である。すなわち、前記(2)は、1300℃で5時間加熱処理するという熱応力を加えた後であっても、加熱処理前の0.10倍以上の高いBET比表面積を保持し、加熱処理の前後でBET比表面積の低下が少ないことを意味している。   In the present invention, the above formula (2) is also an index representing the heat resistance of the catalyst carrier, like the above formula (1). That is, (2) maintains a high BET specific surface area of 0.10 times or more before the heat treatment even after the heat stress of heat treatment at 1300 ° C. for 5 hours, before and after the heat treatment. This means that the decrease in the BET specific surface area is small.

本願発明において、「BET比表面積」は次の方法により測定される。すなわち、全自動BET比表面積測定装置(株式会社マウンテック製「Macsorb Model−1201」)を用いて、窒素吸着1点法により測定する。   In the present invention, the “BET specific surface area” is measured by the following method. That is, the measurement is performed by a nitrogen adsorption one-point method using a fully automatic BET specific surface area measuring device (“Macsorb Model-1201” manufactured by Mountec Co., Ltd.).

本発明の触媒担体は、高い耐熱性および機械的強度を有することから、接触部分酸化反応用触媒、水蒸気改質触媒、オートサーマルリフォーミング触媒、燃焼触媒、脱臭触媒など、500℃以上の高温下で反応を行う触媒の担体として好適に用いることができる。   Since the catalyst carrier of the present invention has high heat resistance and mechanical strength, it can be used at a high temperature of 500 ° C. or higher, such as a catalyst for catalytic partial oxidation reaction, a steam reforming catalyst, an autothermal reforming catalyst, a combustion catalyst, and a deodorizing catalyst. It can be suitably used as a carrier for a catalyst for carrying out the reaction.

本発明の触媒担体に担持される触媒としては、例えば、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)等の白金族元素、コバルト(Co)、亜鉛(Zn)、モリブデン(Mo)および銀(Ag)など(接触部分酸化反応用触媒);ニッケル(Ni)および上記白金族元素など(水蒸気改質触媒);上記白金族元素、コバルト(Co)、マグネシウム(Mg)、ニッケル(Ni)、亜鉛(Zn)、クロム(Cr)、ガリウム(Ga)、鉄(Fe)、銅(Cu)および銀(Ag)など(オートサーマルリフォーミング触媒);上記白金族元素、コバルト(Co)、ニッケル(Ni)、クロム(Cr)、チタン(Ti)、バナジウム(V)、マンガン(Mn)、鉄(Fe)および銅(Cu)など(燃焼触媒);上記白金族元素(脱臭触媒)などを挙げることができる。触媒担体に対するこれら触媒の担持量は、通常、0.01〜50質量%程度である。   Examples of the catalyst supported on the catalyst carrier of the present invention include platinum group elements such as ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt), Cobalt (Co), zinc (Zn), molybdenum (Mo), silver (Ag), etc. (catalyst for catalytic partial oxidation reaction); nickel (Ni) and the above platinum group elements (steam reforming catalyst); the above platinum group elements , Cobalt (Co), magnesium (Mg), nickel (Ni), zinc (Zn), chromium (Cr), gallium (Ga), iron (Fe), copper (Cu) and silver (Ag), etc. Forming catalyst); platinum group elements, cobalt (Co), nickel (Ni), chromium (Cr), titanium (Ti), vanadium (V), manganese (Mn), iron (Fe) And copper (Cu), etc. (combustion catalyst); the platinum group metal (deodorizing catalyst), and the like. The amount of these catalysts supported on the catalyst carrier is usually about 0.01 to 50% by mass.

以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
各実施例および比較例における、アルミナ成形体の耐圧強度、BET比表面積、シリカ(SiO)含有量、結晶構造、得られた触媒担体の加熱処理前および加熱処理後の耐圧強度(CSおよびCS)、加熱処理前および加熱処理後のBET比表面積(SおよびS)、得られた触媒担体中のシリカ(SiO)含有量は下記方法により測定した。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further more concretely, this invention is not limited by these examples.
In each Example and Comparative Example, the pressure resistance strength of the alumina molded body, the BET specific surface area, the silica (SiO 2 ) content, the crystal structure, the pressure strength before and after the heat treatment of the obtained catalyst support (CS b and CS a ), BET specific surface area (S b and S a ) before and after heat treatment, and silica (SiO 2 ) content in the obtained catalyst support were measured by the following methods.

