JP2011196422A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2011196422A
JP2011196422A JP2010062053A JP2010062053A JP2011196422A JP 2011196422 A JP2011196422 A JP 2011196422A JP 2010062053 A JP2010062053 A JP 2010062053A JP 2010062053 A JP2010062053 A JP 2010062053A JP 2011196422 A JP2011196422 A JP 2011196422A
Authority
JP
Japan
Prior art keywords
cage
rolling
grease
bearing
ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010062053A
Other languages
Japanese (ja)
Inventor
Katsunori Mineno
克典 峰野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010062053A priority Critical patent/JP2011196422A/en
Publication of JP2011196422A publication Critical patent/JP2011196422A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3887Details of individual pockets, e.g. shape or ball retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/42Ball cages made from wire or sheet metal strips
    • F16C33/422Ball cages made from wire or sheet metal strips made from sheet metal
    • F16C33/427Ball cages made from wire or sheet metal strips made from sheet metal from two parts, e.g. ribbon cages with two corrugated annular parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolling bearing capable of taking a countermeasure against fragility-separation so as not to carry an electric current to rolling travel surfaces of inner-outer rings, by preventing reduction in electric conductivity between the inner-outer rings and a seal member, by preventing the formation of an oil film in a seal sliding part, by preventing the movement of grease to the seal sliding part.SOLUTION: In the rolling bearing, a plurality of rolling elements 3 are interposed between the rolling travel surfaces 1a and 2a of the inner-outer rings 1 and 2, and the seal member 5 is arranged in the outer ring 2, for blocking up a bearing space between the inner-outer rings 1 and 2 when a lip part 5c slidingly contacts with the inner ring 1. The seal member 5 is formed of a conductive construction material, and a grease leakage checking part is arranged in a cage 4 for holding the rolling elements 3, for checking flowing of the grease in the bearing space to a sliding contact part between the seal member 5 and the inner ring 1.

Description

この発明は、例えば、ベルト伝動機構に配置される軸受、特に、自動車のエンジンのタイミングベルト、補機駆動用ベルト等で使用されるプーリ、オルタネータ・コンプレッサ等の軸支持に使用される転がり軸受に関する。   The present invention relates to, for example, a bearing disposed in a belt transmission mechanism, and more particularly, to a rolling bearing used for supporting shafts of a pulley, an alternator / compressor, etc. used in a timing belt of an automobile engine, a belt for driving an auxiliary machine, and the like. .

従来技術にかかる転がり軸受のうち通電軸受は、例えば、軸受空間を塞ぐシール部材に導電性の良い材質のものを使用し、軸受外輪に前記シール部材を固定する固定部を設け、軸受内輪に前記シール部材のリップ部を摺動させるシール摺動部を設けたものが使用されている(特許文献1)。また、通電軸受は、一般的に電食の起こる可能性のある箇所に使用されており、エンジン回りにはあまり使用されていない。   Among the rolling bearings according to the prior art, the current-carrying bearing is, for example, a seal member that closes the bearing space is made of a material having good conductivity, a fixing portion that fixes the seal member to a bearing outer ring is provided, and the bearing inner ring What provided the seal | sticker sliding part which slides the lip | rip part of a sealing member is used (patent document 1). In addition, the current-carrying bearings are generally used in places where there is a possibility of electric corrosion, and are not used much around the engine.

実開平4−124331号公報Japanese Utility Model Publication No. 4-124331

自動車のエンジンのタイミングベルト、補機駆動用ベルト等で使用されるプーリ、オルタネータ・コンプレッサ等の軸支持に使用される軸受における脆性剥離対策として、耐脆性剥離グリースや、軸受構成すなわち内外輪の軌道曲率,軸受内部すきま等の対策を講じている。前記「脆性剥離」とは、通常の金属疲労による剥離とは異なる水素の脆化による剥離のことであり、この脆性剥離により軸受が短寿命となる問題がある。
しかし、前記のような脆性剥離対策では、軸受内輪のシール摺動部へのグリース移動を防止することができない場合がある。シール摺動部にグリースが移動すると、シール摺動部に油膜が形成され、これによりシール部材での導電性が低下する。
As countermeasures against brittle delamination in bearings used for shaft support of automobile engine timing belts, auxiliary machine drive belts, alternators and compressors, etc. Measures such as curvature and internal clearance are taken. The “brittle exfoliation” refers to exfoliation due to hydrogen embrittlement, which is different from the exfoliation due to normal metal fatigue, and there is a problem that the life of the bearing is shortened due to the brittle exfoliation.
However, in some cases, the countermeasure against brittle peeling as described above cannot prevent the grease from moving to the seal sliding portion of the bearing inner ring. When the grease moves to the seal sliding portion, an oil film is formed on the seal sliding portion, thereby reducing the conductivity of the seal member.

この発明の目的は、シール摺動部へのグリース移動を防止し、このシール摺動部に油膜が形成されることを防止することで、内外輪とシール部材との導電性の低下を防ぎ、これによって、内外輪の転走面を通電させないようにし脆性剥離対策を行うことができる転がり軸受を提供することである。   The purpose of this invention is to prevent grease from moving to the seal sliding part, and to prevent the formation of an oil film on the seal sliding part, thereby preventing a decrease in conductivity between the inner and outer rings and the seal member, Accordingly, it is an object of the present invention to provide a rolling bearing capable of taking measures against brittle peeling by preventing the rolling surfaces of the inner and outer rings from being energized.

この発明の転がり軸受は、内外輪の転走面間に複数の転動体が介在され、リップ部が内輪に摺接して前記内外輪間の軸受空間を塞ぐシール部材を外輪に設けた転がり軸受において、前記シール部材を導電性の材質とし、前記転動体を保持する保持器に、前記軸受空間内のグリースが前記シール部材と内輪との摺接部分に流れることを阻止するグリース漏れ阻止部を設けたことを特徴とする。   The rolling bearing of the present invention is a rolling bearing in which a plurality of rolling elements are interposed between the rolling surfaces of the inner and outer rings, and a lip portion is in sliding contact with the inner ring to seal the bearing space between the inner and outer rings. The seal member is made of a conductive material, and the cage that holds the rolling element is provided with a grease leakage prevention portion that prevents the grease in the bearing space from flowing into the sliding contact portion between the seal member and the inner ring. It is characterized by that.

この構成によると、シール部材を導電性の材質とすることで、外輪−シール部材−内輪の通電性を良くし、内外輪の転走部への通電を減少させることが可能となる。また、保持器に、シール部材と内輪との摺接部分にグリースが流れることを阻止するグリース漏れ阻止部を設けたため、前記摺接部分に油膜が形成されないようにし得る。したがって、内外輪とシール部材との導電性の低下を防ぎ、内外輪の転走面を通電させないようにして脆性剥離対策を行うことができる。よって、脆性剥離による軸受寿命の低下を防止することができる。   According to this configuration, by using a conductive material for the seal member, it is possible to improve the electrical conductivity of the outer ring, the seal member, and the inner ring, and to reduce the current supplied to the rolling part of the inner and outer rings. Further, since the grease is provided with the grease leakage preventing portion for preventing the grease from flowing in the sliding contact portion between the seal member and the inner ring, the oil film can be prevented from being formed on the sliding contact portion. Therefore, it is possible to prevent brittle peeling by preventing a decrease in conductivity between the inner and outer rings and the seal member and preventing the rolling surfaces of the inner and outer rings from being energized. Therefore, it is possible to prevent a decrease in bearing life due to brittle peeling.

前記転動体を玉とし、グリース漏れ阻止部は、保持器のうち前記玉を保持するポケットの内面に、保持器内径側の開口縁から保持器外径側に延びる凹み部を設けたものであっても良い。
ポケット内面を球面とした従来の一般的な形状の保持器を用いた玉軸受では、転動体である玉が内輪転走面を転がるとき、内輪転走面でのグリースの厚さは、ヘルツ接触中心から軸方向に、また玉表面のグリース厚さもヘルツ接触中心から内輪転走面幅まで対称になる。この玉表面に付着したグリースが、玉の回転によって保持器に入って行くとき、保持器によってグリースが掻き取られる。掻き取られたグリースは保持器に付着するが、このグリース量が増加すると一部は内輪肩部にも付着する。内輪肩部に付着したグリースが増すと、回転している保持器のポケット中央部付近に乗り上げるように付着する。乗り上げたグリースが増すと、内輪肩部のグリースと押し合うようになり、内輪シール溝にまでグリースが付着する。これが一般的な鉄板打ち抜き保持器でのグリースの動きである。さらに、この一般的な形状の保持器では、保持器ポケット中央部に付着したグリースが、シール内面に付着する。これにより、直接潤滑に寄与し難いグリースがシール内面に留まることになる。また、保持器ポケット部とシール内面でグリースのせん断が起こり、軸受のトルクが上昇する。
The rolling element is a ball, and the grease leakage prevention portion is provided with a concave portion extending from the opening edge on the inner diameter side of the cage to the outer diameter side of the cage on the inner surface of a pocket that holds the ball of the cage. May be.
In a ball bearing using a cage with a conventional general shape with a spherical pocket inner surface, when the ball, which is a rolling element, rolls on the inner ring rolling surface, the thickness of grease on the inner ring rolling surface is determined by Hertz contact. From the center to the axial direction, the grease thickness on the ball surface is also symmetric from the center of Hertz contact to the inner ring rolling surface width. When the grease adhering to the ball surface enters the cage by the rotation of the ball, the grease is scraped off by the cage. The scraped grease adheres to the cage, but part of the grease also adheres to the inner ring shoulder as the amount of grease increases. When the grease adhering to the shoulder portion of the inner ring increases, the grease adheres so as to ride up near the central portion of the pocket of the rotating cage. As the amount of grease that rides on increases, it comes in contact with the grease on the shoulder of the inner ring, and the grease adheres to the inner ring seal groove. This is the movement of grease in a general steel sheet punching cage. Further, in this general-shaped cage, the grease adhered to the central portion of the cage pocket adheres to the inner surface of the seal. As a result, grease that hardly contributes directly to lubrication remains on the inner surface of the seal. In addition, grease shear occurs between the cage pocket and the seal inner surface, and the bearing torque increases.

