JP2011199830A - Receiver, receiving system, receiving method and communication method - Google Patents

Receiver, receiving system, receiving method and communication method Download PDF

Info

Publication number
JP2011199830A
JP2011199830A JP2010192106A JP2010192106A JP2011199830A JP 2011199830 A JP2011199830 A JP 2011199830A JP 2010192106 A JP2010192106 A JP 2010192106A JP 2010192106 A JP2010192106 A JP 2010192106A JP 2011199830 A JP2011199830 A JP 2011199830A
Authority
JP
Japan
Prior art keywords
signal
detection
maximum likelihood
transmission
discrete time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010192106A
Other languages
Japanese (ja)
Inventor
Yasunori Iwanami
保則 岩波
Eiji Okamoto
英二 岡本
Kenji Nakayama
健治 中山
Ryota Yamada
良太 山田
Naoki Okamoto
直樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Nagoya Institute of Technology NUC
Original Assignee
Sharp Corp
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Nagoya Institute of Technology NUC filed Critical Sharp Corp
Priority to JP2010192106A priority Critical patent/JP2011199830A/en
Publication of JP2011199830A publication Critical patent/JP2011199830A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a receiver, a receiving system, a receiving method and a communication method for improving reception characteristics by preventing an increase to some degree in calculation amount in MIMO (multiple-input multiple-output) communication of an FSK signal.SOLUTION: A transmitter 10 includes: MFSK sections 12-1 to 12-nfor performing frequency shift keying on data bits 11-1 to 11-n; zero inserting sections 13-1 to 13-nfor performing zero insertion as guard interval on a frequency-shift keyed signal after the frequency shift keying; and transmission antennas Tx.1 to Tx.n. A receiver 20 includes: reception antennas Rx.1 to Rx.n; I-Q sampling sections 22-1 to 22-nfor performing I-Q sampling on the received signal; sampling sections 23-1 to 23-nfor generating discrete time signals from analog signals after I-Q sampling; and a maximum likelihood determining section 24 for performing maximum likelihood determination by using the discrete time signal and a reception replica signal generated from a transmission signal candidate and outputting reception bits 25-1 to 25-n.

Description

本発明は、ディジタル無線通信方式におけるデータ伝送方式に関するものである。特に、FSK信号に対し周波数選択性通信路に於けるシングル入力、シングル出力(Single-Input Single-Output:SISO、以下SISOと称す)システム、及びマルチ入力、マルチ出力(Multiple-Input Multiple-Output:MIMO、以下MIMOと称す)システムで、優れたビット誤り率特性を実現させる受信装置、通信システム、受信方法及び通信方法に関するものである。   The present invention relates to a data transmission system in a digital wireless communication system. In particular, a single-input single-output (SISO, hereinafter referred to as SISO) system and multiple-input multiple-output (multiple-input multiple-output) in a frequency-selective channel for FSK signals. The present invention relates to a receiver, a communication system, a reception method, and a communication method for realizing excellent bit error rate characteristics in a MIMO (hereinafter referred to as MIMO) system.

近年、無線通信において高速大容量通信の需要が高まり、送受信共に複数本のアンテナを用いたMIMO(Multiple-Input Multiple-Output)システムについての研究が盛んに行われている。MIMOシステムでは同一周波数で同時刻に空間多重の信号伝送ができ、SISO(Single Input Single Output)システムに比べ、送信アンテナ数をn、受信アンテナ数をnとしたとき、通信路容量がアンテナ数min(n,n)倍に増加することが明らかとなっている。FSK信号を用いたMIMOシステムの実現には、以下の方法がある。 In recent years, demand for high-speed and large-capacity communication has increased in wireless communication, and research on a MIMO (Multiple-Input Multiple-Output) system using a plurality of antennas for both transmission and reception is actively conducted. The MIMO system can transmit spatially multiplexed signals at the same frequency and at the same time. Compared to the SISO (Single Input Single Output) system, when the number of transmitting antennas is n T and the number of receiving antennas is n R , the channel capacity is the antenna capacity. It has become clear that it increases several times (n T , n R ) times. There are the following methods for realizing a MIMO system using an FSK signal.

第1の従来技術として周波数領域等化(Frequency Domain Equalization、以下FDE)がある(非特許文献1参照)。受信機側で受信データを高速フーリエ変換(FFT)により周波数領域に変換し、MMSE基準の重み行列を乗算するNullingと呼ばれる方法を用いて、周波数等化と信号分離を同時に行う。この処理の後、逆高速フーリエ変換(IFFT)により時間領域に戻し、データを復調する。   As a first conventional technique, there is frequency domain equalization (hereinafter referred to as FDE) (see Non-Patent Document 1). Frequency equalization and signal separation are simultaneously performed using a method called Nulling in which received data is converted into a frequency domain by Fast Fourier Transform (FFT) on the receiver side and multiplied by a weight matrix based on MMSE. After this processing, the data is demodulated by returning to the time domain by inverse fast Fourier transform (IFFT).

第2の従来技術として最尤判定法(Maximum Likelihood Detection、以下MLD)がある(非特許文献2参照)。送信信号の候補sに対して、受信信号yの条件確率密度関数をp(y/s)としたとき、sを変数とする関数p(y/s)を尤度関数と呼ぶ。MLDは、yに対して最も大きな尤度に対応するsを送信信号とみなして硬判定出力するものである。   As a second conventional technique, there is a maximum likelihood detection method (Maximum Likelihood Detection, hereinafter referred to as MLD) (see Non-Patent Document 2). When the conditional probability density function of the received signal y is p (y / s) for the transmission signal candidate s, the function p (y / s) with s as a variable is called a likelihood function. MLD regards s corresponding to the largest likelihood with respect to y as a transmission signal and outputs a hard decision.