(1)アルミナ成形体の耐圧強度
アルミナ成形体の中から無作為に10個サンプリングし、測定試料とした。次いで、先端にゲージアタッチメント(型番:012B)を取り付けた、アイコーエンジニアリング株式会社製デジタルプッシュプルゲージ(Model.RX−50)を、同社製電動スタンド(Model.1307)に固定した。次いで、該電動スタンドの昇降台中央に1個のアルミナ成形体を静置した後、60mm/minの一定速度で昇降台ごと上昇させ、上記プッシュプルゲージ先端に取り付けられたゲージアタッチメントに押し当てて、アルミナ成形体が崩壊した時の荷重を上記プッシュプルゲージのピークホールド機能により読み取った。この測定を10個のアルミナ成形体について実施し、10個の測定値の平均値をアルミナ成形体の耐圧強度とした。
(1) Pressure strength of the alumina molded body Ten samples were randomly sampled from the alumina molded body to obtain a measurement sample. Next, a digital push-pull gauge (Model. RX-50) manufactured by Aiko Engineering Co., Ltd. with a gauge attachment (model number: 012B) attached to the tip was fixed to a motorized stand (Model. 1307) manufactured by the same company. Next, after placing one alumina molded body at the center of the elevator stand of the motorized stand, the alumina elevator is raised at a constant speed of 60 mm / min, and pressed against the gauge attachment attached to the tip of the push-pull gauge. The load when the alumina compact collapsed was read by the peak hold function of the push-pull gauge. This measurement was carried out for 10 alumina molded bodies, and the average value of the 10 measured values was taken as the pressure strength of the alumina molded body.

(2)アルミナ成形体のBET比表面積
アルミナ成形体の中から無作為に数個サンプリングし、乳鉢にて解砕し、測定試料とした。次いで、全自動BET比表面積測定装置(株式会社マウンテック製「Macsorb Model−1201」)を用いて、窒素吸着1点法により測定し、アルミナ成形体のBET比表面積とした。
(2) BET specific surface area of alumina molded body Several samples were randomly sampled from the alumina molded body and crushed in a mortar to obtain a measurement sample. Next, using a fully automatic BET specific surface area measuring device ("Macsorb Model-1201" manufactured by Mountec Co., Ltd.), the measurement was performed by the nitrogen adsorption one-point method to obtain the BET specific surface area of the alumina molded body.

(3)アルミナ成形体のシリカ(SiO)含有量
アルミナ成形体の中から無作為に数個サンプリングし、乳鉢にて解砕し、測定試料とした。次いで、ICP発光法によりアルミナ成形体のシリカ(SiO)含有量を求めた。
(3) Silica (SiO 2 ) Content of Alumina Molded Body Several samples were randomly sampled from the alumina molded body and crushed in a mortar to obtain a measurement sample. Next, the silica (SiO 2 ) content of the alumina molded body was determined by an ICP emission method.

(4)アルミナ成形体の結晶構造
アルミナ成形体の中から無作為に数個サンプリングし、乳鉢にて解砕し、測定試料とした。次いで、株式会社リガク製の粉末X線回折分析装置、RAD−RB、RU−200型を用いて、以下の条件にて測定を行ない、アルミナ成形体の結晶構造を同定した。
X線管球 :CuKα
電圧−電流 :40kV−80mA
測定角度範囲:2θ=5〜70°
ステップ :0.02°
スキャンスピード:4°/分
(4) Crystal structure of alumina molded body Several samples were randomly sampled from the alumina molded body and crushed in a mortar to obtain a measurement sample. Subsequently, measurement was performed under the following conditions using a powder X-ray diffraction analyzer, RAD-RB, RU-200 manufactured by Rigaku Corporation, and the crystal structure of the alumina compact was identified.
X-ray tube: CuKα
Voltage-current: 40 kV-80 mA
Measurement angle range: 2θ = 5-70 °
Step: 0.02 °
Scan speed: 4 ° / min

(5)触媒担体(加熱処理前)の耐圧強度(CS
アルミナ成形体にシリカ源を担持した後、仮焼して得られた触媒担体の中から、無作為に10個サンプリングし、測定試料とした。これを上記(1)と同様の方法で測定し、加熱処理前の触媒担体の「耐圧強度CS」とした。
(5) Pressure resistance (CS b ) of catalyst carrier (before heat treatment)
Ten samples were randomly sampled from the catalyst carrier obtained by carrying the silica source on the alumina compact and then calcined to obtain a measurement sample. This was measured by the same method as in (1) above, and was defined as “pressure strength CS b ” of the catalyst carrier before the heat treatment.