これに対して、保持器のポケットの内面を凹球面状としこの凹球面状のポケットの内面に、保持器内径側の開口縁から保持器外径側に延びる凹み部を設けたため、内輪肩部にグリースが付着しない。すなわち、玉に最もグリースが付着する位置である保持器内径側の開口縁に開口する凹み部を設けたため、玉の表面の掻き取りが減少し、保持器内径面に溜まるグリース量が減少する。そのため、シール部材と内輪との摺接部分にグリースが流れることを防止することができる。   On the other hand, since the inner surface of the pocket of the cage is concave spherical, and the inner surface of the concave spherical pocket is provided with a recess extending from the opening edge on the inner diameter side of the cage to the outer diameter side of the cage, the inner ring shoulder portion Grease does not adhere to the surface. That is, since a recess is provided at the opening edge on the inner diameter side of the cage, which is the position where the grease adheres most to the ball, scraping of the surface of the ball is reduced, and the amount of grease collected on the inner diameter surface of the cage is reduced. Therefore, it is possible to prevent the grease from flowing to the sliding contact portion between the seal member and the inner ring.

前記転動体を玉とし、前記保持器は、前記玉を保持するポケットを円周方向複数箇所に有するリング状で、且つ、2個の環状体の保持器半体を軸方向に対面して重ね合わせてなり、これら保持器半体は、それぞれ内周が前記各ポケットの半分を形成する球殻状板部と、隣合うポケット間の部分となる平板部とが円周方向に交互に並ぶ形状であり、前記グリース漏れ阻止部は、前記球殻状板部における玉配列ピッチ円よりも内径側部分における、少なくとも、内輪の転走面両側の肩部高さの外径面部に位置する部分の板厚を、前記平板部の板厚よりも薄くしたものであっても良い。   The rolling element is a ball, and the cage is in a ring shape having pockets for holding the ball at a plurality of locations in the circumferential direction, and two annular cage halves are stacked facing each other in the axial direction. These cage halves have a spherical shell-shaped plate portion whose inner circumference forms half of each pocket, and a flat plate portion that is a portion between adjacent pockets alternately arranged in the circumferential direction. The grease leakage prevention portion is a portion located at an outer diameter surface portion at least at the shoulder height on both sides of the rolling surface of the inner ring in the inner diameter side portion from the ball arrangement pitch circle in the spherical shell-shaped plate portion. The plate thickness may be smaller than the plate thickness of the flat plate portion.

この場合にも、内輪肩部にグリースが付着しないため、シール部材と内輪との摺接部分にグリースが流れることを防止することができる。また、保持器半体の平板部や球殻状板部の玉配列ピッチ円よりも外径側部分の板厚となる基準板厚は従来と同等とすることで、保持器の強度低下を生じることなく、シール部材と内輪との摺接部分にグリースが流れることを阻止することができる。この保持器は、玉と接触するポケット形状を従来のものと同様に形成することができるため、保持器の可動範囲の増加による保持器間の干渉力の増加も生じない。   Also in this case, since grease does not adhere to the shoulder portion of the inner ring, it is possible to prevent the grease from flowing to the sliding contact portion between the seal member and the inner ring. In addition, the strength of the cage is reduced by making the reference plate thickness that is the plate thickness of the outer diameter side portion of the flat plate portion of the cage half and the ball arrangement pitch circle of the spherical shell plate portion equal to the conventional one. Therefore, it is possible to prevent the grease from flowing into the sliding contact portion between the seal member and the inner ring. Since this cage can be formed with a pocket shape in contact with the balls in the same manner as the conventional one, the interference force between the cages does not increase due to the increase of the movable range of the cage.

前記転動体を玉とし、グリース漏れ阻止部は、内輪の外径面と保持器の内径面との径方向隙間を、前記玉の直径に0.09を乗じた値以上としたものであっても良い。この場合、保持器の内径側に堆積したグリースの逃げ場を設けたことになる。これにより、シール部材と内輪との摺接部分に、軸受空間内のグリースが流れることを防ぐことができる。
前記径方向隙間を、前記玉の直径に0.36を乗じた値以下としても良い。保持器の強度、内外輪の肩部径、保持器の移動量等を考慮した場合、前記径方向隙間を、前記玉の直径に0.36を乗じた値以下とするのが望ましい。
The rolling element is a ball, and the grease leakage prevention portion has a radial clearance between the outer diameter surface of the inner ring and the inner diameter surface of the cage that is equal to or larger than a value obtained by multiplying the diameter of the ball by 0.09. Also good. In this case, a clearance for grease accumulated on the inner diameter side of the cage is provided. Thereby, the grease in the bearing space can be prevented from flowing to the sliding contact portion between the seal member and the inner ring.
The radial clearance may be equal to or less than a value obtained by multiplying the diameter of the ball by 0.36. In consideration of the strength of the cage, the shoulder diameters of the inner and outer rings, the amount of movement of the cage, and the like, it is desirable that the radial clearance is not more than a value obtained by multiplying the diameter of the ball by 0.36.

前記内輪の外径面にシール溝を周方向に形成し、このシール溝と内輪の端部との間に外径側に突出する肩部を形成し、前記シール溝に対向した外輪内径面に前記シール部材の外周縁を固定し、前記シール部材の内周部に、前記シール溝の溝壁に接触し摺接する主リップと、前記肩部の径方向外方に配設されるラビリンスリップとを設け、前記主リップに、前記シール溝に対向する内周面を設け、前記ラビリンスリップの内周側に、このラビリンスリップの先端に向かうに従って拡径する傾斜面を設けても良い。   A seal groove is formed in a circumferential direction on the outer diameter surface of the inner ring, and a shoulder portion protruding toward the outer diameter side is formed between the seal groove and the end portion of the inner ring, and an outer ring inner diameter surface facing the seal groove is formed. A main lip that fixes an outer peripheral edge of the seal member, contacts and slides on a groove wall of the seal groove, and a labyrin slip disposed radially outward of the shoulder; The main lip may be provided with an inner peripheral surface that faces the seal groove, and an inclined surface that increases in diameter toward the tip of the labyrin slip may be provided on the inner peripheral side of the labyrin slip.

この場合、主リップが、シール溝の溝壁に接触し摺接するため、軸受内部のグリースがシール溝に漏出することを防止し、さらに、外部からの異物や泥水等の軸受内部への侵入を防止することができる。また、シール溝に溜まった泥水が、シール部材の回転等による遠心力で主リップの内周面からラビリンスリップの傾斜面に沿って移動し、軸受外部に排出される。   In this case, since the main lip contacts and slides against the groove wall of the seal groove, grease inside the bearing is prevented from leaking into the seal groove, and in addition, foreign matter and muddy water are not allowed to enter the bearing inside. Can be prevented. Further, the muddy water accumulated in the seal groove moves along the inclined surface of the labyrin slip from the inner peripheral surface of the main lip by centrifugal force due to rotation of the seal member, etc., and is discharged outside the bearing.

前記主リップおよびラビリンスリップの基端部から外径側に繋がり、これら主リップおよびラビリンスリップの軸方向厚さよりも薄肉に形成されたくびれ部を、前記シール部材に設けても良い。この場合、くびれ部が軸方向に弾性変形するので、このくびれ部に繋がる主リップは、シール溝の溝壁に対する追従性が維持される。したがって、軸受内部のグリースがシール溝に漏出することをより確実に防止できる。   A constricted portion that is connected to the outer diameter side from the base end portion of the main lip and the labyrin slip and is formed thinner than the axial thickness of the main lip and the labyrin slip may be provided in the seal member. In this case, since the constricted portion is elastically deformed in the axial direction, the main lip connected to the constricted portion maintains the followability to the groove wall of the seal groove. Therefore, the grease inside the bearing can be more reliably prevented from leaking into the seal groove.

前記軸受空間に封入するグリースのちょう度を389未満としても良い。前記「ちょう度」とは、グリースの硬さを表すものであり、油の粘度に相当するものである。この「ちょう度」は、25℃で金属製円すいを自重で貫入させたときの貫入深さを、mm単位で読み10倍した値で示す。
本件出願人により、ちょう度とグリース漏れ量の関係について試験した。この試験において、グリースにおける基油の割合を増やすことで、ちょう度を変化させた。同試験において、グリースのちょう度が389以上でグリース漏れが確認された。したがって、グリースのちょう度の上限値は389が望ましい。
The consistency of the grease sealed in the bearing space may be less than 389. The “consistency” represents the hardness of grease and corresponds to the viscosity of oil. This “consistency” indicates the penetration depth when a metal cone is penetrated by its own weight at 25 ° C., and is expressed by a value obtained by multiplying 10 times.
The applicant examined the relationship between consistency and grease leakage. In this test, the consistency was changed by increasing the proportion of base oil in the grease. In this test, grease leakage was confirmed when the consistency of the grease was 389 or more. Accordingly, the upper limit value of the grease consistency is preferably 389.

これらの発明の転がり軸受は、プーリ用軸受に適用しても良いし、自動車電装補機用軸受に適用しても良い。前記転がり軸受は、従来技術のものよりも確実な脆性剥離対策を行うことができ、よって、プーリ用軸受、自動車電装補機用軸受における脆性剥離による軸受寿命の低下をより確実に防止することができる。   The rolling bearings of these inventions may be applied to pulley bearings or automotive electrical accessory bearings. The rolling bearing can take more reliable measures against brittle peeling than those of the prior art, and thus can more reliably prevent a decrease in bearing life due to brittle peeling in pulley bearings and automotive electrical equipment bearings. it can.

この発明の転がり軸受は、内外輪の転走面間に複数の転動体が介在され、リップ部が内輪に摺接して前記内外輪間の軸受空間を塞ぐシール部材を外輪に設けた転がり軸受において、前記シール部材を導電性の材質とし、前記転動体を保持する保持器に、前記軸受空間内のグリースが前記シール部材と内輪との摺接部分に流れることを阻止するグリース漏れ阻止部を設けたため、シール摺動部へのグリース移動を防止し、このシール摺動部に油膜が形成されることを防止することで、内外輪とシール部材との導電性の低下を防ぎ、これによって、内外輪の転走面を通電させないようにし脆性剥離対策を行うことができる。   The rolling bearing of the present invention is a rolling bearing in which a plurality of rolling elements are interposed between the rolling surfaces of the inner and outer rings, and a lip portion is in sliding contact with the inner ring to seal the bearing space between the inner and outer rings. The seal member is made of a conductive material, and the cage that holds the rolling element is provided with a grease leakage prevention portion that prevents the grease in the bearing space from flowing into the sliding contact portion between the seal member and the inner ring. Therefore, the grease movement to the seal sliding part is prevented, and the oil film is not formed on the seal sliding part, thereby preventing a decrease in conductivity between the inner and outer rings and the seal member. It is possible to take measures against brittle peeling by preventing the rolling surface of the ring from being energized.