宇都宮、高橋、岩波、岡本、”LDPC符号化MIMO SC FDE方式に関する一比較検討”、電子情報通信学会ソサイエティ大会B-5-56、2007年9月Utsunomiya, Takahashi, Iwanami, Okamoto, “A Comparative Study on LDPC Coded MIMO SC FDE”, IEICE Society Conference B-5-56, September 2007 A.van Zelst, “Space Division Multiplexing Algorithms”, IEEE MELECON2000, vol.3, pp.1218-1221, May 2000A.van Zelst, “Space Division Multiplexing Algorithms”, IEEE MELECON2000, vol.3, pp.1218-1221, May 2000

しかし、周波数選択性通信路におけるFSK信号の等化は、受信側の検波処理が非線形な処理であるため、検波器出力後の信号について線形処理による等化を行うことが難しい。最尤系列推定(Maximum Likelihood Sequence Estimation、以下MLSE)を用いればSISO通信路において検波器出力からの送信信号推定が可能であるが、MIMO通信路でこれを実現した例は無い。そこで、MIMO通信路におけるFSK信号の等化については、検波器の前に線形等化器を置くことにより信号分離と等化を行うFDE方式が考えられる。しかし、一般にFDEによる方式は処理が高速に行えるという利点はあるものの信号分離が不完全なためビット誤り率(Bit Error Rate、以下BER)特性においてMLDやMLSEなどに比べて劣る。そこで、MIMO通信路においても、よりBER特性の優れた方式の実現が求められる。   However, the equalization of the FSK signal in the frequency-selective communication channel is difficult to perform equalization by linear processing on the signal after the detector output because the detection processing on the receiving side is non-linear processing. If maximum like sequence estimation (MLSE) is used, transmission signal estimation from the detector output can be performed in the SISO communication channel, but there is no example in which this is realized in the MIMO communication channel. Therefore, for the equalization of the FSK signal in the MIMO communication path, an FDE scheme that performs signal separation and equalization by placing a linear equalizer in front of the detector can be considered. In general, however, the FDE method has an advantage that the processing can be performed at a high speed. However, since the signal separation is incomplete, the bit error rate (BER) characteristic is inferior to that of MLD or MLSE. Therefore, it is required to realize a method with better BER characteristics even in the MIMO communication path.

本発明は、斯かる実情に鑑み、FSK信号のMIMO通信などにおいて、計算量の増加量をある程度抑制して受信特性を向上させることを可能にする受信装置、通信システム、受信方法及び通信方法を提供することを目的とするものである。   In view of such circumstances, the present invention provides a receiving apparatus, a communication system, a receiving method, and a communication method capable of improving the reception characteristics by suppressing an increase in calculation amount to some extent in MIMO communication of FSK signals. It is intended to provide.

本発明は、周波数偏移変調を用いて通信を行う受信装置であって、
受信アンテナで受信した信号のI−Q検波を行うI−Q検波部と、I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング部と、前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定部と、を備えること
を特徴とする。
The present invention is a receiving apparatus that performs communication using frequency shift keying,
An IQ detection unit that performs IQ detection of a signal received by a receiving antenna, a sampling unit that generates a discrete time signal from an analog signal after IQ detection, and the discrete time signal and a transmission signal candidate And a maximum likelihood determination unit that performs maximum likelihood determination using the received replica signal.

前記最尤判定部は、前記送信信号候補の数を絞り込むことを特徴とする。   The maximum likelihood determination unit narrows down the number of transmission signal candidates.

また、前記最尤判定部は、受信信号のブロックをシンボル時間で分割し、累積メトリックを用いて前記シンボル時間毎に送信信号候補を削減することを特徴とする。   The maximum likelihood determination unit may divide a received signal block by symbol time and reduce transmission signal candidates for each symbol time by using a cumulative metric.

また、本発明の受信装置は、MIMO伝送において通信を行うことを特徴とする。   In addition, the receiving apparatus of the present invention is characterized by performing communication in MIMO transmission.

また、本発明は、送信装置と受信装置とからなる通信システムであって、
前記送信装置は、データビットに対して周波数偏移変調を行うMFSK変調部と、
周波数偏移変調後の信号に対してガードインターバルとしてゼロ挿入を行うゼロ挿入部と、を備え、
前記受信装置は、受信アンテナで受信した信号のI−Q検波を行うI−Q検波部と、I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング部と、前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定部と、を備えることを特徴とする。
The present invention is a communication system comprising a transmission device and a reception device,
The transmission apparatus includes: an MFSK modulation unit that performs frequency shift key modulation on data bits;
A zero insertion unit that performs zero insertion as a guard interval for a signal after frequency shift keying,
The receiving apparatus includes: an IQ detecting unit that performs IQ detection of a signal received by a receiving antenna; a sampling unit that generates a discrete time signal from an analog signal after IQ detection; and the discrete time signal and the transmission And a maximum likelihood determination unit that performs maximum likelihood determination using a received replica signal generated from a signal candidate.

また、本発明は、周波数偏移変調を用いて通信を行う受信方法であって、
受信アンテナで受信した信号のI−Q検波を行うI−Q検波過程と、I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング過程と、前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定過程と、を有することを特徴とする。
Further, the present invention is a receiving method for performing communication using frequency shift keying,
An IQ detection process for performing IQ detection of a signal received by a receiving antenna, a sampling process for generating a discrete time signal from an analog signal after IQ detection, and the discrete time signal and a transmission signal candidate are generated. And a maximum likelihood determination process for performing maximum likelihood determination using a received replica signal.