(6)触媒担体(加熱処理後)の耐圧強度(CS
アルミナ成形体にシリカ源を担持した後、仮焼して得られた触媒担体の中から、無作為に10個サンプリングし、これを坩堝に入れて電気炉に仕込んだ。その後、空気中、毎分300℃の速度で1300℃まで昇温し5時間保持した後、室温まで冷却してから取り出した後に、上記(1)と同様の方法で測定し、加熱処理された触媒担体の「耐圧強度CS」を求めた。
(6) Pressure resistance (CS a ) of catalyst carrier (after heat treatment)
Ten silica samples were randomly sampled from the catalyst support obtained by calcining the silica source on the alumina compact, and placed in an electric furnace in a crucible. Thereafter, the temperature was raised to 1300 ° C. at a rate of 300 ° C. per minute in the air, held for 5 hours, cooled to room temperature, then taken out, measured in the same manner as in the above (1), and heat-treated. The “pressure strength CS a ” of the catalyst support was determined.

(7)触媒担体(加熱処理前)のBET比表面積(S
アルミナ成形体にシリカ源を担持した後、仮焼して得られた触媒担体の中から、無作為に数個サンプリングし、乳鉢にて解砕し、測定試料とした。これを上記(2)と同様の方法で測定し、加熱処理前の触媒担体の「BET比表面積S」とした。
(7) BET specific surface area (S b ) of catalyst support (before heat treatment)
Several samples were randomly sampled from the catalyst carrier obtained by calcining the silica source on the alumina compact and then calcined in a mortar to obtain a measurement sample. This was measured by the same method as in (2) above, and was defined as “BET specific surface area S b ” of the catalyst carrier before the heat treatment.

(8)触媒担体(加熱処理後)のBET比表面積(S
アルミナ成形体にシリカ源を担持した後、仮焼して得られた触媒担体の中から、無作為に数個サンプリングし、これを坩堝に入れて電気炉に仕込んだ。その後、空気中、毎分300℃の速度で1300℃まで昇温し5時間保持した後、室温まで冷却してから取り出した後に、上記(2)と同様の方法で測定し、加熱処理された触媒担体の「BET比表面積S」を求めた。
(8) BET specific surface area (S a ) of catalyst support (after heat treatment)
Several samples were randomly sampled from the catalyst carrier obtained by calcining the silica source on the alumina compact, and placed in an electric furnace in a crucible. Thereafter, the temperature was raised to 1300 ° C. at a rate of 300 ° C. per minute in the air, held for 5 hours, cooled to room temperature, taken out, measured in the same manner as in the above (2), and heat-treated. The “BET specific surface area S a ” of the catalyst support was determined.

(9)触媒担体のシリカ(SiO)含有量
アルミナ成形体にシリカ源を担持した後、仮焼して得られた触媒担体の中から、無作為に数個サンプリングし、乳鉢にて解砕し、測定試料とした。これを上記(3)と同様の方法で測定し、触媒担体のシリカ(SiO)含有量を求めた。
(9) Silica (SiO 2 ) content of catalyst carrier Randomly sample a few of the catalyst carriers obtained by calcining after supporting the silica source on the alumina compact, and crush it in the mortar. And used as a measurement sample. This was measured by the same method as in (3) above to determine the silica (SiO 2 ) content of the catalyst support.