この発明の一実施形態に係る転がり軸受の断面図である。It is sectional drawing of the rolling bearing which concerns on one Embodiment of this invention. (A)は、同転がり軸受のシール部材の要部を拡大して示す断面図、(B)は、同シール部材の要部をさらに拡大して示す断面図である。(A) is sectional drawing which expands and shows the principal part of the sealing member of the rolling bearing, (B) is sectional drawing which expands and shows the principal part of the sealing member further. 同転がり軸受の保持器の斜視図である。It is a perspective view of the holder | retainer of the rolling bearing. 同保持器の構成部材である保持器半体を表す斜視図である。It is a perspective view showing the holder half body which is a structural member of the holder. 同保持器半体の一部につきポケット形状を単純化して示す部分拡大斜視図である。It is a partial expansion perspective view which simplifies and shows a pocket shape about a part of the cage half. (A)は同保持器半体における球殻状板部の内面の一例を強調して示す部分拡大斜視図、(B)は同斜視図に仮想円筒を加えた状態を示す斜視図である。(A) is a partial enlarged perspective view highlighting an example of the inner surface of the spherical shell plate portion in the cage half, and (B) is a perspective view showing a state in which a virtual cylinder is added to the perspective view. (A)は同保持器半体における球殻状板部の内面の他の一例を強調して示す部分拡大斜視図、(B)は同斜視図に仮想円筒を加えた状態を示す斜視図である。(A) is a partial enlarged perspective view highlighting another example of the inner surface of the spherical shell plate in the cage half, (B) is a perspective view showing a state in which a virtual cylinder is added to the perspective view. is there. 図6に示す構造の保持器を組み込んだ軸受のグリース漏れ試験の結果の説明図である。It is explanatory drawing of the result of the grease leak test of the bearing incorporating the cage | basket of the structure shown in FIG. 図7に示す構造の保持器を組み込んだ軸受のグリース漏れ試験の結果の説明図である。It is explanatory drawing of the result of the grease leak test of the bearing incorporating the cage | basket of the structure shown in FIG. 一般的な鉄板打ち抜き保持器を組み込んだ軸受のグリース漏れ試験の結果の説明図である。It is explanatory drawing of the result of the grease leak test of the bearing incorporating the general iron plate punching cage. グリースのちょう度とグリース漏れ量の関係の試験結果を表す図である。It is a figure showing the test result of the relationship between the consistency of grease, and the amount of grease leakage. この発明の他の実施形態に係る転がり軸受の一部破断した断面図である。It is sectional drawing which fractured | ruptured partially the rolling bearing which concerns on other embodiment of this invention. 同軸受に組み込まれた保持器の保持器半体における球殻状板部を示す部分拡大斜視図である。It is a partial expansion perspective view which shows the spherical shell-shaped board part in the holder | retainer half body of the holder | retainer integrated in the same bearing. この発明のさらに他の実施形態に係る転がり軸受の保持器の部分拡大断面図である。It is a partial expanded sectional view of the cage | basket of the rolling bearing which concerns on other embodiment of this invention. 同保持器の正面図である。It is a front view of the retainer. 同転がり軸受における内輪の外径面と保持器の内径面の間の径方向隙間の説明図である。It is explanatory drawing of the radial direction clearance gap between the outer diameter surface of the inner ring | wheel in the rolling bearing, and the internal diameter surface of a holder | retainer. この発明の一実施形態にかかる転がり軸受のグリース漏れ防止効果の試験結果を示す図である。It is a figure which shows the test result of the grease leak prevention effect of the rolling bearing concerning one Embodiment of this invention. この発明の他の実施形態にかかる密封型転がり軸受における保持器の正面図である。It is a front view of the holder | retainer in the sealing type rolling bearing concerning other embodiment of this invention. 同転がり軸受における内輪の外径面と保持器の内径面の間の径方向隙間の説明図である。It is explanatory drawing of the radial direction clearance gap between the outer diameter surface of the inner ring | wheel in the rolling bearing, and the internal diameter surface of a holder | retainer. この発明の一実施形態にかかる転がり軸受をアイドラプーリに設けた断面図である。It is sectional drawing which provided the rolling bearing concerning one Embodiment of this invention in the idler pulley. この発明の一実施形態にかかる転がり軸受をオルタネータに設けた断面図である。It is sectional drawing which provided the rolling bearing concerning one Embodiment of this invention in the alternator.

この発明の一実施形態を図1ないし図7と共に説明する。この実施形態に係る転がり軸受は、深溝玉軸受である。図1に示すように、この転がり軸受は、内輪1と外輪2の転走面1a,2a間に複数の転動体3を介在させ、これら転動体3を保持する保持器4を設け、内外輪1,2間に形成される軸受空間を塞ぐシール部材5を外輪2に設けたものである。前記転動体3として玉が適用される。前記軸受空間には設定されたちょう度のグリースが封入される。
前記保持器4には、軸受空間内のグリースがシール部材5と内輪1との摺接部分Sbに流れることを阻止する後述のグリース漏れ阻止部を設けている。
An embodiment of the present invention will be described with reference to FIGS. The rolling bearing according to this embodiment is a deep groove ball bearing. As shown in FIG. 1, this rolling bearing has a plurality of rolling elements 3 interposed between rolling surfaces 1 a and 2 a of an inner ring 1 and an outer ring 2, and a retainer 4 that holds these rolling elements 3 is provided. A seal member 5 that closes a bearing space formed between 1 and 2 is provided on the outer ring 2. A ball is applied as the rolling element 3. A predetermined degree of grease is sealed in the bearing space.
The cage 4 is provided with a later-described grease leakage prevention portion that prevents the grease in the bearing space from flowing into the sliding contact portion Sb between the seal member 5 and the inner ring 1.

図1,図2に示すように、内輪1の外径面1Dのうち、転走面1aの左右側方に周方向のシール溝Smが形成され、各シール溝Smに向かい合う外輪内径面に係止溝2bが形成される。この外輪2の係止溝2bに、シール部材5の外周縁部が圧入固定される。
内輪1のシール溝Smは、内輪1の転走面側の溝壁Smaと、底面Smbと、肩部1b側の溝壁Smcとから形成される。溝壁Smcが軸方向外向きに傾斜し、肩部1bの外周面と連続して形成される。
前記溝壁Smaを「軌道側溝壁Sma」と称し、前記溝壁Smcを「肩部側溝壁Smc」と称す。
As shown in FIGS. 1 and 2, a circumferential seal groove Sm is formed on the left and right sides of the rolling surface 1a in the outer diameter surface 1D of the inner ring 1, and the outer ring inner diameter surface facing each seal groove Sm is engaged. A stop groove 2b is formed. The outer peripheral edge portion of the seal member 5 is press-fitted and fixed in the locking groove 2 b of the outer ring 2.
The seal groove Sm of the inner ring 1 is formed by a groove wall Sma on the rolling surface side of the inner ring 1, a bottom surface Smb, and a groove wall Smc on the shoulder 1b side. The groove wall Smc is inclined outward in the axial direction, and is formed continuously with the outer peripheral surface of the shoulder portion 1b.
The groove wall Sma is referred to as “track-side groove wall Sma”, and the groove wall Smc is referred to as “shoulder-side groove wall Smc”.

シール部材5について説明する。
図1,図2に示すように、シール部材5は接触シールからなり、芯金5aと弾性部材5bとを有し、弾性部材5bの内周部に、主リップLmと、ラビリンスリップLbとが設けられている。シール部材5は、導電性ゴムからなる弾性部材5bを芯金5aにより補強したものである。弾性部材5bに用いられる導電性ゴムとして、例えば、ニトリル、アクリル、フッ素等の伝導性を向上させたものを採用し得る。なお、シール材質については、従来から軸受シールとして使用しているニトリル、アクリル、フッ素に伝導性の良いカーボン等を混合、又はコーティングし導電性を向上させたものが適用される。そのため、使用する材料は導電性を持ったものであれば使用可能である。
The seal member 5 will be described.
As shown in FIG. 1 and FIG. 2, the seal member 5 is formed of a contact seal, and has a metal core 5a and an elastic member 5b. A main lip Lm and a labyrin slip Lb are formed on the inner peripheral portion of the elastic member 5b. Is provided. The seal member 5 is obtained by reinforcing an elastic member 5b made of conductive rubber with a cored bar 5a. As the conductive rubber used for the elastic member 5b, for example, a material having improved conductivity such as nitrile, acrylic, fluorine and the like can be adopted. As the seal material, nitrile, acrylic, fluorine, which has been conventionally used as a bearing seal, is mixed with or coated with a conductive carbon or the like to improve conductivity. Therefore, any material can be used as long as it has conductivity.

シール部材5は、その内周部の弾性部材5bの部分に、肉厚が薄いくびれ部5baが形成される。くびれ部5baは、後述する主リップLmおよびラビリンスリップLbの基端部から外径側に繋がり、これら主リップLmおよびラビリンスリップLbの軸方向厚さよりも薄肉に形成されたものである。つまりくびれ部5baの内周側の先端部には、リップ部5cが設けられ、このリップ部5cは、シール溝Smの軌道側溝壁Smaに接触させた主リップLmと、肩部1bの径方向外方に配設されるラビリンスリップLbとを有する。   The seal member 5 is formed with a constricted portion 5ba having a small thickness at a portion of the elastic member 5b on the inner peripheral portion thereof. The constricted portion 5ba is connected to the outer diameter side from the base end portions of a main lip Lm and a labyrin slip Lb, which will be described later, and is formed thinner than the axial thickness of the main lip Lm and the labyrin slip Lb. In other words, a lip portion 5c is provided at the inner peripheral end of the constricted portion 5ba, and this lip portion 5c is in contact with the main lip Lm in contact with the track-side groove wall Sma of the seal groove Sm and the radial direction of the shoulder portion 1b. And a labyrinth slip Lb disposed outward.