また、本発明は、送信方法と受信方法とを有する通信方法であって、
前記送信方法は、データビットに対して周波数偏移変調を行うMFSK変調過程と、周波数偏移変調後の信号に対してゼロ挿入を行うゼロ挿入過程と、を備え、
前記受信方法は、受信アンテナで受信した信号のI−Q検波を行うI−Q検波過程と、I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング過程と、前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定過程と、を有することを特徴とする。
Further, the present invention is a communication method having a transmission method and a reception method,
The transmission method includes an MFSK modulation process for performing frequency shift modulation on data bits, and a zero insertion process for performing zero insertion on a signal after frequency shift modulation,
The reception method includes: an IQ detection process for performing IQ detection on a signal received by a reception antenna; a sampling process for generating a discrete time signal from an analog signal after IQ detection; and the discrete time signal and transmission And a maximum likelihood determination process for performing maximum likelihood determination using a received replica signal generated from a signal candidate.

このように本発明は、受信アンテナで受信した信号のI−Q検波を行い、I−Q検波後のアナログ信号から離散時刻信号を生成して、前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行うので、計算量の増加量をある程度抑制した上でFSK信号のMIMO通信におけるBER特性などの受信特性の改善を実現することが可能となり、高品質なデータの送受信を実現する。   As described above, the present invention performs IQ detection on the signal received by the receiving antenna, generates a discrete time signal from the analog signal after IQ detection, and generates the discrete time signal and the transmission signal candidate. Since the maximum likelihood determination is performed using the reception replica signal, it is possible to improve the reception characteristics such as the BER characteristic in the MIMO communication of the FSK signal while suppressing the increase of the calculation amount to some extent, and high quality data Realize transmission and reception.

送受信機のシステムモデルを示す図である。It is a figure which shows the system model of a transmitter / receiver. Cyclic Prefix(CP)とZero Padding(ZP)のブロック構成を示す図である。It is a figure which shows the block structure of Cyclic Prefix (CP) and Zero Padding (ZP). 遅延プロフィールを示す図である。It is a figure which shows a delay profile. シミュレーションでの遅延プロフィールを示す図である。It is a figure which shows the delay profile in simulation. 送受信の様子を示す図である。It is a figure which shows the mode of transmission / reception. 本システムにおけるMアルゴリズムStep1を解説した図である。It is a figure explaining M algorithm Step1 in this system. 本システムにおけるMアルゴリズムStep2を解説した図である。It is a figure explaining M algorithm Step2 in this system. 本システムにおけるMアルゴリズムStep3を解説した図である。It is a figure explaining M algorithm Step3 in this system. 本システムにおけるMアルゴリズムStep4を解説した図である。It is a figure explaining M algorithm Step4 in this system. 4×4 MIMO周波数選択性通信路モデルに於いて、変調に2FSKを用いた場合のFull MLDとM−MLDの計算量を示す図である。It is a figure which shows the computational complexity of Full MLD and M-MLD at the time of using 2FSK for a modulation | alteration in a 4 * 4 MIMO frequency selective channel model. 1×1SISO・2×2MIMO周波数選択性通信路モデルに於いて、変調に2FSK・4FSK(変調指数h=0。7)を用いた場合のCP−FDE方式とZP−MLD方式について計算機シミュレーションにより求めたBER特性を示す図である。In the 1 × 1 SISO · 2 × 2 MIMO frequency selective channel model, CP-FDE method and ZP-MLD method are calculated by computer simulation when 2FSK · 4FSK (modulation index h = 0.7) is used for modulation. It is a figure which shows the BER characteristic. 4×4 MIMO周波数選択性通信路モデルに於いて、変調に2FSK(変調指数h=0。7)を用いた場合のM−MLD方式とFull MLD方式について計算機シミュレーションにより求めたBER特性を示す図である。The figure which shows the BER characteristic calculated | required by computer simulation about the M-MLD system and Full MLD system at the time of using 2FSK (modulation index h = 0.7) for a modulation | alteration in a 4 * 4 MIMO frequency selective channel model. It is.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<第1の実施形態>
まず本発明の概略を、図1を用いて説明する。図1は本発明の送受信機のシステムモデルを示す図である。図1に示すように、送信機10は、データビット11−1〜11−nに対して周波数偏移変調(FSK:Frequency Shift Keying)を行うMFSK変調部12−1〜12−n、周波数偏移変調後の信号に対してガードインターバルとしてゼロ挿入を行うゼロ挿入部(ZP)13−1〜13−n、送信アンテナ数がnである送信アンテナTx.1〜Tx.nを備える。受信機20は、受信アンテナ数をnである受信アンテナRx.1〜Rx.n、受信した信号のI−Q検波を行うI−Q検波部22−1〜22−n、I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング部23−1〜23−n、離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行い受信ビット25−1〜25−nを出力する最尤判定部(MLD)24と、を備える。
<First Embodiment>
First, the outline of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a system model of a transceiver according to the present invention. As shown in FIG. 1, the transmitter 10 includes MFSK modulators 12-1 to 12-n T that perform frequency shift keying (FSK) on data bits 11-1 to 11-n T. transmission antenna Tx zero insertion unit that performs zero insertion as a guard interval to the signal after the frequency shift keying (ZP) 13-1~13-n T, the number of transmit antennas is n T. 1-Tx. provided with the n T. Receiver 20, the receiving antenna Rx a number of receive antennas is n R. 1-Rx. n R , IQ detection units 22-1 to 22-n R that perform IQ detection of received signals, sampling units 23-1 to 23- that generate discrete time signals from analog signals after IQ detection n R , a maximum likelihood determination unit (MLD) 24 that performs maximum likelihood determination using a reception replica signal generated from a discrete time signal and a transmission signal candidate and outputs reception bits 25-1 to 25-n R. .