<実施例1>
直径2mの皿型造粒機を用いて、結晶形の主成分がχおよびρ−アルミナである再水和性を有する遷移アルミナ粉末100質量部に対し水60質量部を噴霧しながら、成形体直径が2〜4mmの球状成形体を得た。この成形体1kgをガラス製ビーカーに入れ、ステンレス鋼製の5リットルオートクレーブに仕込むとともに、別に水を仕込み、150℃まで昇温して飽和水蒸気下で4時間保持し、前記成形体を再水和させた。次いで、再水和させた前記成形体500gをガラス製カラムに充填し、80℃、pH4.5の硝酸水溶液をSV=18.4h−1で4時間カラムに通水した後、80℃の温水をSV=18.4h−1で3時間温水を通水し洗浄品を得た。この洗浄品300gをアルミナ製坩堝に仕込み、電気炉に入れ、空気中で1100℃まで300℃/時で昇温し、2時間加熱保持してアルミナ成形体を得た。
<Example 1>
Using a dish type granulator with a diameter of 2 m, while spraying 60 parts by mass of water on 100 parts by mass of rehydratable transition alumina powder whose main component of crystal form is χ and ρ-alumina, A spherical molded body having a diameter of 2 to 4 mm was obtained. 1 kg of this compact is placed in a glass beaker and charged into a stainless steel 5 liter autoclave, and water is added separately, and the temperature is raised to 150 ° C. and kept under saturated steam for 4 hours to rehydrate the compact. I let you. Next, 500 g of the rehydrated molded body was filled in a glass column, and an aqueous nitric acid solution at 80 ° C. and pH 4.5 was passed through the column at SV = 18.4 h −1 for 4 hours, and then warm water at 80 ° C. Was passed through warm water at SV = 18.4 h −1 for 3 hours to obtain a washed product. 300 g of this washed product was put in an alumina crucible, placed in an electric furnace, heated to 1100 ° C. at 300 ° C./hour in air, and heated for 2 hours to obtain an alumina molded body.

前記アルミナ成形体に担持するシリカ源としてはコロイダルシリカ(日産化学工業株式会社製、スノーテックスN、SiO濃度:20質量%)を用いた。担持に先立って、前記アルミナ成形体200gをステンレス製バットに仕込み、乾燥機に入れ、空気中、200℃で4時間乾燥し乾燥品を得た。この乾燥品100gに対し前記コロイダルシリカ5gを純水45.4gで希釈した液の全量を、皿型造粒機を用いてSpray法により前記乾燥品に担持し担持品を得た。この担持品100gをステンレス製バットに仕込み、乾燥機に入れ、空気中、400℃で2時間仮焼し触媒担体を得た。 Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex N, SiO 2 concentration: 20% by mass) was used as the silica source supported on the alumina molded body. Prior to loading, 200 g of the alumina compact was charged into a stainless steel bat, placed in a dryer, and dried in air at 200 ° C. for 4 hours to obtain a dried product. The total amount of a solution obtained by diluting 5 g of the colloidal silica with 45.4 g of pure water with respect to 100 g of the dried product was supported on the dried product by a spray method using a dish type granulator to obtain a supported product. 100 g of this supported product was charged into a stainless steel bat, placed in a dryer, and calcined in air at 400 ° C. for 2 hours to obtain a catalyst carrier.

<実施例2>
コロイダルシリカの量を1.5g、純水の量を48.9gとした以外は、実施例1と同様の方法にて触媒担体を得た。
<Example 2>
A catalyst carrier was obtained in the same manner as in Example 1 except that the amount of colloidal silica was 1.5 g and the amount of pure water was 48.9 g.

<実施例3>
コロイダルシリカの量を3.5g、純水の量を46.9gとした以外は、実施例1と同様の方法にて触媒担体を得た。
<Example 3>
A catalyst carrier was obtained in the same manner as in Example 1 except that the amount of colloidal silica was 3.5 g and the amount of pure water was 46.9 g.

<実施例4>
コロイダルシリカの量を25g、純水の量を25.4gとした以外は、実施例1と同様の方法にて触媒担体を得た。
<Example 4>
A catalyst carrier was obtained in the same manner as in Example 1 except that the amount of colloidal silica was 25 g and the amount of pure water was 25.4 g.

<実施例5>
再水和させたアルミナ成形体を洗浄せず、1120℃で焼成した以外は、実施例1と同様の方法にて触媒担体を得た。
<Example 5>
A catalyst carrier was obtained in the same manner as in Example 1 except that the rehydrated alumina molded body was not washed and fired at 1120 ° C.

<比較例1>
アルミナ成形体にコロイダルシリカを担持しなかった以外は、実施例1と同様の方法にて触媒担体を得た。
<Comparative Example 1>
A catalyst carrier was obtained in the same manner as in Example 1 except that colloidal silica was not supported on the alumina molded body.