主リップLmは、シール溝Smの軌道側溝壁Smaと向かい合い外向きに拡径する傾斜壁面Lmaと、この傾斜壁面Lmaよりも径方向内側に位置し、シール溝Smの底面Smbに対向する内周面Lmbと、傾斜壁面Lmaと内周面Lmbとを連続させる先端部Lmcとを有する。
図1に示すように、シール部材5の外周縁部が、外輪2の係止溝2bに圧入固定されると、図2に示すように、主リップLmの先端部Lmcがシール溝Smの軌道側溝壁Smaに摺接する。主リップLmは、肉厚を薄く形成されたくびれ部5baの先端部に設けられ、くびれ部5baが図2(A)矢符A1の軸方向に弾性変形するので、摺接するシール溝Smの軌道側溝壁Smaに対する追従性が維持される。これにより、軸受内部のグリースがシール溝Smに漏出することをより確実に防止できる。
The main lip Lm faces the track-side groove wall Sma of the seal groove Sm, and has an inclined wall surface Lma that expands outward, and an inner circumference that is located radially inward of the inclined wall surface Lma and faces the bottom surface Smb of the seal groove Sm. It has surface Lmb, and tip part Lmc which makes inclined wall surface Lma and inner peripheral surface Lmb continue.
As shown in FIG. 1, when the outer peripheral edge portion of the seal member 5 is press-fitted and fixed in the locking groove 2b of the outer ring 2, as shown in FIG. 2, the tip portion Lmc of the main lip Lm is a track of the seal groove Sm. It is in sliding contact with the side groove wall Sma. The main lip Lm is provided at the tip of the constricted portion 5ba formed to be thin, and the constricted portion 5ba is elastically deformed in the axial direction of the arrow A1 in FIG. Followability to the side groove wall Sma is maintained. Thereby, it can prevent more reliably that the grease inside a bearing leaks into seal groove Sm.

ラビリンスリップLbは、肩部1bからシール溝Smの肩部側溝壁Smcに至る範囲に向かい合いラビリンスシールLsが形成される。ラビリンスリップLbの内周部には、軸方向内向きに縮径する傾斜面Lba、換言すればラビリンスリップLbの先端に向かうに従って拡径する傾斜面Lbaが設けられる。傾斜面Lbaは、内輪1の肩部1bの外周面に対する傾斜角度α1が10度以上40度以下に設定される。傾斜角度α1がこのように設定されると、この転がり軸受が外輪回転の場合に傾斜面Lbaに付着した泥水等が、シール部材5の回転による遠心力によって傾斜面Lbaに沿って軸方向外向きに移動し、軸受外側に排出される。   The labyrinth slip Lb faces the range from the shoulder 1b to the shoulder side groove wall Smc of the seal groove Sm, and the labyrinth seal Ls is formed. On the inner peripheral portion of the labyrinth slip Lb, there is provided an inclined surface Lba whose diameter is reduced inward in the axial direction, in other words, an inclined surface Lba whose diameter is increased toward the tip of the labyrinth slip Lb. The inclined surface Lba is set so that the inclination angle α1 with respect to the outer peripheral surface of the shoulder 1b of the inner ring 1 is not less than 10 degrees and not more than 40 degrees. When the inclination angle α1 is set in this way, muddy water or the like adhering to the inclined surface Lba when the rolling bearing rotates the outer ring is axially outward along the inclined surface Lba by the centrifugal force due to the rotation of the seal member 5. And is discharged to the outside of the bearing.

傾斜角度α1が10度未満となると、シール部材5の回転による遠心力が、ラビリンスリップLbに付着した泥水に十分に作用しないため、その泥水が排出されにくくなる。傾斜角度α1が40度を超えると、肩部1bの外周面と、ラビリンスリップLbの傾斜面Lbaとの隙間が広くなり、ラビリンスLsによるシール性が低下する。このため、傾斜角度α1を10度以上40度以下に設定している。   When the inclination angle α1 is less than 10 degrees, the centrifugal force due to the rotation of the seal member 5 does not sufficiently act on the muddy water adhering to the labyrin slip Lb, so that the muddy water is difficult to be discharged. When the inclination angle α1 exceeds 40 degrees, the gap between the outer peripheral surface of the shoulder portion 1b and the inclined surface Lba of the labyrin slip Lb becomes wide, and the sealing performance by the labyrinth Ls decreases. For this reason, the inclination angle α1 is set to 10 degrees or more and 40 degrees or less.

ラビリンスリップLbは、その先端部がシール溝Smの肩部側側壁Smc寄りに設けられる。よって、ラビリンスリップLbに付着した泥水が、シール部材5の回転による遠心力でその傾斜面Lbaを移動する距離が短くなり、シール溝Sm内に溜まった泥水が排出され易い。
主リップLmの内周面Lmbと、ラビリンスリップLbの傾斜面Lbaとの間に、段差部Dsが設けられる。段差部Dsは、シール溝Smの肩部側溝壁Smcに向かって突き出して設けられる。これにより、主リップLmの内周面Lmbは、段差部Dsを経てラビリンスリップLbの傾斜面Lbaへと連続して形成されるので、シール溝Smに溜まった泥水が、シール部材5の回転による遠心力でラビリンスリップLbの傾斜面Lbaに沿って軸受外部に排出され易い。
The tip of the labyrinth slip Lb is provided near the shoulder side wall Smc of the seal groove Sm. Therefore, the distance that the muddy water adhering to the labyrin slip Lb moves on the inclined surface Lba by the centrifugal force due to the rotation of the seal member 5 is shortened, and the muddy water accumulated in the seal groove Sm is easily discharged.
A step portion Ds is provided between the inner peripheral surface Lmb of the main lip Lm and the inclined surface Lba of the labyrinth slip Lb. The step portion Ds is provided so as to protrude toward the shoulder portion side groove wall Smc of the seal groove Sm. Thereby, since the inner peripheral surface Lmb of the main lip Lm is continuously formed through the step portion Ds and the inclined surface Lba of the labyrin slip Lb, the muddy water accumulated in the seal groove Sm is caused by the rotation of the seal member 5. It is easy to be discharged to the outside of the bearing along the inclined surface Lba of the labyrinth slip Lb by centrifugal force.

さらに段差部Dsが肩部側溝壁Smcに向かって突出して設けられると、主リップLmの内周面Lmbの外周縁部とシール溝Smの肩部側溝壁Smcとの間に、狭窄部分が形成される。この狭窄部分によってラビリンスシールLsによるシール性を確保できる。シール溝Smと肩部1bとの境界の山部Ydと、ラビリンスリップLbの傾斜面Lbaとの間にも狭窄部分が形成されるので、さらに、ラビリンスシールLsによるシール性を確保できる。   Further, when the step portion Ds is provided so as to protrude toward the shoulder side groove wall Smc, a constricted portion is formed between the outer peripheral edge portion of the inner peripheral surface Lmb of the main lip Lm and the shoulder side groove wall Smc of the seal groove Sm. Is done. With this narrowed portion, the sealing performance by the labyrinth seal Ls can be secured. Since a narrowed portion is also formed between the peak portion Yd at the boundary between the seal groove Sm and the shoulder portion 1b and the inclined surface Lba of the labyrin slip Lb, the sealing performance by the labyrinth seal Ls can be further secured.

この実施形態に係るシール部材等を玉軸受に組み込んだシール組込み品での脆性剥離試験を行った。
試験条件は次表1の通りである。

Figure 2011196422

プーリ回転速度は、運転開始後6000r/minまで上げ、この6000r/minを5時間維持する。この5時間経過後10500r/minまでプーリ回転速度を上げて同回転速度を300時間維持した後、12000r/minまでプーリ回転速度を上げて700時間維持する。 A brittle peel test was performed on a seal built-in product in which the seal member or the like according to this embodiment was incorporated in a ball bearing.
The test conditions are as shown in Table 1 below.
Figure 2011196422

The pulley rotation speed is increased to 6000 r / min after the start of operation, and this 6000 r / min is maintained for 5 hours. After 5 hours, the pulley rotational speed is increased to 10500 r / min and maintained at the same rotational speed for 300 hours, and then the pulley rotational speed is increased to 12000 r / min and maintained for 700 hours.

導電性のない弾性部材を含む標準シール品と、この実施形態に係る前記シール組込み品(通電シール組込み品と称す)とを前記試験条件で試験し、次表2のような結果を得た。試験品が剥離した場合、運転中の回転による振動値が高くなるので、振動確認後に分解し内部調査をし剥離の有無を判断する。

Figure 2011196422

この試験結果から、シール部材5を導電性の材質とすることで、外輪2−シール部材5−内輪1の通電性を良くし、内外輪1,2の転走部1a,2aへの通電を減少させることが可能となり、脆性剥離対策が期待できる。 A standard seal product including a non-conductive elastic member and the seal built-in product according to this embodiment (referred to as a current-carrying seal built-in product) were tested under the test conditions, and the results shown in Table 2 below were obtained. When the test product is peeled off, the vibration value due to rotation during operation becomes high.
Figure 2011196422

From this test result, the seal member 5 is made of a conductive material, so that the outer ring 2-seal member 5-the inner ring 1 is improved in electrical conductivity, and the rolling parts 1a, 2a of the inner and outer rings 1, 2 are energized. It can be reduced, and brittle peeling countermeasures can be expected.

保持器4について説明する。
保持器4は、図3に示すように、各玉を保持するポケット46を円周方向の複数箇所に有し、各ポケット46の内面を凹球面状としたリング状のものである。この保持器4は、図4に斜視図で示す環状体の保持器半体47の2個を、軸方向に対面して重ね合わせ、リベット孔48に挿通したリベット49で互いに接合して一体に構成される。これら保持器半体47は、内面がポケット46の半分を形成する部分的な球殻状の形状の球殻状板部46Aを複数有し、隣合うポケット46間の部分となる平板部47aと球殻状板部46Aとが円周方向に交互に並んだものとされる。前記球殻状板部46Aは、球殻の一部となる部分であり、換言すれば、内外両面が球面状となったカウンタシンク形状の膨らみ部分である。保持器半体47の軸方向の投影形状は、半径方向幅が全周にわたって一定のリング状である。
The cage 4 will be described.
As shown in FIG. 3, the cage 4 has a ring shape having pockets 46 for holding the balls at a plurality of locations in the circumferential direction, and the inner surface of each pocket 46 has a concave spherical shape. The retainer 4 is formed by joining two annular retainer halves 47 shown in a perspective view in FIG. 4 so as to face each other in the axial direction and joining them together by a rivet 49 inserted through a rivet hole 48. Composed. Each of these cage halves 47 has a plurality of spherical shell-shaped plate portions 46A having a partial spherical shell shape whose inner surface forms half of the pocket 46, and a flat plate portion 47a serving as a portion between adjacent pockets 46; The spherical shell plate portions 46A are alternately arranged in the circumferential direction. The spherical shell-shaped plate portion 46A is a part that becomes a part of the spherical shell, in other words, a countersink-shaped bulging portion in which both the inner and outer surfaces are spherical. The projected shape of the cage half 47 in the axial direction is a ring shape whose radial width is constant over the entire circumference.