本発明では、MIMO周波数選択性通信路に対し、ゼロ挿入(Zero Padding、以下ZP)を用いてブロック間干渉(Inter Block Interference、IBI)の除去を行い、信号間距離に基づくメトリックを用いたMLDにより、送信MIMO MFSK信号ストリームの等化・分離処理を実現する。   In the present invention, inter block interference (IBI) is removed using zero padding (ZP) for MIMO frequency selective channels, and MLD using a metric based on the distance between signals is used. Thus, equalization / separation processing of the transmission MIMO MFSK signal stream is realized.

図1のシステムモデル図に示すように、送信機10側で、ゼロ挿入部13−1〜13−nが送信信号の各ブロックの末尾にZPによるガードインターバルを挿入し、マルチパス遅延波によるブロック間干渉を防ぐ。 As shown in the system model diagram of FIG. 1, on the transmitter 10 side, the zero insertion units 13-1 to 13-n T insert a guard interval by ZP at the end of each block of the transmission signal, and the multipath delay wave Prevent interference between blocks.

ここで、ZPとサイクリックプレフィクス(Cyclic Prefix、以下CP)の違いを示すと図2の様になる。ブロック構成は、データシンボル長をN、GI長をNとする。ただしTはMFSK信号の1シンボル時間である。受信機20側では、I−Q検波部22−1〜22−nのI−Q検波により複素ベースバンド信号を得た後に、サンプリング部23−1〜23−nがΔt=T/2c間隔(c:整数)で離散時間サンプリングを行う。ZPによるガードインターバルを含めた1 block長をKTとすると、N=K・2c個のサンプリング点に分割される。このサンプリングは複素ベースバンド信号に対し標本化定理を満足する程度に細かく行う。 Here, the difference between ZP and cyclic prefix (hereinafter referred to as CP) is shown in FIG. In the block configuration, the data symbol length is N S T s and the GI length is N G T s . Where T s is one symbol time of the MFSK signal. On the receiver 20 side, after obtaining a complex baseband signal by IQ detection of the IQ detection units 22-1 to 22-n R , the sampling units 23-1 to 23-n R perform Δt = T s / Discrete time sampling is performed at intervals of 2c (c: integer). When 1 block length including a guard interval by ZP is KT s , the block is divided into N = K · 2c sampling points. This sampling is performed finely so that the sampling theorem is satisfied for the complex baseband signal.

ここで、送信アンテナ数をn、受信アンテナ数をnとし、送信アンテナi(i=1,…,n)番目におけるZP後の送信信号について1 block長の連続信号表現をs(t)、その離散時間表現をs[k]とする。同様に受信信号をr(t),r[k]j(j=1,…,n)、受信雑音をn(t),n[k]と表す。 Here, the number of transmission antennas is n T , the number of reception antennas is n R, and a continuous signal expression of 1 block length is expressed as s i (1 block length) for the transmission signal after ZP at the transmission antenna i (i = 1,..., N T ). t), let the discrete time representation be s i [k]. Similarly, the received signal is represented as r j (t), r j [k] j (j = 1,..., N R ), and the received noise is represented as n j (t), n j [k].

Figure 2011199830
Figure 2011199830

ここで、送信アンテナiから受信アンテナj間の通信路の遅延プロフィールが図3の様に表されるとすると、送受信信号の関係は、次式(1)のようになる。   Here, assuming that the delay profile of the communication path between the transmission antenna i and the reception antenna j is expressed as shown in FIG. 3, the relationship between the transmission and reception signals is expressed by the following equation (1).

Figure 2011199830
Figure 2011199830

MLD24では、このチャネル情報(CSI)が受信側で既知であるとし、CSIを元に受信側で受信レプリカ信号を作成する。これをr^(t),r^[k]と表すと、MLD24に於けるメトリックは1ブロック長の受信信号と受信レプリカ信号の間の2乗信号間距離を用いて次式(2)のように表される。 The MLD 24 assumes that this channel information (CSI) is known on the receiving side, and creates a reception replica signal on the receiving side based on the CSI. When this is expressed as r ^ j (t), r ^ j [k], the metric in the MLD 24 uses the distance between the square signals between the received signal of 1 block length and the received replica signal, and the following equation (2 ).

Figure 2011199830
Figure 2011199830

また、送信信号は次式(3)により判定される。   The transmission signal is determined by the following equation (3).

Figure 2011199830
Figure 2011199830

すなわち送信信号のMのN乗通りのシンボルパターンに対するメトリックの内から、式(3)を最小にするシンボルパターンを選択し送信信号ストリームの判定を行う。このシステムによる受信方式を以下ZP−MLD方式と呼ぶ。 In other words, the symbol pattern that minimizes Equation (3) is selected from the metrics for the symbol pattern of M to the N S n T power of the transmission signal, and the transmission signal stream is determined. The reception method by this system is hereinafter referred to as ZP-MLD method.