<比較例2>
アルミナ成形体の再水和の温度を100℃とし、再水和したのちに洗浄を行わず、焼成温度を1080℃とした以外は、実施例1と同様の方法にて触媒担体を得た。
<Comparative example 2>
A catalyst carrier was obtained in the same manner as in Example 1 except that the temperature of rehydration of the alumina molded body was 100 ° C., no washing was performed after rehydration, and the firing temperature was 1080 ° C.

<比較例3>
焼成温度を400℃とし、χ型の結晶相を有するアルミナ成形体を用いた以外は、実施例1と同様の方法にて触媒担体を得た。
<Comparative Example 3>
A catalyst carrier was obtained in the same manner as in Example 1 except that the calcining temperature was 400 ° C. and an alumina molded body having a χ-type crystal phase was used.

各実施例および比較例で得られた触媒担体のシリカ(SiO)含有量および加熱処理前および加熱処理後の耐圧強度(CSおよびCS)、ならびに加熱処理前および加熱処理後のBET比表面積(SおよびS)を表1〜2に示す。 Silica (SiO 2 ) content and pressure strength (CS b and CS a ) before and after heat treatment of the catalyst supports obtained in each Example and Comparative Example, and BET ratio before and after heat treatment The surface areas ( Sb and Sa ) are shown in Tables 1-2.

Figure 2011206727
Figure 2011206727

Figure 2011206727
Figure 2011206727

上記の結果から、本発明の製造方法に従って作製された実施例1〜5の触媒担体は、シリカ(SiO)含有量が0.1〜5質量%の範囲であった。また、実施例1〜5の触媒担体は、耐圧強度CSが5daN以上、CS/CSが1.0以上、加熱処理前のBET比表面積が30m/g以上、S/Sが0.10以上であり、優れた耐熱性、機械的強度および物理的特性を有していた。 From the above results, the catalyst carriers of Examples 1 to 5 produced according to the production method of the present invention had a silica (SiO 2 ) content in the range of 0.1 to 5% by mass. Further, the catalyst support of Examples 1 to 5, the compression strength CS b is more 5daN, CS a / CS b is 1.0 or more, BET specific surface area before heat treatment is 30 m 2 / g or more, S a / S b Was 0.10 or more and had excellent heat resistance, mechanical strength and physical properties.

これに対し、比較例1の触媒担体は、耐圧強度CSが5daN以上、CS/CSが1.0以上であるものの、S/Sが0.09と低く、耐熱性に欠けていた。また、比較例2の触媒担体は、S/Sが0.12と高いものの、CS/CSが0.4と低く、耐熱性に欠けていた。さらに、比較例3の触媒担体は、耐圧強度CSが5daN以上、CS/CSが1.0以上であるものの、S/Sが0.05と低く、耐熱性に欠けていた。 In contrast, the catalyst carrier of Comparative Example 1 has a pressure strength CS b of 5 daN or more and CS a / CS b of 1.0 or more, but S a / S b is as low as 0.09 and lacks heat resistance. It was. Moreover, although the catalyst support of Comparative Example 2 had a high S a / S b of 0.12, CS a / CS b was a low 0.4 and lacked heat resistance. Furthermore, the catalyst carrier of Comparative Example 3 had a pressure strength CS b of 5 daN or more and CS a / CS b of 1.0 or more, but S a / S b was as low as 0.05 and lacked heat resistance. .

本明細書に開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiments and examples disclosed in this specification should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (7)