保持器半体47の一部を拡大して図6に斜視図で示す。図5は、図6と対応する部分につき、ポケット内面を単調な球面とした場合の図である。図5において、2点鎖線で示す部分Aは、この保持器半体47における平板部47aが周方向に並ぶ円周帯域を示す。その円周帯域Aの平板部47aでない部分にポケット46の半分である前記球殻状板部46Aが形成される。同図における球殻状板部46Aの一側部が保持器45の内径側部分46Aiとなり、球殻状板部46Aの他側部が保持器45の外径側部分46Aoとなる。   A part of the cage half 47 is enlarged and shown in a perspective view in FIG. FIG. 5 is a diagram in the case where the pocket inner surface is a monotonous spherical surface in a portion corresponding to FIG. In FIG. 5, a portion A indicated by a two-dot chain line indicates a circumferential band in which the flat plate portions 47 a in the cage half 47 are arranged in the circumferential direction. The spherical shell plate portion 46A, which is a half of the pocket 46, is formed at a portion of the circumferential band A that is not the flat plate portion 47a. One side portion of the spherical shell-shaped plate portion 46A in the drawing is an inner diameter side portion 46Ai of the cage 45, and the other side portion of the spherical shell-shaped plate portion 46A is an outer diameter side portion 46Ao of the cage 45.

この実施形態の保持器4のポケット46の内面には、グリース漏れ阻止部として、保持器内径側の開口縁から保持器外径側に延びる凹み部50を設けている。すなわち、保持器4のポケット46のうち球殻状板部46Aの内面には、図6に示すように、保持器4の上記内径側部分46Aiにおいて、保持器内径側の開口縁から保持器外径側に延びる凹み部50を設けている。この凹み部50の内面の保持器円周方向に沿う断面形状(すなわち保持器中心軸に垂直な平面で断面した断面形状)を、ポケット46の内面となる凹球面の曲率半径Raよりも小さな曲率半径Rbの円弧状としている。
この凹み部50の内面形状は、同図(B)に示すように、保持器4の半径方向の直線Lを中心とする仮想円筒Vの表面に略沿う円筒面状の形状である。前記仮想円筒Vは、凹み部50を加工する砥石の表面であっても良い。この凹み部50は、保持器半径方向につき、保持器内径側の開口縁から玉配列ピッチ円PCDまで延びていて、保持器内径縁から玉配列ピッチ円PCDに至るに従って、徐々に小さく、つまり徐々に浅くかつ幅が狭くなる形状とされている。凹み部50は、この実施形態では、丁度、玉配列ピッチ円PCDまで延びているが、玉配列ピッチ円PCDよりも保持器外径側まで若干延びていても、また玉配列ピッチ円PCDに若干達しないものであっても良い。なお、玉配列ピッチ円PCDはポケットPCDとも呼ぶ。
The inner surface of the pocket 46 of the cage 4 of this embodiment is provided with a recess 50 that extends from the opening edge on the inner diameter side of the cage toward the outer diameter side of the cage as a grease leakage prevention portion. That is, on the inner surface of the spherical shell-shaped plate portion 46A in the pocket 46 of the cage 4, as shown in FIG. 6, in the inner diameter side portion 46Ai of the cage 4, from the opening edge on the inner diameter side of the cage, A recess 50 extending in the radial direction is provided. The sectional shape of the inner surface of the recessed portion 50 along the circumferential direction of the cage (that is, the sectional shape taken along the plane perpendicular to the central axis of the cage) is smaller than the curvature radius Ra of the concave spherical surface serving as the inner surface of the pocket 46. The arc shape has a radius Rb.
The inner surface shape of the recessed portion 50 is a cylindrical surface shape substantially along the surface of the virtual cylinder V centered on the straight line L in the radial direction of the cage 4 as shown in FIG. The virtual cylinder V may be the surface of a grindstone that processes the recess 50. The recessed portion 50 extends from the opening edge on the inner diameter side of the cage to the ball arrangement pitch circle PCD in the radial direction of the cage, and gradually decreases, that is, gradually, from the inner diameter edge of the cage to the ball arrangement pitch circle PCD. The shape is shallow and narrow. In this embodiment, the recess 50 extends to the ball arrangement pitch circle PCD. However, the depression 50 may extend slightly to the outer diameter side of the cage from the ball arrangement pitch circle PCD, or may slightly extend to the ball arrangement pitch circle PCD. You may not reach it. The ball arrangement pitch circle PCD is also called a pocket PCD.

凹み部50の深さは、ポケット内面の凹球面の中心O46から凹み部50の最深位置までの距離Rcが、玉の半径の1.05倍以上となる深さ(丁度1.05倍であって良い)であることが好ましい。ポケット46の内面となる凹球面の曲率半径Raは、玉の半径よりも僅かに大きくし、玉の半径の1.05未満としている。   The depth of the recess 50 is such that the distance Rc from the center O46 of the concave spherical surface of the pocket inner surface to the deepest position of the recess 50 is at least 1.05 times the radius of the ball (just 1.05 times. Is preferable). The radius of curvature Ra of the concave spherical surface that is the inner surface of the pocket 46 is slightly larger than the radius of the ball, and is less than 1.05 of the radius of the ball.

図7は、保持器4のポケット46の内面の他の形状例を示す。
この例では、ポケット46のうち球殻状板部46Aの内面の内径側部分46Aiに設けられるグリース漏れ阻止部としての凹み部50Aを、ポケット46の開口縁における保持器円周方向の中心OW46の両側に位置する2箇所としてしている。各凹み部50Aの内面形状は、保持器円周方向に沿う断面形状(すなわち保持器中心軸に垂直な平面で断面した断面形状)が、ポケット46の内面となる凹球面の曲率半径Raよりも小さな曲率半径RAbの円弧状であり、詳しくは同図(B)に示すように、保持器4の半径方向の直線LAを中心とする各仮想円筒VAの表面に略沿う円筒面状の形状である。この凹み部50Aは、保持器半径方向につき、保持器内径側の開口縁から玉配列ピッチ円PCDの付近まで延びていて、保持器内径縁から玉配列ピッチ円PCDに近づくに従って徐々に小さく、つまり徐々に浅くかつ幅狭となる形状である。
FIG. 7 shows another shape example of the inner surface of the pocket 46 of the cage 4.
In this example, a recess 50A serving as a grease leakage prevention portion provided on the inner diameter side portion 46Ai of the inner surface of the spherical shell-shaped plate portion 46A in the pocket 46 is formed at the center OW46 in the cage circumferential direction at the opening edge of the pocket 46. Two locations are located on both sides. The inner surface shape of each recess 50A is such that the cross-sectional shape along the circumferential direction of the cage (that is, the cross-sectional shape taken along a plane perpendicular to the cage central axis) is larger than the radius of curvature Ra of the concave spherical surface serving as the inner surface of the pocket 46. It has an arc shape with a small radius of curvature RAb, and in detail, as shown in FIG. 5B, it has a cylindrical surface shape substantially along the surface of each virtual cylinder VA centered on the radial straight line LA of the cage 4. is there. The recessed portion 50A extends from the opening edge on the cage inner diameter side to the vicinity of the ball arrangement pitch circle PCD in the radial direction of the cage, and gradually decreases from the cage inner diameter edge toward the ball arrangement pitch circle PCD. The shape gradually becomes shallower and narrower.

2個の凹み部50Aの位置は、例えば、ポケット46の開口縁における保持器円周方向の中心OW46に対する周方向の配向角度を40°±15°とした対称な2箇所である。この例でも、凹み部50Aの深さは、ポケット内面の凹球面の中心O46から凹み部50Aの最深位置までの距離RAcが、玉の半径の1.05倍以上となる深さであることが好ましい(丁度1.05倍であって良い)。   The positions of the two recessed portions 50A are, for example, two symmetrical places where the circumferential orientation angle with respect to the center OW46 in the circumferential direction of the cage at the opening edge of the pocket 46 is 40 ° ± 15 °. Also in this example, the depth of the recess 50A is such that the distance RAc from the center O46 of the concave spherical surface of the pocket inner surface to the deepest position of the recess 50A is 1.05 times the radius of the ball or more. Preferred (just 1.05 times).

この実施形態では凹み部50Aを2箇所としたが、3箇所以上としても良い。
グリース漏れ阻止部としての凹み部50,50Aの保持器円周方向に沿う断面形状は、図6、図7の各例の形状に限らず、部分楕円状や、矩形溝状、台形溝状や、その他任意の断面形状としても良い。また、凹み部50,50Aの断面形状は、凹み部中心に対して非対称の形状であっても良い。
ポケット46における内面形状は、球面状に限らず、玉配列ピッチ円PCDよりも内径側の部分が、保持器内径側開口縁に近づくに従って小径となる形状であれば良く、例えば、玉配列ピッチ円PCDよりも外径側の部分が円筒面状、内径側の部分が円すい面状であっても良い。
In this embodiment, the number of the recessed portions 50A is two, but may be three or more.
The cross-sectional shape along the circumferential direction of the cage of the recesses 50 and 50A as the grease leakage prevention portion is not limited to the shape of each example of FIGS. 6 and 7, but a partial oval shape, a rectangular groove shape, a trapezoidal groove shape, Any other cross-sectional shape may be used. Further, the cross-sectional shape of the recesses 50 and 50A may be asymmetric with respect to the center of the recess.
The inner surface shape of the pocket 46 is not limited to a spherical shape, and may be any shape as long as the inner diameter side portion of the ball arrangement pitch circle PCD becomes a smaller diameter as it approaches the cage inner diameter side opening edge. The portion on the outer diameter side of the PCD may be a cylindrical surface, and the portion on the inner diameter side may be a conical surface.

前記各保持器を製造する場合、例えば、鋼板をプレスしてリング状の金属帯板を打ち抜く。次に、前記保持器半体47の球殻状板部46Aの内面を形成する凸側プレス金型と、前記球殻状板部46Aの外面を成形する凹側プレス金型とを有するプレス金型組を用意し、これら凸側プレス金型と凹側プレス金型の間に前記リング状の金属帯材を挟み込んで、保持器半体47をプレス成形する。このプレス成形は、粗押しと仕上げ押しの2段階で行っても良く、また一度で行っても良い。
このようにして得られた2つの保持器半体47を重ね合わせ、保持器半体47の平板部47aが重なり合う部分をリベット49で接合して保持器4とする。
When manufacturing each said holder | retainer, for example, a steel plate is pressed and a ring-shaped metal strip is punched out. Next, a press die having a convex press die that forms the inner surface of the spherical shell plate portion 46A of the cage half 47 and a concave press die that forms the outer surface of the spherical shell plate portion 46A. A die set is prepared, and the ring-shaped metal strip is sandwiched between the convex press die and the concave press die, and the cage half 47 is press-molded. This press molding may be performed in two stages of rough pressing and finishing pressing, or may be performed once.
The two retainer halves 47 obtained in this way are overlapped, and the portion where the flat plate portions 47 a of the retainer halves 47 overlap is joined by a rivet 49 to form the retainer 4.