ZP−MLD方式において、さらにMアルゴリズムを適用するシステムについて述べる。前述のZP−MLD方式ではFull MLD(完全MLD)により、式(2)で表されるメトリックをすべての送信信号候補について算出し、このメトリック値を最小とする送信信号候補を推定送信信号とした。しかしFull MLDではアンテナ数・多値数・ブロック長に対して、計算量はMのN乗となり指数関数的に増加してしまう。一方、伝送速度の面では、同じGI長を用いた場合で比較すると、データブロック長は大きい程良い。なぜなら、ブロック長が大きい方が各ブロックにおいてGIが占める割合を減少させることができ、GIによる伝送速度の損失を減らすことができるからである。 A system that further applies the M algorithm in the ZP-MLD scheme will be described. In the above-described ZP-MLD method, the metric represented by Equation (2) is calculated for all transmission signal candidates by Full MLD (complete MLD), and the transmission signal candidate that minimizes this metric value is used as the estimated transmission signal. . However, in the Full MLD, the amount of calculation increases exponentially as M N S n T to the number of antennas, multi-values, and block length. On the other hand, in terms of transmission speed, the data block length is better as compared with the case where the same GI length is used. This is because the proportion of GI in each block can be reduced when the block length is larger, and the transmission rate loss due to GI can be reduced.

そこで、ブロック長による計算量の指数関数的増加を抑制する一手法として、Mアルゴリズムの適用を検討し、計算量の削減を行う。Mアルゴリズムの適用法を以下に述べる。   Therefore, as one method for suppressing the exponential increase of the calculation amount due to the block length, the application of the M algorithm is examined, and the calculation amount is reduced. The application method of the M algorithm will be described below.

まず、0≦t≦iTにおける2乗信号間距離であるiシンボル目までの累積メトリックと定義する。これは次式(4)で表される。 First, it is defined as a cumulative metric up to the i-th symbol which is the distance between square signals in 0 ≦ t ≦ iT s . This is expressed by the following equation (4).

Figure 2011199830
Figure 2011199830

この累積メトリックは、各アンテナのiシンボル目までの送信信号候補の尤度基準として用いることができる。この累積メトリックを用いて、iを順次増やしながらの各ステップにおけるiシンボル目までの送信信号候補をM個に絞り込む。これにより、最終的な候補探索回数は、Full MLDの場合、MのN乗回(M:変調多値数、n:送信アンテナ数、N:1ブロックのデータシンボル数)となる。一方、Mアルゴリズムを適用した場合(1+N)×(Mのn乗)回となり、指数部にNが含まれなくなるため、計算量を大幅に削減することができる。 This cumulative metric can be used as a likelihood criterion for transmission signal candidates up to the i-th symbol of each antenna. Using this cumulative metric, refine the transmission signal candidates to i th symbol in the M c number in each step while sequentially increasing i. Thereby, in the case of Full MLD, the final number of candidate searches is M N S n T multiplications (M: the number of modulation multi-levels, n T : the number of transmission antennas, N s : the number of data symbols in one block) Become. On the other hand, when the M algorithm is applied, (1 + N s M c ) × (M to the power of n T ) times and N s is not included in the exponent part, so that the calculation amount can be greatly reduced.

ここで、具体例として図5のように送信アンテナ数n=2,1ブロックの送信シンボル長N=4T、GI長N=1T、全体の送信ブロック長KT=5Tとした場合で図を交えて詳細を手順を示す。
<Step1> i=1での累積メトリックを算出(図6)
<Step2> i=1での累積メトリックを元に送信信号トレリスからM個の生き残りパスを選択(図7)
<Step3> iを(N−1)になるまで1ずつ増やしstep1、2を繰り返す(図8)
<Step4> (N−1)シンボル目までの送信信号トレリスの生き残りパスを用い、i=Kすなわち末尾のZP部を含めた通常のメトリックを算出し最終結果とする。(図9)
Here, the transmission symbol length N S T s = 4T s transmit antennas number n T = 2,1 block as shown in Figure 5 as a specific example, GI length N G T s = 1T s, total transmission block length KT s = sprinkled with Figure in case of the 5T s showing the procedure detailed.
<Step 1> Calculate cumulative metric at i = 1 (FIG. 6)
<Step 2> Select M c survivors from the transmission signal trellis based on the accumulated metric at i = 1 (FIG. 7).
<Step 3> i is incremented by 1 until it reaches (N S −1) and steps 1 and 2 are repeated (FIG. 8).
<Step 4> Using the surviving path of the transmission signal trellis up to the (N S -1) -th symbol, i = K, that is, a normal metric including the ZP part at the end is calculated as the final result. (Fig. 9)

Mアルゴリズムを用いたM−MLD方式と、前述のFull MLD方式の計算量の違いを図10に示す。   FIG. 10 shows a difference in calculation amount between the M-MLD method using the M algorithm and the above-described Full MLD method.

以下、実施例に基づいて本発明の効果を具体的に説明するが、もとより本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the effect of the present invention is explained concretely based on an example, the present invention is not limited to these examples from the first.

各送信・受信アンテナ間の通信路は、互いに独立な1dB減衰の16パス周波数選択性準静的レイリーフェージング通信路(Quasi-static Rayleigh fading channel)とする。この通信路の遅延プロフィールを図4に示す。   The communication path between each transmitting / receiving antenna is a 16-path frequency selective quasi-static Rayleigh fading channel with 1 dB attenuation that is independent of each other. The delay profile of this channel is shown in FIG.