シリカ担持アルミナ成形体から構成される触媒担体の製造方法であって、
(I)1)再水和性を有する遷移アルミナ粉末を水と混合および成形して成形体を得る工程、
2)得られた成形体を110℃以上、200℃以下の湿潤雰囲気中または水蒸気中に保持して再水和された成形体を得る工程、および
3)前記再水和された成形体を900℃以上で焼成する工程
の各工程を順に経ることによってアルミナ成形体を調製し、
(II)得られたアルミナ成形体にシリカを担持して、シリカ濃度がSiO換算で0.1〜5質量%のシリカ担持アルミナ成形体を得、
(III)得られたシリカ担持アルミナ成形体を仮焼する
ことを含んでなる触媒担体の製造方法。
A method for producing a catalyst carrier comprising a silica-supported alumina molded body,
(I) 1) A step of obtaining a molded body by mixing and molding transition alumina powder having rehydration property with water,
2) a step of obtaining a rehydrated molded body by holding the obtained molded body in a humid atmosphere of 110 ° C. or higher and 200 ° C. or lower in steam, and 3) the rehydrated molded body is 900 Prepare an alumina molded body by going through each step of the step of firing at ℃ or higher in order,
(II) Silica is supported on the obtained alumina molded body to obtain a silica-supported alumina molded body having a silica concentration of 0.1 to 5% by mass in terms of SiO 2 ;
(III) A method for producing a catalyst carrier, comprising calcining the obtained silica-supported alumina molded body.
アルミナ成形体はθ型の結晶相を含むことを特徴とする、請求項1に記載の触媒担体の製造方法。   The method for producing a catalyst carrier according to claim 1, wherein the alumina molded body contains a θ-type crystal phase. 請求項1または2に記載の製造方法によって得られる触媒担体。   A catalyst carrier obtained by the production method according to claim 1 or 2. 耐圧強度が5daN以上であり、下記式(1):
CS/CS≧1.0 (1)
(式中、CSは1300℃で5時間の加熱処理後における触媒担体の耐圧強度であり、CSは該加熱処理前における触媒担体の耐圧強度である。)
を満足することを特徴とする、請求項3に記載の触媒担体。
The pressure strength is 5 daN or more, and the following formula (1):
CS a / CS b ≧ 1.0 (1)
(In the formula, CS a is the pressure strength of the catalyst carrier after the heat treatment at 1300 ° C. for 5 hours, and CS b is the pressure strength of the catalyst carrier before the heat treatment.)
The catalyst carrier according to claim 3, wherein:
窒素吸着1点法によるBET比表面積が30m/g以上であり、下記式(2):
/S≧0.10 (2)
(式中、Sは1300℃で5時間の加熱処理後における触媒担体の該BET比表面積であり、CSは該加熱処理前における触媒担体の該BET比表面積である。)
を満足することを特徴とする、請求項3または4に記載の触媒担体。
BET specific surface area by nitrogen adsorption one-point method is 30 m 2 / g or more, and the following formula (2):
S a / S b ≧ 0.10 (2)
(In the formula, S a is the BET specific surface area of the catalyst carrier after heat treatment at 1300 ° C. for 5 hours, and CS b is the BET specific surface area of the catalyst carrier before heat treatment.)
The catalyst carrier according to claim 3 or 4, wherein:
アルミナ成形体と該アルミナ成形体上に担持されたシリカを含む触媒担体であって、該アルミナ成形体はθ型の結晶相を含み、担持されたシリカ濃度はSiO換算で0.1〜5質量%であることを特徴とする触媒担体。 A catalyst carrier comprising an alumina compact and silica supported on the alumina compact, wherein the alumina compact includes a θ-type crystal phase, and the supported silica concentration is 0.1 to 5 in terms of SiO 2 A catalyst carrier, characterized in that it is mass%. 請求項6に記載の触媒担体の接触部分酸化への使用。   Use of the catalyst support according to claim 6 for catalytic partial oxidation.
JP2010078686A 2010-03-30 2010-03-30 Method for producing catalyst carrier and catalyst carrier Active JP5667778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078686A JP5667778B2 (en) 2010-03-30 2010-03-30 Method for producing catalyst carrier and catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078686A JP5667778B2 (en) 2010-03-30 2010-03-30 Method for producing catalyst carrier and catalyst carrier

Publications (2)

Publication Number Publication Date
JP2011206727A true JP2011206727A (en) 2011-10-20
JP5667778B2 JP5667778B2 (en) 2015-02-12

Family

ID=44938426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078686A Active JP5667778B2 (en) 2010-03-30 2010-03-30 Method for producing catalyst carrier and catalyst carrier

Country Status (1)