図8〜図10は、グリース付着状態の確認を行った試験結果を示す。この試験では、図6の実施形態、および図7の実施形態の保持器4を組み込んだ玉軸受と、一般的な鉄板打ち抜き保持器を組み込んだ玉軸受とを、軸受呼び番号「6203」、シール無し、外輪回転、回転速度3600min−1、アキシアル荷重39N、運転時間5秒の試験条件で運転して比較した。この試験結果から、一般的な鉄板打ち抜き保持器を組み込んだ玉軸受では、内輪シール溝にグリースが付着するが、この実施形態の保持器4を組み込んだ玉軸受ではグリースの付着がないことを確認した。 8 to 10 show test results for confirming the grease adhesion state. In this test, a ball bearing incorporating the cage 4 of the embodiment of FIG. 6 and the embodiment of FIG. 7 and a ball bearing incorporating a general steel plate punching cage are designated as a bearing identification number “6203”, a seal The test was performed under the test conditions of none, outer ring rotation, rotation speed 3600 min −1 , axial load 39 N, and operation time 5 seconds. From this test result, it is confirmed that grease is adhered to the inner ring seal groove in a ball bearing incorporating a general steel plate punched cage, but no grease is adhered to a ball bearing incorporating the cage 4 of this embodiment. did.

また、前記各玉軸受に接触シール(NTN製LUシール)を組み付けて、グリース漏れ頻度の確認試験も行った。この試験では、前記試験条件のうち運転時間のみを15分に変更して行った。その結果、従来品の保持器は、全10個中9個のグリース漏れが発生したのに対し、実施形態の保持器を組み込んだ軸受では、全4個中グリース漏れの発生したものは無かった。   Further, a contact seal (NTN LU seal) was assembled to each of the ball bearings, and a grease leakage frequency confirmation test was also conducted. In this test, only the operation time was changed to 15 minutes among the test conditions. As a result, 9 out of 10 grease leaks in the conventional cages, whereas none of the bearings incorporating the cages of the embodiments had any grease leaks. .

これらの試験結果からわかるように、この実施形態の保持器4を組み込んだ玉軸受では、グリース漏れ阻止部として保持器4のポケット46の内面に凹み部50,50Aを設けたため、内輪シール溝Smへのグリースの付着を無くすことができる。すなわち、玉に最もグリースが付着する位置である保持器内径側の開口縁に開口する凹み部50,50Aを設けたため、グリースの掻き取りが生じる際の、玉の表面の掻き取りが減少し、保持器内径面に溜まるグリース量が減少する。そのため、内輪シール溝Smへグリースが付着することを防止することができる。   As can be seen from these test results, in the ball bearing incorporating the retainer 4 of this embodiment, the recesses 50 and 50A are provided on the inner surface of the pocket 46 of the retainer 4 as a grease leakage prevention portion. It is possible to eliminate the adhesion of grease to the surface. That is, since the recesses 50 and 50A that open at the opening edge on the inner diameter side of the cage, which is the position where the grease adheres most to the ball, are provided, scraping of the surface of the ball when scraping of the grease is reduced, The amount of grease that accumulates on the inner surface of the cage is reduced. Therefore, it is possible to prevent the grease from adhering to the inner ring seal groove Sm.

グリースのちょう度について説明する。
グリースのちょう度とグリース漏れ量との関係についても試験を行った。
試験条件は、次表3の通りである。この試験において、グリースにおける基油の割合を増やすことで、ちょう度を変化させた。
The consistency of grease will be described.
The relationship between grease consistency and grease leakage was also tested.
The test conditions are as shown in Table 3 below. In this test, the consistency was changed by increasing the proportion of base oil in the grease.

Figure 2011196422
Figure 2011196422

試験結果は、次表4および図11の通りである。

Figure 2011196422

この試験結果により、グリースのちょう度が389以上でグリース漏れが確認された。したがって、グリースのちょう度の上限値は389が望ましい。 The test results are as shown in Table 4 and FIG.
Figure 2011196422

From this test result, grease leakage was confirmed when the grease consistency was 389 or more. Accordingly, the upper limit value of the grease consistency is preferably 389.

以上説明した転がり軸受によると、シール部材5を導電性の材質とすることで、外輪2−シール部材5−内輪1の通電性を良くし、内外輪1,2の転走部への通電を減少させることが可能となる。また、保持器4に、シール部材5と内輪1との摺接部分Sbにグリースが流れることを阻止するグリース漏れ阻止部として凹み部50,50Aを設けたため、前記摺接部分Sbに油膜が形成されないようにし得る。したがって、内外輪1,2とシール部材5との導電性の低下を防ぎ、内外輪1,2の転走面1a,2aを通電させないようにして脆性剥離対策を行うことができる。よって、脆性剥離による軸受寿命の低下を防止することができる。   According to the rolling bearing described above, the energization of the outer ring 2 -the seal member 5 -the inner ring 1 is improved and the energization of the rolling portions of the inner and outer rings 1 and 2 is achieved by using the seal member 5 as a conductive material. It becomes possible to decrease. Further, since the retainer 4 is provided with the recessed portions 50 and 50A as grease leakage preventing portions for preventing the grease from flowing into the sliding contact portion Sb between the seal member 5 and the inner ring 1, an oil film is formed on the sliding contact portion Sb. May not be. Accordingly, it is possible to prevent brittle peeling by preventing the lowering of the conductivity between the inner and outer rings 1 and 2 and the seal member 5 and preventing the rolling surfaces 1a and 2a of the inner and outer rings 1 and 2 from being energized. Therefore, it is possible to prevent a decrease in bearing life due to brittle peeling.

この発明の他の実施形態として、図12および図13に示す保持器4Aは、グリース漏れ阻止部として、球殻状板部46Aにおける玉配列ピッチである玉配列ピッチ円PCDよりも内径側部分に薄肉部分46Aaを形成している。この薄肉部分46Aaは、内輪1の転走面1aの両側の外径面部1Dに位置する部分の板厚t1を、平板部47aの板厚t0よりも薄くしたものである。外径面部1Dは、シール溝Smが設けられている場合、転走面1aとシール溝Smとの間の外径面部分のことである。球殻状板部46Aは、この外径面部分1Dの軸方向範囲Wに位置する部分の板厚t1を薄くする。なお、図12において、球殻状板部46Aを薄肉化しない場合の断面形状を想像線で示している。   As another embodiment of the present invention, a cage 4A shown in FIGS. 12 and 13 is provided as a grease leakage prevention portion at a portion on the inner diameter side of the ball arrangement pitch circle PCD which is a ball arrangement pitch in the spherical shell plate portion 46A. A thin portion 46Aa is formed. The thin portion 46Aa is obtained by making the plate thickness t1 of the portion located on the outer diameter surface portion 1D on both sides of the rolling surface 1a of the inner ring 1 thinner than the plate thickness t0 of the flat plate portion 47a. When the seal groove Sm is provided, the outer diameter surface portion 1D is an outer diameter surface portion between the rolling surface 1a and the seal groove Sm. The spherical shell plate portion 46A reduces the plate thickness t1 of the portion located in the axial range W of the outer diameter surface portion 1D. In FIG. 12, the cross-sectional shape when the spherical shell-shaped plate portion 46A is not thinned is indicated by an imaginary line.

板材t1を薄くする形態は、保持器半径方向において、玉配列ピッチ円PCDに相当する箇所から内径側に至る範囲の全体を薄くしても良く、また玉配列ピッチ円PCDと保持器内径縁間の途中の箇所から内径縁に至る範囲を薄くなるようにしても良い。これらの場合に、板厚t1は、保持器半径方向の内径側に至るに従って次第に薄くなって内径縁が最小板厚となるようにしても良く、また薄くする範囲の全体を略一定して薄くしても良い。さらに、球殻状板部46Aのポケット内面形状を維持したままで、外面側の形状が変わるように板厚を薄くしても良く、また球殻状板部46Aの外面形状を維持したままで、ポケット内面側の形状が変わるように板厚を薄くしても良い。   The plate material t1 may be thinned by thinning the entire range from the portion corresponding to the ball arrangement pitch circle PCD to the inner diameter side in the radial direction of the cage, and between the ball arrangement pitch circle PCD and the cage inner edge. The range from the midway point to the inner diameter edge may be made thinner. In these cases, the plate thickness t1 may gradually become thinner toward the inner diameter side in the radial direction of the cage so that the inner diameter edge becomes the minimum plate thickness. You may do it. Further, while maintaining the shape of the inner surface of the pocket of the spherical shell-shaped plate portion 46A, the plate thickness may be reduced so that the shape of the outer surface changes, and the shape of the outer surface of the spherical shell-shaped plate portion 46A is maintained. The plate thickness may be reduced so that the shape of the pocket inner surface changes.

この保持器4Aは、このようにポケット46を構成する球殻状板部46Aの内径部に薄肉部分46Aaを形成しており、この薄肉部分46Aaは、内輪1の外径面部1Dと軸方向に重なり合う部分であって、玉の表面に付着したグリースが保持器4Aで掻き取られる部分、またはその掻き取られたグリースが移動してくる部分である。この部分46Aaの板厚t1が薄ければ、ここに堆積し得るグリース量が減少するため、内輪1の外径面部1Dに到達し得る頻度や量が減少し、結果としてグリースの軸受外部への漏れが防止できる。すなわち、保持器4Aの外径側へグリースが移動しやすくなり、内径側に留まり得るグリース量が減少する。   In this cage 4A, a thin-walled portion 46Aa is formed in the inner diameter portion of the spherical shell-shaped plate portion 46A that constitutes the pocket 46 in this way, and this thin-walled portion 46Aa is in the axial direction with the outer-diameter surface portion 1D of the inner ring 1. The overlapping part is a part where the grease adhered to the surface of the ball is scraped off by the cage 4A, or the part where the scraped grease moves. If the plate thickness t1 of this portion 46Aa is thin, the amount of grease that can be deposited here decreases, so the frequency and amount that can reach the outer diameter surface portion 1D of the inner ring 1 decreases, and as a result, the grease flows to the outside of the bearing. Leakage can be prevented. That is, the grease easily moves to the outer diameter side of the cage 4A, and the amount of grease that can stay on the inner diameter side decreases.