MFSK(M−ary FSK)信号はM=2、4の場合について実施した。それぞれサンプリングの分割数2cは2FSKに於いて16、4FSKに於いて32とした。変調指数はh=0.7とし、受信方式はZP−MLDのほかに比較対象としてCPを用いたFDE(以下CP−FDE)のBER特性も合わせて算出した。アンテナ数は1×1SISO、2×2MIMO、通信路情報は受信側で既知とする。1ブロックあたりの送信データシンボル長Nは2Tとし、CP−FDEのFFTサイズ2c×Nは2FSKに於いて32、4FSKに於いて64となる。Guard Interval(以下GI)長Nは1Tとする。この条件におけるBER特性を計算機シミュレーションにより算出した結果を図11に示す。この結果から、2FSKに於いてZP−MLDはCP−FDEに比べBER=10−5で20dB以上の改善が見られ、4FSKに於いても同様に20dB程度の改善が見られる。ZP−MLDは受信側での計算量が多く受信機の複雑度は高くなるが、大幅なBER特性改善を可能とするため、そのメリットは大きい。 The MFSK (M-ary FSK) signal was implemented for M = 2 and 4. Each of the sampling division numbers 2c was 16 in 2FSK and 32 in 4FSK. The modulation index was set to h = 0.7, and the reception method was calculated by combining the BER characteristics of FDE (hereinafter referred to as CP-FDE) using CP as a comparison object in addition to ZP-MLD. The number of antennas is 1 × 1 SISO, 2 × 2 MIMO, and the communication path information is known on the receiving side. The transmission data symbol length N S T s per block is 2T s , and the CP-FDE FFT size 2c × N S is 32 in 2FSK and 64 in 4FSK. Guard Interval (hereinafter GI) length N G T s is set to 1T s. FIG. 11 shows the result of calculating the BER characteristics under this condition by computer simulation. From this result, ZP-MLD is improved by 20 dB or more at BER = 10 −5 compared to CP-FDE in 2FSK, and is also improved by approximately 20 dB in 4FSK. ZP-MLD requires a large amount of calculation on the receiving side and increases the complexity of the receiver. However, since ZP-MLD can greatly improve the BER characteristics, its merit is great.

Mアルゴリズムを適用したMLD(以下M−MLD)を、MFSK信号M=2の場合について実施した。サンプリングの分割数2cは16、変調指数はh=0.7とし、受信方式はM−MLDのほかに比較対象としてFull MLDによるZP−MLDのBER特性も合わせて算出した。アンテナ数は4×4MIMO、通信路情報は受信側で既知とする。1ブロックあたりの送信データシンボル長Nは2Tとし。Guard Interval(以下GI)長Nは1Tとする。この条件におけるBER特性を計算機シミュレーションにより算出した結果を図12に示す。 MLD to which the M algorithm was applied (hereinafter referred to as M-MLD) was performed for the case where the MFSK signal M = 2. The sampling division number 2c is 16, the modulation index is h = 0.7, and the reception method is calculated in addition to the M-MLD, and the BER characteristics of ZP-MLD by Full MLD as a comparison target. The number of antennas is 4 × 4 MIMO, and the communication path information is known on the receiving side. The transmission data symbol length N S T s per block is 2T s . Guard Interval (hereinafter GI) length N G T s is set to 1T s. The result of calculating the BER characteristic under this condition by computer simulation is shown in FIG.

この条件ではMアルゴリズムのMの値であるMが4以上の場合にFull MLDと同等のBER特性に収束している。本シミュレーションに於いてはN=2Tとしているが図10からわかるように1ブロックあたりの送信データシンボル数Nの値をさらに大きくしてもN=2TのFull MLDと同程度の探索回数で送信信号の判定が可能である。計算量のブロック長に依存した指数関数的増大の抑制を実現しているため、ブロックサイズの大きな条件に於いて大幅な計算量削減の効果が発揮できる。 It converges to an equivalent BER performance and Full MLD in case of M c is 4 or more and the value of M in M algorithm in this condition. In this simulation, N S T s = 2T s , but as can be seen from FIG. 10, even if the number of transmission data symbols N S per block is further increased, the full MLD of N S T s = 2T s The transmission signal can be determined with the same number of searches. Since the suppression of the exponential increase depending on the block length of the calculation amount is realized, the effect of drastically reducing the calculation amount can be exhibited under the condition where the block size is large.

<第2の実施形態>
本実施形態では、空間分離のみMLDを用いる場合を説明する。i番目のアンテナにおけるk番目のシンボルを次式(5)(6)(7)のように表わす。
<Second Embodiment>
In this embodiment, a case where MLD is used only for spatial separation will be described. The k-th symbol in the i-th antenna is expressed by the following equations (5), (6), and (7).

Figure 2011199830
Figure 2011199830

なお、式(5)は送信シンボル、式(6)は受信シンボル、式(7)は雑音を表している。本実施形態のMLDは、空間分離のみMLDを行うため、ISIを除去した後でMLDを行う。ISIの除去は、式(8)に示すISIレプリカを用いて行う。   Expression (5) represents a transmission symbol, Expression (6) represents a reception symbol, and Expression (7) represents noise. Since the MLD of this embodiment performs MLD only for spatial separation, the MLD is performed after removing the ISI. The removal of ISI is performed using an ISI replica shown in Equation (8).

Figure 2011199830
Figure 2011199830

なお、j=k,…,k+L−1である。このISIレプリカは、過去の送信シンボルとチャネル情報(CSI:Channel State Information)Hを用いて次式(9)のように求められる。   J = k,..., K + L−1. This ISI replica is obtained by the following equation (9) using past transmission symbols and channel information (CSI: Channel State Information) H.

Figure 2011199830
Figure 2011199830

なお、X〜p(p=k−L+1,…,k−1)には過去のシンボルの判定結果を用いる。Hは次式(10)のように表わされる。   Note that past symbol determination results are used for X to p (p = k−L + 1,..., K−1). H is represented by the following equation (10).

Figure 2011199830
Figure 2011199830

式(9)を用いてISI除去を行う(式(11))。   ISI removal is performed using equation (9) (equation (11)).