Country Link
JP (1) JP5667778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525448B2 (en) 2015-07-22 2020-01-07 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181536A (en) * 1984-12-05 1986-08-14 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Production of catalyst carrier of alumina base material enhanced in water resistance
JP2000070711A (en) * 1998-09-01 2000-03-07 Agency Of Ind Science & Technol Production of highly heat resistant porous alumina-base catalyst carrier
JP2002274974A (en) * 2001-03-16 2002-09-25 Sumitomo Chem Co Ltd Porous ceramic spherical body and method of manufacturing the same
JP2003063854A (en) * 2001-05-31 2003-03-05 Sumitomo Chem Co Ltd Activated alumina molding and method for manufacturing it
JP2003277048A (en) * 2002-01-16 2003-10-02 Sumitomo Chem Co Ltd FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT
JP2005225696A (en) * 2004-02-12 2005-08-25 Sumitomo Chemical Co Ltd Method of manufacturing transition alumina formed body
JP2009513345A (en) * 2005-10-31 2009-04-02 ビーエーエスエフ、カタリスツ、エルエルシー Flash calcination and stabilized gibbsite as catalyst support
JP2009196854A (en) * 2008-02-22 2009-09-03 Sumitomo Chemical Co Ltd Method for producing active alumina

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181536A (en) * 1984-12-05 1986-08-14 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Production of catalyst carrier of alumina base material enhanced in water resistance
JP2000070711A (en) * 1998-09-01 2000-03-07 Agency Of Ind Science & Technol Production of highly heat resistant porous alumina-base catalyst carrier
JP2002274974A (en) * 2001-03-16 2002-09-25 Sumitomo Chem Co Ltd Porous ceramic spherical body and method of manufacturing the same
JP2003063854A (en) * 2001-05-31 2003-03-05 Sumitomo Chem Co Ltd Activated alumina molding and method for manufacturing it
JP2003277048A (en) * 2002-01-16 2003-10-02 Sumitomo Chem Co Ltd FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT
JP2005225696A (en) * 2004-02-12 2005-08-25 Sumitomo Chemical Co Ltd Method of manufacturing transition alumina formed body
JP2009513345A (en) * 2005-10-31 2009-04-02 ビーエーエスエフ、カタリスツ、エルエルシー Flash calcination and stabilized gibbsite as catalyst support
JP2009196854A (en) * 2008-02-22 2009-09-03 Sumitomo Chemical Co Ltd Method for producing active alumina

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10525448B2 (en) 2015-07-22 2020-01-07 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production
US10864500B2 (en) 2015-07-22 2020-12-15 Basf Corporation High geometric surface area catalysts for vinyl acetate monomer production

Also Published As

Publication number Publication date
JP5667778B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
CN101757915B (en) Catalyst used for preparing glycol from hydrogenation of oxalates and preparation method thereof
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
CN102275963B (en) Preparation method of aluminium oxide material
JP2015502248A (en) Methanol synthesis catalyst based on copper, zinc and aluminum
KR20110129394A (en) Catalyst for production of hydrogen and process for producing hydrogen using the catalyst, and catalyst for combustion of ammonia, process for producing the catalyst, and method for combustion of ammonia using the catalyst
TW201002420A (en) Method for producing catalyst for use in production of unsaturated aldehyde and/or unsaturated carboxylic acid, and method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP5336235B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP5010547B2 (en) Highly active catalyst and method for producing the same
US8758718B2 (en) Low temperature sulphur dioxide oxidation catalyst for sulfuric acid manufacture
JP5335505B2 (en) Noble metal support and method for producing carboxylic acid ester using the same as catalyst
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
Sharma et al. Synthesis of mesoporous bimetallic Ni–Cu catalysts supported over ZrO 2 by a homogenous urea coprecipitation method for catalytic steam reforming of ethanol
CN113209958A (en) Zn-doped solid solution catalyst, preparation and application thereof
CN110142060B (en) Silicon carbide/silicon nitride carrier and preparation method thereof, Fischer-Tropsch synthesis catalyst and preparation method and application thereof
CN110612157A (en) Precipitated catalyst comprising zirconium oxide supported copper for ethyl acetate hydrogenation
JP5667778B2 (en) Method for producing catalyst carrier and catalyst carrier
JP5274802B2 (en) Oxygen removal method
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP5054693B2 (en) Method for producing noble metal-containing metal oxide, oxygen storage material, and catalyst system
WO2013054092A1 (en) Catalyst precursor
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
Hu et al. Improved iron oxide oxygen carriers for chemical looping hydrogen generation using colloidal crystal templated method
JP2004500980A (en) Production of hydrogen by partial oxidation of methanol.
Srilatha et al. Ni-SBA-15 catalysts for production of hydrogen and carbon nanotubes
US11826728B2 (en) Thermally stable porous catalyst systems and methods to produce the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5667778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350