しかし、保持器全体の板厚を薄くすることは、保持器の単体の強度が低下するため、ミスアライメント下あるいは外部加振下において保持器に繰り返し応力が作用する場合に保持器の損傷が生じやすくなるなど、難しい。
そこで、保持器4Aの内径部において、内輪1の外径面部2Dと軸方向に重なり合う範囲Wのみの板厚を薄くしており、これにより、実質上の保持器4Aの強度の低下が無く、かつグリース漏れを防止可能な保持器4Aが成立する。
However, reducing the overall plate thickness of the cage reduces the strength of the cage itself, and damage to the cage occurs when repeated stress is applied to the cage under misalignment or external vibration. It becomes difficult, such as becoming easy.
Therefore, in the inner diameter portion of the cage 4A, the thickness of only the range W that overlaps the outer diameter surface portion 2D of the inner ring 1 in the axial direction is thinned, and thereby there is no substantial decrease in strength of the cage 4A. And the holder | retainer 4A which can prevent grease leak is materialized.

図14〜図16に示す保持器4Bは、グリース漏れ阻止部として、玉の直径をDaとしたとき、内輪1の外径面と保持器4Bの内径面との間の径方向隙間δが0.09Da以上に規定される。また、その径方向隙間δとして許される最大値は、保持器4Bの強度、内外輪1,2の肩部径、保持器4Bの移動量などを考慮して、0.36Daとされている。すなわち、転がり軸受における前記径方向隙間δは、0.09Daから0.36Daの範囲内の値(0.09Da≦δ≦0.36Da)に設定されている。   The cage 4B shown in FIG. 14 to FIG. 16 has a radial clearance δ between the outer diameter surface of the inner ring 1 and the inner diameter surface of the cage 4B as a grease leakage prevention portion when the ball diameter is Da. .09 Da or more. In addition, the maximum value allowed as the radial gap δ is set to 0.36 Da in consideration of the strength of the cage 4B, the shoulder diameters of the inner and outer rings 1 and 2, the amount of movement of the cage 4B, and the like. That is, the radial clearance δ in the rolling bearing is set to a value within a range of 0.09 Da to 0.36 Da (0.09 Da ≦ δ ≦ 0.36 Da).

この転がり軸受では、内輪1の外径面と保持器4Bの内径面の間の径方向隙間δを0.09Da以上と大きくしたので、保持器4Bの内径側に堆積したグリースの逃げ場を設けたことになる。そのため、内輪1のシール溝Sm(図1)にグリースが入り込むのを防ぐことができ、これによりグリース漏れを防止できる。したがって、シール部材5と内輪1との摺接部分Sb(図2(B))に油膜が形成されないようにでき、これにより内外輪1,2とシール部材5との導電性の低下を防ぎ、内外輪1,2の転走面1a,2aを通電させないようにして脆性剥離対策を行うことができる。
前記径方向隙間δが、0.36Da以下であることが望ましいのは、次の理由による。
すなわち、保持器強度のために帯幅(保持器の半径方向の幅B)は0.26Da以上必要、内外輪肩径(軌道面溝底と肩部との半径の差)は0.18Da以上必要、保持器移動量はMAX0.17Da。よって、移動量最大時のすきまは0.36Daとなる。
In this rolling bearing, since the radial clearance δ between the outer diameter surface of the inner ring 1 and the inner diameter surface of the cage 4B is increased to 0.09 Da or more, a clearance for grease accumulated on the inner diameter side of the cage 4B is provided. It will be. Therefore, it is possible to prevent the grease from entering the seal groove Sm (FIG. 1) of the inner ring 1, thereby preventing the grease leakage. Accordingly, an oil film can be prevented from being formed on the sliding contact portion Sb (FIG. 2B) between the seal member 5 and the inner ring 1, thereby preventing a decrease in conductivity between the inner and outer rings 1, 2 and the seal member 5, It is possible to take measures against brittle peeling by preventing the rolling surfaces 1a and 2a of the inner and outer rings 1 and 2 from being energized.
The reason why the radial gap δ is desirably 0.36 Da or less is as follows.
That is, for the strength of the cage, the belt width (width B in the radial direction of the cage) needs to be 0.26 Da or more, and the inner and outer ring shoulder diameters (difference in radius between the raceway groove bottom and the shoulder) are 0.18 Da or more. Necessary, cage movement is MAX0.17 Da. Therefore, the clearance at the maximum movement amount is 0.36 Da.

図17は、前記径方向隙間δを0.09Da以上としたこの実施形態の転がり軸受の複数個と、径方向隙間δ以外の構成はこの実施形態の場合と同様であるが、径方向隙間δを0.09Da未満とした転がり軸受の複数個について、グリース漏れ発生率について行なった試験結果をプロットして示したものである。この試験結果から、前記径方向隙間δを0.09Da以上としたこの実施形態の転がり軸受において、グリース漏れ発生率が著しく低下していることが分かる。   FIG. 17 is the same as the case of this embodiment except for the plurality of rolling bearings of this embodiment in which the radial clearance δ is 0.09 Da or more and the configuration other than the radial clearance δ. FIG. 5 is a plot of the test results of the grease leakage occurrence rate for a plurality of rolling bearings having a diameter of less than 0.09 Da. From this test result, it can be seen that in the rolling bearing of this embodiment in which the radial clearance δ is 0.09 Da or more, the grease leakage occurrence rate is remarkably reduced.

図18および図19に示す転がり軸受では、図18に平面図で示すように、その保持器4Bにおいて、ポケット46のある円周方向部分の内周面が、軸方向から見て外径側に凹む多角形状の凹み部Haとされている。具体的には、前記内周面は、ポケット46間の円周方向部分の内周面Hbに対し外径側へ傾斜する一対の傾斜面部Haaと、両端がこれら一対の傾斜面部Haaの外径側端に連なり内径が一定な一定径面部Habとでなる台形状をしている。これにより、ポケット46のある円周方向部分(凹み部Ha)の内径の保持器中心からの半径Rpは、ポケット46間の円周方向部分の内径の保持器中心からの半径Riよりも大きくなっている(Rp>Ri)。   In the rolling bearing shown in FIGS. 18 and 19, as shown in a plan view in FIG. 18, in the retainer 4 </ b> B, the inner peripheral surface of the circumferential portion with the pocket 46 is on the outer diameter side when viewed from the axial direction. It is set as the recessed part Ha of the polygonal shape to dent. Specifically, the inner peripheral surface has a pair of inclined surface portions Haa inclined to the outer diameter side with respect to the inner peripheral surface Hb of the circumferential portion between the pockets 46, and both ends have outer diameters of the pair of inclined surface portions Haa. It has a trapezoidal shape consisting of a constant-diameter surface portion Hab that is connected to the side end and has a constant inner diameter. Thereby, the radius Rp from the cage center of the inner diameter of the circumferential portion (recessed portion Ha) with the pocket 46 is larger than the radius Ri from the cage center of the inner diameter of the circumferential portion between the pockets 46. (Rp> Ri).

この実施形態の場合、玉の直径をDaとしたとき、図19に示すように、内輪1の外径面と保持器4Bの前記凹み部Haの間の径方向隙間δ1は、0.09Da以上とされている。また、その径方向隙間δ1として許される最大値は、保持器4Bの強度、内外輪1,2の肩部径、保持器4Bの移動量などを考慮して、0.36Daとされている。すなわち、この転がり軸受における前記径方向隙間δ1は、0.09Daから0.36Daの範囲内の値(0.09Da≦δ1≦0.36Da)に設定されている。この実施形態の場合も、先の実施形態の場合と同様のグリース漏れ発生率の試験を行なったところ、同様の結果が得られた。   In the case of this embodiment, when the diameter of the ball is Da, as shown in FIG. 19, the radial clearance δ1 between the outer diameter surface of the inner ring 1 and the recessed portion Ha of the cage 4B is 0.09 Da or more. It is said that. Further, the maximum value allowed as the radial gap δ1 is set to 0.36 Da in consideration of the strength of the cage 4B, the shoulder diameters of the inner and outer rings 1 and 2, the movement amount of the cage 4B, and the like. That is, the radial clearance δ1 in this rolling bearing is set to a value within the range of 0.09 Da to 0.36 Da (0.09 Da ≦ δ1 ≦ 0.36 Da). Also in this embodiment, the same result was obtained when the same grease leak rate test as in the previous embodiment was performed.

図20は、この発明の一実施形態にかかる転がり軸受BR1をアイドラプーリに設けた断面図を示す。このアイドラプーリ21では、軸20の外周に同転がり軸受BR1を嵌合し、この転がり軸受BR1によりアイドラプーリ21を回転自在に支持している。このアイドラプーリ用軸受によると、グリース漏れを防止し、内外輪とシール部材との導電性の低下を防ぎ、内外輪の転走面を通電させないようにして脆性剥離対策を行うことで、脆性剥離による軸受寿命の低下を防止することができる。   FIG. 20 is a sectional view in which the rolling bearing BR1 according to the embodiment of the present invention is provided on the idler pulley. In the idler pulley 21, the rolling bearing BR1 is fitted on the outer periphery of the shaft 20, and the idler pulley 21 is rotatably supported by the rolling bearing BR1. This idler pulley bearing prevents brittle debonding by preventing leakage of grease, preventing a decrease in electrical conductivity between the inner and outer rings and the seal member, and preventing brittle debonding by preventing the rolling surfaces of the inner and outer rings from energizing. It is possible to prevent a decrease in bearing life due to.

図21は、この発明の一実施形態にかかる転がり軸受を電装補機であるオルタネータ22に設けた断面図を示す。このオルタネータ22では、オルタネータ用軸受として用いられる転がり軸受BR1に、シャフト23が挿入され、突き出たシャフト23の端部にプーリ24が取付けられている。プーリ24には、図示しない伝動ベルトが掛けられる係合溝25が設けられている。このオルタネート用軸受においても、グリース漏れを防止し、内外輪とシール部材との導電性の低下を防ぎ、内外輪の転走面を通電させないようにして脆性剥離対策を行うことで、脆性剥離による軸受寿命の低下を防止することができる。
前記各実施形態の転がり軸受として、深溝玉軸受を適用しているが、アンギュラ玉軸受、円筒ころ軸受、円すいころ軸受を適用することも可能である。
FIG. 21 is a sectional view in which a rolling bearing according to an embodiment of the present invention is provided in an alternator 22 that is an electrical accessory. In this alternator 22, a shaft 23 is inserted into a rolling bearing BR1 used as a bearing for an alternator, and a pulley 24 is attached to an end portion of the protruding shaft 23. The pulley 24 is provided with an engagement groove 25 on which a transmission belt (not shown) is hung. This alternate bearing also prevents brittle delamination by taking measures against brittle delamination by preventing leakage of grease, preventing a decrease in electrical conductivity between the inner and outer rings and the seal member, and preventing energization of the rolling surfaces of the inner and outer rings. A decrease in bearing life can be prevented.
Although the deep groove ball bearing is applied as the rolling bearing of each of the embodiments, an angular ball bearing, a cylindrical roller bearing, or a tapered roller bearing can also be applied.