Figure 2011199830
Figure 2011199830

ここで、Y^は干渉除去後の受信シンボルである。Y^は次式(12)のように表わせる。 Here, Y ^ j is a received symbol after interference cancellation. Y ^ j can be expressed as the following equation (12).

Figure 2011199830
Figure 2011199830

ただし、j(j=k,…,k+L−1)は干渉残留成分であり、過去の判定結果に誤りがなければ0となる。式(8)に対してMLDを行う。MLDは、次式のようにY^と送信信号レプリカX^との差の各要素の2乗和をメトリックとし、それが最も小さくなる送信信号候補{X^},(j=k,…,k+L−1)をMLDにより探索することで送信信号Xkを推定する(式(13))。 However, j (j = k,..., K + L−1) is an interference residual component, and becomes 0 if there is no error in the past determination result. MLD is performed on equation (8). The MLD uses the sum of squares of the elements of the difference between Y ^ j and the transmission signal replica X ^ j as a metric as shown in the following equation, and the transmission signal candidate {X ^ j }, (j = k) that minimizes the metric. ,..., K + L−1) are searched by MLD to estimate the transmission signal Xk (formula (13)).

Figure 2011199830
Figure 2011199830


このように本実施形態ではISIを除去した後にMLDを行うようにしたため、探索候補数を大幅に減らすことが可能となる。
"
Thus, in this embodiment, since MLD is performed after removing ISI, the number of search candidates can be greatly reduced.

ディジタル無線通信方式におけるデータ伝送方式に関するものである。特に、非線形変調であるFSK信号に対してSISO通信路とMIMO通信路のどちらにも適用可能なMLD受信方式を実現し、伝送速度の向上と優れたビット誤り率特性を実現させるディジタル無線通信方式として利用可能性がある。   The present invention relates to a data transmission system in a digital wireless communication system. In particular, a digital wireless communication system that realizes an MLD reception method applicable to both SISO communication channels and MIMO communication channels for FSK signals that are nonlinear modulation, and realizes improved transmission speed and excellent bit error rate characteristics. As possible.

10 送信機
11−1〜11−n データビット
12−1〜12−n MFSK変調部
13−1〜13−n ゼロ挿入部(ZP)
Tx.1〜Tx.n 送信アンテナ
20 受信機
Rx.1〜Rx.n 受信アンテナ
22−1〜22−n I−Q検波部
23−1〜23−n サンプリング部
24 最尤判定部(MLD)
25−1〜25−n 受信ビット
10 Transmitters 11-1 to 11-n T data bits 12-1 to 12-n T MFSK modulation units 13-1 to 13-n T zero insertion units (ZP)
Tx. 1-Tx. n T transmit antenna 20 receiver Rx. 1-Rx. n R receiving antennas 22-1 to 22-n R IQ detectors 23-1 to 23-n R sampling unit 24 Maximum likelihood determination unit (MLD)
25-1 to 25-n R received bits

Claims (7)

周波数偏移変調を用いて通信を行う受信装置であって、
受信アンテナで受信した信号のI−Q検波を行うI−Q検波部と、
I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング部と、
前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定部と、
を備えること
を特徴とする受信装置。
A receiver that performs communication using frequency shift keying,
An IQ detection unit that performs IQ detection of a signal received by the receiving antenna;
A sampling unit for generating a discrete time signal from an analog signal after IQ detection;
A maximum likelihood determination unit that performs maximum likelihood determination using a reception replica signal generated from the discrete time signal and a transmission signal candidate;
A receiving apparatus comprising:
前記最尤判定部は、前記送信信号候補の数を絞り込むこと
を特徴とする請求項1に記載の受信装置。
The receiving apparatus according to claim 1, wherein the maximum likelihood determination unit narrows down the number of transmission signal candidates.
前記最尤判定部は、
受信信号のブロックをシンボル時間で分割し、
累積メトリックを用いて前記シンボル時間毎に送信信号候補を削減すること
を特徴とする請求項1または2に記載の受信装置。
The maximum likelihood determination unit includes:
Divide the received signal block by symbol time,
The receiving apparatus according to claim 1, wherein transmission signal candidates are reduced for each symbol time using a cumulative metric.
MIMO伝送において通信を行うこと
を特徴とする請求項1から3のいずれかに記載の受信装置。
The receiving apparatus according to claim 1, wherein communication is performed in MIMO transmission.
送信装置と受信装置とからなる通信システムであって、
前記送信装置は、
データビットに対して周波数偏移変調を行うMFSK変調部と、
周波数偏移変調後の信号に対してガードインターバルとしてゼロ挿入を行うゼロ挿入部と、
を備え、
前記受信装置は、
受信アンテナで受信した信号のI−Q検波を行うI−Q検波部と、
I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング部と、
前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定部と、
を備えること
を特徴とする通信システム。
A communication system comprising a transmitting device and a receiving device,
The transmitter is
An MFSK modulator that performs frequency shift keying on the data bits;
A zero insertion unit for performing zero insertion as a guard interval for a signal after frequency shift keying;
With
The receiving device is:
An IQ detection unit that performs IQ detection of a signal received by the receiving antenna;
A sampling unit for generating a discrete time signal from an analog signal after IQ detection;
A maximum likelihood determination unit that performs maximum likelihood determination using a reception replica signal generated from the discrete time signal and a transmission signal candidate;
A communication system comprising:
周波数偏移変調を用いて通信を行う受信方法であって、
受信アンテナで受信した信号のI−Q検波を行うI−Q検波過程と、
I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング過程と、
前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を行う最尤判定過程と、
を有すること
を特徴とする受信方法。
A reception method for performing communication using frequency shift keying,
An IQ detection process for IQ detection of a signal received by a receiving antenna;
A sampling process for generating a discrete time signal from an analog signal after IQ detection;
A maximum likelihood determination step of performing maximum likelihood determination using a reception replica signal generated from the discrete time signal and a transmission signal candidate;
A receiving method comprising:
送信方法と受信方法とを有する通信方法であって、
前記送信方法は、
データビットに対して周波数偏移変調を行うMFSK変調過程と、
周波数偏移変調後の信号に対してゼロ挿入を行うゼロ挿入過程と、
を備え、
前記受信方法は、
受信アンテナで受信した信号のI−Q検波を行うI−Q検波過程と、
I−Q検波後のアナログ信号から離散時刻信号を生成するサンプリング過程と、
前記離散時刻信号と送信信号候補から生成される受信レプリカ信号を用いて最尤判定を 行う最尤判定過程と、
を有すること
を特徴とする通信方法。
A communication method having a transmission method and a reception method,
The transmission method is:
MFSK modulation process for performing frequency shift modulation on data bits;
A zero insertion process for performing zero insertion on the signal after frequency shift keying;
With
The receiving method is:
An IQ detection process for IQ detection of a signal received by a receiving antenna;
A sampling process for generating a discrete time signal from an analog signal after IQ detection;
A maximum likelihood determination step of performing maximum likelihood determination using a reception replica signal generated from the discrete time signal and a transmission signal candidate;
A communication method characterized by comprising:
JP2010192106A 2010-02-26 2010-08-30 Receiver, receiving system, receiving method and communication method Pending JP2011199830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010192106A JP2011199830A (en) 2010-02-26 2010-08-30 Receiver, receiving system, receiving method and communication method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010042631 2010-02-26
JP2010042631 2010-02-26
JP2010192106A JP2011199830A (en) 2010-02-26 2010-08-30 Receiver, receiving system, receiving method and communication method