1…内輪
2…外輪
1a,2a…転走面
3…転動体
4…保持器
5…シール部材
5ba…くびれ部
5c…リップ部
46…ポケット
46A…球殻状板部
47…保持器半体
47a…平板部
50,50A…凹み部
Lm…主リップ
Lb…ラビリンスリップ
Sm…シール溝
DESCRIPTION OF SYMBOLS 1 ... Inner ring 2 ... Outer ring 1a, 2a ... Rolling surface 3 ... Rolling body 4 ... Cage 5 ... Seal member 5ba ... Constriction part 5c ... Lip part 46 ... Pocket 46A ... Spherical shell-shaped board part 47 ... Cage half body 47a ... Flat plate part 50, 50A ... Recessed part Lm ... Main lip Lb ... Labyrin slip Sm ... Seal groove

Claims (10)

内外輪の転走面間に複数の転動体が介在され、リップ部が内輪に摺接して前記内外輪間の軸受空間を塞ぐシール部材を外輪に設けた転がり軸受において、
前記シール部材を導電性の材質とし、
前記転動体を保持する保持器に、前記軸受空間内のグリースが前記シール部材と内輪との摺接部分に流れることを阻止するグリース漏れ阻止部を設けたことを特徴とする転がり軸受。
In a rolling bearing in which a plurality of rolling elements are interposed between the rolling surfaces of the inner and outer rings, and a seal member is provided on the outer ring so that the lip portion is in sliding contact with the inner ring and closes the bearing space between the inner and outer rings.
The sealing member is a conductive material,
A rolling bearing comprising: a cage that holds the rolling element; and a grease leakage prevention portion that prevents the grease in the bearing space from flowing into a sliding contact portion between the seal member and an inner ring.
請求項1において、前記転動体を玉とし、グリース漏れ阻止部は、保持器のうち前記玉を保持するポケットの内面を凹球面状としこの凹球面状のポケットの内面に、保持器内径側の開口縁から保持器外径側に延びる凹み部を設けたものである転がり軸受。   The rolling element according to claim 1, wherein the rolling element is a ball, and the grease leakage prevention portion has a concave spherical inner surface of the pocket that holds the ball of the cage, and the inner surface of the concave spherical pocket is arranged on the inner diameter side of the cage. A rolling bearing provided with a recess extending from the opening edge to the outer diameter side of the cage. 請求項1において、前記転動体を玉とし、前記保持器は、前記玉を保持するポケットを円周方向複数箇所に有するリング状で、且つ、2個の環状体の保持器半体を軸方向に対面して重ね合わせてなり、これら保持器半体は、それぞれ内周が前記各ポケットの半分を形成する球殻状板部と、隣合うポケット間の部分となる平板部とが円周方向に交互に並ぶ形状であり、
前記グリース漏れ阻止部は、前記球殻状板部における玉配列ピッチ円よりも内径側部分における、少なくとも、内輪の転走面両側の肩部高さの外径面部に位置する部分の板厚を、前記平板部の板厚よりも薄くしたものである転がり軸受。
2. The rolling element according to claim 1, wherein the rolling element is a ball, and the cage is in a ring shape having pockets for holding the ball at a plurality of locations in the circumferential direction, and two annular cage halves are axially arranged. These retainer halves have a spherical shell-shaped plate portion whose inner periphery forms half of each pocket, and a flat plate portion that is a portion between adjacent pockets in the circumferential direction. Are alternately arranged in shape,
The grease leakage prevention portion has a plate thickness of a portion located at an outer diameter surface portion of at least a shoulder height on both sides of the rolling surface of the inner ring in a portion on the inner diameter side of the ball arrangement pitch circle in the spherical shell plate portion. A rolling bearing that is thinner than the plate thickness of the flat plate portion.
請求項1において、前記転動体を玉とし、グリース漏れ阻止部は、内輪の外径面と保持器の内径面との径方向隙間を、前記玉の直径に0.09を乗じた値以上としたものである転がり軸受。   The rolling element according to claim 1, wherein the rolling element is a ball, and the grease leakage prevention portion has a radial clearance between the outer diameter surface of the inner ring and the inner diameter surface of the cage, equal to or greater than a value obtained by multiplying the diameter of the ball by 0.09. Rolling bearing. 請求項4において、前記径方向隙間を、前記玉の直径に0.36を乗じた値以下としたものである転がり軸受。   The rolling bearing according to claim 4, wherein the radial clearance is not more than a value obtained by multiplying the diameter of the ball by 0.36. 請求項1ないし請求項5のいずれか1項において、前記内輪の外径面にシール溝を周方向に形成し、このシール溝と内輪の端部との間に外径側に突出する肩部を形成し、前記シール溝に対向した外輪内径面に前記シール部材の外周縁を固定し、
前記シール部材の内周部に、前記シール溝の溝壁に接触し摺接する主リップと、前記肩部の径方向外方に配設されるラビリンスリップとを設け、
前記主リップに、前記シール溝に対向する内周面を設け、前記ラビリンスリップの内周側に、このラビリンスリップの先端に向かうに従って拡径する傾斜面を設けた転がり軸受。
6. The shoulder portion according to claim 1, wherein a seal groove is formed in a circumferential direction on the outer diameter surface of the inner ring, and the shoulder portion protrudes toward the outer diameter side between the seal groove and an end portion of the inner ring. And fixing the outer peripheral edge of the seal member to the inner surface of the outer ring facing the seal groove,
A main lip that comes into contact with and slides on the groove wall of the seal groove, and a labyrinth slip disposed radially outward of the shoulder portion are provided on the inner peripheral portion of the seal member,
A rolling bearing in which an inner peripheral surface facing the seal groove is provided on the main lip, and an inclined surface that increases in diameter toward the tip of the labyrin slip is provided on the inner peripheral side of the labyrin slip.
請求項6において、前記主リップおよびラビリンスリップの基端部から外径側に繋がり、これら主リップおよびラビリンスリップの軸方向厚さよりも薄肉に形成されたくびれ部を、前記シール部材に設けた転がり軸受。   7. The rolling device according to claim 6, wherein a constriction portion connected to an outer diameter side from a base end portion of the main lip and the labyrin slip and having a constricted portion formed thinner than an axial thickness of the main lip and the labyrin slip is provided on the seal member. bearing. 請求項1ないし請求項7のいずれか1項において、前記軸受空間に封入するグリースのちょう度を389未満とした転がり軸受。   The rolling bearing according to any one of claims 1 to 7, wherein the grease to be sealed in the bearing space has a consistency of less than 389. 請求項1ないし請求項8のいずれか1項に記載の転がり軸受を適用したプーリ用軸受。   A pulley bearing to which the rolling bearing according to any one of claims 1 to 8 is applied. 請求項1ないし請求項8のいずれか1項に記載の転がり軸受を適用した自動車電装補機用軸受。   A bearing for automotive electrical equipment to which the rolling bearing according to any one of claims 1 to 8 is applied.
JP2010062053A 2010-03-18 2010-03-18 Rolling bearing Pending JP2011196422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062053A JP2011196422A (en) 2010-03-18 2010-03-18 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062053A JP2011196422A (en) 2010-03-18 2010-03-18 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2011196422A true JP2011196422A (en) 2011-10-06

Family

ID=44874913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062053A Pending JP2011196422A (en) 2010-03-18 2010-03-18 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2011196422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139451A (en) * 2013-01-21 2014-07-31 Nok Corp Seal device
WO2020195586A1 (en) * 2019-03-22 2020-10-01 Ntn株式会社 Deep groove ball bearing
CN113474568A (en) * 2019-05-08 2021-10-01 Nok株式会社 Sealing device
CN113614398A (en) * 2019-03-22 2021-11-05 Ntn株式会社 Deep groove ball bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147477A (en) * 2000-11-09 2002-05-22 Nsk Ltd Rolling device
JP2005308067A (en) * 2004-04-20 2005-11-04 Nsk Ltd Rolling bearing
JP2008281073A (en) * 2007-05-09 2008-11-20 Ntn Corp Rolling bearing
JP2010002021A (en) * 2008-06-23 2010-01-07 Ntn Corp Sealed rolling bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147477A (en) * 2000-11-09 2002-05-22 Nsk Ltd Rolling device
JP2005308067A (en) * 2004-04-20 2005-11-04 Nsk Ltd Rolling bearing
JP2008281073A (en) * 2007-05-09 2008-11-20 Ntn Corp Rolling bearing
JP2010002021A (en) * 2008-06-23 2010-01-07 Ntn Corp Sealed rolling bearing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139451A (en) * 2013-01-21 2014-07-31 Nok Corp Seal device
WO2020195586A1 (en) * 2019-03-22 2020-10-01 Ntn株式会社 Deep groove ball bearing
CN113614398A (en) * 2019-03-22 2021-11-05 Ntn株式会社 Deep groove ball bearing
CN113474568A (en) * 2019-05-08 2021-10-01 Nok株式会社 Sealing device
CN113474568B (en) * 2019-05-08 2024-01-05 Nok株式会社 Sealing device

Similar Documents

Publication Publication Date Title
JP5300277B2 (en) Ball bearing cage
US8727631B2 (en) Retainer, deep groove ball bearing, and bearing with seal
JP2004293700A (en) Tapered roller bearing
JP2011196422A (en) Rolling bearing
JP2011127702A (en) Rolling bearing
JP5063427B2 (en) Bearings for automotive accessories
JP2008281196A (en) Bearing for two-wheeled vehicle reduction gear
JP4948254B2 (en) Rolling bearing
JP2008057791A (en) Tapered roller bearing
WO2011074468A1 (en) Rolling bearing
JP2012137177A (en) Retainer for ball bearing and ball bearing
JP5424573B2 (en) Tenter Clip Guide Bearing
JP2011047474A (en) Retainer for bearing and bearing
WO2016147881A1 (en) Retainer and rolling bearing
JP5535179B2 (en) Rolling bearing
JP2012163148A (en) Rolling bearing
JP2011141000A (en) Rolling bearing
WO2016208352A1 (en) Retainer and deep groove ball bearing
JP2016080150A (en) Pulley support double-row angular ball bearing
JP2005069404A (en) Sealed roller bearing
JP5816338B2 (en) Rolling bearing
WO2012011408A1 (en) Wave-shaped retainer for ball bearing
JP2013036493A (en) Rolling bearing
WO2017038630A1 (en) Deep groove ball bearing
JP5202128B2 (en) Sealed rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304