Publications (1)

Publication Number Publication Date
JP2011199830A true JP2011199830A (en) 2011-10-06

Family

ID=44877408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010192106A Pending JP2011199830A (en) 2010-02-26 2010-08-30 Receiver, receiving system, receiving method and communication method

Country Status (1)

Country Link
JP (1) JP2011199830A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173443A (en) * 1996-12-10 1998-06-26 Kokusai Electric Co Ltd Tetravalent fsk detecting circuit
JP2006222743A (en) * 2005-02-10 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Space multiplex signal detection circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173443A (en) * 1996-12-10 1998-06-26 Kokusai Electric Co Ltd Tetravalent fsk detecting circuit
JP2006222743A (en) * 2005-02-10 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Space multiplex signal detection circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014006045; 王俊朋 他: '「周波数選択性MIMO通信路に於けるLDPC符号化時間領域ブロック処理型等化・分離方式の検討」' 電子情報通信学会技術研究報告 , 20100225, pp. 111-116, 社団法人電子情報通信学会 *
JPN6014006047; 高橋優輔 他: '「周波数選択性MIMO通信路に於けるブロック処理型時間領域等化器の検討」' 電子情報通信学会技術研究報告 , 20080222, pp. 147-152, 社団法人電子情報通信学会 *

Similar Documents

Publication Publication Date Title
JP4756506B2 (en) Digital signal equalization method and equalizer
Achra et al. Performance analysis of MIMO OFDM system for different modulation schemes under various fading channels
JP5288622B2 (en) Wireless communication apparatus, wireless communication system, and communication method
EP2311232A1 (en) A simplified equalizationscheme for distributed resource allocation in multi-carrier systems
Pereira et al. Tibwb-ofdm: A promising modulation technique for mimo 5g transmissions
KR101048883B1 (en) Data processing method and receiver for cyclic delay diversity technique and energy expansion transformation based equalization technique
Sood et al. Minimum probability of error demodulation for multipath OFDM-SDMA systems
JP2011199830A (en) Receiver, receiving system, receiving method and communication method
Rao et al. A new BER and SNR calculations for MIMO System
Singh et al. Enhanced adaptive channel estimation technique for MIMO-OFDM wireless systems
Sainte-Agathe et al. Single-carrier transmission with iterative frequency-domain decision-feedback equalization
Pragna et al. Channel Estimation using Conventional Methods and Deep Learning
Umakoğlu et al. Performance Evaluation of OTFS-NOMA Scheme for High Mobility Users
Chang et al. Cancellation of ICI by Doppler effect in OFDM systems
Aboutorab et al. Channel estimation and ICI cancellation for high mobility pilot-aided MIMO-OFDM systems
KR101484863B1 (en) Adaptive signal detection method based on channel condition in MIMO-OFDM system and apparatus thereof
Itami et al. A method of equalization of OFDM signal with inter-symbol and inter-channel interferences
Priyanjali et al. Threshold based soft partial parallel interference cancellation for MIMO-OFDM system
Schlamann et al. Lattice filter-based frequency-domain equalizer with multiple frequency offset compensation for MIMO SDMA OFDM systems
Ozden Adaptive V-BLAST type channel equalizer design for cognitive MIMO-OFDM radios
Ahmed et al. Comparison of Bit Error Rate Performance of Various Digital Modulation Schemes over AWGN and Rayleigh Fading Channels Using Simulink
Yoshioka et al. Vector perturbation for single-carrier MU-MIMO downlink
Aboutorab et al. An iterative Doppler-assisted channel estimation for high mobility OFDM systems
Medina et al. Combined data detection scheme for zero-padded OFDM signals in MMF links
Fhima et al. Analysis of Fractionally Spaced Widely Linear Equalization over Frequency Selective Channels With Multiple Interferences

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617